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THE γ-COEFFICIENTS OF BRANDEN’S (p, q)-EULERIAN

POLYNOMIALS AND ANDRÉ PERMUTATIONS

QIONG QIONG PAN AND JIANG ZENG

Abstract. P. Brändén (European J. Combin. 29 (2008), no. 2, 514–531) studied a
(p, q)-analogue of the classical Eulerian polynomials An(p, q, t) and conjectured that its
γ-coefficient an,k(p, q) is divisible by (p + q)k. The aim of this paper is to show that
the quotient dn,k(p, q) := an,k(p, q)/(p + q)k is the enumerative polynomial of André
permutations of the second kind of size n with k descents. In particular, our result leads
to a combinatorial model for G.-N. Han’s recent q-Euler numbers (arXiv:1906.00103v1).

1. Introduction

André permutations are variants of alternating permutations, and are enumerated by
the famous Euler numbers En defined by the generating function, see [FS73, FS76, FH15],

tan(x) + sec(x) =
∑

n≥0

En
xn

n!
. (1)

The first few values of En are 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, ... (sequence
A000111 in the OEIS).

Let Sn be the set of permutations of [n] := {1, . . . , n}. A permutation σ : i → σi of [n]
will be identified with the word σ = σ1 . . . σn. The entry i ∈ [n] is called a descent (resp.
ascent) of σ if i < n and σi > σi+1 (resp. σi < σi+1 ), and the number of descents (resp.
ascents) in σ is denoted by des σ (resp. asc σ). A double descent (resp. valley) of σ is a
triple (σi, σi+1, σi+2) with σi > σi+1 > σi+2 (resp. σi > σi+1 < σi+2) for 1 ≤ i ≤ n − 2.
Given a permutation σ, we denote by σ[k] the subword of σ consisting of 1, . . . , k in the
order they appear in σ. A permutation σ of [n] is called André permutation (of the second
kind) if σ[k] has no double descents and ends with an ascent for all 1 ≤ k ≤ n. For
example, the permutation σ = 43512 is not André since the subword 4312 of σ contains
a double descent (4, 3, 1), while the permutation τ = 31245 is André. The set of André
permutations of [n] is denoted by An. For instance, the set A4 consists of five permutations
1234, 1423, 3124, 3412, and 4123.

The Eulerian polynomials An(t) and André polynomials Dn(t) are defined by

An(t) =
∑

σ∈Sn

tdes σ and Dn(t) =
∑

σ∈An

tdes σ.
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The first few values of An(t) and Dn(t) are

A1(t) = 1, A2(t) = 1 + t, A3(t) = 1 + 4t + t2,

A4(t) = 1 + 11t+ 11t2 + t3, A5(t) = 1 + 26t+ 66t2 + 26t3 + t4;

and

D1(t) = D2(t) = 1, D3(t) = 1 + t, D4(t) = 1 + 4t, D5(t) = 1 + 11t+ 4t2,

D6(t) = 1 + 26t+ 34t2, D7(t) = 1 + 57t+ 180t2 + 34t3.

The two kinds of polynomials are connected through the so-called γ-expansion:

An(t) =

(n−1)/2
∑

k=0

dn,k(2t)
k(t+ 1)n−1−2k, (2)

where dn,k is the number of André permutations of [n] with k descents, namely, the coeffi-
cient of tk in Dn(t), see [FS73, FH01, CS11].

For σ = σ1 . . . σn ∈ Sn, the statistic (31-2)σ (resp. (13-2)σ ) is the number of pairs
(i, j) such that 2 ≤ i < j ≤ n and σi−1 > σj > σi (resp. σi−1 < σj < σi). Similarly, the
statistic (2-13)σ (resp. (2-31)σ) is the number of pairs (i, j) such that 1 ≤ i < j ≤ n− 1
and σj+1 > σi > σj (resp. σj+1 < σi < σj). In [Bra08] Brändén considered the following
(p, q)-analog of Eulerian polynomials

An(p, q, t) =
∑

σ∈Sn

p(2-31) σq(13-2)σtdes σ, (3)

which can be recasted as (cf. [SZ12, (9)])

An(p, q, t) =
∑

σ∈Sn

p(2-13) σq(31-2)σtdes σ. (4)

