
Error Thresholds for
Arbitrary Pauli Noise

Johannes Bausch

CQIF, DAMTP
University of Cambridge
Cambridge CB3 0WA, UK
jkrb2@cam.ac.uk

Felix Leditzky

JILA & CTQM
University of Colorado Boulder

Boulder, USA
felix.leditzky@jila.colorado.edu

September 2019

ar
X

iv
:1

91
0.

00
47

1v
1

 [
qu

an
t-

ph
]

 1
 O

ct
 2

01
9

Abstract

The error threshold of a one-parameter family of quantum channels is defined as the largest
noise level such that the quantum capacity of the channel remains positive. This in turn
guarantees the existence of a quantum error correction code for noise modeled by that channel.
Discretizing the single-qubit errors leads to the important family of Pauli quantum channels;
curiously, multipartite entangled states can increase the threshold of these channels beyond
the so-called hashing bound, an effect termed superadditivity of coherent information. In
this work, we divide the simplex of Pauli channels into one-parameter families and compute
numerical lower bounds on their error thresholds. We find substantial increases of error
thresholds relative to the hashing bound for large regions in the Pauli simplex corresponding to
biased noise, which is a realistic noise model in promising quantum computing architectures.
The error thresholds are computed on the family of graph states, a special type of stabilizer
state. In order to determine the coherent information of a graph state, we devise an algorithm
that exploits the symmetries of the underlying graph resulting in a substantial computational
speed-up. This algorithm uses tools from computational group theory and allows us to
consider symmetric graph states on a large number of vertices. Our algorithm works
particularly well for repetition codes and concatenated repetition codes (or cat codes), for
which our results provide the first comprehensive study of superadditivity for arbitrary Pauli
channels. In addition, we identify a novel family of quantum codes based on tree graphs. The
error thresholds of these tree graph states outperform repetition and cat codes in large regions
of the Pauli simplex, and hence form a new code family with desirable error correction
properties.

Contents

1. Introduction 4
1.1. Main Results . 5
1.2. Structure of this Paper . 6

2. Preliminaries 6
2.1. Quantum Capacity . 6
2.2. Graph States . 9
2.3. Coherent Information of Decohered Graph States 14

3. Exploiting Graph Symmetries 17
3.1. Automorphisms of Colored Graphs . 17
3.2. Cosets of Graph Colorings . 18
3.3. Canonical Colorings . 21
3.4. Canonical Images for Colored Graphs . 24
3.5. Homomorphic Group Actions . 25
3.6. Coherent Information of Decohered Graph States with Symmetries 25

4. Numerical Methods 32
4.1. Visualizing Thresholds . 33

5. Results 37
5.1. Repetition Codes . 37
5.2. Concatenated Codes . 41
5.3. Tree Codes . 45
5.4. Exhaustive Search . 48
5.5. Rate Comparisons . 53

6. Discussion 56
6.1. Noise Models in NISQ Devices . 58
6.2. Open Problems . 59

A. LU-Equivalence of an Arbitrary Stabilizer State to a Graph State 65

B. Subroutines for Full Coherent Information Algorithm 67

C. Monotonicity of Coherent Information 68

1. Introduction

It is widely believed that quantum error correction is a necessary requirement for quantum
computers to maintain coherence in computations. Quantum error-correcting codes protect
logical quantum information from environmental noise by encoding it in larger physical
systems in a redundant way. Based on the particular architecture of the quantum computing
device different mathematical models, or quantum channels, are used to describe this
environmental noise. The analysis of quantum error correction is greatly simplified by the fact
that the full unitary group of possible errors affecting a physical qubit can be discretized to the
group of Pauli errors [Sho95; Ste96]: a bit flip X , a phase flip Z , or a combined bit-phase flip
Y , where X , Y and Z are the well-known Pauli matrices. The most extensively studied noise
model is depolarizing noise, in which the three Pauli errors occur with equal probabilities.
However, in many promising quantum computing architectures such as superconducting
qubits [Ali+09], quantum dots [Shu+12], or trapped ions [Nig+14], the actual noise model is
biased towards dephasing noise consisting of only one type of Pauli error.
A common assumption in the noise model is that each physical qubit is independently

affected by the same type of noise modeled by a quantum channel, that is, no memory effects
between qubits are considered. In this model, commonly referred to as the independent and
identically distributed (i.i.d.) noise model, the ability to protect a quantum system (and the
quantum information stored in it) from environmental noise is quantified by the quantum
capacity Q(N) of a quantum channelN . A positive quantum capacity of a particular quantum
channel implies that error correction against the (i.i.d.) noise modeled by that channel is
in principle possible. For a one-parameter family x 7→ Nx of quantum channels (such as
depolarizing noise above), this leads to the question of determining the error threshold (or
noise threshold), defined as the supremum over all noise levels x such that the quantum
capacity remains positive, i.e. Q(Nx) > 0.

The quantum capacity theorem [Sch96; SN96; Llo97; Sho02; Dev05] gives a regularized
entropic formula for the quantum capacity. One consequence of this theorem is that positive
quantum capacity of a channel can be certified by finding an entangled state that retains
coherence after part of it has been affected by the noise. Here, the coherence is measured
by an entropic quantity called the coherent information. In contrast to Shannon’s classical
theory of information [Sha48], it does not suffice to compute the coherent information with
respect to one copy of the channel, as entangled multipartite quantum states acted upon by
i.i.d. copies of the quantum channel may maintain more coherence [SS96; DiV+98; SS07;
FW08; Cub+15; Led+18a]. This effect is called superadditivity of coherent information,
and it is a direct consequence of the multipartite entanglement present in the quantum state.

4

Finding suitable multipartite entangled states is challenging due to the exponential scaling of
the dimension of the underlying Hilbert space.

1.1. Main Results

In this work we study the quantum capacity thresholds of qubit Pauli channels

ρ 7→ p0ρ + p1XρX + p2Y ρY + p3ZρZ, (1)

corresponding to the Pauli error model in terms of the Pauli matrices X,Y, Z introduced above.
To this end, we evaluate the coherent information of a Pauli channel acting on graph states
[BR01; Hei+04], a special type of stabilizer states [Got97]. We find large threshold increases
in the entire Pauli channel simplex, in particular for biased noise models where one type of
Pauli error dominates over the other ones. We identify a novel family of quantum codes
defined in terms of tree graphs with superadditive coherent information and an increased
error threshold. In large regions of the Pauli channel simplex these new codes outperform
the known families of (concatenated) repetition codes.
To obtain our results, we make use of the special error-correcting properties of graph

states that simplify the computation of the coherent information under Pauli noise [Hei+05].
We devise an algorithm that exploits the symmetries of the underlying graph, providing
a substantial speed-up in the computation of the coherent information for suitable graphs.
The algorithm relies on tools from computational group theory such as strong generating
sets for permutation groups, and makes heavy use of the theory of group actions. The
resulting speed-up allows us to consider quantum states on a large number of constituent
systems. Moreover, we obtain algebraic expressions for the coherent information in terms of
the probability distribution (p0, p1, p2, p3) characterizing the Pauli channel in (1), which can
easily be evaluated numerically for the entire Pauli channel simplex.

Our algorithm is particularly well-suited for the class of repetition codes and concatenated
repetition codes (or cat codes). These codes are examples of degenerate codes where multiple
errors are mapped to the same syndrome, and have long been known to increase the thresholds
of certain Pauli channels such as the depolarizing channel or the independent bit and phase
flip channel [SS96; DiV+98; SS07; FW08]. Our paper comprises the first comprehensive
study of the thresholds of these degenerate codes for arbitrary Pauli channels. We also
identify a novel type of quantum codes given by tree graph states. These codes outperform
the best repetition and cat codes in large regions in the Pauli channel simplex, and provide
new examples of quantum codes with favorable error-correcting properties.

5

1.2. Structure of this Paper

This paper is structured as follows. Section 2 contains necessary background information
about the quantum capacity of a quantum channel, superadditivity of coherent information,
graph states, and their coherence properties under Pauli noise. In Section 3 we derive our
main technical tool, an algorithm to compute the coherent information of graph states under
Pauli noise that exploits the symmetries of the graph (Algorithms 2 to 4). In Section 4 we
describe the numerical methods used throughout our study. Section 5 contains the main
results of this paper, a detailed analysis of the error thresholds of Pauli channels using graph
states, and an analysis of rates close to the noise threshold. We discuss repetition codes
(Section 5.1), concatenated repetition codes (Section 5.2), and a novel code family based on
tree graphs (Section 5.3). We also carry out an exhaustive search over connected graphs of
up to eight vertices (Section 5.4). We conclude in Section 6 with a discussion of our results
and how they are relevant for realistic noise models in near-term quantum devices, and we
mention open questions that are subject to further study.

2. Preliminaries

We briefly define the notation used throughout this paper. A quantum system A is associated
with a finite-dimensional Hilbert spaceHA, and multipartite systems ABC . . . are described
by the tensor productHA ⊗ HB ⊗ HC ⊗ . . . of the respective Hilbert spaces. We denote by
|A| = dimHA the dimension of a quantum system A. A quantum state (or density operator)
ρA on A is a linear positive semidefinite operator with unit trace. A pure quantum state
ψA is a quantum state of rank 1, which can be associated with a normalized vector (or ket)
|ψ〉A ∈ HA such that ψA = |ψ〉〈ψ |A. A quantum channel N : A→ B is a linear, completely
positive and trace-preserving map from the algebra of linear operators onHA to the algebra
of linear operators onHB. We denote by 1A the identity operator onHA, and by idA : A→ A
the identity map on the algebra of linear operators onHA. All logarithms are taken to base 2.
For n ∈ N, we use the notation [n] B {1, . . . , n}.

2.1. Quantum Capacity

In information-theoretic terms, the quantum capacity Q(N) of a quantum channelN : A→ B
characterizes the channel’s ability to faithfully transmit quantum information. Here, we define
it operationally through the task of entanglement generation. In this task, Alice prepares a
bipartite state ρRAn in her lab, and sends the An-part to Bob through n copies of the quantum
channel N . Bob applies a local decoding operation D to his share of the state in order to

6

bring the total state (idR ⊗ D ◦ N ⊗n)(ρRAn) close to a maximally entangled state Φ+ up
to some error ε defined in terms of a suitable distance measure. Informally, the quantum
capacity is defined as the largest Schmidt Rank of Φ+ such that ε vanishes asymptotically in
the limit n→∞.
Formally, let ε ∈ (0, 1) and |Φ+〉RR′ = |R|−1/2 ∑ |R |−1

i=0 |i〉R |i〉R′ be a maximally entangled
state on a bipartite quantum system. An ε-entanglement generating code for a quantum
channel N : A→ B is a pair (ρRA,D) consisting of an arbitrary quantum state ρRA and a
decoding quantum channel D : B→ R′ such that

F
(
Φ
+
RR′, (idR ⊗ D ◦ N)(ρRA)

)
≥ 1 − ε,

where F(ρ, σ) = ‖√ρ
√
σ‖1 denotes the fidelity of two quantum states ρ and σ. Let r(n, ε)

denote the largest dimension |R| of R such that there exists an ε-entanglement generating
code for N ⊗n. Then the quantum capacity Q(N) is defined as

Q(N) = inf
ε>0

lim sup
n→∞

1
n

log r(n, ε).

A positive quantum capacity means that it is theoretically possible to faithfully transmit
quantum information through the channel at a positive rate. Alternatively, Q(N) > 0 means
that a quantum system can be protected from environmental noise modeled by N assuming
that the noise acts independently and identically distributed (i.i.d.) on each qubit. Both points
of view lead to the fundamental questions of determining the value of Q(N) for a given noise
model N , and more generally whether we have Q(N) > 0.

In information-theoretic terms, these questions have found a partial answer in the following
coding theorem providing a regularized entropic formula for the quantum capacity [Sch96;
SN96; Llo97; Sho02; Dev05]:

Q(N) = sup
n∈N

1
n

Ic(N ⊗n), (2)

where the channel coherent information is defined as

Ic(N) = max
|ψ〉RA

Ic(ψ,N) = max
|ψ〉RA
[S(N(ψA)) − S(N(ψRA))] , (3)

with S(ρ) = − tr ρ log ρ denoting the von Neumann entropy of a density operator ρ. In this
paper, we refer to the pure input state |ψ〉RA in Eq. (3) simply as a quantum code.1 The
regularization in Eq. (2) is necessary since the channel coherent information is known to be

1We refer to [BL18] for a justification of this terminology.

7

superadditive: there exist channels N and quantum codes ψRAn such that [SS96; DiV+98;
SS07; FW08; Cub+15; Led+18a]

1
n

Ic(ψ,N ⊗n) > Ic(N). (4)

A well-known quantum channel exhibiting superadditivity of coherent information as in
Eq. (4) is the qubit depolarizing channel [SS96; DiV+98], defined for p ∈ [0, 1] as

Dp(ρ) = (1 − p)ρ + p
3
(XρX + Y ρY + ZρZ), (5)

where X,Y, Z are the Pauli matrices. The depolarizing channel belongs to the class of Pauli
channels Np, defined in terms of a probability distribution p = (p0, p1, p2, p3) as

Np(ρ) = p0ρ + p1XρX + p2Y ρY + p3ZρZ . (6)

Superadditivity of coherent information has also been demonstrated for other channels in
this class, such as the BB84 channel with p = ((1 − p)2, p − p2, p2, p − p2) or the Two-Pauli
channel with p = (1 − p, p/2, 0, p/2) [SS07; FW08]. One of the main goals of this paper is a
comprehensive study of superadditivity for the class of Pauli channels. We note here that
for dephasing-type noise of the form ND

p (ρ) = (1 − p)ρ + pDρD with D ∈ {X,Y, Z}, the
coherent information is additive and hence equal to the quantum capacity [DS05].
Superadditivity of the coherent information renders the quantum capacity of general

quantum channels intractable to compute. As a result, the quantum capacity of Pauli channels
is unknown except for a few special cases, and one needs to resort to finding lower and upper
bounds on Q(N), e.g., in order to certify that Q(N) > 0. A helpful tool in this task is the
direct part of the coding theorem Eq. (2), which states that

Q(N) ≥ max
|ψ〉RAn

1
n

Ic(ψRAn,N ⊗n) for any n ∈ N. (7)

Even for fixed n ∈ N, solving the optimization problem on the right-hand side of Eq. (7)
is generally infeasible due to the exponential growth of the number of parameters in ψRAn .
Instead, one may try to restrict the optimization to a smaller class of multipartite quantum
states |ψ〉RAn that is numerically tractable. For example, in our previous paper [BL18] we
optimized the coherent information in Eq. (7) over neural network states, a class of multipartite
quantum states with polynomially many degrees of freedom [CT17]. For sufficiently low
n ∈ N, this ansatz proved successful in efficiently approximating the channel coherent
information for noise models such as the dephrasure channel [Led+18a].
In this work, we focus on the class of Pauli channels as defined in Eq. (6). The form of

these channels naturally suggests a restriction in Eq. (7) to the family of stabilizer states,

8

which are states defined in terms of their invariance properties under (an Abelian group of)
many-qubit Pauli operators. In addition, for a special type of stabilizer states called graph
states the coherent information Eq. (3) turns into a “classical” quantity that can be computed
more efficiently. This is the starting point for our analysis of Pauli channels and explained in
the next section, in which we first review stabilizer and graph states along with some of their
useful properties.

2.2. Graph States

Before we define and discuss graph states, the main object of study in this paper, we briefly
introduce stabilizer groups and stabilizer states [Got97].

Let P = {I, X,Y, Z} be the set of Pauli matrices including the identity I on C2, and define
the n-qubit Pauli group (or simply Pauli group)

Pn =
{
i
kσ1 ⊗ . . . ⊗ σn : σi ∈ P, k = 0, 1, 2, 3

}
.

A stabilizer group S is an Abelian subgroup of Pn that does not contain −I⊗n. Since
operators in S commute pairwise, they can be simultaneously diagonalized. The stabilizer
subspaceHS is defined as the joint eigenspace of the operators in S corresponding to the
eigenvalue 1:

HS =
{
|ψ〉 ∈ (C2)⊗n : S |ψ〉 = |ψ〉 for all S ∈ S

}
.

Let S1, . . . , Sr with r ≤ n be a (minimal) set of stabilizer generators for the stabilizer group
S. Then it can be shown that dimHS = 2k where k = n − r. In the language of quantum
error-correcting codes, the stabilizer code S (orHS) encodes k logical qubits into n physical
qubits, and is commonly denoted as [n, k].2 Let NPn (S) = {P ∈ Pn : PSP† ⊂ S} be the
normalizer of S in Pn. The stabilizer group S is a normal subgroup of NPn (S), and the
factor group NPn (S)

/
S is isomorphic to Pk , i.e., one can choose X̄i, Z̄i ∈ NPn (S)

/
S for

i = 1, . . . , k satisfying the usual relations for Pauli matrices. The operators X̄i, Z̄i are called
logical operators; they commute with all stabilizers in S, but act non-trivially on the code
spaceHS . If r = n, then we may choose a pure state |ψ〉 such thatHS = span(|ψ〉), and we
refer to |ψ〉 as a stabilizer state.

2We will not be concerned with the distance of a stabilizer code.

