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QI WANG

On the occasion of Professor Susumu Ariki’s 60th birthday.

Abstract. In this paper, we showed that τ -tilting finite simply connected algebras
are representation-finite. Consequently, some related algebras are considered, including
critical algebras, iterated tilted algebras, tubular algebras, and so on. In particular, we
studied the muti-staircase algebras introduced by Magdalena Boos, which are strongly
simply connected.

1. Introduction

Throughout, we denote by A a basic finite-dimensional algebra over an algebraically
closed field k. In particular, tame always means representation-infinite tame.
τ -tilting theory is introduced by Adachi, Iyama and Reiten [4] as a generalization of

the classical tilting theory from the viewpoint of mutations. They introduced support τ -
tilting modules for A and constructed the mutations of support τ -tilting modules, which
have some nice properties. For more details of τ -tilting theory, we refer to [1], [2], [3], [6],
[7], [32], [44], [63] and so on.

We are interested in algebras with a finite number of basic support τ -tilting modules,
which are called τ -tilting finite algebras. It is natural that representation-finite algebras
are τ -tilting finite, but the converse is not true in general. Therefore, what kind of algebras
satisfies the condition: τ -tilting finite implies representation-finite becomes an interesting
question. There are some answers, for example, cycle-finite algebras [44], gentle algebras
[48], tilted and cluster-tilted algebras [64] and commutative ladders [5].

Simply connected (representation-finite) algebras are first introduced by Bongartz and
Gabriel [25], they showed that one can use the covering techniques to reduce the repre-
sentation theory of an arbitrary representation-finite algebra to that of a representation-
finite simply connected algebra. More precisely, for any representation-finite algebra A,
the indecomposable A-modules can be lifted to indecomposable B-modules over a simply
connected algebra B, which is contained inside a certain Galois covering of the standard

form Ã (in the sense of [28], see also subsection 3.2) of A .
Naturally, Assem and Skowroński [15] expanded the notion simply connected to

representation-infinite case (see Definition 2.7). This wider class of algebras includes
the tubular algebras, the iterated tilted algebras of Dynkin type, the iterated tilted al-

gebras of Euclidean types D̃n, Ẽp, (n > 4, p = 6, 7 or 8) and so on. So far, the covering
techniques on representation-infinite case is little known.

However, a subclass of simply connected algebras has been extensively investigated,
which is called strongly simply connected algebras and introduced by Skowroński [54].
First, it is shown in [28] that for the representation-finite case, simply connected and
strongly simply connected coincide. Then, the hierarchy (in terms of domestic, polynomial
growth and wild) of representation-infinite strongly simply connected algebras has been
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2 QI WANG

completely determined, see [22], [29], [45], [46], [49] and [55]. We summarize these results
in Proposition 3.12.

Tits form is introduced by Gabriel [35] for the path algebra kQ of a finite connected
quiver Q. He showed that such a path algebra is representation-finite if and only if the
corresponding Tits form of Q is positive (see subsection 2.2). This provides a possibility
that one may determine the representation type of an algebra by its Tits form. For more
details, we refer to [50], where the author summarizes many of related results.

See subsection 2.5 for the definition of simply connected algebras.

Theorem 1.1. (Proposition 3.3 and Theorem 3.4) Let A be a simply connected algebra,
then the following are equivalent.

(1) A is τ -tilting finite.
(2) A is representation-finite.
(3) The Tits form qA is weakly positive.

Let A be a representation-finite simply connected algebra, any tilted algebra of A or
any Auslander algebra of A (see Example 2.10), satisfies the condition: τ -tilting finite
implies representation-finite. Moreover, we denote by T2(A) :=

(
A A
0 A

)
the algebra of 2×2

upper triangular matrices over A. Then, we have

Theorem 1.2. (Theorem 3.8) Let A be a representation-finite simply connected algebra,
then T2(A) is τ -tilting finite if and only if T2(A) is representation-finite.

Iterated tilted algebras introduced by Assem and Happel [12] (see also subsection 3.4)
are natural generalizations of tilted algebras [37]. As we have mentioned, Zito [64] shows
that any τ -tilting finite tilted algebra is representation-finite. Therefore, we may generalize
Zito’s result to the iterated tilted algebras.

Theorem 1.3. (Corollary 3.10) Let A be an iterated tilted algebra of Dynkin type, or of

type D̃n with n > 4, or of type Ẽp with p = 6, 7 or 8, then A is τ -tilting finite if and only
if A is representation-finite.

The following algebras played an important role in the study of tame strongly simply
connected algebras.

• Critical algebras arising from graded trees, see subsection 3.1.
• Tubular algebras, see subsection 3.5.
• pg-critical algebras, see subsection 3.6.
• Hypercritical algebras, see subsection 3.7.

We have the following result.

