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THE ~+-COEFFICIENTS OF BRANDEN’S (p,q)-EULERIAN
POLYNOMIALS AND ANDRE PERMUTATIONS

QIONG QIONG PAN AND JIANG ZENG

ABSTRACT. P. Brandén (European J. Combin. 29 (2008), no. 2, 514-531) studied a
(p, 9)-analogue of the classical Eulerian polynomials A, (p,q,t) and conjectured that its
y-coefficient ay, x(p,q) is divisible by (p + ¢)*. The aim of this paper is to show that
the quotient d,, x(p,q) := ani(p,q)/(p + q)* is the enumerative polynomial of André
permutations of the second kind of size n with k descents. In particular, our result leads
to a combinatorial model for G.-N. Han’s recent ¢g-Euler numbers (arXiv:1906.00103v1).

1. INTRODUCTION

André permutations are variants of alternating permutations, and are enumerated by

the famous Euler numbers F,, defined by the generating function, see [FS73|, [FS76, [FH15],
I.TL

tan(x) + sec(z) = Z E"F (1)

n>0

The first few values of E, are 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, ... (sequence
A000111 in the OEIS).

Let &,, be the set of permutations of [n] := {1,...,n}. A permutation o : i — o; of [n]
will be identified with the word o = oy ...0,. The entry i € [n] is called a descent (resp.
ascent) of o if i < n and o; > 0,41 (resp. 0; < 0;41 ), and the number of descents (resp.
ascents) in ¢ is denoted by deso (resp. asco). A double descent (resp. wvalley) of o is a
triple (O'Z',O'Z'+1,O'i+2) with o; > Oit1 > Oi49 (resp. o; > 041 < 0i+2) for1 <i<n-—2.
Given a permutation o, we denote by oy the subword of o consisting of 1,...,k in the
order they appear in 0. A permutation o of [n] is called André permutation (of the second
kind) if op; has no double descents and ends with an ascent for all 1 < k& < n. For
example, the permutation o = 43512 is not André since the subword 4312 of ¢ contains
a double descent (4,3,1), while the permutation 7 = 31245 is André. The set of André
permutations of [n] is denoted by A,,. For instance, the set A, consists of five permutations
1234, 1423, 3124, 3412, and 4123.

The Eulerian polynomials A, (t) and André polynomials D, (t) are defined by

Au(t) =)t and D,(t) = Y 197,

cEG), cEA,
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The first few values of A, (t) and D, (t) are

A(t) =1, A(t)=1+¢t, A3(t)=1+4t+1*

Ay(t) =1+ 11+ 1182 + 83, A5(t) = 1 + 26t + 66t + 26t° + t4;
and

Di(t) = Dy(t) =1, Ds(t)=1+t, Dy(t)=1+44t, Ds(t) =1+ 11t + 4¢*,
Dg(t) = 1+ 26t + 3412,  D7(t) = 1 + 57t + 180> + 343

The two kinds of polynomials are connected through the so-called y-expansion:

(n—-1)/2
Aut) = Y dup(20)"(t+ 1), (2)

k=0

where d,, ;, is the number of André permutations of [n] with k descents, namely, the coeffi-
cient of t* in D, (t), see [FS73, FHOT, [CST1].

For ¢ = 0y...0, € 6, the statistic (31-2) o (resp. (13-2)c ) is the number of pairs
(4,7) such that 2 < i < j < n and 0,1 > 0; > 0; (resp. 0,_1 < 0; < 0;). Similarly, the
statistic (2-13) o (resp. (2-31)0) is the number of pairs (7, ) such that 1 <i<j<n-—1
and oj41 > 0; > 0; (resp. 0j41 < 0; < 0;). In [BraO8] Bréndén considered the following
(p, q)-analog of FEulerian polynomials