9

2.2.1. Definition and Properties

We now define graph states. Let Γ = (V, E) be a simple undirected graph with vertex set
V = {1, . . . , n} and edge set E , and identify each vertex with a qubit associated with a Hilbert
space C2. The graph state |Γ〉 ∈ (C2)⊗n is defined as

|Γ〉 =
∏
e∈E

CZe |+〉⊗n ,

where |+〉 = (|0〉 + |1〉)/
√

2 and CZe denotes the controlled-Z gate |0〉〈0|i ⊗ 1j + |1〉〈1|i ⊗ Z j

acting on the qubits i and j connected by the edge e ∈ E . Equivalently, the graph state |Γ〉
can be regarded as a stabilizer state defined by the n stabilizer generators

Si = X iZNi for i = 1, . . . , n, (8)

where Ni B {k ∈ V : {k, i} ∈ E} is the neighborhood of the vertex i ∈ V consisting of all
vertices k ∈ V adjacent to i. In Eq. (8) and throughout the paper, the notation OU for a subset
U ⊂ V indicates that the single-qubit operator O acts on the vertices contained in U, e.g., for
U = {2, 3} and |V | = 5 we have OU = 11 ⊗ O2 ⊗ O3 ⊗ 14 ⊗ 15.

By the above observation, every graph state is a stabilizer state. Conversely, any stabilizer
state is local-Clifford-equivalent to a graph state, which we show in detail in Appendix A.
Here, the set of local Clifford operations is defined as those local unitaries U1 ⊗ . . . ⊗ Un

mapping the Pauli group Pn into itself.
The action of any local Clifford operation on a graph state can be decomposed into a series

of so-called local complementations (LC) [Nes+04]. The local complementation LCi of a
graph Γ = (V, E) with respect to a vertex i ∈ V is obtained by replacing the subgraph induced
by the vertex neighborhood Ni with its complement. For example, the graphs and
can be obtained from each other by a local complementation with respect to the bottom-left
vertex. If a quantum channel N is covariant with respect to local Clifford operations C, i.e.,

N ⊗n(C · C†) = CN ⊗n(·)C† for all local Cliffords C,

then two graph states with LC-equivalent graphs Γ and Γ′ = LCi(Γ) have the same coherent
information, Ic(|Γ〉,N ⊗n) = Ic(|Γ′〉,N ⊗n). This holds in particular for the depolarizing
channel Np with p = (1 − p, p/3, p/3, p/3), which is in fact covariant with respect to any
local unitary operation. Hence, a maximization of the coherent information of a depolarizing
channel over all graph states corresponds to a maximization over all stabilizer states.
Graph states form a rich class of multipartite quantum states with many appealing

properties; in the following we briefly collect the most important ones needed in this paper.
A comprehensive review of graph states and their properties can be found in [Hei+06].

10

Graph State Basis. A helpful tool for working with graph states is the so-called graph
state basis for (C2)⊗n. For a given graph Γ = (V, E) with associated graph state |Γ〉, it is
defined as G(Γ) = {|U〉}U⊂V , where

|U〉 = ZU |Γ〉 .

To see that G(Γ) is indeed a basis for (C2)⊗n, observe that for U,U ′ ⊂ V with U , U ′ we
have S = (U ∪U ′) \ (U ∩U ′) , ∅. Hence, the operator O = ZU ZU′ = ZS has at least one Z
operator acting on some qubit, and consequently 〈Γ|O |Γ〉 = 0 [Hel14]. This can be checked
by noting that Z i commutes with any controlled-Z gate involving the qubit i, and CZ2 = 1.
It then follows for O = ZS with S , 0 that

〈Γ|O |Γ〉 = 〈+|⊗n
(∏

e∈E
CZe

)
O

(∏
e∈E

CZe

)
|+〉⊗n = 〈+|⊗n O |+〉⊗n = 0.

Partial Trace Formula. Consider a graph ΓAR on a vertex set V = VA ∪ VR consisting of
vertices (qubits) VA and VR belonging to quantum systems A and R, respectively. We denote
by ΓA�A the induced subgraph on VA of ΓAR. There is a simple formula for the mixed
marginal ρA = trR ΓAR, which should not be confused with the pure subgraph state |ΓA�A〉.
To state the formula, we consider a block form of the adjacency matrix of ΓAR (which we
denote by the same symbol in slight abuse of notation):

ΓAR =

(
ΓA�A ΓA�R

ΓTA�R ΓR�R

)
, (9)

where ΓA�R is a |VA | × |VR |-matrix encoding the edges between the vertex sets VA and VR.
Throughout the paper, for an arbitrary set X we identify subsets Y ⊂ X with binary vectors
X̃ ∈ F |X |2 , where X̃i = 1 if i ∈ X and 0 otherwise. In slight abuse of notation, we use the
same symbol for subsets and binary vector representations. Abbreviating Γ′ = ΓA�R, the
following formula for the mixed marginal ρA on the vertices belonging to A is proved in
[Hei+06]:

ρA =
1

2 |VR |

∑
R′⊂VR

|Γ′R′〉〈Γ′R′ |A , (10)

where Γ′R′ ⊂ VA is understood as matrix multiplication modulo 2, and the state |Γ′R′〉A =
ZΓ
′R′ |ΓA�A〉 is an element of G(ΓA�A). Equation (10) shows that the marginal ρA of a graph

state |ΓAR〉 is diagonal in a preferred basis, the graph state basis G(ΓA�A) of the subgraph
ΓA�A.

11

2.2.2. Decoherence under Pauli Noise

We now review the decoherence properties of graph states under Pauli noise discussed in
[Hei+05]. The crucial observation is that graph states translate any Pauli error into Z-type
errors: If qubit i is affected by an X error, then

X i |Γ〉 = X iSi |Γ〉 = X iX iZNi |Γ〉 = ZNi |Γ〉 = |Ni〉 ,

where we used that Si = X iZNi stabilizes |Γ〉. Furthermore,

Y i |Γ〉 = −iZ iX i |Γ〉 = −iZ i |Ni〉 = −i |Ni ⊕ i〉 ,

where ⊕ is addition modulo 2 and we identify a subset U ⊂ V with its binary representation.
The above observation shows that under conjugation with a Pauli error σ ∈ P the graph

state |Γ〉〈Γ| is mapped onto some |U〉〈U |, where |U〉 is the element of the graph state basis
G(Γ) corresponding to the subset U ⊂ V . This holds more generally for any n-qubit Pauli
group element σn ∈ Pn. Consider now a Pauli channel

Np(ρ) = p0ρ + p1XρX + p2Y ρY + p3ZρZ,

defined in terms of a probability distribution p = (p0, p1, p2, p3). The above observation
shows that under the i.i.d. action of a Pauli channel Np the channel output σ = N ⊗np (Γ) is
diagonal with respect to G(Γ), i.e., σ = ∑

U⊂V λU |U〉〈U | for some probability distribution
{λU }U⊂V . A compact formula for the coefficients λU is derived in [Hei+05].
In this paper, we use a simple generalization of this formula to the situation where the

(i.i.d. action of the) Pauli noise only affects a subset of the qubits. To this end, consider
a graph ΓAR = (VA ∪ VR, E) whose vertices are partitioned into k ≡ kA system vertices
(qubits) VA and kR environment vertices (qubits) VR. By the above discussion, the state
σBR = (N ⊗kp ⊗ idR)(ΓAR) is again diagonal in the graph state basis G(ΓAR),

σRB =
∑

U⊂VA∪VR

λU |U〉〈U | . (11)

Setting qi = pi/p0 for i = 1, 2, 3, we have the following formula for λU with U ⊂ V as a
straight-forward generalization of the one reported in [Hei+05]:

λU = pk0
∑

(U1,U2,U3)∈M(U)
q |U1 |

1 q |U2 |
2 q |U3 |

3 , (12)

whereM(U) is the set of all triples (U1,U2,U3) satisfying

Ui ⊂ VA for i = 1, 2, 3,

Ui ∩Uj = ∅ for 1 ≤ i < j ≤ 3,

U = ΓAR(U1 ⊕ U2) ⊕ U2 ⊕ U3.

(13)

12

Here and throughout the paper, ⊕ denotes addition mod 2. Note that in Eq. (13) we interpret
the Ui as subsets of V = VA ∪ VR, which amounts to padding the binary vectors of length kA

with kR 0’s. The resulting subset U has support in VR whenever there is an edge in ΓAR from
a vertex in U1 ⊕ U2 to a vertex in VR (that is, the off-diagonal block ΓA�R in Eq. (9) has an
entry 1 in a row corresponding to a vertex in U1 ⊕ U2).

2.2.3. The Partial Trace of a Decohered Graph State.

We now derive a formula for taking the partial trace of a graph state after the i.i.d. action
of a Pauli channel. More precisely, let ΓAR be a graph on a vertex set V = VA ∪ VR with
k ≡ kA = |VA | and kR = |VR |, and let Np be a Pauli channel. Then by the above discussion,
we have

σBR = N ⊗kp (ΓAR) =
∑
U⊂V

λU |U〉〈U | , (14)

where the coefficients λU are given by Eq. (12).
We now apply the partial trace formula Eq. (10) to Eq. (14). Abbreviating Γ′ = ΓA�R, and

for a subset U ⊂ V = VA ∪ VR denoting by UA its restriction to VA, we have:

σB = trR σBR

=
∑
U⊂V

λU trR |U〉〈U |

=
∑
U⊂V

λU trR ZU |ΓAR〉〈ΓAR | ZU

=
∑
U⊂V

λU ZUA trR(|ΓAR〉〈ΓAR |)ZUA

=
1

2kR

∑
U⊂V
R′⊂VR

λU ZUA⊕Γ′R′ |ΓA�A〉〈ΓA�A | ZUA⊕Γ′R′, (15)

where we used Eq. (10) in the last step. This can be rewritten as

σB =
∑

W ⊂VA

λW |W〉〈W | , (16)

where

λW =
1

2kR

∑
(U,R′)∈M(W)

λU, (17)

M(W) = {(U, R′) : U ⊂ V, R′ ⊂ VR,UA ⊕ Γ′R′ = W}. (18)

Similar to σBR above, the operator σB is again diagonal in a preferred basis, the graph state
basis G(ΓA�A) of the subgraph ΓA�A.

13

2.3. Coherent Information of Decohered Graph States

Recall from Section 2.1 that the coherent information of a quantum code |ψ〉AR and a channel
N : A→ B is given by

Ic(ψ,N) = S(N(ψA)) − S(N(ψAR)). (19)

Consider now a graph state |ΓAR〉 defined in terms of a graph ΓAR = (VA ∪ VR, E) with
k ≡ kA = |VA | and kR = |VR |, and a Pauli channelNp. The formulas (11) forσBR = N ⊗kp (ΓAR)
and (17) forσB = trR σBR show that these operators are diagonal with respect to the graph state
bases G(ΓAR) and G(ΓA�A), respectively. These observations yield a “classical” algorithm
for computing the coherent information Eq. (19), which is described in Algorithm 1 and
explained in detail in the following paragraph. A MATLAB implementation of Algorithm 1
can be found at [Led19]. A similar algorithm to efficiently compute the coherent information
of Pauli channels acting on quantum codes diagonal in the graph state basis of a given graph
was derived in [CJ11].

To start Algorithm 1, we obtain in Line 3 the subsets Ui ⊂ V satisfying the conditions in
Eq. (13) as matrices whose columns are the binary vector representations ofUi . We store their
cardinality |Ui | in vectors ui in Line 4, and determine the matrix U = Γ(U1 ⊕U2) ⊕U2 ⊕U3

in Line 5, assigning the first kA rows of U to a matrix Ua in Line 6. The columns of U
and Ua are binary vectors indexing subsets of V , and in Line 7 we convert them to decimal
numbers indicating their corresponding position in coefficient vectors λ and µ for the states
σBR = (N ⊗kp ⊗ idR)(ΓAR) and ωB = N ⊗kp (ΓA�A), respectively.3 In Line 8 we compute a
vector c whose entries are the coefficients pk0 q |U1 |

1 q |U2 |
2 q |U3 |

3 appearing in Eq. (12). Note that
q1 · q2 denotes entry-wise multiplication. If one of the qi is zero, we eliminate it from the
equation altogether in order to avoid computing 00. For each element in c, we then add up
the contributions to the coefficient λU indexed by the subset U ⊂ V in Line 12. In the same
loop, we also add up the contributions to the coefficient of UA in the marginal σB in Line 13.
This procedure computes the eigenvalues λ and µ of the states σBR = (N ⊗kp ⊗ idR)(ΓAR)
and ωB = N ⊗kp (ΓA�A), which are diagonal in their respective graph state bases G(ΓAR) and
G(ΓA�A).

3Note that the state ωB, obtained from applying the channel to all qubits of the pure graph state |ΓA�A〉 on
the vertices VA corresponding to the subgraph ΓA�A, is an auxiliary state that does not feature itself in the
formula for the coherent information.

14

In the second part of Algorithm 1 we compute the marginal σB from the intermediate state
ωB based on the following observation: using Eq. (15), we can write σB as

σB =
1

2kR

∑
R′⊂VR

ZΓ
′R′

(∑
U⊂V

λU ZUA |ΓA〉〈ΓA | ZUA

)
ZΓ
′R′

=
1

2kR

∑
R′⊂VR

ZΓ
′R′

(∑
U⊂V

λU |UA〉〈UA |
)

ZΓ
′R′

=
1

2kR

∑
R′⊂VR

ZΓ
′R′ωBZΓ

′R′ .

We have

|UA〉〈UA | 7→ ZΓ
′R′ |UA〉〈UA | ZΓ

′R′ = |UA ⊕ Γ′R′〉〈UA ⊕ Γ′R′ | ,

which amounts to a permutation A′ 7→ A′ ⊕ Γ′R′ of the subsets A′ ⊂ VA and hence a
permutation of the coefficients λA of σB indexed by A′ ⊂ VA. To use this observation, in
Lines 15 and 16 we define A′ and R′ to be matrices whose columns are the subsets of VA and
VR in binary vector representation, respectively. Furthermore, in Line 17 we define ∆ to be
the subsets of VA obtained from moving the VR-subsets R′ into VA via Γ′ = ΓA�R, i.e., along
the edges connecting vertices in VA to vertices in VR.

For a fixed column ∆j (corresponding to a particular subset of VR moved into VA), we then
compute the map A′ 7→ ∆j ⊕ A′ for all A′ ⊂ VA in Line 19, and convert the resulting matrix
to a decimal representation of the corresponding subsets in VA in Line 20. The result of this
operation is a vector Vind which can be interpreted as a permutation in Sk with k = kA = |VA |.
The corresponding permutations of the eigenvalue vector µ of ωB are then added to λA (the
eigenvalue vector of σB) in Line 21. Finally, in Line 23 we compute the Shannon entropies
of the resulting eigenvalue vectors λA and λ to obtain the coherent information of σRB.
While Algorithm 1 is a “classical” algorithm computing the probability distributions

corresponding to the diagonal states σRB and σB, it nevertheless has exponential scaling
due to the loops over subsets of VA and VR. In the next section, we deal with this problem
by exploiting the symmetries in the underlying graph ΓAR with the goal of speeding up the
computation of the coherent information.

15

Algorithm 1 Algorithm to compute the coherent information Ic(|Γ〉 ,N ⊗kp) of a graph state
|Γ〉AR defined in terms of a graph Γ = (VA ∪ VR, E) with k ≡ kA = |VA |, kR = |VR |, and a
Pauli channel Np with p = (p0, p1, p2, p3). We denote the adjacency matrix of the graph
Γ by the same symbol, and set Γ′ = ΓA�R (see Eq. (9)). Unless stated otherwise, binary
operations on vectors and matrices are carried out entry-wise. The subroutines GetUSubsets,
GetUSubsetsCard, BinaryToDecimal, Subsets, PermVector, and ShannonEntropy
are defined in Appendix B. Due to the concurrent write operations in lines 12 and 13,
parallelising the trivial inner loop does not necessarily lead to a runtime speedup.
1: function Ic(|Γ〉 ,N ⊗kp)
2: qi ← pi/p0 for i = 1, 2, 3
3: (U1,U2,U3) ← GetUSubsets(k, kR)
4: (u1, u2, u3) ← GetUSubsetsCard(k)
5: U ← Γ(U1 ⊕ U2) ⊕ U2 ⊕ U3

6: Ua ← U1:k,: . U1:k,: denotes the submatrix of the first k rows and all columns.
7: v ← BinaryToDecimal(U), w ← BinaryToDecimal(Ua)
8: c← pk0

(
qu1

1 · q
u2
2 · q

u3
3

)
9: λ← 02k+kR , µ← 02k . 0n denotes a zero-vector of length n.
10: λA ← 02k

11: for j ∈ {1, . . . , |c |} do
12: λvj ← λvj + cj
13: µwj ← µwj + cj
14: end for
15: A′← Subsets(k)
16: R′← Subsets(kR)
17: ∆← Γ′R′ mod 2
18: for j ∈ {1, . . . , 2kR} do
19: Vstr ← ∆:, j ⊕ A′

20: Vind ← BinaryToDecimal(Vstr)
21: λA ← λA + 2−kRPermVector(µ,Vind)
22: end for
23: return 1

k (ShannonEntropy(λA) − ShannonEntropy(λ))
24: end function

16

3. Exploiting Graph Symmetries

One crucial observation for quantum codes based on graph states is that we can exploit
the symmetries of the underlying graph state in the calculation of the coherent information.
Consider e.g. a graph corresponding to a repetition code with kA = 5 system vertices and
kR = 1 environment vertex colored in white:4

Γ =

1

2 3 4 5 6

(20)

This graph is evidently invariant under any permutation of the vertices {2, 3, 4, 5}. How is
this reflected in the calculation of the coherent information? We will see that we can indeed
exploit the graph’s symmetries to significantly speed up the performance of calculating the
coherent information for a graph state.
In the following sections, we will summarize the graph-theoretic background necessary,

and refer the reader to any standard textbook (e.g. [Tru93; Die10]) on graphs wherever we do
not explicitly cite any sources.