Brändén showed that there are polynomials an,k(p, q) ∈ N[p, q] satisfy

An(p, q, t) =

⌊(n−1)/2⌋
∑

k=0

an,k(p, q)t
k(1 + t)n−1−2k, (5)

and further conjectured the divisibility of an,k(p, q) by (p + q)k for 0 ≤ k ≤ ⌊(n− 1)/2⌋,
see [Bra08, Conjecture 10.3]. This conjecture was proved by Shin and Zeng [SZ12] using
the combinatorial theory (cf. [CSZ97, Fl80, Vi83]) of continued fractions of Jacobi type,
i.e., a formal power series defined by

∞
∑

n=0

ant
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

.
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When γn = 0 the corresponding continued fractions are called Stieltjes type:
∞
∑

n=0

ant
n =

1

1−
α1t

1−
α2t

1− · · ·

.

Actually, Shin and Zeng [SZ12] proved the stronger result that there are polynomials
dn,k(p, q) ∈ N[p, q] such that

dn,k(p, q) =
an,k(p, q)

(p+ q)k
for 0 ≤ k ≤ ⌊(n− 1)/2⌋. (6)

In view of (2) and (6) it is natural to seek a combinatorial interpretation for dn,k(p, q).
The aim of this paper is to provide such an interpretation within the model of André
permutations. Let us define the (p, q)-André polynomials Dn(p, q, t) by

Dn(p, q, t) :=
∑

dn,k(p, q)t
k (0 ≤ k ≤ ⌊(n− 1)/2⌋). (7)

The first few values of Dn(p, q, t) are D1(p, q) = D2(p, q) = 1, and

D3(p, q, t) = 1 + t, D4(p, q, t) = 1 + (p+ q + 2)t,

D5(p, q, t) = 1 +
(

(p+ q)2 + 2 (p+ q) + 3
)

t +
(

p2 + pq + q2 + 1
)

t2.

For n ∈ N we define the (p, q)-analogue of the integer n by

[n]p,q =
pn − qn

p− q
=

∑

i+j=n−1

piqj ,

and the (p, q)-analogue of the binomial coefficient
(

n
k

)

by
(

n

k

)

p,q

=
[n]p,q . . . [n− k + 1]p,q

[1]p,q . . . [k]p,q
(0 ≤ k ≤ n).

The following three theorems are our main results.

Theorem 1. The following formula holds
∞
∑

n=0

Dn+1(p, q, t)x
n =

1

1− x−

(

2
2

)

p,q
tx2

1− [2]p,qx−

(

3
2

)

p,q
tx2

1− [3]p,qx−

(

4
2

)

p,q
tx2

1− [4]p,qx− · · ·

, (8)

where γn = [n+ 1]p,q and βn =
(

n+1
2

)

p,q
.

Theorem 2. For 0 ≤ k ≤ ⌊(n− 1)/2⌋ we have

Dn(p, q, t) =
∑

σ∈An

p(2−13)σq(31−2)σ−des σtdes σ.
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Example 1. We list the André permutations in A3 and A4 with their number of patterns
2− 13 and 31− 2. The valleys are in boldface.

n = 3
σ ∈ A3 (2− 13)σ (31− 2)σ
123 0 0
312 0 1

n = 4
σ ∈ A4 (2− 13)σ (31− 2)σ
1234 0 0
1423 0 1
3124 1 1
3412 0 1
4123 0 2

As the cardinality of An is the Euler number En, we have

Dn(1, 1, 1) = En for n ≥ 1,

and derive from (8) the following classical formula, see [St90, (14)] and [So18, Note 9]),

∞
∑

n=0

En+1x
n =

1

1− x−
x2

1− 2x−
3x2

1− 3x−
6x2

1− · · ·

(9)

with γn = n+1 and βn = n(n+1)/2. Recently Han [Han19] defined a q-analogue of Euler
numbers En(q) using a q-version of (9):

∞
∑

n=0

En+1(q)x
n =

1

1− x−
x2

1− [2]qx−
[3]qx

2

1− [3]qx−
[6]qx

2

1− · · ·

(10)

with γn = [n+ 1]q and βn = [n]q[n + 1]q/[2]q.
At the end of his paper Han raised the question of finding a combinatorial model for the

new q-Euler numbers. Comparing (8) and (10) we see that

En(q) = Dn(1, q, 1) = Dn(q, 1, 1) (n ≥ 1),

and derive from Theorem 2 the following interpretations for Han’s q-Euler numbers.