Theorem 1.4. (Corollary 3.2 and Theorem 3.13) All critical algebras arising from graded
trees, tubular algebras, pg-critical algebras and hypercritical algebras are τ -tilting infinite.

A commutative ladder of degree n is a bounded quiver algebra presented by the following
quiver with all possible commutative relations.

1

��

// 2

��

// 3

��

// · · · // n

��
1′ // 2′ // 3′ // · · · // n′

.

Since readers may not be familiar with multi-staircase algebras, we give two examples to
clarify our intentions (see Section 4 for the formal definition of multi-staircase algebras).
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Multi-staircase algebras can be presented by, for example, the following quivers with
all possible commutative relations.

•
|| ""
• // • •oo

• //

OO

•

OO

•

OO

oo

•
��

// •
��

•
��

// •
��

// •
��

• // • // •
Example 4.3 Example 5.1

Therefore, multi-staircase algebras are natural generalizations of commutative ladders.
Multi-staircase algebras are introduced by Boos [26] and [27]. These algebras are basic,
connected, finite dimensional, so that Boos can give a complete classification in terms of
their representation type.

Since multi-staircase algebras are strongly simply connected (Proposition 4.4), they
are τ -tilting finite if and only if representation-finite. We may give detailed research for
τ -tilting finite multi-staircase algebras. We refer to Section 4 and 5 for precise definitions.

Theorem 1.5. Let A(Λ) be a proper multi-staircase algebra parameterized by a m-
dimensional Young diagram Λ with 3 6 m ∈ N, it is τ -tilting finite if and only if m = 3,
Λ = (λ, µ) is flat and (λ, µ) � (λ′, µ′), where (λ′, µ′) comes up in the following (x ∈ N):

(1, 5, 2), (4, 4, 1), (1, 5, 12), (2, 2, 22), (1, 2, 23), (3, 3, 13), (1, 3, 14),
(1, 2, 2, 13), (22, 2, 13), (12, 2, 13), (12, 2, 14), (1, x, 1), (1, 2, 1x), (2, 2, 1x).

Moreover, we have

Λ (1, x, 1) (1, 2, 1x) (2, 2, 1x)

#sτ -tilt A(Λ)
[

2x+3
x+1

] [
2x+5
x+2

]
Theorem 6.12

where
(
x
y

)
is the binomial coefficient and [ xy ] = x+y

x

(
x
y

)
for any x, y ∈ N.

Proof. The proof follows Theorem 3.4, Proposition 4.4, Proposition 4.6, Proposition 4.7
and Theorem 4.8. �

Theorem 1.6. A staircase algebra A(λ) parameterized by a Young diagram λ ` n is
τ -tilting finite if and only if one of the following holds:

(1) λ ∈ {(n), (n− k, 1k), (n− 2, 2), (22, 1n−4)}, where k 6 n.
(2) n 6 8 and λ /∈ {(4, 3, 1), (32, 2), (3, 22, 1), (4, 2, 12)}.

Moreover, we have

λ (n) (n− k, 1k) (n− 2, 2) (22, 1n−4)

#sτ -tilt A(λ) 1
n+2

(
2n+2
n+1

)
Thm. 6.17 and Conj. 6.18

Proof. See Theorem 3.4, Proposition 4.4, Proposition 5.2 and Theorem 5.3. �

This paper is organized as follows. In Section 2, we review basic concepts of τ -tilting
theory and simply connected algebras. In Section 3, we show the main result on simply
connected algebras. Then, we apply the main result to some related algebras. In Section
4 and 5, we focus on multi-staircase algebras. In Section 6, we determine the number of
basic support τ -tilting modules for two special τ -tilting finite multi-staircase algebras.
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2. Preliminaries

Any finite-dimensional algebra A can be considered as a bounded quiver algebra kQ/I,
with a finite connected quiver Q = (Q0, Q1) and an admissible ideal I. We may refer to
[19] for more background materials on representation theory and quiver theory.

We denote by mod A the category of finitely generated right A-modules and by proj A
the full subcategory consisting of projective A-modules. Besides, we shall denote by ΓA
the Auslander-Reiten quiver of A, whose vertices are the isomorphism classes of indecom-
posable right A-modules, and in which there is an arrow (and only one) from the class of
M to that of N whenever there exists an irreducible map from M to N .

Bongartz and Gabriel [25] showed another perspective that we may regard A ' kQ/I
as a k-category. The class of objects of this category is the set Q0 of vertices in Q, and the
class A(i, j) of morphisms from i to j is the k-vector space kQ(i, j) of linear combinations
of paths in Q with source i and target j, modulo the subspace I(i, j) = I ∩ kQ(i, j).

Now, we recall some well-known definitions without further reference.