3.1. Automorphisms of Colored Graphs

In this section we collect some fundamental facts of graph symmetries and introduce the
notation used throughout the paper. To start, we analyse the 1-in-5-graph in Eq. (20). As
mentioned, any interchange of the vertices 2 to 5 yields precisely the same graph; if we were
to ignore the colors this symmetry would also include vertex 6. However, we use the color to
signify the difference between a system vertex—which is passed through the channel—and
an environment vertex, which is not; we do not want to be able to interchange it with the
system.
The colored graph’s automorphism group is the right concept to capture this type of

symmetry. In the example in Eq. (20), it is generated by a list of transpositions,

Aut(Γ) = 〈(23), (34), (45)〉 ⊂ S6, (21)

where S6 is the finite symmetric group of 6 elements. More generally, for a graph state we
define it to be as follows.

4For brevity and consistency we will call this a 1-in-5 code; see Section 5.1.

17

Definition 1 (AutomorphismGroup for Graph State). Let |Γ〉 be a graph state with underlying
graph Γ = (V, E) and |V | = kAR, such that the vertex set V = (v1, . . . , vkAR) has a specific
ordering. Let 1 ≤ kA < kAR. Then

Aut(|Γ〉 , kA) := Aut(Γ(kA)),

where Γ(kA) is the vertex-colored graph of Γ such that

color(vi) =

black i ≤ kA

white otherwise.

We note that it is generally not the case that, just by coloring the environment vertices in
disctinct colors, the automorphism group factors across this bipartition; a counterexample is
a graph state such as

12 34 5 ,

with automorphism group 〈(45)(23)〉.

3.2. Cosets of Graph Colorings

Let Γ = (V, E) be a graph. To visualize a vertex subset U ⊂ V we can give them a distinct
color, just as we marked the subset of environment vertices in white in the last section. We
give an example; if Γ is the six-vertex graph in Eq. (20) with the environment vertex marked
in white, we want to select the vertex subset U = {2, 3}, which yields the following colored
graph:

Γ
′ =

1

2 3 4 5 6

(22)

To simplify notation, we write Γ′ = Γ(kA,U), indicating that all vertices with index beyond
kA are white, and further all vertices in U have an extra set color.
However, under the graph’s automorphism group Aut(Γ(kA)) = 〈(23), (24), (25)〉 which

allows us to treat the originally-black leaves 2, . . . , 5 interchangeably, this subset coloring is
equivalent to marking a different set of vertices such as

Γ
′′ =

1

2 3 4 5 6

.

18

Here, we call two colorings equivalent if there exists a permutation τ ∈ Aut(Γ(kA)) such that
τ(Γ′) = Γ′′, where we define τ(Γ′) B (V ′, E ′) with V ′ = {vτ(i) : vi ∈ V}, and E ′ is defined
analogously.
In this case we only wanted to color a subset in one color; in general, we can obviously

allow multiple colors, in which case the graph coloring is simply a list of associations such
as {2→ 1, 3→ 1, 4→ 2} ⊂ V ×N. The second element is an arbitrary indexing of colors
(e.g. 1 is green, 2 is blue etc.). As mentioned, applying a coloring to a graph Γ(kA,C) is then
done in such a way that the environment vertices are marked in a different color. Continuing
with our example, this means that if 6 ∈ U, then

Γ
′′′ =

1

2 3 4 5 6

where the environment vertex is filled out in white. As vertex 6 cannot be interchanged
with any of the system vertices, Γ′′′ is not equivalent to Γ′. For consistency with the
graph state terminology and clarity of presentation we will generally call a graph Γ(kA)
uncolored—despite the fact that the environment vertices are singled out; in contrast, Γ(kA,C)
is colored. Likewise, we refer to the (strictly speaking 2-colored) automorphism group
Aut(Γ(kA)) simply as the automorphism group of a graph state.

Coming back to our example, how many different equivalent graph colorings for V are
there? To answer this question rigorosly, we define the following quantity.

Definition 2 (Number of Equivalent Graph Colorings). For a graph state |Γ〉 with underlying
graph Γ = (V, E) and kA < kAR = |V |, and a coloring C ⊂ V ×N, the number of equivalent
graph colorings for C is defined as

#(Γ, kA,C) B |{Γ′ : ∃ τ ∈ Aut(Γ(kA)) s.t. τ(Γ′) = Γ(kA,C)}| .

In our example graph Γ′ in Eq. (22), it is easy to see that #(Γ, 5,U) = 6. But how
many is it in general? This question is answered most concisely using the theory of group
actions. A (left) action of a group G on a set X is a map G × X 3 (g, x) 7→ g · x satisfying
g · (h · x) = (gh) · x for all g, h ∈ G, x ∈ X , and e · x = x for all x ∈ X , where e ∈ G
denotes the identity element in G. Whenever there is no source of confusion we simply
write gx ≡ g · x for g ∈ G and x ∈ X . We use the notation GX to indicate an action of
G on X . For each x ∈ X we define the orbit Gx = {gx : g ∈ G} and the stabilizer group

19

Gx = {g ∈ G : gx = x} ≤ G. We will make heavy use of the orbit-stabilizer theorem relating
the two objects:

|Gx | = [G : Gx] =
|G |
|Gx |

, (23)

and the elements of the orbit Gx are in bijective correspondence with a transversal of Gx in
G. The set of orbits of points x ∈ X under the action of G forms a partition of X which we
denote by X/

G.
Returning to graph colorings, we now consider the action of the group G = Aut(Γ(kA))

on the set of graph colorings, and the stabilizer group Stab(G,C) = GC of a coloring C,
i.e., the subgroup of G such that for all elements τ ∈ Stab(G,C) we have τ(C) = C. The
orbit-stabilizer theorem (23) now gives the following result.

Lemma 3. Let G = Aut(Γ(kA)) be the graph state’s automorphism group. Then #(Γ, kA,C) =
|G |/| Stab(G,C)|.

Now that we know which graph colorings are equivalent, we are interested in the question
whether we can enumerate all non-equivalent graph colorings. To formalize this, let [c]k be
the set of all possible colorings of a graph Γ, where either k = kA (padded with no colors for
the environment vertices), or k = kAR. In view of the discussion of group actions above, we
observe the following:

Lemma 4. The set Ξ(Γ, c, k) of non-equivalent colorings of c colors of a graph Γ is equal to
the set of orbits of all colorings under the action of the graph state’s automorphism group.
Formally,

Ξ(Γ, c, k) = [c]k
/

Aut(Γ(kA)).

We will often drop the third argument in the coloring set Ξ(Γ, c) = Ξ(Γ, c, kA) for brevity.
Can we explicitly list all colorings for a graph state? It turns out that this question is closely
linked to the active field of research of finding canonical representatives within each coset
ω ∈ Ξ(Γ, c, k). This in turn is closely related to the field of graph isomorphisms, i.e. deciding
whether two graphs Γ1 and Γ2 are equivalent under vertex permutations.

Definition 5 (Canonical Map and Coloring). A canonical map for a graph Γ and c colors is
a map

Can: Ξ(Γ, c, k) −→ [c]k,

such that Can(ω) = Cω for some coloring Cω ∈ ω; we also call Can(ω) a canonical repre-
sentative of the coloring ω. A canonical coloring is then the set of canonical representatives
Can(Ξ(Γ, c, k)).

20

Given the last definition, an immediate question is whether we can efficiently list such a
canonical coloring. Assuming a canonical map Can is available, it is obvious that for small
graphs a filtering approach—iterating over all colorings [c]k and collecting the results in a
hash set—is a viable option. However, this method scales exponentially in kA: for e.g. c = 4
and k = 20, we have to filter 240 different colorings. Another caveat is that this only works as
long as the hash set of previously-determined cosets fits into the working memory, as we
need to check whether a specific coloring has been found before.
A different problem is that Can might not, in fact, be available, or very expensive to

compute (as in our case). It turns out that a series of significantly faster algorithms are known
to address this problem: one by McKay and Piperno [MP14] which we call VColG,5 and
another algorithm by Borie [Bor13] which we denote SGSColG. Both are based on checking
whether a coloring is already canonical or not, which is much easier from a computational
perspective. For the sake of completeness we explain SGSColG in detail in the following
section.

3.3. Canonical Colorings

The algorithm SGSColG described by Borie [Bor13] is based on introducing a total order on
the colorings, which provides a way of testing whether a specific choice of order is already
maximal. In conjunction with a breadth-first search respecting said order, this allows for
early pruning of what is essentially a backtracking algorithm. Because it is significantly more
memory-efficient to traverse the colorings depth-first, we alter the algorithm by exchanging
the tree traversal method in the following; the rest of the procedure closely follows [Bor13].
As Borie mentions, this algorithm is an extension of McKay’s canonical graph labeling
algorithm described in [HR09].
The automorphism group G = Aut(Γ) of a graph Γ = (V, E) is a permutation group, i.e.

a subgroup of the symmetric group S |V |. For a permutation group G ≤ Sn acting on [n],
a base is a set of points {β1, . . . , βm} with βj ∈ [n] such that the identity in G is the only
group element stabilizing all base points. Given a base {β1, . . . , βm}, we can define the group
stabilizer chain

{id} = Gm < Gm−1 < . . . < G1 < G0 = G (24)

where

Gi = {τ ∈ G : τ(βj) = βj ∀ j ≤ i}.

5This is derived from nauty’s toolkit [MP14], which provides a program for enumerating vertex colorings.

21

In words, the stabilizer chain is a sequence of nested subgroups of G, such that each subgroup
Gi leaves all base points β1, . . . , βi invariant. Since the action base {βi} is not unique the
stabilizer chain is not unique either; unless stated otherwise, in the following we use the
standard base {β1, . . . , βn} with βi = i, where i corresponds to the graph’s ith vertex, and
such that the system vertices are sorted to the front.

As shown in the definition below, a stabilizer chain naturally yields a list of generators for
the group which respect a specific ordering of the points called a Strong Generating Set. It
has many uses in computational group theory algorithms and can be efficiently calculated
using the Schreier-Sims algorithm [Ser03].

Definition 6 (Strong Generating Set). Let G be a finite permutation group with stabilizer
chain corresponding to some action base {βi} as in Eq. (24). Then a strong generating set
S ⊆ G is a set of generators for G satisfying 〈S ∩Gi〉 = Gi , i.e., the ith stabilizer in the chain
is generated by S ∩ Gi for all i. The strong generating set inherits its base-dependence from
the stabilizer chain.

Using such a strong generating set, it is straightforward to calculate the orbit of a point βi+1

under the action of the stabilizer group Gi . In turn, this allows us to determine a transversal
for Gi

/
Gi+1 in each link of the stabilizer chain in Eq. (24) relative to a base {β1, . . . , βm}.

This can be obtained via the bijection between the orbit {σβi+1 : σ ∈ Gi} = {o1, . . . , ol}
and the cosets of Gi

/
Gi+1: a transversal of the latter is obtained from cycling through

o1, . . . , ol and for each oj selecting an element τi j ∈ Gi such that τi j βi+1 = oj for all
1 ≤ j ≤ l = [Gi : Gi+1].

For our applications, we specialize this to the standard base βi = i: For all j ≥ i + 1 in the
orbit Gi(i + 1), we can track which permutation τi j ∈ Gi maps i + 1 7→ j, i.e. τi j(i + 1) = j.
This yields a transversal for Gi

/
Gi+1 with respect to the stabilizer chain of G relative to the

standard base, which is an example of a so-called Strong Generating System.

Definition 7 (Strong Generating System). A strong generating system for a finite permutation
group with respect to some base {βi} is a list of transversals for a strong generating set
of the stabilizer chain {Gi}i for base {βi}. For the standard base βi = i we denote the
strong generating system with T(G) := {t1, . . . , tk}, where each ti is a list of permutations
representing the transversal of Gi

/
Gi+1.

A strong generating system will be tremendously useful when deciding whether a graph
coloring is already canonical. In order to exploit it, we define a specific canonical function
Canlex: a coloring is canonical under Canlex if it is maximal within its coset, with respect to
the natural lexicographical ordering.

22

Algorithm 2 Is given graph coloring canonical with respect to Canlex?
1: function IsCanonical(C ∈ N×k , T = {t1, . . . , tk} : transversal)
2: queue← {c}
3: for i ∈ {1, . . . , k} do
4: set ← {}
5: for w ∈ queue do
6: for child ∈ ti · w do . elementwise image of w
7: if c1:i <lex child1:i then . compare prefix of length i
8: return false
9: end if

10: if c1:i = child1:i then
11: set = set ∪ {child}
12: end if
13: end for
14: end for
15: queue← set
16: end for
17: return true
18: end function

More specifically, for two strings of colors v,w ∈ [c]k we define v <lex w to be true if v
comes beforewwith respect to a standard lexicographical ordering; ≤lex is defined analogously.
This ordering allows us to define a subroutine IsCanonical given in Algorithm 2, and
enables us to determine if a given coloring is maximal with respect to Canlex.

The intuition behind the algorithm is the following: Instead of computing the entire orbit
of a given coloring C, we explore the orbit of the prefix of C up to some i, denoted C1:i. In
order to do so, we use a transversal ti which can map any element at position 1, . . . , i to the
ith site, and require the indices Ci to be in little-Endian order. The way a stabilizer chain acts
thus respects lexicographic number ordering, as the high-Endian bits (i.e. those with higher
indices) are acted on and compared first.
For such a child element child, if child1:i >lex C1:i, then already child >lex C and C

was not canonical. If child1:i <lex C1:i, we drop said child (because no permutation of the
lower-Endian sites can ever make it larger than C) and proceed with the next element. Finally,
if the prefixes are equal, we cannot say anything: we have to check further bits and enqueue
the child to be processed by ti+1 etc. The benefit is clear: instead of calculating the full
group G and checking all possible permutations of C under it—where we note that |G | can

23

be enormous—we at most calculate the orbit of C under G; the worst-case complexity of
the algorithm thus has the promise to be significantly better than a naïve approach. Finally,
we only need to keep track of a much smaller list of elements within each loop since we
compare the element’s lexicographical order position-by-position; this means we try to only
ever explore a small portion of the orbit of C.
The IsCanonical subroutine allows us to compute one representative of each canonical

coloring using any backtracking technique. Borie used a breadth-first approach; we found
that the unpredictable memory consumption and the associated memory allocations made this
very inefficient in practice, so we replace it with depth-first pruning, given in Algorithm 3.

3.4. Canonical Images for Colored Graphs

A closely-related question to the one answered in IsCanonical in Algorithm 2—namely
whether a given graph’s coloring C is already canonically-ordered—is whether we can
map C to its canonical image, i.e. whether we can compute Can(C) efficiently. At first
glance this problem might look like it is independent of the graph Γ that gives rise to the
permutation group G based on which we want to decide canonicity. In fact, it turns out that
there is a package for GAP that does just that, based on a given permutation group [Jef+19].
The fundamental issue with this approach is that it is slower than making use of the extra
information available—the graph—and isomorphism-based algorithms developed for the
latter.6

The way we address this particular question is by drawing on graph isomorphism research,
in particular the question of finding canonical images of colored graphs. Indeed, the way
many graph isomorphism tests work in practice is by defining a canonical function on graphs,
just like for colorings; we then have that two graphs Γ1 ' Γ2 if and only if their canonical
images Can(Γ1) = Can(Γ2), where for simplicity of notation we use Can as for colorings
(which will never be ambiguous). For colored graphs, this of course implies both that the
uncolored graph is canonically mapped, and that the coloring itself is in a specific order
dictated by Can.

There is a series of tools that can be used to calculate such canonical graph images, foremost
nauty and Traces by McKay and Piperno [MP14] and bliss by Junttila and Kaski [JK07],
to which e.g. IGraph is linked.7 All of them use rigorously-proven underlying algorithms
for finding canonical graph images, and we refer the reader to the respective papers for
more details. While they solve a seemingly larger problem—graph isomorphisms instead of
6Of course another factor is that GAP is not as fast as C. However, even a re-implementation will be unlikely to
perform as well as the graph-based approach we are about to introduce.

7Other tools are saucy and conauto; we used neither of them.

24

canonical colorings—we found this approach to be extremely fast even for moderately-sized
graphs of up to 50 vertices. For a discussion on the tested graphs vs. size of their respective
automorphism groups we refer the reader to Section 5.

For a given colored graph Γ with c colors, the canonical graph image approach gives us a
map

Γ(kA,C) 7−→ Can(Γ)(kA,Can(C)) where Can(C) ∈ Ξ(Γ, c, k). (25)

Here we assumed that the graph canonical map Can(Γ) respects the partition between system
and environment vertices (which one can usually achieve in practice). Eq. (25) thus induces
a function

CanonicalImageΓ(kA) : [c]k −→ Ξ(Γ, kA, c).