An(p’ q, t) = Z p(2‘31)0q(13-2)0tdosa’ (3)
o€6y
which can be recasted as (cf. [SZ12, (9)])
A (p,q,t) = Z P18 0 (3120 ydeso n
o€6y

Brandén showed that there are polynomials a, (p, ¢) € N[p, q| satisty

(n=1)/2]
Aulpgt) = > anr(p, "L+ )", (5)
k=0

and further conjectured the divisibility of a,1(p,q) by (p+ ¢)* for 0 < k < |(n—1)/2],
see [Bra08 Conjecture 10.3]. This conjecture was proved by Shin and Zeng [SZ12] using
the combinatorial theory (cf. [CSZ97, [FI80) [Vi83]) of continued fractions of Jacobi type,
i.e., a formal power series defined by

S
t2

Bat?
1—...

L=t —
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When 7,, = 0 the corresponding continued fractions are called Stieltjes type:
1

nZ:O a,t" = ot )

1—
1

Oégt
1—--.

Actually, Shin and Zeng [SZ12] proved the stronger result that there are polynomials
dnk(p, q) € N|p, ¢] such that

dn,k(p7 q)

:%é%% for 0<k<|(n—1)2]. (6)

In view of (2)) and ([)) it is natural to seek a combinatorial interpretation for d, x(p, q).
The aim of this paper is to provide such an interpretation within the model of André
permutations. Let us define the (p, q)-André polynomials D, (p, q,t) by

Du(p,qt) =Y dur(p,)t*  (0<k < [(n—1)/2)). (7)
The first few values of D, (p, q,t) are D1(p,q) = Ds(p,q) = 1, and
Ds(p,q,t) =1+t Dalp,q.t) =1+ (p+q+2)t,
Ds(p,q,t) =1+ (p+q9)*+2(p+q) +3)t+ (p* +pg+¢*+1) ¢
For n € N we define the (p, ¢)-analogue of the integer n by

and the (p, ¢)-analogue of the binomial coefficient (Z) by

C?M:h%m~m—k+”m (0 <k <n).

k Mpa- - Kl
The following three theorems are our main results.

Theorem 1. The following formula holds

> 1
Z Dn+1(p> q, t)zn = (2) tl’2 ’ (8)
n=0 2/ p,
l—z— = 3 2
(2)p th
1 —[2]pq7 — 4) 2
2 b}
1—- [3]p7qx - 1 — [4]pqx
p,q

where v, = [n+ 1], 4 and 5, = (";l)pq.
Theorem 2. For 0 <k < |[(n—1)/2] we have

Dn(p’ q, t) = Z p(2_13)0q(31_2)0—d05 crtdosg.
o€ Ap,
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Example 1. We list the André permutations in A3 and 4, with their number of patterns
2 — 13 and 31 — 2. The valleys are in boldface.

n=4
s e A 2=13)0 [ (B1=2)0
n=3 1234 0 0
ceAs | (2—13)0 | (31 —2)0

1423 0 1

123 0 0
319 0 1 3124 1 1
3412 0 1
4123 0 2

As the cardinality of A,, is the Euler number F,, we have
D,(1,1,1)=E, for n>1,
and derive from (8)) the following classical formula, see [St90, (14)] and [Sol8, Note 9]),

> 1
D Buna” = 2 9)
n=0 L

1 — o —
. 3x2

612

1— ...

with v, =n+1 and 5, = n(n+1)/2. Recently Han [Han19] defined a g-analogue of Euler
numbers F,(q) using a g-version of ({@):

1—2x—

1—3z—

Z E,ii(g)a" = 2 (10)

l—o—

with v, = [n + 1], and 8, = [n],[n + 1],/[2],-
At the end of his paper Han raised the question of finding a combinatorial model for the
new ¢-Euler numbers. Comparing (8) and (1) we see that

En(Q) = Dn(1> q, 1) = Dn(Qa 1, 1) (n > 1),
and derive from Theorem [2] the following interpretations for Han’s ¢-Euler numbers.