• A is called triangular if Q is acyclic.
• A full subcategory B of A is called convex if any path in QA with source and sink

in QB lies entirely in QB.
• A relation ρ =

∑n
i=1 λiωi ∈ I with λi 6= 0 is called minimal if n > 2 and for each

non-empty proper subset J ⊂ {1, 2, . . . , n}, we have
∑

j∈J λjωj /∈ I.
• The support algebra supp M of a right A-module M is the factor algebra of A by

modulo the ideal which is generated by all idempotents satisfying Mei = 0.

2.1. τ-tilting theory. Let M ∈ mod A, we denote by add(M) (respectively, Fac(M))
the full subcategory of mod A whose objects are direct summands (respectively, factor
modules) of finite direct sums of copies of M . Let τ := DTr(−) be the Auslander-
Reiten translation and |M | the number of isomorphism classes of indecomposable direct
summands of M .

Definition 2.1. ([4, Definition 0.1]) (1) M is called τ -rigid if HomA(M, τM) = 0.
(2) M is called τ -tilting if M is τ -rigid and |M | = |A|.
(3) M is called support τ -tilting if M is a τ -tilting (A/ 〈e〉)-module for an idempotent

e of A. Equivalently, let P := eA, then (M,P ) is called a support τ -tilting pair.

We denote by τ -rigid A (sτ -tilt A) the set of isomorphism classes of indecomposable
τ -rigid (support τ -tilting) A-modules. Here, by a (support) τ -tilting module is always
meant a basic (support) τ -tilting module. The following is the core of τ -tilting theory.

Definition 2.2. ([4, Definition 2.19, Theorem 2.30]) Let T = M ⊕ N be a τ -tilting A-
module with an indecomposable summand M satisfying M /∈ Fac(N). We take an exact
sequence with a minimal left add(N)-approximation f ,

M
f−→ N ′ −→ U −→ 0,

then µ−M(T ) := U ⊕N is called the left mutation of T with respect to M .

We define the support τ -tilting quiver H(sτ -tilt A) of A as follows.

• The set of vertices is sτ -tilt A.
• We draw an arrow from M to N if N is a left mutation of M .

It is shown in [4] that H(sτ -tilt A) is the Hasse quiver of poset sτ -tilt A. In fact, there is
a patrial order on sτ -tilt A defined by Fac(N) ⊆ Fac(M), for any M,N ∈ sτ -tilt A.
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Remark 2.3. In Definition 2.2, Zhang [63, Theorem 1.2] showed that if U 6= 0, then U
is indecomposable and U /∈ add(T ). Since A is the maximal element in poset sτ -tilt A, U
cannot be a projective module if U 6= 0.

Definition 2.4. ([32, Corollary 2.9]) An algebra A is said to be τ -tilting finite if there are
only finitely many isomorphism classes of indecomposable τ -rigid A-modules, or equiva-
lently, if sτ -tilt A is a finite set.

Proposition 2.5. ([4, Theorem 2.14]) There exists a poset isomorphism between sτ -tilt A
and sτ -tilt Aop.

We have the following obvious observation.

Lemma 2.6. Let A be a τ -tilting finite algebra, then eAe is also τ -tilting finite for any
idempotent e of A.

2.2. Tits form. Let A = kQ/I be a triangular algebra, the Tits form qA : ZQ0 → Z is
the integral quadratic form defined by

qA(v) =
∑
i∈Q0

v2
i −

∑
i→j∈Q1

vivj +
∑

i,j∈Q0

r(i, j)vivj,

where v := (vi) ∈ ZQ0 and r(i, j) = |R ∩ I(i, j)| for a minimal set R ⊆
⋃
i,j∈Q0

I(i, j) of
generators of the admissible ideal I. Then, the Tits form qA is called

• (weakly) positive if qA(v) > 0 for any v 6= 0 in ZQ0 (v 6= 0 in NQ0 , respectively),
• (weakly) non-negative if qA(v) > 0 for any v ∈ ZQ0 (v ∈ NQ0 , respectively).

2.3. Separation property. Let A = kQ/I be a triangular algebra, we denote by Pi the
indecomposable projective module at vertex i and rad Pi its radical. Then Pi is said to
be separated if rad Pi is a direct sum of pairwise non-isomorphic indecomposable modules
whose supports are contained in pairwise different connected components of Q(i), where
Q(i) is the subquiver of Q obtained by deleting all vertices of Q being a source of a path
in Q with target i (including the trivial path from i to i). We say that A satisfies the
separation property if every indecomposable projective module is separated.

2.4. Representation type. It is well-known that A is representation-finite if there are
only finitely many isomorphism classes of indecomposable A-modules.