In case the graph in the context is clear we leave out the subscript, and we emphasize that, for
our purposes, it will not be important that CanonicalImage(C) = Canlex(C).

3.5. Homomorphic Group Actions

The final ingredient for the main result of this section, an algorithm computing the co-
herent information of a graph state that exploits the graph’s symmetries, is the concept
of homomorphic group actions. Following [Ker99], two group actions GX and HY are
called homomorphic if there exists an epimorphism η : G −→ H (i.e., a surjective group
homomorphism) and a surjective map θ : X −→ Y , such that θ(τx) = η(τ)θ(x) for all τ ∈ G
and x ∈ X . In this situation we have the following result.

Lemma 8 ([Ker99]). Let GX and HY be homomorphic group actions under θ, and let T
be a transversal of Y/

H. Then for all ω ∈ X/
G there exists a unique y ∈ T such that

ω ∩ θ−1(y) , ∅.

In other words, Lemma 8 says that if a map θ induces a group action homomorphism,
it is never the case that elements from an orbit ω ∈ X/

G are mapped to different orbits in
Y/

H. Of course it is still possible that two distinct ω, ω′ ∈ X/
G are mapped to the same

orbit τ ∈ Y/
H.

3.6. Coherent Information of Decohered Graph States with Symmetries

We will now use the theory developed over the last few sections to significantly reduce
the amount of calculations going into calculating the λ-vectors in Eq. (12), which is our
starting point. Take a graph Γ = (V, E) where the vertex set is partitioned into system and

25

environment vertices V = VA ∪ VR with |VA | = kA, |VR | = kR, and for a Pauli channel with
noise parameters (p0, p1, p2, p3) for which p0 = 1 −∑

i pi let qi := pi/p0. For some U ⊂ V ,
we then have

λU = pkA
0

∑
(U1,U2,U3)∈M(U)

q |U1 |
1 q |U2 |

2 q |U3 |
3 ,

where M(U) is defined in (13). Each triple (U1,U2,U3) of disjoint subsets of V can be
identified with a base 4 string via the map

(U1,U2,U3)
∼7−→ 1 ·U1 + 2 ·U2 + 3 ·U3 ∈ [4]kA . (26)

Let G = Aut(Γ(kA)), which acts on [c]k by permuting indices. Using the identification in
Eq. (26), we can define a map

θ ′ : [4]kA −→ [2]kAR, θ ′(s) = Γ(U1 ⊕ U2) ⊕ U2 ⊕ U3 (27)

where we implicitly assume the Ui to be padded with zeros within the brackets. This leads to
the following technical lemma.

Lemma 9. The map θ B θ ′(·)|A with θ ′ as in Eq. (27) induces a surjective map between
X B [4]kA/

G and Y B [2]kA/
G. Moreover, letting n(U) B |θ−1(U)|, we have for all τ ∈ Y

that there exists an n0 ∈ N such that n(U) = n0 for all U ∈ τ.

Proof. We first note that θ is trivially surjective. Now let σ ∈ G. Then for some
s ' (U1,U2,U3) ∈ [4]kA , we have

θ ′(σs) = Γ(σU1 ⊕ σU2) ⊕ σU2 ⊕ σU3

= σΓσ−1(σU1 ⊕ σU2) ⊕ σU2 ⊕ σU3

= σ [Γ(U1 ⊕ U2) ⊕ U2 ⊕ U3]
= η(σ)θ ′(s)

for η ≡ id, which is a trivial epimorphism η : G 7−→ G. Hence, G[4]kA and G[2]kA are
homomorphic group actions via θ, and the first claim follows from Lemma 8 and the fact that
restriction ·|A and G commute.
We now prove the second claim of the lemma. By Lemma 8, for a fixed ω ∈ X we have

θ(ω) ⊂ τ for a particular τ ∈ Y . In fact, ω covers τ uniformly via θ. To see this, let x be
a representative of ω, i.e., ω = {σx : σ ∈ G}, and let σ ∈ Gx , the stabilizer group of x.
Then, θ(x) = θ(σx) = σθ(x), and hence also σ ∈ Gθ(x). This means that we have a chain of
subgroups Gx ≤ Gθ(x) ≤ G. Define now p = [Gθ(x) : Gx] and q = [G : Gθ(x)], and choose

26

left transversals {a1Gx, . . . , apGx} of Gx in Gθ(x) and {b1Gθ(x), . . . , bqGθ(x)} of Gθ(x) in G.
Then {biajGx : i ∈ [q], j ∈ [p]} is a left transversal of Gx in G, and we have

θ(biaj x) = biajθ(x) = biθ(x) for all i ∈ [q], j ∈ [p], (28)

since aj ∈ Gθ(x). The left transversal {biajGx : i ∈ [q], j ∈ [p]} is in bijective correspondence
with the elements of ω by the orbit-stabilizer theorem, and so is {b1Gθ(x), . . . , bqGθ(x)} with
the elements of τ. Eq. (28) shows that each element biθ(x) in τ is hit by exactly p elements
biaj x in ω, and by we have

p = [Gθ(x) : Gx] =
|Gθ(x) |
|Gx |

=

|G |/ |Gx |
|G |/ |Gθ(x) |

=
|ω |
|τ | .

The proof is concluded by noting that for any τ ∈ Y and U ∈ τ we have

n(U) = 1
|τ |

∑
ω∈X

ω∩θ−1(U),∅

|ω|,

which again follows from Lemma 8. �

This finally leads us to the following main result, which allows us to calculate λU in a
symmetry-aware fashion.

Theorem 10. Let X := [4]kA/
G, and Y ′ := [2]kAR/

G, where G = Aut(Γ(kA)). Then Eq. (11)
becomes

σRB =
∑
τ∈Y′

λτΠτ

where

λτ := pkA
0

∑
ω∈X
θ′(ω)⊂τ

|ω |
|τ | q

|U1 |
1 q |U2 |

2 q |U3 |
3 ,

Πτ :=
∑
U∈τ
|U〉〈U | .

Proof. Since |σUi | = |Ui |, we have that λσU = λU for any σ ∈ G. We can therefore break
up Y ′ into its covering by the cosets induced from the graph’s automorphism group, i.e.∑

U

λU |U〉〈U | =
∑
τ∈Y′

∑
U∈τ

λU |U〉〈U | =
∑
τ∈Y′

λτΠτ .

By Lemma 9 we further know that, for each ω ∈ X mapped into τ ∈ Y ′ via θ ′, there exist
precisely |ω |/|τ | elements in ω that map to the same U ∈ τ. The claim follows. �

27

We emphasize that the sum in the expression for λτ in Theorem 10 can be calculated over
a traversal of X , and it is irrelevant which one we choose. Indeed, as mentioned at the end of
Section 3.4, this precisely corresponds to the choice of coloring iterator which can follow a
different ordering than the canonical map used to collect the nonzero terms within λτ .
Each λU in Eq. (11) thus occurs with a certain multiplicity |τ | and weight |ω|/|τ |;

calculating the polynomial only once and keeping track of either quantity thus has the promise
of saving a tremendous amount of computational time and memory. Effectively, we have
constructed a sparse representation of σRB, which compresses identical expressions within
the sum that defines λU into one term, and compresses repeated λU .
Yet in order to make full use of the symmetries, we also need to be able to efficiently

calculate the partial trace of σRB. Showing how this can be achieved given the sparse
representation of σRB is our next main result.

Theorem 11. We use the same notation for X and Y ′ as in Theorem 10, and we let
Y = [2]kA/

G. Then Eq. (16) becomes

σB =
∑
τ∈Y

∑
b∈[2]kR

λ
pre
τ,b
Πτ,

where

λ
pre
τ,b

:=
∑
τ′∈Y′

τ′ |A=h(τ,b)

|τ′ |
|τ′ |A |

λτ′,

h(a, b) := ΓA�R · b ⊕ a for Γ =

(
ΓA�A ΓA�R

ΓR�A ΓR�R

)
.

Proof. As a first step, we show that h(a, b) transforms covariantly under the group’s action
on the system vertices. For some permutation σ ∈ G and denoting with [a, 0] and [0, b] the
padded vectors of a and b in [2]kAR , restriction to the system vertices ·|A and the group action
of G = Aut(Γ(kA)) commute, since system and environment vertices are never interchanged
by construction of G. We thus have

h(σ(a), b) = ΓA�R · b ⊕ σ(a)
= (Γ · [0, b] ⊕ σ[a, 0]) |A
= σ(σ−1

Γ · [0, b] ⊕ [a, 0])|A
= σ(h(a, σ−1(b))),

28

where we used σ−1Γσ = Γ in the last step. This shows that demanding τ′ |A = h(τ, b) is a
well-defined expression, since∑

b∈[2]kR

λ
pre
τ,σ−1(b)Πτ =

∑
b∈[2]kR

λ
pre
τ,b
Πτ .

Our starting point is the partial trace algorithm for Eqs. (16) and (17), described in
Section 2.3:

σB =
∑

a∈[2]kA

∑
b∈[2]kR

µ
pre
a,b
|a〉〈a| (29)

where

µ
pre
a,b
=

∑
U∈[2]kAR :
U |A=h(a,b)

λU

=
∑
τ′∈Y′

∑
U∈τ′

U |A=h(a,b)

λU

=
∑

τ′∈Y′ :
τ′ |A3h(a,b)

|τ′ |A |
|τ′ |A |

∑
U∈τ′ :

U |A=h(a,b)

λU

=
∑

τ′∈Y′ :
τ′ |A3h(a,b)

|τ′ |
|τ′ |A |

1
|τ′ |

∑
U∈τ′

λU .︸ ︷︷ ︸
≡λτ′

Eq. (29) therefore becomes

σB =
∑
τ∈Y

∑
a∈τ

∑
b∈[2]kR

∑
τ′∈Y′

τ′ |A3h(a,b)

|τ′ |
|τ′ |A |

λτ′

and the claim then follows from covariance of h under G. �

Finally, we translate Theorems 10 and 11 into an algorithm, using the coloring and
canonical map sub-procedures developed in the last few sections. The pseudocode listing can
be found in Algorithm 4.

29

Algorithm 3 All canonical colorings of c colors for graph Γ.
1: function ColoringChildren(C ∈ Nk , c ∈ N)
2: for i ∈ {k, . . . , 1} do
3: if ci , 0 then
4: if Ci < c then
5: yield C + |i〉 . unit vector |i〉 of length kA

6: end if
7: break
8: end if
9: yield C + |i〉
10: end for
11: end function
12: function ExploreColoringsDF(root ∈ Nk , Prune: function)
13: for child ∈ ColoringChildren(root) do
14: if ¬Prune(child) then
15: yield child
16: ExploreColoringsDF(child, Prune)
17: end if
18: end for
19: end function
20: function CanonicalColorings(Γ : graph, kA ∈ N, c ∈ N)
21: GA ← Aut(Γ(kA))|A . action restricted to system vertices
22: T ← StrongGeneratingSystem(GA)
23: root ← (0, . . . , 0) . vector length kA

24: Prune← IsCanonical(·, T)
25: ExploreColoringsDF(root, Prune)
26: end function

30

Algorithm 4 Symmetry-aware σRB and σB from Theorems 10 and 11. The λ hashtables
have a tuple value type P ×N, where the first component stores a polynomial in the qi, and
the second entry is its multiplicity. Parallelising the inner loops leads to a speedup since the
concurrent operations are much less costly than the rest of the loop body.
1: function SymmetricLambda(Γ = (V, E) : graph, kA ∈ N)
2: Can← (·) 7−→ CanonicalImageΓ(kA)(·)
3: Multiplicity← (·) 7−→ #(Γ, kA, ·)
4: λ, λa, λ

pre ← {} . empty hashtables of tuples
5: for (U1,U2,U3) ∈ CanonicalColorings(Γ, kA, 4) do
6: C = U1 + 2U2 + 3U3 . coloring ∈ [4]kA

7: m4 ←Multiplicity(C)
8: U ← Γ(U1 ⊕ U2) ⊕ U2 ⊕ U3

9: m2 ←Multiplicity(U)
10: m′2 ←Multiplicity(U |A)
11: idx ← Can(U)
12: idx ′← Can(U |A)
13: p← q |U1 |

1 q |U2 |
2 q |U3 |

3
14: (poly,m) ← &λidx . reference to hashtable entry
15: poly ← poly + m4

m2
p

16: m← m2 . m = 0, or m = m2 already
17: (poly,m) ← &λpre

idx′

18: poly ← poly + m4
m′2

p
19: m← m′2 . m = 0, or m = m′2 already
20: end for
21: for a ∈ CanonicalColorings(Γ, kA, 2) do
22: for b ∈ [2]kR do
23: b2a← ΓR�A · b ⊕ a
24: idx ← Can(a)
25: idx ′← Can(b2a)
26: (poly,m) ← &λa,idx
27: (poly′,m′) ← &λpre

idx′

28: poly ← poly + poly′

29: m← m′ . m = 0, or m = Multiplicity(b2a) = m′ already
30: end for
31: end for
32: return (λ, λa)
33: end function

31

4. Numerical Methods

As part of this project we developed a suite called CoffeeCode ([Bau19]) that implements
Algorithms 2 to 4 described in Section 3. For special cases we replace the coloring iterator
SGSColG with VColG; we found that depending on the automorphism group of the graph
one or the other performs faster. A MATLAB implementation of Algorithm 1 in Section 2.2
(which is not exploiting graph symmetries) is available at [Led19].

To obtain our main results in Section 5 we used the suite CoffeeCode in the following
way. Starting from a sparse expression for the λU as explained in Section 3.6, we can
substitute the parameters qi with the channel’s noise tuple p to obtain a numerical expression
for the coherent information. Of particular interest to us in this context is the question for
which noise parameters of the associated Pauli channels the coherent information for a given
graph state code is positive—i.e., determining the noise threshold above which the coherent
information is zero.

As explained in Section 2.1, it is known that for specific Pauli channels various codes exhibit
superadditivity. For 1-parameter families x 7→ Nx of channels such as the depolarizing,
BB84 or 2-Pauli channel, a special case of superadditivity of coherent information occurs
when the noise threshold, the largest x such that Q(Nx) > 0, is higher than the single-letter
threshold, the largest x such that Ic(Nx) > 0. Naturally, what we mean by “higher” in
this context depends on the ordering of a family of channels. For instance, unbiased
noise, modeled by the qubit depolarizing channel Dp with parameters as given in Eq. (5),
p = (1 − p, p/3, p/3, p/3) for some p ∈ [0, 1], exhibits a natural order: a larger p implies a
more likely X,Y or Z flip. Similarly the 2-Pauli channel p = (1 − p, p/2, 0, p/2) or BB84
channel p = ((1 − p)2, p − p2, p2, p − p2) are 1-parameter families with a natural ordering for
which the definition of threshold makes intuitive sense.

The notion of threshold becomes more involved when looking at the general case of Pauli
channels, where we have three independent noise parameters p1, p2 and p3. Can we define a
meaningful ordering p > p′ for arbitrary Pauli channels? The most natural choice appears to
be an unbiased one which allows a comparison only if the ratio of noise types is equivalent: if

px := (1 − x, xp1, xp2, xp3) for
∑

i
pi = 1 and x ∈ [0, 1], (30)

then we define px ≥ py if and only if x ≥ y, and similarly for strict inequality; if the pi
comprising px and py are not identical, the channels are incomparable. This introduces
a partial order on the set of all Pauli channels, with the intuitive understanding that a
larger x in px simply means “more of the same noise”. Increased thresholds for this
parametrization thus only occur within families of Pauli channels Npx parametrized by x,

32

Figure 1: Set of all non-antidegradable Pauli channels, as derived from Eq. (31). The sector close to
pi = 0 in the lower left corner is equivalent to the three others: If e.g. z-type noise has p3 > 0.5, i.e. z
flips occur with more than 50% probability, one can first apply a z flip, mapping that sector back to
p3 < 0.5. For this reason we restrict the analysis of this paper to the sector around pi = 0.

and there is one family for each probability distribution (p1, p2, p3). Note that the above
partial ordering includes the depolarizing channel x 7→ (1 − x, x/3, x/3, x/3) and the 2-Pauli
channel x 7→ (1− x, x/2, 0, x/2), but not the BB84-channel x 7→ ((1− x)2, x − x2, x2, x − x2).

4.1. Visualizing Thresholds

In order to visualize the coherent information threshold for a graph state code |Γ〉 for all
possible Pauli channels, we chose the parametrization given in Eq. (30). The advantage
of this parametrization is that for fixed p1, p2, p3 the family x 7→ Npx has a unique noise
threshold in the interval x ∈ [0, 1/2], which we prove in Lemma 12 below.
We first recall that every quantum channel N : A → B can be written as N(ρA) =

trE V ρAV† in terms of an isometry V : HA→HB ⊗ HE and an auxiliary Hilbert spaceHE

usually referred to as the environment. A complementary channelN c : A→ E modeling the
leakage of information to the environment is defined as N c(ρA) = trB V ρAV†. A channel
N : A→ B is called antidegradable, if there exists another quantum channel A : E → B

33

such that N = A ◦ N c. For antidegradable channels N , we have Ic(σ,N) ≤ 0 for any
quantum state σ, and also Q(N) = 0, which we show in Appendix C.
For qubit-qubit quantum channels N there is a necessary and sufficient condition for

antidegradability [ML09; Che+14]. Specialized to Pauli channelsNp with p = (p0, p1, p2, p3),
this condition reads as follows (see e.g. [PP16]):

1 ≥ 2
(
p2

0 + p2
1 + p2

2 + p2
3

)
− 8
√

p0p1p2p3 (31)

Checking the inequality (31) in the whole probability simplex {(p1, p2, p3) : pi ≥ 0,
∑

i pi =
1} yields the region of antidegradable Pauli channels. Since the quantum capacity is zero for
those channels, we focus our analysis on the region of non-antidegradable Pauli channels,
depicted in Fig. 1. Evidently, this region consists of four symmetric ‘sectors’, and we focus
in the following on the sector closest to the origin. This sector includes the set of channels
Npx for x ∈ [0, 1/2], where px = (1 − x, xp1, xp2, xp3) is the parametrization of Pauli
channels introduced above. This follows since Np1/2 is antidegradable for any (p1, p2, p3)
(see Appendix C). Moreover, as x is increased from 0 to 1/2 the coherent information of a
fixed input state has a unique root. This is shown in the following lemma, which we prove in
Appendix C.