Corollary 3. We have
Eln(q) _ Z q(2—13)0 _ Z q(31—2)0—desa‘ (11)
UEAn UEAn

We shall give a triple sum formula for D, (1,¢q,t) in Theorem [3] and also prove the
following explicit formula when ¢ = —1.
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Theorem 4. For n > 1 we have
n—1
—-1-k
D,(1,-1,t) =) (” L )k!tk. (12)

Remark 1. If t =1, in view of ([I0), the above result is equivalent to

/n—-1—k
E.(-1) = !
o= (" 7, ) (13)
k=0

which was posted by P. Barry, see A122852 in OEIS [OEIS]. Han [Hanl9, Theorem 7.1]
gave a non-trivial (sic) proof of (I3) by showing that both sides of ([3)) satisfy the same
recurrence relation, which had been conjectured by R. J. Mathar. Our proof of ([2) is
insightful for the summation formula in (I2)) and combinatorial in nature.

2. PROOF OF THEOREM [

For 0 € G, let 09 = 0,41 = 0. Then any index i € [n] can be classified according to
one of the four cases:

a peak if 0;_1 < o; and g; > 0,,1;

a valley if o,_1 > 0; and 0; < 0y41;

a double ascent if 0;,_1 < 0; and 0; < 0;41;
a double descent if o;,_1 > o; and o; > 0;41.

Let peak o (resp. valley o, dao, ddo) denote the number of peaks (resp. valleys, double
ascents, double descents) in o. Note that peak o = valley o + 1. Generalizing the (p, q)-
Eulerian polynomials A,,(p, q,t) Shin and Zeng [SZ12] introduced more general Eulerian
polynomials A, (p, q,t,u, v, w) defined by

An(p> q,t,u,v, w) — Z p(2—13)crq(31—2) Utdosgudagvddngauoyo. (14)

UEG'!L

We recall the following result in [SZ12, Theorem 2.

Lemma 5 (Shin-Zeng). The polynomials an x(p, q) in ([Bl) have the following interpretation

ani(pq) = Y pIogde (15)
O’EDDnyk
where DD, . := {o € &, : valleyo =k, ddo =0}, and
L(n—1)/2]
Aupa oo w)= S anulpq)(fw)(ut vty (16)
k=0

Moreover, for all 0 < k < [(n—1)/2], the quotient a, x(p,q)/(p+ q)* is a polynomial in p
and q with integral coefficients.
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Proof of Theorem[1. Specializing (t,u,v,w) with (p +¢,0,1,w) in (IG), by (@) and (7)) we
see that

[(n—1)/2]
k An(p7 q,p _'_ q, 07 17 ’UJ)

Z dn,k(pv q)w - n—1 .
P (»+9)

On the other hand, it is known [SZ12, Eq. (28)] that
> An(p,g tu,v,w)a" "t =

n>1

[1]p,q [2]p,thx2 (17>

b ()l = [2]p,q[3p gtwa?

1 — (u+tv)[2], 2 —

with v, = (v + tv)[n + 1], , and B, = [n]p4n + 1], ,tw.
Formula (8) follows from (I7) by the substitution (¢,u,v,w) — (p + ¢,0,1,w) and
x—=x/p+q. O

3. PROOF OF THEOREM

We need some definitions from [FS73] and [F'S74]. Recall that a permutation w of a
finite subset {a; < as < -+ < a,} of Nis a word w = z;y...x,. The word u obtained by
juxtaposing two words v and w in this order is written u = vw. The word v (resp. w) is
the left (resp. right) factor of u. More generally, a factorization of length ¢ (¢ > 0) of a
word w is any sequence (wy, wa, ..., w,) of words (some of them possibly empty) such that
the juxtaposition product wyws...w, is equal to w.