From Drozd [33], all finite-dimensional algebras may be divided into two disjoint cases:

(1) A is tame if for any dimension d, there exists a finite number of k[x]-A-bimodules
Mi, (1 6 i 6 nd), which are finitely generated and free as left k[x]-modules, such
that all but finitely many isomorphism classes of indecomposable right A-modules
of dimension d, are of the form k[x]/{x− ω} ⊗k[x] Mi with some ω ∈ k and some
i ∈ {1, 2, . . . , nd}. Let µA(d) be the least number of k[x]-A-bimodules satisfying
the above condition for d. Then,
• A is representation-finite ([20], [24]) if and only if µA(d) = 0 for all d > 1.
• A is of domestic type ([31]) if there is a constant C such that µA(d) 6 C for

all d > 1.
• A is of polynomial growth type ([56]) if there are positive integer m and con-

stant C such that µA(d) 6 Cdm for all d > 1.
(2) A is wild if there is a finitely generated k 〈X, Y 〉-A-bimodule M which is free

over k 〈X, Y 〉 and sends non-isomorphic indecomposable k 〈X, Y 〉-modules via the
functor −⊗k〈X,Y 〉M to non-isomorphic indecomposable A-modules.
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By a tame algebra is meant a representation-infinite tame algebra. For representation
types of algebras, we have the following hierarchy and each of the inclusions is proper.

finite

domestic

polynomial growth

tame non-polynomial growth

wild

2.5. Simply connected algebras. We recall from [15] the construction of simply con-
nected algebras. Let A = kQ/I be a triangular algebra with a quiver Q = (Q0, Q1, s, t)
and an admissible ideal I. For each arrow α ∈ Q1, let α− be its formal inverse with
s(α−) = t(α) and t(α−) = s(α). Then, we set

Q−1 = {α− | α ∈ Q1}.
A walk is a formal composition w = w1w2 . . . wn with wi ∈ Q1 ∪Q−1 for all 1 6 i 6 n. We
set s(w) = s(w1), t(w) = t(wn) and denote by 1x the trivial path at vertex x.

For walks w and u with s(u) = t(w), the composition wu is defined in the obvious way.
Then, let ∼ be the smallest equivalence relation on the set of all walks in Q satisfying the
following conditions:

• For each α : x→ y in Q1, we have αα− ∼ 1x and α−α ∼ 1y.
• For each minimal relation

∑n
i=1 λiωi in I, we have ωi ∼ ωj for all 1 6 i, j 6 n.

• If u, v, w and w′ are walks and u ∼ v, then wuw′ ∼ wvw′ whenever these compo-
sitions are defined.

We denote by [w] the equivalence class of a walk w.
For a given x ∈ Q0, the set Π1(Q, I, x) of equivalence classes of all walks w with

s(w) = t(w) = x becomes a group via [u] · [v] = [uv], and it is independent of the choice
of x. Then, the fundamental group of (Q, I) is defined as follows.

Π1(Q, I) := Π1(Q, I, x).

Definition 2.7. ([15, Definition 1.2]) A triangular algebra A is said to be simply con-
nected if, for any presentation A = kQ/I as a bounded quiver algebra, the fundamental
group Π1(Q, I) is trivial.

It follows [28] and [43] that if A is representation-finite, then the above definition
coincides with the definition introduced by Bongartz and Gabriel [25]. It is not easy to
recognise whether a given algebra is simply connected or not, because little is known
about the characterization of simply connected.

Proposition 2.8. Let A be a triangular algebra.

(1) ([53, (4.2)]) A is simply connected if and only if it does not admit a proper Galois
covering.

(2) ([54, (2.3)]) If A has the separation property, then it is simply connected.
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2.6. Strongly simply connected algebras. A triangular algebra A is called strongly
simply connected [54, (2.2)] if every convex subcategory of A is simply connected. The
characterization of strongly simply connected algebras has been extensively investigated.

Proposition 2.9. Let A be a triangular algebra. The following are equivalent.

(1) A is strongly simply connected.
(2) ([54, (4.1)]) Every convex subcategory of A (or Aop) has the separation property.
(3) ([54, (4.1)]) The first Hochschild cohomology space H1(B) of any convex subcate-

gory B of A vanishes.
(4) ([14, Theorem 1.3]) There is a presentation (Q, I) of A such that Π1(Q′, I ′) is

trivial for any connected full convex bounded subquiver (Q′, I ′) of (Q, I).

Example 2.10. We have the following examples.

(1) All tree algebras are strongly simply connected, see [9].
(2) A hereditary algebra is simply connected if and only if its quiver is a tree, see [9].
(3) Let A be a representation-finite simply connected algebra and TA a tilting A-

module, the tilted algebra B = EndA(TA) is simply connected, see [18].
(4) Let A be a representation-finite algebra and {M1,M2, . . . ,Ms} a complete set of

representatives of the isomorphism classes of indecomposable A-modules, then A
is simply connected if and only if its Auslander algebra EndA (⊕si=1Mi) is strongly
simply connected, see [11].

(5) Let A := kQ/I with I :=< αβ − γδ, αλ− γµ > and the following quiver Q:

• •βoo

λuu
•

αjj

γtt• •µ
oo

δ
ii

then A is simply connected but not strongly simply connected, see [9].