Corollary 3. We have

En(q) =
∑

σ∈An

q(2−13)σ =
∑

σ∈An

q(31−2)σ−des σ. (11)

We shall give a triple sum formula for Dn(1, q, t) in Theorem 13 and also prove the
following explicit formula when q = −1.
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Theorem 4. For n ≥ 1 we have

Dn(1,−1, t) =

n−1
∑

k=0

(

n− 1− k

k

)

k!tk. (12)

Remark 1. If t = 1, in view of (10), the above result is equivalent to

En(−1) =
n−1
∑

k=0

(

n− 1− k

k

)

k!, (13)

which was posted by P. Barry, see A122852 in OEIS [OEIS]. Han [Han19, Theorem 7.1]
gave a non-trivial (sic) proof of (13) by showing that both sides of (13) satisfy the same
recurrence relation, which had been conjectured by R. J. Mathar. Our proof of (12) is
insightful for the summation formula in (12) and combinatorial in nature.

2. Proof of Theorem 1

For σ ∈ Sn, let σ0 = σn+1 = 0. Then any index i ∈ [n] can be classified according to
one of the four cases:

• a peak if σi−1 < σi and σi > σi+1;
• a valley if σi−1 > σi and σi < σi+1;
• a double ascent if σi−1 < σi and σi < σi+1;
• a double descent if σi−1 > σi and σi > σi+1.

Let peakσ (resp. valley σ, da σ, dd σ) denote the number of peaks (resp. valleys, double
ascents, double descents) in σ. Note that peakσ = valley σ + 1. Generalizing the (p, q)-
Eulerian polynomials An(p, q, t) Shin and Zeng [SZ12] introduced more general Eulerian
polynomials An(p, q, t, u, v, w) defined by

An(p, q, t, u, v, w) :=
∑

σ∈Sn

p(2-13) σq(31-2) σtdes σudaσvddσwvalley σ. (14)

We recall the following result in [SZ12, Theorem 2].

Lemma 5 (Shin-Zeng). The polynomials an,k(p, q) in (5) have the following interpretation

an,k(p, q) =
∑

σ∈DDn,k

p(2-13) σq(31-2)σ (15)

where DDn,k := {σ ∈ Sn : valley σ = k, dd σ = 0}, and

An(p, q, t, u, v, w) =

⌊(n−1)/2⌋
∑

k=0

an,k(p, q)(tw)
k(u+ vt)n−1−2k. (16)

Moreover, for all 0 ≤ k ≤ ⌊(n− 1)/2⌋, the quotient an,k(p, q)/(p+ q)k is a polynomial in p
and q with integral coefficients.
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Proof of Theorem 1. Specializing (t, u, v, w) with (p+ q, 0, 1, w) in (16), by (6) and (7) we
see that

⌊(n−1)/2⌋
∑

k=0

dn,k(p, q)w
k =

An(p, q, p+ q, 0, 1, w)

(p+ q)n−1
.

On the other hand, it is known [SZ12, Eq. (28)] that
∑

n≥1

An(p, q, t, u, v, w)x
n−1 =

1

1− (u+ tv)[1]p,qx−
[1]p,q[2]p,qtwx

2

1− (u+ tv)[2]p,qx−
[2]p,q[3]p,qtwx

2

· · ·

(17)

with γn = (u+ tv)[n+ 1]p,q and βn = [n]p,q[n + 1]p,qtw.
Formula (8) follows from (17) by the substitution (t, u, v, w) → (p + q, 0, 1, w) and

x→ x/p + q. �

3. Proof of Theorem 2

We need some definitions from [FS73] and [FS74]. Recall that a permutation w of a
finite subset {a1 < a2 < · · · < an} of N is a word w = x1 . . . xn. The word u obtained by
juxtaposing two words v and w in this order is written u = vw. The word v (resp. w) is
the left (resp. right) factor of u. More generally, a factorization of length q (q > 0) of a
word w is any sequence (w1, w2, ..., wq) of words (some of them possibly empty) such that
the juxtaposition product w1w2...wq is equal to w.

Lemma 6 ([FS74]). Let w = x1x2...xn (n > 0) be a permutation and x be one of the letters
xi (1 < i < n). Then w has a unique factorization (w1, w2, x, w4, w5) of length 5, called its
x-factorization, which is characterized by the three properties

(i) w1 is empty or its last letter is less than x;
(ii) w2 (resp. w4) is empty or all its letters are greater than x;
(iii) w5 is empty or its first letter is less than x.