Lemma 6 ([ES74]). Let w = x125...2, (n > 0) be a permutation and x be one of the letters
x; (1 <i<mn). Then w has a unique factorization (wq,ws, x,wy, ws) of length 5, called its
x-factorization, which is characterized by the three properties

(1) wy is empty or its last letter is less than x;
(i) wy (resp. wy) is empty or all its letters are greater than x;
(iii) ws is empty or its first letter is less than x.

It is also known that André permutations can be defined using z-factorization.

Definition 7 ([FS73]). A permutation 0 € &,, is an André permutation of the second
kind if it is empty or satisfies the following:

(i) o has no double descents,

(ii) m» — 1 is not a descent, i.e. 0,1 < o,

(iii) Ifi € {2,--- ,n} is a valley of o with o;-factorization o = wywyo;w ws, then min(wy) >
min(w,), i.e.,the minimum letter of ws is larger than the minimum letter of wy.

Let A, be the set of André permutations of [n] with & descents. For example, the
elements of Aj; o are
31524, 41523, 51423, 53412.
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Lemma 8. For 0 <k < (n - 1)/2 we have
(2-13)0 ( (B1-2)0—k

UGAn k

Proof. We shall prove the equivalent identity (cf. (@)

(P + )" dug(p: ) = ani(p, 9).
Let P[k| be the power set of [k], i.e., the set of all subsets of [k]. Since

(p+ Q)*dp 1 (p, q) =< > pllght ') > pEegBRemk

SEP [k‘ UE-An,k:
_ Z p' \+(2—13)Jq—|s\+(31—2)0’
(s,0)€PLk]xAp i
the identity to be proved is equivalent to
Z \ |[+(2—13)0 —| |+(31-2)0 Z p (2—13)0 (31 2)o
(870')67)[]{} X-An,k O'EDDn k

Hence, it is sufficient to establish a bijection ¢ : P[k| x A, — DD,, s such that if (s,0) €
Plk] x A, and ¢(s,0) = 7 then

|s|+(2—13)0 = (2 —13)7

—|s| + (31 = 2)o = (31 — 2)T.

By definition, if o; is a valley of 0 € A, with o;-factorization (wy,we,0;, ws, ws), then
min(wy) > min(wy), so (o;-1,0;, min(wy)) forms a (31 — 2) pattern, this implies that
(31 —2)o > k. Moreover, there are only three types for y := min(w,): peak, double ascent

or valley. Recall that oy = 0,41 = 0.
We first define the action ¢ on the valley o; according to the type of y as follows:

(18)

(i) If y is a peak, then y = 0,41 because, otherwise there should be a letter z < y
in wy between o; and y. Then we exchange wsy and the first letter of wy, i.e., the
new permutation is ¢(o) = wyyo;wesws where wy = ywy. This transformation
eliminates the (31 — 2) pattern (0;_1,0;,0:11), and creates a new (2 — 13) pattern
(y, 04, w1 ), where wy is the first letter of ws.

(ii) If y is a double ascent, then y = 0,41 for the same reason as for (i). Let j < i be
the largest index such that o; <y < 0;41. Then we move y to the slot between o;
and o;.;. This transformation eliminates the (31 — 2) pattern (o;_1, 04, 0541) and
creates a new (2 — 13) pattern (0,41, 0, 0i42)-

(iii) If y is a valley, then we just exchange o; and y, and this transformation eliminates
the (31 —2) pattern (o;_1, 04, y) and creates a new (2 — 13) pattern (y, 0y, y’), where
' is the letter next to the right of y in o.