We may distinguish the class of representation-finite simply connected algebras.

Proposition 2.11. Let A be a representation-finite triangular algebra, then the following
conditions are equivalent.

(1) A is simply connected.
(2) ([28]) A is strongly simply connected.
(3) ([30]) The first Hochschild cohomology space H1(A) of A vanishes.
(4) ([43]) The fundamental group Π1 (|ΓA|) of the geometric realization |ΓA| of the

Auslander-Reiten quiver ΓA of A is trivial.

2.7. Minimal representation-infinite algebras. An algebra A is said to be minimal
representation-infinite if A is representation-infinite, but A/AeA is representation-finite
for any non-zero idempotent e of A. Happel and Vossieck [40] have classified the minimal
representation-infinite algebras with preprojective component by using the theory of tilted
algebras. We recall their constructions as follows.

Let ΓA be the Auslander-Reiten quiver of A. A connected component C of ΓA is called
preprojective if there is no oriented cycle in C, and any module in C is of form τ−n(P )
for a n ∈ N and an indecomposable projective module P .

A tilted algebra of type Q is the endomorphism algebra of a tilting module T (see
subsection 3.4) over a hereditary algebra kQ. If moreover, T is contained in a preprojective
component C of ΓA, then we call EndkQT a concealed algebra of type Q.
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Proposition 2.12. ([40, Theorem 2]) A minimal representation-infinite algebra with pre-
projective component is either a n-Kronecker algebra (n > 2) or a tame concealed algebra,

which is a concealed algebra of type Ãn, D̃n(n > 4), Ẽ6, Ẽ7 or Ẽ8.

It follows [15, Remark 1.2] that minimal representation-infinite algebras with prepro-
jective component are simply connected.

Proposition 2.13. ([64, Theorem 1.1]) A tilted algebra is τ -tilting finite if and only if it
is representation-finite.

Lemma 2.14. ([5, Corollary 4.2]) All minimal representation infinite algebras with pre-
projective component are τ -tilting infinite.

At the end of this section, we recall the following well-known result.

Lemma 2.15. ([47, Theorem 1]) Let Q be a quiver of Dynkin type and s-tilt kQ the set of
isomorphism classes of basic support tilting kQ-modules. Then, #s-tilt kQ is independent
of the orientation of Q and #s-tilt kQ = #sτ -tilt kQ. Moreover, we have

Q An Dn(n > 4) E6 E7 E8

#sτ -tilt kQ 1
n+2

(
2n+2
n+1

) [
2n−1
n−1

]
833 4160 25080

where
(
x
y

)
is the binomial coefficient and [ xy ] = x+y

x

(
x
y

)
.

3. Simply Connected Algebras

3.1. Critical algebras. We recall Bongartz’s construction from [23]. The grading of a
tree T := (T0, T1) is defined to be a function g : T0 → N satisfying

• g−1(0) 6= ∅.
• g(x)− g(y) ∈ 1 + 2Z, whenever x and y are neighbours in T .

A graded tree (T, g) is given by a tree T and a grading g. It is shown in [25, Corollary 6.5]
that there is a bijection between the isomorphism classes of representation-finite graded
trees and the isomorphism classes of representation-finite simply connected algebras.

Definition 3.1. ([23]) An algebra A is called critical if it is representation-infinite, but
any proper convex subcategory is representation-finite.

Let A be an algebra arising from a graded tree (T, g), then [23, Theorem 2] implies that

A is critical if and only if T is one of Euclidean diagrams D̃n(n > 4), Ẽ6, Ẽ7 and Ẽ8. Note
that the condition of minimal representation-infinite algebras is strictly stronger than the
condition of critical algebras, however, the class of minimal representation-infinite algebras
with preprojective component and the class of critical algebras arising from graded trees
coincide. (This is the reason why we say BHV-list.) Then, such a critical algebra is simply
connected and we have the following corollary immediately.

Corollary 3.2. Critical algebras arising from graded trees are τ -tilting infinite.

Here is a nice criterion for simply connected algebras to be representation-finite.

Proposition 3.3. ([21, Theorem 3.3], [22, Theorem 1]) Let A be a simply connected
algebra, then A is representation-finite if and only if the Tits form qA is weakly positive, if
and only if, A does not contain a critical convex subcategory which is arising from graded
trees.
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Theorem 3.4. Let A be a simply connected algebra, then it is τ -tilting finite if and only
if A is representation-finite.

Proof. Following Proposition 3.3, if A is representation-infinite, then it contains an idem-
potent truncation which is critical and arising from a graded tree. Thus, A is τ -tilting
infinite from Lemma 2.6 and Corollary 3.2. �

There is another evidence for τ -tilting finiteness of tame strongly simply connected
algebras of polynomial growth. In fact, such an algebra is cycle-finite, and, Malicki and
Skowroński [44] showed that a cycle-finite algebra is τ -tilting finite if and only if it is
representation-finite. Thus, they are τ -tilting infinite.