It is also known that André permutations can be defined using x-factorization.

Definition 7 ([FS73]). A permutation σ ∈ Sn is an André permutation of the second
kind if it is empty or satisfies the following:
(i) σ has no double descents,
(ii) n− 1 is not a descent, i.e. σn−1 < σn,
(iii) If i ∈ {2, · · · , n} is a valley of σ with σi-factorization σ = w1w2σiw4w5, then min(w2) >
min(w4), i.e.,the minimum letter of w2 is larger than the minimum letter of w4.

Let An,k be the set of André permutations of [n] with k descents. For example, the
elements of A5,2 are

31524, 41523, 51423, 53412.
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Lemma 8. For 0 ≤ k ≤ (n− 1)/2, we have

dn,k(p, q) =
∑

σ∈An,k

p(2−13)σq(31−2)σ−k.

Proof. We shall prove the equivalent identity (cf. (6))

(p+ q)k dn,k(p, q) = an,k(p, q).

Let P[k] be the power set of [k], i.e., the set of all subsets of [k]. Since

(p+ q)kdn,k(p, q) =

(

∑

s∈P([k])

p|s|qk−|s|

)

∑

σ∈An,k

p(2−13)σq(31−2)σ−k

=
∑

(s,σ)∈P[k]×An,k

p|s|+(2−13)σq−|s|+(31−2)σ,

the identity to be proved is equivalent to
∑

(s,σ)∈P[k]×An,k

p|s|+(2−13)σq−|s|+(31−2)σ =
∑

σ∈DDn,k

p(2−13)σq(31−2)σ .

Hence, it is sufficient to establish a bijection φ : P [k]×An,k → DDn,k such that if (s, σ) ∈
P [k]×An,k and φ(s, σ) = τ then

|s|+ (2− 13)σ = (2− 13)τ

−|s|+ (31− 2)σ = (31− 2)τ.
(18)

By definition, if σi is a valley of σ ∈ An,k with σi-factorization (w1, w2, σi, w4, w5), then
min(w2) > min(w4), so (σi−1, σi,min(w4)) forms a (31 − 2) pattern, this implies that
(31− 2)σ ≥ k. Moreover, there are only three types for y := min(w4): peak, double ascent
or valley. Recall that σ0 = σn+1 = 0.

We first define the action φ on the valley σi according to the type of y as follows:

(i) If y is a peak, then y = σi+1 because, otherwise there should be a letter z < y
in w4 between σi and y. Then we exchange w2 and the first letter of w4, i.e., the
new permutation is φ(σ) = w1yσiw2w̃4w5 where w4 = yw̃4. This transformation
eliminates the (31 − 2) pattern (σi−1, σi, σi+1), and creates a new (2 − 13) pattern
(y, σi, w2,1), where w2,1 is the first letter of w2.

(ii) If y is a double ascent, then y = σi+1 for the same reason as for (i). Let j < i be
the largest index such that σj < y < σj+1. Then we move y to the slot between σj
and σj+1. This transformation eliminates the (31 − 2) pattern (σi−1, σi, σi+1) and
creates a new (2− 13) pattern (σi+1, σi, σi+2).

(iii) If y is a valley, then we just exchange σi and y, and this transformation eliminates
the (31−2) pattern (σi−1, σi, y) and creates a new (2−13) pattern (y, σi, y

′), where
y′ is the letter next to the right of y in σ.

We now extend the above action φ to each subset s of the set of the valleys of σ, that
we identify with [k] as follows: if (i1, . . . , ik) is the sequence of valleys of σ ordered in
increasing order, then any subset s of [k] is identified with the set {ij}j∈s. We first deal
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with the elements of cases (i) and (ii), and then the case (iii); and when we deal with the
elements of case (iii) we will apply φ to the elements in decreasing order, i.e., from the
largest element to the smallest element. As the transformation can be reversed, we have
constructed a bijection φ satisfying (18). �

For the reader’s convenience, we run the bijection φ from P[2]×A5,2 to DD5,2 in Figure 1.