Lemma 12. Let ψRA be a state with Ic(ψ,N ⊗kp0) = S(ψA) > 0 and Ic(ψ,N ⊗kp1/2) < 0. Then
the function x 7→ Ic(ψ,N ⊗kpx

) has at most one root in [0, 1/2).

This result serves the following purpose in our numerical analysis. Instead of evaluating
f (x) B Ic(|ΓAR〉 ,N ⊗kA

px
) for an evenly-spaced set of points within the interval, the unique

root promised by Lemma 12 allows us to use a technique borrowed from raymarching game
engines, which essentially performs binary search to zone in on the single root of a function
within the interval parametrizing the ray. Instead of a cost ∝ 1/ε in the precision ε of
the threshold this approach reduces the number of required steps to ∝ log(1/ε). For our
purposes we chose ε = 2−20, which yields approximately 7.5 decimal digits of precision;
higher accuracy is readily reached.

To cover all Pauli channels, we choose a high resolution covering of their parameter space
derived from spherical coordinates,

(p1, p2, p3) ∈ {(sin θ cos φ, sin θ sin φ, cos θ) : θ, φ ∈ 0, δ, 2δ, . . . , π/2}.

For δ = 2−10π this yields a net of 512×512 rays of length 1/2 starting at the origin, each for a
separate channel family.8 The zero threshold of the coherent information thus yields a surface
8We remark that this parametrization distributes overproportionally many points towards the north pole of the
parameter space where cos θ is small, i.e. small Z error.

34

in the Pauli channel simplex, as e.g. depicted in Fig. 2. In order to visualize superadditivity,
we additionally color each position on the surface depending on how far away the point lies
from the single-letter threshold along the same ray. For a detailed explanation of the surface
plot types see Figs. 2 and 5.
The single-letter threshold for a general Pauli channel Np with p = (p0, p1, p2, p3) is

determined by the so-called hashing bound [Ben+96], which gives the optimal single-letter
coherent information Ic(Np) of a Pauli channel:

Ic(Np) = 1 − H(p), (32)

where H(p) = −∑
i pi log pi is the Shannon entropy of p. The coherent information in (32)

is achieved by the graph state |Γ〉 where Γ = and Np acts on the solid vertex. For
the x-parametrization x 7→ px = (1 − x, xp1, xp2, xp3) with a fixed probability distribution
(p1, p2, p3) introduced in Eq. (30), the single-letter threshold of Npx is determined by the
(unique) root of

Ic(Npx) = 1 − H(px) = 1 − h(x) − xH((p1, p2, p3)),

where h(x) = −x log x − (1 − x) log(1 − x) denotes the binary entropy.

35

z

x y

dep

BB84

2P

−0.1

−0.075

−0.05

−0.25

0

0.025

0.05

0.075

0.1

0

0.5

0

0.5 0.5

Figure 2: Surface plot of the tree graph code T15 vs. the 1-in-5 repetition code; the T15-code is
shown in Fig. 8, and the 1-in-5-code is shown in Eq. (20). Labeled are the points in the space of
all Pauli channels where the families of depolarizing (dep), BB84 and 2-Pauli (2P) channels cut the
threshold surface of the T15 code. The color indicates the superadditivity of the code family along the
x-parametrized ray starting at the origin according to Eq. (30). The color scale for all plots of this
type is identical throughout the paper, as well as the axes’ extent; as such, to simplify the plots, we
will generally leave out all but the axes labels.

36

5. Results

In this section we present our main results of the paper. Using the parametrization
x 7→ (1 − x, xp1, xp2, xp3) for some probability distribution (p1, p2, p3) detailed in Section 4,
we investigate error thresholds for the quantum capacity of Pauli channels in the entire Pauli
channel simplex. Following the discussion in Section 2.1, this is achieved by choosing
(families of) test input states ψRA on kA input qubits and determining the supremum over all
x for which Ic(ψ,N ⊗kA

px
) > 0.

In the following subsections we investigate three families of code states defined in terms of
graph states. The first one is the family of repetition codes (or GHZ states) |0〉⊗n + |1〉⊗n.
Despite being rather simplistic error-correcting codes, repetition codes have long been
known to exhibit superadditivity of coherent information; in particular, they increase the
error threshold for Pauli channels such as the depolarizing channel [SS96; DiV+98; SS07;
FW08; BL18] or the BB84 (or independent bit and phase flip) channel [SS07; FW08], and
non-Pauli channels such as the dephrasure channel [Led+18a]. The second family of codes
we investigate comprises concatenated repetition codes, or cat codes, which are obtained
from concatenating a Z-type repetition code with an X-type repetition code. With the
right choice of repetition code lengths, these codes have been shown to increase the error
thresholds of depolarizing and BB84 channel even further [DiV+98; SS07; FW08]. Both
repetition codes and cat codes have large symmetry groups, enabling us to obtain substantial
speed-ups in computing their coherent information using Algorithms 2 to 4 described in
Section 3. Moreover, our analysis of these code families covers the entire Pauli channel
simplex, in contrast to previous works that only dealt with particular channels. Finally, we
identify a new family of codes based on tree graphs. Their large symmetry groups again
provide a speed-up via our algorithm, and the resulting error thresholds are better than the
ones obtained from repetition and cat codes in large regions of the Pauli channel simplex. In
addition to determining the error thresholds of the above code families, we analyze their rate
superadditivity below the threshold as well.
We also carry out an exhaustive search on all graphs with up to 6 system vertices and

4 environment vertices. However, due to the number of possible graph configurations this
exhaustive search quickly becomes infeasible both in terms of runtime and memory.

5.1. Repetition Codes

Repetition codes are the most simple type of error correcting code. Represented as a graph
state, they correspond to star graphs with kAR vertices; one ray of the star is the environment
vertex. The 1-in-5 code in Eq. (20) is an example of a repetition code.

37

z

x y

1-in-2

z

x y

1-in-3

z

x y

1-in-5

z

x y

1-in-10

z

x y

1-in-25

z

x y

1-in-60

−0.1 −0.05 0 0.05 0.1

Figure 3: Thresholds for repetition codes; plotted are the codes 1-in-kA for kA ∈ {2, 3, 5, 10, 25, 60}
from top left to bottom right. The axes’ extent is the interval [0, 1/2], and the three black dots (from
center to left) are the loci of depolarizing, BB84, and 2-Pauli channel families, respectively (for details
see Fig. 2). The color scale indicates the distance between noise threshold and single-letter threshold.

It is immediately obvious that star graphs have a large symmetry group. If Γn denotes an
1-in-n repetition code, and using the same vertex enumeration as in Eq. (20)—i.e. such that
the root has index 1, and the environment vertex has index n—its automorphism group is

38

z

x y

all 1-in-k vs. single-letter

z

x y

all 1-in-k vs. 5-in-5

−0.1 −0.05 0 0.05 0.1

Figure 4: All repetition codes up to kA ≤ 60. The axes’ extent is the interval [0, 1/2], and the three
black dots (from center to left) are the loci of depolarizing, BB84, and 2-Pauli channel families,
respectively—for details see Fig. 2. Shown is the relative threshold of the best code in the code family
vs. the single-letter threshold on the left, and vs. the 5-in-5 cat code (defined in Eq. (36)) on the
right. In both cases, the color scale indicates the distance between the respective thresholds.

39

z

x y

dep

BB84

2P

1-in-2

1-in-5

1-in-10

1-in-20

1-in-30

1-in-40

1-in-50

1-in-60

0

0.5

0

0.5 0.5

Figure 5: Continuation of Fig. 4. The plot shows the same surface as before, only this time indexed by
colors referring to the highest CI threshold repetition code, starting at red for 1-in-2 up to magenta
for 1-in-60.

40

given by Aut(Γn) = S{2,...,n−1}, and hence |Aut(Γn)| = (n − 2)!. It is this fact together with
the very simple orderings of the canonical image and coloring algorithms in Section 3.6
that make repetition codes particularly amenable to our numerical methods, allowing us to
evaluate codes on ≈ 100 system qubits in total without much difficulty.

In Fig. 3, we plot the coherent information threshold for various repetition codes. Visible
is how for growing kA the code shifts from superadditivity in the Y and Z-directions to
superadditivity in the X and Z-directions. However, it is known that for unbiased noise—i.e.
a depolarizing channel—the 1-in-5 code has the optimal threshold under all repetition
codes. We also point out that while the smaller codes (apart from the 1-in-2 code) are not
symmetric, for growing kA the code family has an emerging approximate mirror symmetry
across the plane dividing the X and Z axes.
Treating all repetition codes together as one “family” of codes, we compare the largest

thresholds of this code family with the single-letter thresholds and a 5-in-5 code (see
Section 5.2) in Fig. 4. The left-hand plot of Fig. 4 shows that repetition codes have better
thresholds than the single-letter threshold for Z-and Y -biased noise and unbiased noise, but
not for X-biased noise. Moreover, the right-hand plot shows that repetition codes provide
advantage over the 5-in-5 code for all biased noise types, but not for the region around the
depolarizing channel (unbiased noise), as observed in [DiV+98]. It is also interesting to see
which repetition code is optimal for which type of noise shifts when the noise becomes more
and more biased to one type, see Fig. 5.

We note here that the apparent difference between the three types of biased noise in Figs. 3
to 5 (as well as all plots in the subsequent sections) is merely due to the particular basis
choice in the definition of graph states (see Section 2.2.1). To see this, note that for a given
graph Γ = (V, E) the stabilizer generators Si of the associated graph state can be chosen as

Si = RiTNi

for any choice of R,T ∈ {X,Y, Z} with R , T ; different choices for R and T yield different
relabelings of the axes in e.g. Fig. 3. In this paper, we use the canonical choices R = X and
T = Z .

5.2. Concatenated Codes

Concatenated codes, or cat codes, arise from concatenating a Z-type repetition code
|0〉⊗n1 + |1〉⊗n1 with an X-type repetition code |+〉⊗n2 + |−〉⊗n2 , where |±〉 = (|0〉 ± |1〉)/

√
2.

We call such a code an n1-in-n2 code. The well-known 9-qubit Shor code [Sho95] is a
3-in-3 code. Cat codes are stabilizer codes and hence local-Clifford-equivalent to graph
states; in our paper, we simply refer to any state of this equivalence class as cat code.

41

z

x y

2-in-2

z

x y

2-in-3

z

x y

2-in-4

z

x y

2-in-5

z

x y

2-in-6

z

x y

2-in-7

z

x y

3-in-2

z

x y

3-in-3

z

x y

3-in-4

z

x y

3-in-5

z

x y

3-in-6

z

x y

3-in-7

z

x y

4-in-2

z

x y

4-in-3

z

x y

4-in-4

z

x y

4-in-5

z

x y

5-in-2

z

x y

5-in-3

z

x y

5-in-4

z

x y

5-in-5

−0.1 −0.05 0 0.05 0.1

Figure 6: Cat codes 4× 7 table. The axes’ extent is the interval [0, 1/2], and the three black dots (from
center to left) are the loci of depolarizing, BB84, and 2-Pauli channel families, respectively—for more
details see Fig. 2. The color scale indicates the distance between noise threshold and single-letter
threshold.

42

Before giving the construction for the underlying graph of a cat code, we briefly review the
procedure of concatenation of stabilizer codes. Let [n1, k] and [n2, 1] be qubit stabilizer codes
with generators S = {s1, . . . , sn1−k} and T = {t1, . . . , tn2−1}, respectively. We call S and T
the outer and inner code, respectively. Furthermore, denote by X̄ and Z̄ the logical operators
of the inner code T , and denote by {|0̄〉, |1̄〉} the computational basis of the encoded qubit,
i.e., the eigenstates of Z̄ corresponding to +1 and −1, respectively. Then the concatenated
stabilizer code [n1n2, k] is a stabilizer code whose generators are n1 copies of the n2 − 1
generators of the inner code acting on the physical qubits within blocks of size n2, plus the
n1 − k generators of the outer code acting on the logical qubit of the inner code, for a total of
n1(n2 − 1) + n1 − k = n1n2 − k generators. The latter n1 − k stabilizers are obtained by the
replacements X ← X̄ and Z ← Z̄ in every s ∈ S.
As an example, consider Shor’s 9-qubit code, which is a [3, 1] Z-repetition code with

stabilizers Z1Z2, Z1Z3 and logical operators X̄ = X1X2X3, Z̄ = Z1Z2Z3, concatenated with a
[3, 1] X-repetition code with stabilizers X1X2, X1X3 and logical operators X̄ = X1X2X3, Z̄ =
Z1Z2Z3. This results in a [9, 1] code by the above discussion, with inner and outer code
stabilizers

Z1Z2, Z1Z3, Z4Z5, Z4Z6, Z7Z8, Z7Z9

X1X2X3X4X5X6, X1X2X3X7X8X9 (33)

and logical operators

X̄ = X1X2X3X4X5X6X7X8X9 Z̄ = Z1Z2Z3Z4Z5Z6Z7Z8Z9. (34)

To use the Shor code as an input state to kA = 9 copies of a Pauli channel, we encode it in
half of a maximally entangled state |φ〉 = 1√

2
(|0〉R

��0̄〉
A
+ |1〉R

��1̄〉
A
, where

��0̄〉
A
and

��1̄〉
A
are

the ±1 eigenstates of the logical Z̄ in (34), respectively. The state |φ〉 is again a stabilizer
state with stabilizer generators X1 X̄ l and Z1 Z̄ l (where we denote the logical qubit encoded in
the 9-qubit code by l). Hence, we add the all X- and all Z-stabilizers (defined on 10 qubits)
to the list in (33) and turn this stabilizer state into an LU-equivalent graph state using the
procedure outlined in Appendix A. This yields the graph ΓShor together with its adjacency

43

matrix (where we replaced 0 with · for readability) for the graph state LU-equivalent to the
Shor code:

1 2 3

4

5 6

7

8 9

10 = ΓShor =

©«

· · · 1 · · 1 · · 1
· · · 1 · · 1 · · 1
· · · 1 · · 1 · · 1
1 1 1 · 1 1 · · · ·
· · · 1 · · · · · ·
· · · 1 · · · · · ·
1 1 1 · · · · 1 1 ·
· · · · · · 1 · · ·
· · · · · · 1 · · ·
1 1 1 · · · · · · ·

ª®®®®®®®®®®®®®®®®®®®¬

(35)

The procedure above can be generalized to arbitrary n1-in-n2 concatenated (“cat”) codes
as follows. We take a single environment vertex vR and disjoint sets of system vertices A
with |A| = n1, B with |B| = n2 − 1, and Ci for i = 1, . . . , n2 − 1 with |Ci | = n1 − 1. We fully
connect {vR} with A, and A with B, such that the vertices {vR} ∪ A form a complete bipartite
graph with B. Finally, we fully connect the ith vertex bi in B with Ci . Overall the graph has
n1 + (n2 − 1) + (n2 − 1)(n1 − 1) = n1n2 system vertices, and a single environment vertex, vR.
For n1 = 1 this construction yields a star graph on n2 + 1 vertices, and hence a 1-in-n2-cat
code is a repetition code as defined in Section 5.1.

For the Shor code in Eq. (35) above, a 3-in-3-cat code, we have A = {1, 2, 3}, B = {4, 7},
and C1 = {5, 6}, C2 = {8, 9}. We give a series of other examples: the 2-in-2, 2-in-5,
5-in-2 and 3-in-4-cat codes have the graphs

.

Larger codes follow the same pattern; the 5-in-5 code, for instance, has 25 system vertices,
and its graph is

. (36)

44

It is evident that the symmetry group of cat codes factors in a clean fashion with respect to
these vertex subsets: if Γn1,n2 denotes the graph, we have

Aut(Γn1,n2) = SA ×
(
SM i ∪

n2−1∏
i=1

SC i

)
,

where SM i denotes the symmetric group on the vertex set of the branches between B and the
Ci, i.e. M i := {{bi} ∪ Ci : i = 1, . . . , n2 − 1}. A straightforward calculation thus gives the
size of the automorphism group as |Aut(Γn1,n2)| = n1!(n2 − 1)!(n1 − 1)!(n2−1).
Fig. 6 shows a 4 × 7-matrix plotting the threshold surfaces of n1-in-n2 cat codes for

2 ≤ n1 ≤ 5 (along the rows) and 2 ≤ n2 ≤ 7 (along the columns). Note that 1-in-n2 cat
codes are in fact repetition codes, which we discussed in Section 5.1. It is evident from
Fig. 6 that 2-in-n2 cat codes provide no advantage over the single-letter optimal code except
for heavily Z-biased noise and X-biased noise (for n2 ≥ 4). Interestingly, the advantage
for X-biased noise disappears for n1 ≥ 3, and the increased threshold region extends from
Z-biased noise over the unbiased center (corresponding to the depolarizing channel) to the
Y -biased noise corner. In particular, the cat codes with n1 = 3, 5 provide substantial threshold
increases. For unbiased noise (and the region around it), the increase peaks (in our analysis)
at the 5-in-5 cat code, which provides the optimal threshold for depolarizing noise up to
kA = 25 system vertices ([DiV+98]; see also Table 1).