We now extend the above action ¢ to each subset s of the set of the valleys of o, that

we identify with [k] as follows: if (i1,...,4;) is the sequence of valleys of ¢ ordered in
increasing order, then any subset s of [k] is identified with the set {i;};cs. We first deal
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with the elements of cases (i) and (ii), and then the case (iii); and when we deal with the
elements of case (ii7) we will apply ¢ to the elements in decreasing order, i.e., from the
largest element to the smallest element. As the transformation can be reversed, we have
constructed a bijection ¢ satisfying (IS]). O

For the reader’s convenience, we run the bijection ¢ from P[2] X A5 2 to DDs 5 in Figure[Il

ceA, | (2—13)[(31—2)[se P2][7€DDs, | (2—13) | (31 —2)
31524 2 2 0 31524 2 2
31524 2 2 {1} 32514 3 1
31524 2 2 {2} 31425 3 1
31524 2 2 (1,27 | 32415 4 0
41523 1 3 ] 11523 1 3
11523 1 3 {1} 12513 2 2
41523 1 3 {2} 11325 2 2
41523 1 3 (1,2} | 42315 3 1
51423 0 4 ] 51423 0 1
51423 0 4 {1} 52413 1 3
51423 0 4 {2} 51324 1 3
51423 0 1 {1,2} | 52314 2 2
53412 0 2 ] 53412 0 2
53412 0 2 {1} 21534 1 1
53412 0 2 (3} 43512 1 1
53412 0 2 (1,3} | 21435 2 0

FIGURE 1. The bijection ¢ : (s,0) — 7 from P[2] X As2 to DDjs

For example, if 0 = 31524 € A;5 and s = {1, 2}, then
e for the valley 1, the corresponding y; := min(w,) is 2, which is a valley,
e for the valley 2, the corresponding ys := min(wy) is 4, which is a peak.

So, we should first deal with the valley 2, the 2-factorization is (wq, wa, z, wy, ws) =
(31,5, 2, 4, 0) according to case (i) of ¢, we just exchange 4 and 5, and get 31425;
then we apply ¢ to the valley 1 in 31425, the 1-factorization is (wy, wa, T, wy, ws) =
(0,3, 1, 425, (), which is case (iii), we just exchange 1 and 2, and get ¢(s, o) = 32415.

4. A FORMULA FOR D, (1,—1,t) AND D,(1,q,t)

A Motzkin path of length n is a sequence of points v := (7, ..., 7,) in the integer plane
7, X 7 such that

e v = (0,0) and 7, = (n,0),

® Vi —Yi-1€ {<170)7 (17 1)7 (17 _1)}7
e v = (z5,y;) E NxNfori=0,...,n.
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In other words, a Motzkin path of length n is a lattice path starting at (0,0), ending at
(n,0), and never going below the z-axis, consisting of up steps U = (1, 1), horizontal steps
H = (1,0), and down steps D = (1, —1). Let P, be the set of Motzkin paths of length n.
Clearly we can identify Motzkin paths of length n with words w on {U, H, D} of length n
such that all prefixes of w contain no more D’s than U’s and the number of U’s equals the
number of D’s. The height of a step (7;,7:41) is the coordinate of the starting point ~;.
Given a Motzkin path p € P, and two sequences (7;) and (5;) of some commutative ring,
we weight each up step by 1, and each horizontal step (resp. down step) at height i by ~;
(resp. ;) and define the weight w(p) of p by the product of the weights of all its steps.
The following result of Flajolet [F180] is our starting point.

Lemma 9 (Flajolet). We have

Z <Z w(p)) "= : B2
L=t - :

n=0 \pePp

Bat?

O
g 1— ot — -

A Motzkin path without horizontal steps is called a Dyck path, and a Motzkin path
without horizontal steps at odd height is called an André path.
Lemma 10. Let v, =0 (i > 0) and 8; = [5*] (i > 1). Then

nl=>" w(p).

PEPn

In other words, the polynomial n! is the generating polynomial of Dyck paths of length 2n.
Proof. Recall the following formula of Euler:

1
Z nla" = . (19)
n>0 1— x
1z
1—
2z
1—
2z
1- 22
with a,, = [(n + 1)/2]. The result then follows from Lemma O

Remark 2. We can give a bijective proof of Euler’s formula (I9) using the method in
[CSZ97, [F180, [Vig&3].