σ ∈ A5,2 (2− 13) (31− 2) s ∈ P[2]
31524 2 2 ∅
31524 2 2 {1}
31524 2 2 {2}
31524 2 2 {1, 2}

41523 1 3 ∅
41523 1 3 {1}
41523 1 3 {2}
41523 1 3 {1, 2}

51423 0 4 ∅
51423 0 4 {1}
51423 0 4 {2}
51423 0 4 {1, 2}

53412 0 2 ∅
53412 0 2 {1}
53412 0 2 {3}
53412 0 2 {1, 3}

τ ∈ DD5,2 (2− 13) (31− 2)
31524 2 2
32514 3 1
31425 3 1
32415 4 0

41523 1 3
42513 2 2
41325 2 2
42315 3 1

51423 0 4
52413 1 3
51324 1 3
52314 2 2

53412 0 2
21534 1 1
43512 1 1
21435 2 0

Figure 1. The bijection φ : (s, σ) 7→ τ from P[2]×A5,2 to DD5,2

For example, if σ = 31524 ∈ A5,2 and s = {1, 2}, then

• for the valley 1, the corresponding y1 := min(w4) is 2, which is a valley,
• for the valley 2, the corresponding y2 := min(w4) is 4, which is a peak.

So, we should first deal with the valley 2, the 2-factorization is (w1, w2, x, w4, w5) =
(31, 5, 2, 4, ∅) according to case (i) of φ, we just exchange 4 and 5, and get 31425;
then we apply φ to the valley 1 in 31425, the 1-factorization is (w1, w2, x, w4, w5) =
(∅, 3, 1, 425, ∅), which is case (iii), we just exchange 1 and 2, and get φ(s, σ) = 32415.

4. A formula for Dn(1,−1, t) and Dn(1, q, t)

A Motzkin path of length n is a sequence of points γ := (γ0, . . . , γn) in the integer plane
Z× Z such that

• γ0 = (0, 0) and γn = (n, 0),
• γi − γi−1 ∈ {(1, 0), (1, 1), (1,−1)},
• γi := (xi, yi) ∈ N× N for i = 0, . . . , n.
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In other words, a Motzkin path of length n is a lattice path starting at (0, 0), ending at
(n, 0), and never going below the x-axis, consisting of up steps U = (1, 1), horizontal steps
H = (1, 0), and down steps D = (1,−1). Let Pn be the set of Motzkin paths of length n.
Clearly we can identify Motzkin paths of length n with words w on {U,H,D} of length n
such that all prefixes of w contain no more D′s than U ′s and the number of U ′s equals the
number of D′s. The height of a step (γi, γi+1) is the coordinate of the starting point γi.
Given a Motzkin path p ∈ Pn and two sequences (γi) and (βi) of some commutative ring,
we weight each up step by 1, and each horizontal step (resp. down step) at height i by γi
(resp. βi) and define the weight w(p) of p by the product of the weights of all its steps.
The following result of Flajolet [Fl80] is our starting point.

Lemma 9 (Flajolet). We have
∞
∑

n=0

(

∑

p∈Pn

w(p)

)

tn =
1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− γ2t− · · ·

.

A Motzkin path without horizontal steps is called a Dyck path, and a Motzkin path
without horizontal steps at odd height is called an André path.

Lemma 10. Let γi = 0 (i ≥ 0) and βi = ⌊ i+1
2
⌋ (i ≥ 1). Then

n! =
∑

p∈Pn

w(p).

In other words, the polynomial n! is the generating polynomial of Dyck paths of length 2n.

Proof. Recall the following formula of Euler:

∑

n≥0

n!xn =
1

1−
1x

1−
1x

1−
2x

1−
2x

· · ·

(19)

with αn = ⌊(n + 1)/2⌋. The result then follows from Lemma 9. �

Remark 2. We can give a bijective proof of Euler’s formula (19) using the method in
[CSZ97, Fl80, Vi83].

Lemma 11. Let γ2i = 1, γ2i+1 = 0 (i ≥ 0) and βk = ⌊k+1
2
⌋t (i ≥ 1). Then

Dn+1(1,−1, t) =
∑

p∈Pn

w(p).