5.3. Tree Codes

Another family of codes for which we have a sufficiently large symmetry group are graph
states associated with tree graphs. In particular, we consider shallow trees which due to their
restricted variety of local neighborhoods exhibit large numbers of equivalent vertices. While
analyzing thresholds for the depolarizing channel alone, we found a particularly promising
class of trees to be those of depth 2, i.e. a star graph, where each of the spikes is branching at
most once. For all those tested 2-level graphs, we found that a single environment vertex
attached at the root of the tree gives the highest thresholds in the case of depolarizing noise:
for 5 < kA < 25, those gave the highest thresholds of any codes we tested of up to the given
system vertex count (see Table 1).

The size of the automorphism group for a tree can be computed recursively, starting at the
root node; instead of giving a general formula we point out that the best-performing 2-level
codes in Fig. 8 appear to have a particularly large symmetry group, as all the branches are
equivalent.

The most promising 2-level codes we found are given in Fig. 8 with a threshold comparison
against the single-letter case and a 5-in-5 code in Fig. 7. Evidently, the 2-level codes perform

45

z

x y

T13

z

x y

T15

z

x y

T16

z

x y

T17

z

x y

T18

z

x y

T19

z

x y

T21

z

x y

all 2-level vs. single-letter

z

x y

all 2-level vs. 5-in-5

z

x y

−0.1 −0.05 0 0.05 0.1

Figure 7: 2-level codes. The axes’ extent is the interval [0, 1/2], and the three black dots (from center
to left) are the loci of depolarizing, BB84, and 2-Pauli channel families, respectively—for more details
see Fig. 2. The first two rows show the noise thresholds vs. the single-letter threshold for the codes
defined in Fig. 8. In the third row, the first two plots are colored according to the relative threshold of
the best code in the entire tree graph code family vs. single-letter (left) and vs. the 5-in-5 cat code
(middle). In all these plots, the color scale indicates the distance between the respective thresholds.
The rightmost plot in the third row shows the same surface indexed by colors referring to the highest
CI threshold graph state codes; for the corresponding color legend see Fig. 8.

46

T13

T15

T16

T17

T18

T19

T21

Figure 8: Color legend for 2-level codes in Fig. 7. The system vertices are filled with solid color, the
(single) environment vertex is filled white.

47

best kA code threshold p at depolarizing noise

1 single-letter 0.1898
5 1-in-5 0.190356
13 T13 0.19040260
15 T15 0.19043358
16 T16 0.19045595

T17 0.19042111
18 T18 0.19049974

T19 0.19049451
21 T21 0.19054941
25 5-in-5 0.190561

Table 1: A selection of cat and 2-level codes and their depolarizing noise thresholds. The naming for
the 2-level codes is given in Fig. 8. In bold are the best known thresholds for any code with ≤ kA

system vertices. The 5-in-5 threshold is confirmed in [DiV+98; FW08].

kA 2 3 4 5 6 7

#Γ of graphs [A00] 1 6 112 11117 11716571 > 164 × 109

|Γ〉 of graph states (Eq. (37)) 42 2474 809830 > 298 × 106 > 152 × 1012 100 × 1018

filtered graph states 32 256 3072 43008 917504 27951104

Table 2: Number of graph states to analyse in the exhaustive search before and after filtering out
redundancies.

particularly well for X-biased noise, outperforming both the optimal single-letter code (for
smaller bias towards X-noise) and the 5-in-5 cat code (for larger bias). A comparison of all
code families in Fig. 19 shows that tree graphs outperform both repetition and cat codes for a
large region of X-biased noise in the Pauli channel simplex. We also list the thresholds of
the 2-level codes for depolarizing noise in Table 1, comparing it to the 1-in-5 and 5-in-5
codes.

5.4. Exhaustive Search

As a final analysis, we performed a brute-force search over all small graph states and collected
their respective CI thresholds. This is a challenging problem: the number of connected
graphs on k vertices #Γ(k) grows exponentially in kA, see Table 2. On top of that, any subset

48

z

x y

all kA = 2 vs. single-letter

z

x y

all kA = 2 vs. 1-in-2

z

x y

z

x y

all kA = 3 vs. single-letter

z

x y

all kA = 3 vs. 1-in-3

z

x y

−0.1 −0.05 0 0.05 0.1

Figure 9: All possible graph codes with connected graphs for kA ∈ {2, 3}, continued in Fig. 10 for
kA ∈ {4, 5}—in particular, the plots for kA = 3 do not contain the smaller graph codes. The axes’
extent is the interval [0, 1/2], and the three black dots (from center to left) are the loci of depolarizing,
BB84, and 2-Pauli channel families, respectively—for more details see Fig. 2. The first two columns
are colored according to the relative threshold of the best code in the code family: the first column
shows the threshold vs. the single-letter threshold, the second column vs. the threshold of a 1-in-k
repetition code. The color scale indicates the distance between noise threshold and single-letter
threshold. The rightmost column shows the same surfaces indexed by colors referring to the highest
CI threshold graph state codes; for the corresponding color legend see Figs. 11 and 12, respectively.

49

z

x y

all kA = 4 vs. single-letter

z

x y

all kA = 4 vs. 1-in-4

z

x y

z

x y

all kA = 5, kR ≤ 3 vs. single-letter

z

x y

all kA = 5, kR ≤ 3 vs. 1-in-5

z

x y

Figure 10: Continuation of Fig. 9, for kA ∈ {4, 5} and kAR ≤ 8 (in both cases). The color legends for
the last column are in Figs. 13 and 14.

Figure 11: Color legend for all kA = 2 codes in Fig. 9. The system vertices are filled with solid color,
the environment vertices in white.

50

Figure 12: Color legend for all kA = 3 codes in Fig. 9. The system vertices are filled with solid color,
the environment vertices in white.

Figure 13: Color legend for all kA = 4 codes in Fig. 10. The system vertices are filled with solid
color, the environment vertices in white.

Figure 14: Color legend for all kA = 5 codes with kR ≤ 3 in Fig. 10. The system vertices are filled
with solid color, the environment vertices in white.

51

of the total vertices can act as system vertices. This means that with kA < kAR ≤ 2kA vertices
overall, there are

|Γ〉 =
2kA∑

k=kA+1

(
k

kA

)
#Γ(k) (37)

different graph states to consider; as listed in Table 2, already for kA = 5 this is more than
108 states.

However, since ΓR�R does not factor into the expressions for λ and λA in Eqs. (11) and (16),
we are overcounting: edges within the environment play no role. Furthermore, permuting
system and environment vertices in a synchronous fashion also leaves the CI invariant.
Finally, permutations only within the environment—keeping the edges to the system vertices
attached—are redundant as well.
These observations suggest the following counting:

1. List all non-isomorphic system graphs on kA vertices; call this set S.

2. For each ΓA ∈ S, we iterate over all binary matrices of size kA × kA + 1; if the ith

row has an entry in column j, we draw an edge from the ith system vertex to the j th

environment vertex.

3. There are no edges within the environment only.

This procedure can be optimized further by deleting isomorphic duplicates from the final
list of graphs (note that even though we started with all non-isomorphic system graphs, we
will generate redundant links between system and environment). Yet even without this final
optimization, the number of graphs to search over shrinks dramatically (cf. Table 2).
With this method, we managed to exhaustively search all graphs up to kA = 5 system

vertices, while restricting the overall vertex count kAR ≤ 8—i.e. we performed a complete
exhaustive search for kA ≤ 4, and an exhaustive search for kA = 5 and kR ≤ 3. The
constraining factor at this point is definitely memory, as e.g. the λ and λA expressions take
≈ 3.5 TB of memory in the latter case.
We have plotted the CI thresholds for our results for kA ∈ {2, 3, 4, 5} in Figs. 9 and 10.

Noteworthy is that around the depolarizing channel the repetition codes perform best (given
by both the complete and star graphs in Figs. 12 and 14). Deviating from unbiased noise,
and depending on whether ZY or Z X noise dominates, the local Clifford invariance (which
renders star and complete graphs equivalent) has to be broken; one of the choices performs
better.

52

We note that since we restrict our search to connected graphs of one specific instance of
kA, product codes—such as e.g. products of the optimal single-letter code—are not included
in our search. This explains why the code families as displayed can be worse than the
single-letter threshold.

5.5. Rate Comparisons

So far we have focused on a special form of superadditivity of coherent information where
the error threshold is increased relative to the single-letter threshold. This is a fundamental
question in quantum information theory since positive quantum capacity of a channel
guarantees the theoretical ability to correct errors (modeled by that channel), albeit at a
potentially miniscule rate. From a practical point of view, one is also interested in the
magnitude of the rate itself, which governs the overhead of an error correction code, i.e., how
many physical qubits are needed to protect logical qubits from noise. In this section we study
how the rates of repetition codes, cat codes, and tree graph codes compare to the optimal
single-letter rates given in (32) below the threshold.

In order to visualize rates within the Pauli simplex displayed in Fig. 1, we evaluate the CI
rate on layers aligned with the y axis, but with a specific geared ratio of x = f z for various
chosen z as shown in Fig. 18.

Figs. 15 to 17 show rate comparisons for the three code families—repetition, concatenated,
and tree codes—vs. the single-letter CI. We have seen in the sections above that repetition
codes exhibit the largest threshold increases overall, especially for noise biased towards a
high X : Z ratio. It is therefore not surprising that the rates of said codes—as compared
to the single-letter rate—reach an advantages of ≈ 0.01 in a significant volume below the
noise threshold. The volume of superadditivity decreases for the family of cat codes, and is
smallest for tree graph codes.
The relatively small region of superadditivity in Figs. 15 to 17 is not surprising, as all

code families studied in this paper (repetition, cat, and tree graph codes) are rank-2 codes:
they have a single purifying qubit, and hence the marginal input state on the kA channel
qubits has rank at most 2 by Schmidt decomposition, and a maximal entropy of 1. These
low-rank codes are well-suited for increasing noise thresholds, albeit at the expense of a poor
rate of at most 1/kA for noiseless channels and decreasing further for noisy channels. An
interesting question is whether the region of superadditivity relative to the single-letter rate in
Figs. 15 to 17 can be increased using higher-rank graph states, i.e., graphs with more than one
purifying qubit. This analysis would likely extend superadditivity effects to the mid-noise
regime away from the threshold. In the low-noise regime, where the channel is close to a

53

0.0 0.2
r : (x, z) = r(1,f)/s
f=0.5, s=sqrt(1.25)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

y

2x=z

0.0 0.2
r : (x, z) = r(1,f)/s

f=1, s=sqrt(2)

x=z

de
p

0.0 0.2
r : (x, z) = r(1,f)/s

f=2, s=sqrt(5)

x=2z

0.0 0.2
r : (x, z) = r(1,f)/s

f=4, s=sqrt(17)

x=4z

0.0 0.2
r : (x, z) = r(1,f)/s

f=8, s=sqrt(65)

x=8z
10 1

max CI
0.0119

10 3

0

Figure 15: Rate comparison of all repetition codes 1-in-k for k = 2, . . . , 60 vs. the optimal single-
letter rate. Shown is the CI difference of the two codes within planes that cut through the Pauli simplex
(shown in Fig. 18), where the planes are parametrized by (p1, p2, p3) = (r/s, y, r f /s)—i.e. they align
with the y axis, and are slanted with a specific ratio in the other two directions via x = f z for specific
choices of f > 0 shown in the top right corner of each plot. We only draw the area where the rate
difference is positive; the color scale and maximum rate difference are given on the right. Shaded in
light grey is the area where the repetition code CI is non-negative but below the single-letter rate. For
x = z, the dashed line indicates the family of depolarizing channels.

noiseless channel, the results of [Led+18b] show that superadditivity can only be limited,
and the quantum capacity is essentially given by the single-letter coherent information (up to
small corrections in the noise parameter). We leave an in-depth investigation of the mid-noise
regime for future work.

54

0.0 0.2
r : (x, z) = r(1,f)/s
f=0.5, s=sqrt(1.25)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

y

2x=z

0.0 0.2
r : (x, z) = r(1,f)/s

f=1, s=sqrt(2)

x=z

de
p

0.0 0.2
r : (x, z) = r(1,f)/s

f=2, s=sqrt(5)

x=2z

0.0 0.2
r : (x, z) = r(1,f)/s

f=4, s=sqrt(17)

x=4z

0.0 0.2
r : (x, z) = r(1,f)/s

f=8, s=sqrt(65)

x=8z
10 1

max CI
0.0092

10 3

0

Figure 16: All concatenated codes from Fig. 6 vs. single-letter rate. For a plot description see Fig. 15.

0.0 0.2
r : (x, z) = r(1,f)/s
f=0.5, s=sqrt(1.25)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

y

2x=z

0.0 0.2
r : (x, z) = r(1,f)/s

f=1, s=sqrt(2)

x=z

de
p

0.0 0.2
r : (x, z) = r(1,f)/s

f=2, s=sqrt(5)

x=2z

0.0 0.2
r : (x, z) = r(1,f)/s

f=4, s=sqrt(17)

x=4z

0.0 0.2
r : (x, z) = r(1,f)/s

f=8, s=sqrt(65)

x=8z
10 1

max CI
0.0075

10 3

0

Figure 17: All tree codes from Fig. 7 vs. single-letter CI. For a plot description see Fig. 15.

55

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4

0.1

0.2

0.3

0.4

0.5

p1p2

p 3

Figure 18: Layer cuts through the simplex of Pauli channels; on the surfaces shown, we evaluate the
CI for various graph state codes. The results are shown in Figs. 15 to 17.

6. Discussion

In this work, we studied various classes of graph state codes in the context of Pauli noise
channels, and how their coherent information (CI) thresholds relate to the noise parameters.
For graphs with symmetries, we derived an algorithm to obtain an analytical expression
for the CI, exploiting the graph state’s automorphism group to significantly speed up the
computation (Theorems 10 and 11); the speedup is most pronounced for graphs with large
symmetry groups.

To quantitatively assess the codes’ error correction potential in various noise regimes, we
numerically evaluated the CI threshold over the entire simplex of Pauli channels for individual
noise probabilities ≤ 1/2. To this end, we developed a numerical bisection method that
allows us to compute these thresholds in a quick fashion, based on the analytic CI expression
obtained before.

The most well-studied Pauli channels are unbiased depolarizing noise, the BB84 channel
(corresponding to independent bit and phase flips), and 2-Pauli noise (where only two out of
the three possible Pauli errors occur). For these channel models significant superadditivity of
coherent information is achieved e.g. by nested concatenation of simpler codes [DiV+98;
SS07; FW08]. For more general biased noise, we find much more significant superadditivity;
for example, repetition codes achieve a maximum possible superadditivity of δp ≈ 0.027
relative to the single-letter threshold for heavily biased noise. This is almost two orders of
magnitude beyond the superadditivity of δp ≈ 0.0007 achieved by the 5-in-5 code. We find

56

z

x y

dep

BB84

2P

0

0.5

0

0.5 0.5

Figure 19: Repetition (green), concatenated (blue) and 2-level (red) code family thresholds compared.
Especially around the 2-Pauli, BB84 and depolarizing channels biased towards x noise our new code
family outperforms the other two.

a maximum superadditivity of ≈ 0.018 for concatenated codes, and ≈ 0.019 for the codes
based on 2-level tree graphs introduced in this paper. All maximum threshold increases were
reached for y-biased noise, i.e., the region where Y errors dominate. Note however that a
different assignment of the graph state stabilizers achieves arbitrary rotations and reflections
in the xyz-hyperplane (as explained in Section 5.1), and thus our results apply to any type of
biased noise.

For a given stabilizer state affected by i.i.d. Pauli noise, error syndrome measurements give
way to a decomposition of the coherent information in terms of induced single-qubit Pauli
channels whose bias is determined by the structure of the stabilizer group [DiV+98; SS07].
On the other hand, it is less obvious to determine which code performs best for a given Pauli

57

channel. Our results presented in Section 5 allow us to answer this question for the code
families (repetition, cat, tree graph codes) discussed in this paper, which we summarize in
Fig. 19. This plot shows that around depolarizing, BB84 and 2-Pauli noise the concatenated
code family has the highest threshold; towards the Y and Z legs repetition codes are best. Yet
for large intermediate regions in the Z X and ZY plane, the 2-level codes perform best.

6.1. Noise Models in NISQ Devices

The context of codes we discussed in this paper is that of communication, i.e. where
entanglement is generated by sending part of a graph state through a noisy channel. States
that exhibit positive coherent information after having been affected by noise can e.g. be used
to extract a secret key in quantum key distribution protocols [BB84; Bru98; SP00; Lo01;
Smi+08; KR08]. More generally, a central goal in designing quantum storage and quantum
computation devices is to maintain coherence of entangled states affected by environmental
noise. Usually, the noise is assumed to be uniform over the Pauli errors X , Y , Z , i.e., unbiased
(depolarizing) noise.