3.2. The standard form of a representation-finite algebra. Assume that A is
representation-finite, we consider its Auslander-Reiten quiver ΓA as a path category kΓA.
We have the following sequence in ΓA for any indecomposable non-projective module M ,

N α−
1

%%
τM

α+
1 88

α+
n
&&

... M

N ′ α−
n

99

then we define σM :=
∑n

i=1 α
+
i α
−
i and the mesh-category k(ΓA) := kΓA/IΓA

, which is
bounded by the mesh-ideal IΓA

:= 〈σM | τM 6= 0〉.

Definition 3.5. ([25, Definition 5.1]) Let A be a representation-finite algebra, the stan-

dard form Ã of A is defined to be the full subcategory consisting of the projective points
of the mesh-category k(ΓA).

Then, [25, Corollary 5.2] implies that Ã is also representation-finite, ΓÃ = ΓA and Ã is
the best possible degeneration of A in the sense of algebraic geometry. It worth mentioning
that any representation-finite simply connected algebra is standard [25, (6.1)].

For a representation-finite algebra A, Bretscher and Gabriel [28] further demonstrated

the importance of Ã:

• Ã is Morita equivalent to A.

• Ã admits a Galois covering F : B → B/G := Ã, where B is simply connected and
G is the fundamental group Π1(QA, IA), which is a finitely generated free group.

Clearly, B = Ã if A is simply connected.
We have to point out that even an algebra admits a (strongly) simply connected Galois

covering, it is not necessary to be (strongly) simply connected. For example,

Example 3.6. ([57, Example 3.3]) Let A = kQ/I with I =< α4, β4, αµ− µβ > and Q :

• µ //α
%%

• βee

then A is of (tame) polynomial growth and admits a strongly simply connected Galois
covering. But A is τ -tilting finite [60, Theorem 1.1].

3.3. Triangular matrix algebras. Let T2(A) :=
(
A A
0 A

)
be the algebra of 2 × 2 upper

triangular matrices over an algebra A. Then, the category mod T2(A) is equivalent to the
category whose objects are A-homomorphisms f : M → N between finite-dimensional
A-modules M and N , and morphisms are pairs of homomorphisms making the obvious
squares commutative.
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Skowroński showed in [52] that T2(A) is wild if A is representation-infinite. Therefore,
we may consider representation-finite algebras.

Proposition 3.7. ([42, Theorem 4.1]) Let A be a standard representation-finite algebra
with a simply connected Galois covering F : B → A, then T2(A) is representation-finite
if and only if T2(B) does not contain a convex subcategory which is tame concealed.

Theorem 3.8. Let A be a representation-finite simply connected algebra, then T2(A) is
τ -tilting finite if and only if T2(A) is representation-finite.

Proof. It follows Lemma 2.6, Lemma 2.14, Proposition 3.7 and Subsection 3.2. �

3.4. Iterated tilted algebras. Let A be an algebra, we recall from [37] that an A-
module T is called tilting (respectively, cotilting) if it satisfies |T | = |Λ|, proj.dim T 6 1
(respectively, inj.dim T 6 1) and Ext1

A(T, T ) = 0.
Then, two algebras A and B are said to be tilting-cotilting equivalent if there exists a

sequence of algebras A = A0, A1, . . . , Am = B and a sequence of modules T iAi
, (0 6 i 6 m)

such that Ai+1 = EndAi
T iAi

and T iAi
is either a tilting or cotilting module.

Definition 3.9. ([12, (1.4)] and [39, Theorem 3]) Let kQ be a hereditary algebra, then
we call A iterated tilted of type Q if A is tilting-cotilting equivalent to kQ.

It is shown by [8, Proposition 3.5] that iterated tilted algebras of Dynkin type are simply
connected and by [15, Corollary 1.4] that an iterated tilted algebra of Euclidean type is

simply connected if and only if Q is of types D̃n, Ẽp, (n > 4, p = 6, 7 or 8). Therefore,

Corollary 3.10. Let A be an iterated tilted algebra of Dynkin type and types D̃n, Ẽp, (n >
4, p = 6, 7 or 8), then A is τ -tilting finite if and only if it is representation-finite.

3.5. Tubular algebras. Following Ringel [51],

(1) The canonical algebra C(2, 2, 2, 2) is defined by the following quiver and relations.

◦

◦

◦

◦

◦

◦

α1

99
β1

%%
α2 22 β2

,,

α3
,,

β3

22

α4
%% β4

99

α1β1 + α2β2 + α3β3 = 0,
α1β1 + λα2β2 + α4β4 = 0,

λ ∈ k/{0, 1}.