Lemma 11. Let vy, =1, 7221 =0 (i > 0) and 5 = L%Jt (i>1). Then
Dn-l—l(la _17t) = Z w(p)

pEPn

In other words, the polynomial D,1(1,—1,t) is the generating polynomial of André paths
of length n.
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Proof. When (p, q) = (1, —1) formula(8) reduces to

> 1
ZDn-l-l(lv_lvt)xn = th (20>
n=0 1—2— 5
1_ tx
2ta?
1—x— 5
2tz
1- -
1—2—---

with coefficients v9, = 1, Y941 = 0 and 3, = L"THJt The result follows from Lemmal[0l O

We denote by AP, the set of André paths of length n with k horizontal steps, and D,
the set of Dyck paths of half length n. Let

Vg = {1, Yrs1) € NFF sy 4y = n— 2k}

Lemma 12. For 0 < k < [n/2], there is an explicit bijection 1 : APpn—ok — Vni X Dg
such that if P¥(u) = (y,p) with for u € APy p_or and (y,p) € VYni X Dy then w(u) = w(p),
where the weight is associated to the sequences (a;) and (B;) with cvg; = 1, i1 =0 (1> 0),
and By, = [ B¢ (i > 1).

Proof. Since an André path (word) on {U, D, H} has only level-steps at even height and
starts from height 0, so the subword between two consecutive horizontal steps must be of

even length and is a word on {UU, DD,UD, DU}. Thus, any André word u € AP, ;o
can be written in a unique way as follows:

u=H"w H”w, ... w,H" with w; € {UU,DD,UD, DU},

where (y1,...,Yk+1) € Voi and p = wy ... wy € Dy, ie., the Dyck path p is obtained by
removing all the level steps H’s from the André path u. Let ¥(u) = (y,p). It is clear that
this is the desired bijection because each down step in p has the same height in u. ([l

Proof of Theorem [ By Lemmas [I1] and [I2] we have

Dn-i-l(la_lat) :Z Z 'LU(p)

k>0 (y,p)E€Vn,x X Dk

Since the cardinality of Y, j is (";k), and the generating polynomial of Dy, is equal to k!t*
by Lemma [I0, summing over all 0 < k < [n/2] we obtain Theorem [I2] O

Example 2. An illustration of the bijection 1 is given in Figure

We can derive a formula for D, (1, ¢,t) from a formula of Josuat-Verges [JV11].
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v,

(1,0,2,1,0)

FIGURE 2. The bijection ¢ : AP124 — Viga X Dy

Theorem 13. Forn > 1 we have

l—l—u n—1 .
Dn 1 t) = eso (31-2)c
100 = (raira) 2

B v<11— ) ((1 +u1v>+<f - q2>)n_l

S (S0 - ()G (),

where
14+ —2(1+q)t — (1L +9)/ (1 +9)> —4(1 + gt (21)
2(q — t(1+q)) |
(49 =2—/(1+¢?—di(l+q) (22)

2t
Proof. Specializing (p, q,t,u,v,w) with (1,q,¢,1,1,£(1+ ¢ ')) in (I8) we obtain
An(1,4,4,1, 1, t(1+¢7"))
(I+g! '

D,(1,q,t) =

From Corollary 3.2 in [HMZ] we derive

1 n—1
An(l,q,q,1,1,t(1+¢ 1) = ( +“) D pdmegdiae

1+ uv
_I_ oeS,

where u and v are given by (21I)) and (22)). By Theorem 6.3 in [JV11], we have

Z yasccr (13—2)0 Z ydoscr (31-2)0

O'Gen 0'6677,

=ﬁz <Zky< )G (jfl)(wZH))

J

(o)

Putting the above three formulae together completes the proof. ([l
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Remark 3. It is a challenge to show directly that Theorem []is the limit case of Theorem [I3]
when ¢ — —1.
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