A fundamental question is how reasonable this assumption of unbiased noise is. For all
but the most trivial tasks, data will have to be passed through a quantum device which, if not
fully error-corrected, will be noisy. This is not an issue if the device itself features full error
correction: data is then guaranteed to stay in a coherent state throughout. Yet the near-term
prospects of quantum computing—dubbed the NISQ (noisy intermediate-scale quantum)
era [Pre18]—comprise devices of 10-100 qubits of various interaction topologies, and with
circuit depths limited to ≈ 100 gates. On such devices, achieving full-fledged error correction
is unfeasible, and will remain a challenge for some time to come.

The way these limited near-term capabilities factor into the noise model is twofold. First,
because there is no error correction, individual qubits will experience different levels and
different types of noise originating from cross-talk across the chip, e.g. depending on whether
a qubit is located towards the center of the chip, or at an edge. On average, it is thus
conceivable that the noise channel modeling the device is not unbiased depolarizing noise,
but dominated to some extent by a different Pauli error ratio—or even non-Pauli noise
obtained from slightly perturbing Pauli channels; an analysis of the error thresholds of such
close-to-Pauli channels was partly carried out in [Jac17].
Secondly, the way physical qubits are implemented factors into the induced gate noise.

Any gate-level unitary on qubits is truly a hardware-level quantum channel that implements
the coupling by some control pulse; depending on how the coupling is implemented, it is not
obvious why the qubit-level noise should be unbiased. In fact, many proposed architectures

58

for quantum computation—such as superconducting qubits [Ali+09], quantum dots [Shu+12],
or trapped ions [Nig+14; Osp+08]—have noise biased towards one of the Pauli errors.
For such biased noise models, it is known that one can obtain significantly higher error

correction thresholds than for unbiased noise, e.g. with a tensor network decoder for the
surface code [Tuc+18]. Yet even without error correction there exist circuit level procedures
that render biased noise into weak but unbiased noise [AP08; WE16], so it is arguable
whether other non-depolarizing noise models are worth the effort to construct tailored codes
for them. However, the incurred overhead of such a transpiling procedure for error mitigation
is prohibitive for any near-term quantum application with its limited circuit depth: any
prolongation of the computation would render the circuit much more noisy than initially,
undermining any potential benefit from unbiasing the noise in first place.

So what type of block code is optimal for a specific device and communication task setup?
In particular if the overall noise level is close to the zero-CI threshold, this choice will begin to
matter. For instance, if the communication task is that of QKD and we choose to implement
the BB84 protocol, the quantum devices used for encoding and decoding might shift the
overall channel away from an exact BB84 channel, and bias it e.g. towards a dominating Z
error. In that case, concatenated codes would be a good choice (see Fig. 19). On the other
hand, if X noise gets slightly more pronounced—e.g. a relative increase of ≈ 5%—then
picking the T21 code is a better option.

6.2. Open Problems

In light of the discussion above about more realistic noise models, it would be interesting
to devise an algorithm computing the coherent information of graph states under non-i.i.d.
channels, which potentially include memory effects between qubits such as nearest neighbor
interactions. Depending on the interaction topology, this type of noise is likely to lack the
full permutation symmetry of i.i.d. channels, and hence poses a challenge to exploiting
symmetries to speed up the computation of the coherent information as in Algorithm 4 in
Section 3.
We conclude with a few open questions that will be the subject of further study. As

mentioned in Section 5.5, we focused our analysis on low-rank graph state codes that increase
error thresholds relative to the single-letter threshold, noting that they also boost coherent
information rates for Pauli channels in a small region below the error threshold. In order to
study more general rate increases for Pauli channels in the mid-noise regime, it would be
interesting to consider other families of graph states with a larger rank, i.e., for which kR ≈ kA.
Our analysis of error thresholds for Pauli channels can also readily be extended to other graph

59

state families beyond cat codes and tree graph codes. In both cases above, the challenge is to
find graphs that have both large symmetry groups and interesting error-correcting properties.
While the former is necessary for our algorithm to yield a computational speed-up, the latter
guarantees that these graph states achieve superadditivity of coherent information.

Acknowledgements

We would like to thank Graeme Smith for helpful feedback, and Brendan McKay for many
enlightening conversations about computational graph theory and his excellent nauty toolkit.
J. B. would like to thank the Draper’s Research Fellowship at Pembroke College for their
support. F. L. acknowledges support from NSF Grant No. PHY 1734006 and the hospitality
of DAMTP at the University of Cambridge. We are grateful for an AI Grant that enabled us
to perform the numerical studies within this paper.

60

References

[A00] “A001349”. In: OEIS Foundation Inc., The On-Line Encyclopedia of Integer
Sequences (2019). url: https://oeis.org/A001349.

[Ali+09] P. Aliferis, F. Brito, D. P. DiVincenzo, J. Preskill, M. Steffen, and B. M. Terhal.
“Fault-tolerant computing with biased-noise superconducting qubits: a case
study”. In: New Journal of Physics 11.1 (2009), p. 013061. arXiv: 0806.0383
[quant-ph].

[AP08] Panos Aliferis and John Preskill. “Fault-tolerant quantum computation against
biased noise”. In: Physical Review A 78.5 (2008), p. 052331.

[Bau19] Johannes Bausch. CoffeeCode. 2019. url: github.com/rumschuettel/
CoffeeCode.

[BL18] Johannes Bausch and Felix Leditzky. “Quantum Codes from Neural Networks”.
In: arXiv preprint (2018). arXiv: 1806.08781 [quant-ph].

[BB84] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key
distribution and coin tossing”. In: 1984 IEEE International Conference on
Computers, Systems and Signal Processing. Vol. 175. 0. New York. 1984.

[Ben+96] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William
K. Wootters. “Mixed-state entanglement and quantum error correction”. In:
Physical Review A 54.5 (1996), pp. 3824–3851. arXiv: quant-ph/9604024.

[Bor13] Nicolas Borie. “Generating tuples of integers modulo the action of a permutation
group and applications”. In: Discrete Mathematics and Theoretical Computer
Science (2013), pp. 767–778. arXiv: 1211.6261.

[BR01] Hans J. Briegel and Robert Raussendorf. “Persistent Entanglement in Arrays of
Interacting Particles”. In: Physical Review Letters 86.5 (2001), pp. 910–913.
arXiv: quant-ph/0004051.

[Bru98] Dagmar Bruß. “Optimal Eavesdropping in Quantum Cryptography with Six
States”. In: Physical Review Letters 81.14 (1998), pp. 3018–3021. arXiv:
quant-ph/9805019.

[CT17] GiuseppeCarleo andMatthias Troyer. “Solving the quantummany-body problem
with artificial neural networks”. In: Science 355.6325 (2017), pp. 602–606.
arXiv: 1606.02318 [cond-mat.dis-nn].

[Che+14] Jianxin Chen, Zhengfeng Ji, David Kribs, Norbert Lütkenhaus, and Bei Zeng.
“Symmetric extension of two-qubit states”. In: Physical Review A 90.3 (2014),
p. 032318. arXiv: 1310.3530 [quant-ph].

[CJ11] Xiao-yu Chen and Li-zhen Jiang. “Graph-state basis for Pauli channels”. In:
Physical Review A 83.5 (2011), p. 052316. arXiv: 1007.4611 [quant-ph].

61

https://oeis.org/A001349
https://dx.doi.org/10.1088/1367-2630/11/1/013061
https://dx.doi.org/10.1088/1367-2630/11/1/013061
http://arxiv.org/abs/0806.0383
http://arxiv.org/abs/0806.0383
https://dx.doi.org/10.1103/PhysRevA.78.052331
https://dx.doi.org/10.1103/PhysRevA.78.052331
https://dx.doi.org/10.5281/zenodo.3464512
github.com/rumschuettel/CoffeeCode
github.com/rumschuettel/CoffeeCode
http://arxiv.org/abs/1806.08781
https://dx.doi.org/10.1103/PhysRevA.54.3824
http://arxiv.org/abs/quant-ph/9604024
http://arxiv.org/abs/1211.6261
https://dx.doi.org/10.1103/PhysRevLett.86.910
https://dx.doi.org/10.1103/PhysRevLett.86.910
http://arxiv.org/abs/quant-ph/0004051
https://dx.doi.org/10.1103/PhysRevLett.81.3018
https://dx.doi.org/10.1103/PhysRevLett.81.3018
http://arxiv.org/abs/quant-ph/9805019
https://dx.doi.org/10.1126/science.aag2302
https://dx.doi.org/10.1126/science.aag2302
http://arxiv.org/abs/1606.02318
https://dx.doi.org/10.1103/PhysRevA.90.032318
http://arxiv.org/abs/1310.3530
https://dx.doi.org/10.1103/PhysRevA.83.052316
http://arxiv.org/abs/1007.4611

[Cub+15] Toby Cubitt, David Elkouss, William Matthews, Maris Ozols, David Pérez-
García, and Sergii Strelchuk. “Unbounded number of channel uses may be
required to detect quantum capacity”. In: Nature Communications 6 (2015),
p. 6739. arXiv: 1408.5115 [quant-ph].

[Dev05] Igor Devetak. “The private classical capacity and quantum capacity of a quantum
channel”. In: IEEE Transactions on Information Theory 51.1 (2005), pp. 44–55.
arXiv: quant-ph/0304127.

[DS05] Igor Devetak and Peter W. Shor. “The capacity of a quantum channel for
simultaneous transmission of classical and quantum information”. In: Commu-
nications in Mathematical Physics 256.2 (2005), pp. 287–303. arXiv: quant-
ph/0311131 [quant-ph].

[DiV+98] David P. DiVincenzo, Peter W. Shor, and John A. Smolin. “Quantum-channel
capacity of very noisy channels”. In: Physical Review A 57.2 (1998), p. 830.
arXiv: quant-ph/9706061.

[Die10] Reinhard Diestel. Graph Theory. 4th ed. Springer Berlin Heidelberg, 2010,
pp. XVIII, 410.

[Ell+08] Matthew B. Elliott, Bryan Eastin, and Carlton M. Caves. “Graphical description
of the action of Clifford operators on stabilizer states”. In: Physical Review A
77.4 (2008), p. 042307. arXiv: quant-ph/0703278.

[FW08] Jesse Fern and K. Birgitta Whaley. “Lower bounds on the nonzero capacity
of Pauli channels”. In: Physical Review A 78.6 (2008), p. 062335. arXiv:
0708.1597 [quant-ph].

[Got97] Daniel Gottesman. “Stabilizer Codes and Quantum Error Correction”. PhD
thesis. California Institute of Technology, 1997. arXiv: quant-ph/9705052.

[HR09] Stephen G. Hartke and A. J. Radcliffe. “McKay’s canonical graph labeling
algorithm”. In: Contemporary Mathematics. 2009, pp. 99–111.

[Hei+04] Marc Hein, Jens Eisert, and Hans J. Briegel. “Multiparty entanglement in
graph states”. In: Physical Review A 69.6 (2004), p. 062311. arXiv: quant-
ph/0307130.

[Hei+05] Marc Hein, Wolfgang Dür, and Hans J. Briegel. “Entanglement properties of
multipartite entangled states under the influence of decoherence”. In: Physical
Review A 71.3 (2005), p. 032350. arXiv: quant-ph/0408165.

[Hei+06] Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, Maarten Van den
Nest, and Hans J. Briegel. “Entanglement in Graph States and its Applications”.
In: arXiv preprint (2006). arXiv: quant-ph/0602096.

[Hel14] Wolfram Helwig. “Multipartite Entanglement: Transformations, Quantum
Secret Sharing, Quantum Error Correction”. PhD Thesis. University of Toronto,
2014.

62

https://dx.doi.org/10.1038/ncomms7739
https://dx.doi.org/10.1038/ncomms7739
http://arxiv.org/abs/1408.5115
https://dx.doi.org/10.1109/TIT.2004.839515
https://dx.doi.org/10.1109/TIT.2004.839515
http://arxiv.org/abs/quant-ph/0304127
https://dx.doi.org/10.1007/s00220-005-1317-6
https://dx.doi.org/10.1007/s00220-005-1317-6
http://arxiv.org/abs/quant-ph/0311131
http://arxiv.org/abs/quant-ph/0311131
https://dx.doi.org/10.1103/PhysRevA.57.830
https://dx.doi.org/10.1103/PhysRevA.57.830
http://arxiv.org/abs/quant-ph/9706061
https://dx.doi.org/10.1103/PhysRevA.77.042307
https://dx.doi.org/10.1103/PhysRevA.77.042307
http://arxiv.org/abs/quant-ph/0703278
http://arxiv.org/abs/0708.1597
http://arxiv.org/abs/quant-ph/9705052
https://dx.doi.org/10.1090/conm/479/09345
https://dx.doi.org/10.1090/conm/479/09345
https://dx.doi.org/10.1103/PhysRevA.69.062311
https://dx.doi.org/10.1103/PhysRevA.69.062311
http://arxiv.org/abs/quant-ph/0307130
http://arxiv.org/abs/quant-ph/0307130
https://dx.doi.org/10.1103/PhysRevA.71.032350
https://dx.doi.org/10.1103/PhysRevA.71.032350
http://arxiv.org/abs/quant-ph/0408165
http://arxiv.org/abs/quant-ph/0602096

[Jac17] Tyler B. Jackson. “Degenerate Codes and Capacities of Quantum Channels”.
PhD thesis. Department of Mathematics and Statistics, University of Guelph,
2017. Available at: https://atrium.lib.uoguelph.ca/xmlui/handle/
10214/10362.

[Jef+19] Christopher Jefferson,Markus Pfeiffer, RebeccaWaldecker, andEliza Jonauskyte.
Images. 2019. url: http://gap-packages.github.io/images.

[JK07] Tommi Junttila and Petteri Kaski. “Engineering an efficient canonical labeling
tool for large and sparse graphs”. In: Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments and the Fourth Workshop on Analytic
Algorithms and Combinatorics. Ed. by David Applegate, Gerth Stølting Brodal,
Daniel Panario, and Robert Sedgewick. SIAM, 2007, pp. 135–149.

[Ker99] Adalbert Kerber. Applied Finite Group Actions. Vol. 19. Algorithms and
Combinatorics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

[KR08] Oliver Kern and Joseph M. Renes. “Improved One-way Rates for BB84 and
6-state Protocols”. In: Quantum Information and Computation 8.8 (Sept. 2008),
pp. 756–772. arXiv: 0712.1494 [quant-ph].

[Led19] Felix Leditzky. MATLAB code for Algorithm 1. 2019. Available at: https:
//github.com/felixled/graph-states-coherent-info.

[Led+18a] Felix Leditzky, Debbie Leung, and Graeme Smith. “Dephrasure Channel and
Superadditivity of Coherent Information”. In: Physical Review Letters 121.16
(2018), p. 160501. arXiv: 1806.08327 [quant-ph].

[Led+18b] Felix Leditzky, Debbie Leung, and Graeme Smith. “Quantum and Private
Capacities of Low-Noise Channels”. In: Physical Review Letters 120.16 (2018),
p. 160503. arXiv: 1705.04335 [quant-ph].

[Lin74] Göran Lindblad. “Expectations and entropy inequalities for finite quantum
systems”. In: Communications in Mathematical Physics 39.2 (1974), pp. 111–
119.

[Llo97] Seth Lloyd. “Capacity of the noisy quantum channel”. In: Physical Review A
55.3 (1997), p. 1613. arXiv: quant-ph/9604015.

[Lo01] Hoi-Kwong Lo. “Proof of Unconditional Security of Six-state Quatum Key
Distribution Scheme”. In: Quantum Information and Computation 1.2 (Aug.
2001), pp. 81–94. arXiv: quant-ph/0102138.

[MP14] Brendan D. McKay and Adolfo Piperno. “Practical graph isomorphism, II”. In:
Journal of Symbolic Computation 60 (2014), pp. 94–112.

[ML09] Geir Ove Myhr and Norbert Lütkenhaus. “Spectrum conditions for symmetric
extendible states”. In: Physical Review A 79.6 (2009), p. 062307. arXiv:
0812.3667 [quant-ph].

63

https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10362
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/10362
http://gap-packages.github.io/images
https://dx.doi.org/10.1007/978-3-662-11167-3
http://arxiv.org/abs/0712.1494
https://github.com/felixled/graph-states-coherent-info
https://github.com/felixled/graph-states-coherent-info
https://dx.doi.org/10.1103/PhysRevLett.121.160501
https://dx.doi.org/10.1103/PhysRevLett.121.160501
http://arxiv.org/abs/1806.08327
https://dx.doi.org/10.1103/PhysRevLett.120.160503
https://dx.doi.org/10.1103/PhysRevLett.120.160503
http://arxiv.org/abs/1705.04335
https://dx.doi.org/10.1007/BF01608390
https://dx.doi.org/10.1007/BF01608390
https://dx.doi.org/10.1103/PhysRevA.55.1613
http://arxiv.org/abs/quant-ph/9604015
http://arxiv.org/abs/quant-ph/0102138
https://dx.doi.org/10.1016/j.jsc.2013.09.003
https://dx.doi.org/10.1103/PhysRevA.79.062307
https://dx.doi.org/10.1103/PhysRevA.79.062307
http://arxiv.org/abs/0812.3667

[Nes+04] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. “Graphical descrip-
tion of the action of local Clifford transformations on graph states”. In: Physical
Review A 69.2 (2004), p. 022316. arXiv: quant-ph/0308151.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. Cambridge: Cambridge University Press, 2000.