(2) The canonical algebra C(p, q, r) with p 6 q 6 r is given by the quiver

◦ α2 // ◦ // · · · // ◦
αp−1 // ◦ αp

''◦
α1

77
β1 //
γ1

''

◦ β2 // ◦ // · · · // ◦
βq−1 // ◦

βq // ◦

◦ γ2 // ◦ // · · · // ◦
γr−1 // ◦

γr 77

bounded by α1α2 . . . αp + β1β2 . . . βq + γ1γ2 . . . γr = 0.

In particular, we call four special cases C(2, 2, 2, 2), C(3, 3, 3), C(2, 4, 4) and C(2, 3, 6)
the tubular canonical algebras.

Definition 3.11. ([36, Corollary 1.7], [38] and [51]) An algebra A is said to be a tubular
algebra if it is tilting-cotilting equivalent to one of tubular canonical algebras.
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It is well-known that tubular algebras are of global dimension 2 and have only 6, 8,
9 or 10 simple modules. Then, Assem and Skowroński [15, Corollary 1.4] showed that
tubular algebras are simply connected. Furthermore, [55, Proposition 2.4] implies that
every tubular algebra is tame, non-domestic, of polynomial growth and of linear growth.

3.6. pg-critical algebras. In order to find the criteria for simply connected algebras to
be of (tame) polynomial growth, Nörenberg and Skowroński [46] introduced the polyno-
mial growth critical algebras (briefly pg-critical algebras), that is, tame simply connected
algebras which are not of polynomial growth but every proper convex subcategory is.

Following [46, Theorem 3.2], one can understand all pg-critical algebras by 31 frames
and 3 admissible operations. For simplicity, we only recall the admissible operations.

(1) Constructing the opposite algebra.
(2) Choice of arbitrary orientation in non-oriented edges.
(3) Replacing each subgraph

•
•
•

by

•
•
•

or •
!!||

•
""

...
}}
•

.

Then, [46, Corollary 3.3] shows that pg-critical algebras are simply connected of global
dimension 2. In particular, there are 16 frames among 31 frames which are strongly simply
connected [45, Theorem 1].

3.7. Hypercritical algebras. Continuing to find the criteria for a simply connected
algebra to be wild, Unger [59] (see also Lersch [41] and Wittman [61]) introduced the
hypercritical algebras which are preprojective tilts of minimal wild hereditary tree algebras
of the following types.

T5 : • •
• •

• •

˜̃Dn : • •
• • · · · • •

• • •˜̃E6 : •

•

• • • • • •

˜̃E7 : •

• • • • • • • •

˜̃E8 : •

• • • • • • • • •

where in the case of
˜̃Dn the number of vertices is n+ 2, (4 6 n 6 8).

Similarly, one can understand hypercritical algebras by quivers and relations [59] and
they are strongly simply connected. Actually, they are minimal wild strongly simply
connected algebras as shown in Proposition 3.12.
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3.8. Strongly simply connected algebras. Over the past several decades, the class
of tame strongly simply connected algebras has been studied intensively. We recall the
handy criteria of their representation type as follows.

Proposition 3.12. Let A be a representation-infinite strongly simply connected algebra.

(1) ([29, Corollary 1], [49, Theorem 2.2]) A is tame if and only if qA is weakly non-
negative, or equivalently, A does not contain a hypercritical convex subcategory.

(2) A is tame minimal non-polynomial growth if and only if A is obtained from one
of the frames in [45, Theorem 1] by admissible operations, or equivalently, A is
obtained from one of the frames (1)–(16) in the list of pg-critical algebras in [46,
Theorem 3.2] by admissible operations.

(3) ([55, Theorem 4.1]) A is of polynomial growth if and only if A does not contain a
convex subcategory which is pg-critical or hypercritical.

(4) ([55, Corollary 4.3]) A is domestic if and only if A does not contain a convex
subcategory which is tubular, or pg-critical, or hypercritical.

Corollary 3.13. All tubular algebras, pg-critical algebras and hypercritical algebras are
τ -tilting infinite.

Proof. This is immediate from Theorem 3.4 and Proposition 3.12. �

4. Multi-staircase Algebras

In this section, we deal with a subclass of strongly simply connected algebras, namely,
the multi-staircase algebras. These algebras are introduced by Boos [27] and are param-
eterized by the so-called generalized Young diagrams.

Recall that a partition λ = (λ1, λ2, . . . , λ`) of a positive integer n, is a non-increasing

sequence satisfying
∑`

i=1 λi = n. We may merge same entries of λ by potencies, for
example, (3, 3, 2, 1, 1, 1) = (32, 2, 13). It is well-known that we can visualize λ by the
Young diagram Y (λ), that is, a box-diagram of which the i-th row contains λi boxes.