In other words, the polynomial Dn+1(1,−1, t) is the generating polynomial of André paths
of length n.
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Proof. When (p, q) = (1,−1) formula(8) reduces to

∞
∑

n=0

Dn+1(1,−1, t)xn =
1

1− x−
tx2

1−
tx2

1− x−
2tx2

1−
2tx2

1− x− · · ·

(20)

with coefficients γ2n = 1, γ2n+1 = 0 and βn = ⌊n+1
2
⌋t. The result follows from Lemma 9. �

We denote by APn,k the set of André paths of length n with k horizontal steps, and Dn

the set of Dyck paths of half length n. Let

Yn,k := {(y1, . . . , yk+1) ∈ N
k+1 : y1 + · · ·+ yk+1 = n− 2k}.

Lemma 12. For 0 ≤ k ≤ ⌊n/2⌋, there is an explicit bijection ψ : APn,n−2k → Yn,k × Dk

such that if ψ(u) = (y, p) with for u ∈ APn,n−2k and (y, p) ∈ Yn,k ×Dk then w(u) = w(p),
where the weight is associated to the sequences (αi) and (βi) with α2i = 1, α2i+1 = 0 (i ≥ 0),
and βk = ⌊k+1

2
⌋t (i ≥ 1).

Proof. Since an André path (word) on {U,D,H} has only level-steps at even height and
starts from height 0, so the subword between two consecutive horizontal steps must be of
even length and is a word on {UU,DD,UD,DU}. Thus, any André word u ∈ APn,n−2k

can be written in a unique way as follows:

u = Hy1w1H
y2w2 . . . wkH

yk+1 with wi ∈ {UU,DD,UD,DU},

where (y1, . . . , yk+1) ∈ Yn,k and p = w1 . . . wk ∈ Dk, i.e., the Dyck path p is obtained by
removing all the level steps H ’s from the André path u. Let ψ(u) = (y, p). It is clear that
this is the desired bijection because each down step in p has the same height in u. �

Proof of Theorem 4. By Lemmas 11 and 12 we have

Dn+1(1,−1, t) =
∑

k≥0

∑

(y,p)∈Yn,k×Dk

w(p).

Since the cardinality of Yn,k is
(

n−k
k

)

, and the generating polynomial of Dk is equal to k!tk

by Lemma 10, summing over all 0 ≤ k ≤ ⌊n/2⌋ we obtain Theorem 12. �

Example 2. An illustration of the bijection ψ is given in Figure 2.

We can derive a formula for Dn(1, q, t) from a formula of Josuat-Vergès [JV11].
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−→ψ

(1, 0, 2, 1, 0) ,

Figure 2. The bijection ψ : AP12,4 → Y12,4 ×D4

Theorem 13. For n ≥ 1 we have

Dn(1, q, t) =

(

1 + u

(1 + uv)(1 + q)

)n−1
∑

σ∈Sn

vdes σq(31−2)σ

=
1

v(1− q)

(

1 + u

(1 + uv)(1− q2)

)n−1

×
n
∑

k=0

(−1)k

(

n−k
∑

j=0

vj
(

n

j

)(

n

j + k

)

−

(

n

j − 1

)(

n

j + k + 1

)

)

·

(

k
∑

i=0

viqi(k+1−i)

)

,

where

u =
1 + q2 − 2(1 + q)t− (1 + q)

√

(1 + q)2 − 4(1 + q)t

2(q − t(1 + q))
, (21)

v =
(1 + q)− 2t−

√

(1 + q)2 − 4t(1 + q)

2t
. (22)

Proof. Specializing (p, q, t, u, v, w) with (1, q, q, 1, 1, t(1 + q−1)) in (16) we obtain

Dn(1, q, t) =
An(1, q, q, 1, 1, t(1 + q−1))

(1 + q)n−1
.

From Corollary 3.2 in [HMZ] we derive

An(1, q, q, 1, 1, t(1 + q−1)) =

(

1 + u

1 + uv

)n−1
∑

σ∈Sn

vdesσq(31−2)σ ,

where u and v are given by (21) and (22). By Theorem 6.3 in [JV11], we have
∑

σ∈Sn

yascσq(13−2)σ =
∑

σ∈Sn

ydesσq(31−2)σ

=
1

y(1− q)n

n
∑

n=0

(−1)k

(

n−k
∑

j=0

yj
(

n

j

)(

n

j + k

)

−

(

n

j − 1

)(

n

j + k + 1

)

)

×

(

k
∑

i=0

yiqi(k+1−i)

)

.

Putting the above three formulae together completes the proof. �
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Remark 3. It is a challenge to show directly that Theorem 4 is the limit case of Theorem 13
when q → −1.
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