[Nig+14] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz,
M. A. Martin-Delgado, and R. Blatt. “Quantum computations on a topologically
encoded qubit”. In: Science 345.6194 (2014), pp. 302–305. arXiv: 1403.5426
[quant-ph].

[Osp+08] C. Ospelkaus, C. Langer, J. Amini, K. Brown, D. Leibfried, and D. Wineland.
“Trapped-Ion Quantum Logic Gates Based on Oscillating Magnetic Fields”. In:
Physical Review Letters 101.9 (2008), p. 090502.

[PP16] Connor Paul-Paddock. “Degradable and Antidegradable Qubit Channels”.
MA thesis. Department of Mathematics and Statistics, University of Guelph,
2016. Available at: https://atrium.lib.uoguelph.ca/xmlui/handle/
10214/9970.

[Pre18] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum
2 (Aug. 2018), p. 79. arXiv: 1801.00862 [quant-ph].

[Sch96] Benjamin Schumacher. “Sending entanglement through noisy quantum chan-
nels”. In: Physical Review A 54.4 (1996), p. 2614. arXiv: quant-ph/9604023.

[SN96] Benjamin Schumacher and Michael A. Nielsen. “Quantum data processing
and error correction”. In: Physical Review A 54.4 (1996), p. 2629. arXiv:
quant-ph/9604022.

[Ser03] Ákos Seress. Permutation Group Algorithms. Cambridge: Cambridge University
Press, 2003.

[Sha48] Claude E. Shannon. “Amathematical theory of communication”. In: Bell System
Technical Journal 27 (1948), pp. 379–423.

[Sho95] Peter W. Shor. “Scheme for reducing decoherence in quantum computer
memory”. In: Physical Review A 52.4 (1995), R2493–R2496.

[Sho02] Peter W. Shor. “The quantum channel capacity and coherent information”. In:
MSRIWorkshop on QuantumComputation. Berkeley, CA, USA, 2002. Available
at: http://www.msri.org/realvideo/ln/msri/2002/quantumcrypto/
shor/1/.

[SP00] Peter W. Shor and John Preskill. “Simple Proof of Security of the BB84
Quantum Key Distribution Protocol”. In: Physical Review Letter 85.2 (2000),
pp. 441–444. arXiv: quant-ph/0003004.

64

https://dx.doi.org/10.1103/PhysRevA.69.022316
https://dx.doi.org/10.1103/PhysRevA.69.022316
http://arxiv.org/abs/quant-ph/0308151
https://dx.doi.org/10.1126/science.1253742
https://dx.doi.org/10.1126/science.1253742
http://arxiv.org/abs/1403.5426
http://arxiv.org/abs/1403.5426
https://dx.doi.org/10.1103/PhysRevLett.101.090502
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9970
https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9970
https://dx.doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
https://dx.doi.org/10.1103/PhysRevA.54.2614
https://dx.doi.org/10.1103/PhysRevA.54.2614
http://arxiv.org/abs/quant-ph/9604023
https://dx.doi.org/10.1103/PhysRevA.54.2629
https://dx.doi.org/10.1103/PhysRevA.54.2629
http://arxiv.org/abs/quant-ph/9604022
https://dx.doi.org/10.1017/CBO9780511546549
https://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://dx.doi.org/10.1103/PhysRevA.52.R2493
https://dx.doi.org/10.1103/PhysRevA.52.R2493
http://www.msri.org/realvideo/ln/msri/2002/quantumcrypto/shor/1/
http://www.msri.org/realvideo/ln/msri/2002/quantumcrypto/shor/1/
https://dx.doi.org/10.1103/PhysRevLett.85.441
https://dx.doi.org/10.1103/PhysRevLett.85.441
http://arxiv.org/abs/quant-ph/0003004

[SS96] Peter Shor and John A. Smolin. “Quantum Error-Correcting Codes Need Not
Completely Reveal the Error Syndrome”. In: arXiv preprint (1996). arXiv:
quant-ph/9604006.

[Shu+12] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umansky, and A.
Yacoby. “Demonstration of Entanglement of Electrostatically Coupled Singlet-
Triplet Qubits”. In: Science 336.6078 (2012), pp. 202–205. arXiv: 1202.1828
[cond-mat.mes-hall].

[SS07] Graeme Smith and John A Smolin. “Degenerate quantum codes for Pauli
channels”. In: Physical Review Letters 98.3 (2007), p. 030501. arXiv: quant-
ph/0604107.

[Smi+08] Graeme Smith, Joseph M. Renes, and John A. Smolin. “Structured Codes
Improve the Bennett-Brassard-84 Quantum Key Rate”. In: Physical Review
Letters 100.17 (2008), p. 170502. arXiv: quant-ph/0607018.

[Ste96] Andrew M. Steane. “Error Correcting Codes in Quantum Theory”. In: Physical
Review Letters 77 (5 1996), pp. 793–797.

[Tru93] Richard J. Trudeau. Introduction to graph theory. Dover Publications, 1993.
[Tuc+18] David K. Tuckett, Stephen D. Bartlett, and Steven T. Flammia. “Ultrahigh Error

Threshold for Surface Codes with Biased Noise”. In: Physical Review Letters
120.5 (2018), p. 050505. arXiv: 1708.08474.

[WE16] Joel J. Wallman and Joseph Emerson. “Noise tailoring for scalable quantum
computation via randomized compiling”. In: Physical Review A 94.5 (2016),
p. 052325.

A. LU-Equivalence of an Arbitrary Stabilizer State
to a Graph State

In this appendix we explain in detail how to obtain the graph state that is LU-equivalent to a
given stabilizer state. In the following, we adopt the notation of [Ell+08].
To show the equivalence, it is convenient to use the binary representation of the Pauli

group, in which the Pauli matrices are assigned vectors in Z2
2 as follows:

r(I) B (0, 0) r(X) B (1, 0) r(Y) B (1, 1) r(Z) B (0, 1). (38)

Ignoring phases, multiplication of Pauli matrices corresponds to addition in Z2 in the binary
representation. Using this correspondence we assign to an element P ∈ Pn in the n-qubit
Pauli group a vector in v ∈ Z2n

2 by setting vi = r(Pi)1 and vi+n = r(Pi)2. As an example, the
Pauli operator X1Z2Y4 corresponds to the vector v = (1001|0101).

65

http://arxiv.org/abs/quant-ph/9604006
https://dx.doi.org/10.1126/science.1217692
https://dx.doi.org/10.1126/science.1217692
http://arxiv.org/abs/1202.1828
http://arxiv.org/abs/1202.1828
http://arxiv.org/abs/quant-ph/0604107
http://arxiv.org/abs/quant-ph/0604107
https://dx.doi.org/10.1103/PhysRevLett.100.170502
https://dx.doi.org/10.1103/PhysRevLett.100.170502
http://arxiv.org/abs/quant-ph/0607018
https://dx.doi.org/10.1103/PhysRevLett.77.793
https://dx.doi.org/10.1103/PhysRevLett.120.050505
https://dx.doi.org/10.1103/PhysRevLett.120.050505
http://arxiv.org/abs/1708.08474
https://dx.doi.org/10.1103/PhysRevA.94.052325
https://dx.doi.org/10.1103/PhysRevA.94.052325

For a stabilizer state on n qubits with n stabilizer generators, consider now the n × 2n
generator matrix whose rows are the binary representations of the stabilizer generators.
Multiplying a generator by another one does not change the stabilizer group; by the discussion
above, this corresponds to adding rows modulo 2 in the generator matrix. Moreover,
exchanging the labels of the qubits i and j corresponds to simultaneously exchanging the
columns i and j and n + i and n + j. Using these two operations, every generator matrix
corresponding to a set of n stabilizer generators describing a given stabilizer state on n qubits
can be brought into the canonical form (or standard form) [NC00](

Ik A B 0
0 0 AT In−k

)
, (39)

where B is a binary symmetric k × k-matrix, A is an arbitrary binary k × (n − k)-matrix, and
Ij denotes the j × j-identity matrix. The canonical form of a graph state |Γ〉 with stabilizers
Eq. (8) is given by (

In Γ

)
, (40)

where by Γ we also denote the adjacency matrix of the graph Γ, i.e., Γi j = 1 if {i, j} ∈ E and
Γi j = 0 otherwise.
To convert a given generator matrix in canonical form Eq. (39) to a graph state with

generator matrix Eq. (40), we recall the Clifford unitaries

H B
1
√

2

(
1 1
1 −1

)
S B

(
1 0
0 i

)
,

which satisfy the relations HXH = Z (and hence X = HZH) and SY S† = −X . Applying the
Hadamard matrix H to qubit j corresponds to exchanging the columns j and n + j in the
generator matrix. Hence, applying H to the last n − k qubits achieves the transformation(

Ik A B 0
0 0 AT In−k

)
−→

(
Ik 0 B A
0 In−k AT 0

)
.

A valid adjacency matrix of a simple graph has 0’s on the diagonal, and hence we are left
with removing any 1’s on the diagonal of B. This can be achieved by applying S to all qubits
j ≤ k for which Bj j = 1, and we are done. Since the procedure outlined above only involves
single-qubit Clifford unitaries, we can in fact assert that any stabilizer state is local-Clifford
(LC) equivalent to a graph state.

66

B. Subroutines for Full Coherent Information Algorithm

Algorithm 1 makes use of the following subroutines:

• GetUSubsets(k, r)
Input: k, r ∈ N
Output: Three (k+r)×4k-matrices, whose columns are the binary vector representations
of all possible tuples (U1,U2,U3) satisfying Ui ⊂ {1, . . . , k} and Ui ∩Uj = ∅ for i , j.
The Ui are regarded as subsets in {1, . . . , k + r}, and hence the k-binary vectors are
padded with r zeroes.

• GetUSubsetsCard(k)
Input: k ∈ N
Output: Three row vectors of length 4k storing the cardinalities of all possible tuples
(U1,U2,U3) satisfying Ui ⊂ {1, . . . , k} and Ui ∩Uj = ∅ for i , j.

• BinaryToDecimal(M)
Input: M ∈ M(F2)
Output: Row vector whose i-th entry is the decimal number corresponding to the
binary string in the i-th column of M .

• Subsets(k)
Input: k ∈ N
Output: k × 2k-matrix whose columns are the binary vectors representing the subsets
of {1, . . . , k}.

• PermVector(v, π)
Input: v ∈ Rn, π ∈ Sn
Output: v′ = (vπ(1), . . . , vπ(n))

• ShannonEntropy(q)
Input: Probability distribution q = (q1, . . . , qn)
Output: −∑n

i=1 qi log2 qi.

67

C. Monotonicity of Coherent Information

In order to prove Lemma 12, we introduce the quantum relative entropy D(ρ‖σ), defined for
a quantum state ρ and a positive semidefinite operator σ as

D(ρ‖σ) =

tr(ρ log ρ − ρ logσ) if supp ρ ⊂ suppσ

∞ otherwise,

where supp ρ B (ker ρ)⊥. The relative entropy is jointly convex [Lin74]: For a probability
distribution {λi}, quantum states {ρi} and positive semidefinite operators {σi},

D
(∑

i
λiρi

∑
i
λiσi

)
≤

∑
i
λiD(ρi ‖σi). (41)

The coherent information Ic(σ,N) of an arbitrary (possibly mixed) state σRA and a quantum
channel N : A→ B can be expressed in terms of the quantum relative entropy as

Ic(σ,N) = D(N(σRA)‖1R ⊗ N(σA)).

Recall that a channel N : A→ B with complementary channel N c : A→ E is antidegrad-
able if there exists another quantum channel A : E → B such that N = A ◦ N c. By the
data processing inequality and duality of the coherent information, antidegradable channels
always have non-positive coherent information on pure states ψ:

Ic(ψ,N) = Ic(ψ,A ◦N c) ≤ Ic(ψ,N c) = −Ic(ψ,N),

and hence Ic(ψ,N) ≤ 0 for all ψ. Since N ⊗n is antidegradable for all n ∈ N if N is,
we also have Ic(ψn,N ⊗n) ≤ 0 for all n ∈ N and pure states ψn, and hence Q(N) = 0 for
antidegradable N by the quantum capacity theorem in Eq. (2).

Finally, we make the observation that antidegradable channels have non-positive coherent
information also with respect to mixed input states. To see this, let N : A → B be
antidegradable, let σRA be a mixed quantum state, and consider a spectral decomposition
σRA =

∑
i pi |ψi〉〈ψi |RA. Then,

Ic(σ,N) = D(N(σRA)‖1R ⊗ N(σA))

= D
(∑

i
piN(ψi)

1R ⊗
∑

i
piN(trR ψi)

)
≤

∑
i

piD(N(ψi)‖1R ⊗ N(trR ψi))

=
∑

i
pi Ic(ψi,N)

≤ 0,

68

where the first inequality follows from joint convexity of D(·‖·), and the second inequality
follows since each Ic(ψi,N) ≤ 0 due to antidegradability of N .
We are now ready to give the proof of Lemma 12:

Proof of Lemma 12. Throughout the proof, we abbreviate Nx = Npx for some fixed prob-
ability distribution (p1, p2, p3). In terms of p1/2 = (12,

1
2 p1,

1
2 p2,

1
2 p3), the antidegradability

condition (31) becomes

1 ≥ 1
2
(1 + p2

1 + p2
2 + p2

3) − 2
√

p1p2p3.

Since p2
1 + p2

2 + p2
3 ≤ (p1 + p2 + p3)2 = 1 for any p1, p2, p3 ≥ 0 with

∑
i pi = 1, it follows

that every channelNx is antidegradable for x = 1/2, and hence also Ic(ψ,N ⊗k1/2) ≤ 0 for all ψ
and k ∈ N. By assumption, we even have Ic(ψ,N ⊗k1/2) < 0.
The function f (x) = Ic(ψ,N ⊗kx) is differentiable, and thus in particular continuous.

Moreover, we have Ic(ψ,N ⊗k0) = S(trR ψ) > 0 since ψ is entangled across the bipartition
R|A by assumption. Hence, since Ic(ψ,N ⊗k1/2) < 0, the function f has at least one root on the
interval [0, 1/2]. Let x0 be the smallest of these roots, i.e., f (x0) = 0 and f (x) > 0 for all
x < x0.
To prove the claim of the lemma, assume that there is another root x1 of f in (x0, 1/2]. For

i = 1, . . . k consider the continuous functions

gi : (σ, x) 7→ Ic(σ,N i
x), (42)

where N i
x = id1 ⊗ . . . ⊗ idi−1 ⊗ Nx ⊗ idi+1 ⊗ . . . ⊗ idk . By the joint convexity property

(41) of the relative entropy, each function x 7→ gi(σ, x) is convex for fixed σ. Moreover,
for each i and any σ we have gi(σ, 1/2) ≤ 0, and hence gi(σ, ·) either has exactly one root
in x ∈ [0, 1/2) if gi(σ, 0) ≥ 0, or gi(σ, x) < 0 for all x ∈ [0, 1/2) if gi(σ, 0) < 0. In either
case, it follows that gi(σ, x) < 0 for all x ∈ (x0, 1/2). Thus, for σx0 B (N ⊗k−1

x0 ⊗ id)(ψ)
satisfying gk(σx0, x0) = f (x0) = 0, we have gk(σx0, x1) < 0, since by assumption the second
root satisfies x1 > x0.

Consider now the state σx0,x1 = [N ⊗k−2
x0 ⊗ id ⊗ Nx1](ψ). By the above argument, we have

that 0 > gk(σx0, x1) = gk−1(σx0,x1, x0). Then by the same argument as before, convexity of
x 7→ gk−1(σx0,x1, x) implies that also gk−1(σx0,x1, x1) < 0. We can continue this argument
inductively to obtain a sequence of states

σx0, σx0,x1, . . . , σx0,x1,...,x1 ≡ [id ⊗ N ⊗k−1
x1](ψ)

to conclude that also f (x1) = g1(σx0,x1, · · · ,x1, x1) = Ic(ψ,N ⊗kx1) < 0, which contradicts the
assumption that x1 is a root of f . �

69

	1 Introduction
	1.1 Main Results
	1.2 Structure of this Paper

	2 Preliminaries
	2.1 Quantum Capacity
	2.2 Graph States
	2.3 Coherent Information of Decohered Graph States

	3 Exploiting Graph Symmetries
	3.1 Automorphisms of Colored Graphs
	3.2 Cosets of Graph Colorings
	3.3 Canonical Colorings
	3.4 Canonical Images for Colored Graphs
	3.5 Homomorphic Group Actions
	3.6 Coherent Information of Decohered Graph States with Symmetries

	4 Numerical Methods
	4.1 Visualizing Thresholds

	5 Results
	5.1 Repetition Codes
	5.2 Concatenated Codes
	5.3 Tree Codes
	5.4 Exhaustive Search
	5.5 Rate Comparisons

	6 Discussion
	6.1 Noise Models in NISQ Devices
	6.2 Open Problems

	A LU-Equivalence of an Arbitrary Stabilizer State to a Graph State
	B Subroutines for Full Coherent Information Algorithm
	C Monotonicity of Coherent Information