4.1. Generalized Young diagrams. A plane partition is a Young diagram filled with
positive integers such that all rows and columns are non-increasing. We can think of the
numbers as representing the heights for stacks of blocks placed on each cell of the diagram.
For example, let π be a plane partition

π = 4 3 2 1
3 2 1
1 1
1

then it can be visualized as a 3-dimensional Young diagram Y (π):

4

3

1
1

3

2

1

2

1 1

We can equip every cube in Y (π) with a triple array (ẋ, ẏ, ż) of positive integers such

that: If (ẋ, ẏ, ż) corresponds a cube in Y (π), then any (ȧ, ḃ, ċ) also corresponds a cube in

Y (π) whenever ȧ 6 ẋ, ḃ 6 ẏ and ċ 6 ż.
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On the other hand, let Λ ⊆ N3
>1 be a collection of all triple arrays that satisfy the

condition: If (ẋ, ẏ, ż) ∈ Λ, then (ȧ, ḃ, ċ) ∈ Λ whenever ȧ 6 ẋ, ḃ 6 ẏ and ċ 6 ż. Then one
easily find a bijection between Λ and the set of all 3-dimensional Young diagrams. This
setup can be generalized to m ∈ N dimensions as follows.

Definition 4.1. ([27, Subsection 2.2]) For any 2 6 m ∈ N, let Λ ⊆ Nm
>1 be a set of

m-dimensional arrays such that

(ẋ1, ẋ2, . . . , ẋm) ∈ Λ ⇒ (ȧ1, ȧ2, . . . , ȧm) ∈ Λ,∀ȧi 6 ẋi,∀i,
then we call Λ a m-dimensional Young diagram.

A 2-dimensional Young diagram is just a Young diagram. A 3-dimensional Young
diagram Λ is said to be flat if one of the following holds:

• Λ ⊆ {(x, y, 1), (x, 1, z) | x > 1, y > 1, z > 1}.
• Λ ⊆ {(x, y, 1), (1, y, z) | x > 1, y > 1, z > 1}.
• Λ ⊆ {(x, 1, z), (1, y, z) | x > 1, y > 1, z > 1}.

Let Λ be a flat 3-dimensional Young diagram, then it can be presented by two partitions.
For example, if Λ ⊆ {(x, y, 1), (x, 1, z) | x > 1, y > 1, z > 1}, then {(x, y) | x > 1, y > 1}
determines a partition λ = (λ1, λ2, . . . , λk) and {(x, z) | x > 1, z > 1} determines a parti-
tion µ = (µ1, µ2, . . . , µ`) such that

λ1 = µ1 := # {(x, 1, 1) | x > 1, (x, 1, 1) ∈ Λ}.
In this case, we denote Λ by (λ, µ) := (λk, . . . , λ2, λ1 = µ1, µ1, . . . , µ`).

Moreover, let (λ, µ) and (λ′, µ′) be two bipartitions, we say (λ, µ) � (λ′, µ′) if λ is a
subpartition of λ′ and µ is a subpartition of µ′.

4.2. Multi-staircase algebras.

Definition 4.2. ([27, Definition 3.1]) Let Λ be a m-dimensional Young diagram and
A(Λ) := kQΛ/IΛ such that

• the vertices of QΛ are given by the tuples appearing in Λ;

• there is an arrow ϕ
(i)
ẋ1,ẋ2,...,ẋm

: (ẋ1, . . . , ẋm) → (ẏ1, . . . , ẏm) if and only if there is
exactly one index i such that ẏi = ẋi − 1 and ẏj = ẋj for j 6= i;
• IΛ is a two-sided ideal generated by all commutativity relations for all squares

appearing in QΛ.

Then the bounded quiver algebra A(Λ) is called a multi-staircase algebra. Besides, let

Λmin := {(ẋ1, ẋ2, . . . , ẋm) | ẋi = 2 for at most one i} ⊂ {1, 2}m,

then A(Λ) is said to be proper if Λmin ⊆ Λ.

It is obvious that A(Λ) is a basic, connected, triangular, finite dimensional k-algebra.
In particular, A(Λ) is called a staircase algebra if Λ is a 2-dimensional Young diagram
and we shall give a detailed study on this case in the next section.

As already mentioned in the introduction, we give an example to show that multi-
staircase algebras are generalizations of commutative ladders.

Example 4.3. Let Λ be the following 3-dimensional Young diagram

2
2 2

1
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then the quiver QΛ is given by

(2̇, 1̇, 1̇)

ϕ
(1)

2̇,1̇,1̇��

(2̇, 2̇, 1̇)
ϕ
(2)

2̇,2̇,1̇oo

ϕ
(1)

2̇,2̇,1̇��

(2̇, 1̇, 2̇)

ϕ
(1)

2̇,1̇,2̇ ��

ϕ
(3)

2̇,1̇,2̇
77

(1̇, 1̇, 1̇) (1̇, 2̇, 1̇)
ϕ
(2)

1̇,2̇,1̇oo

(1̇, 1̇, 2̇)

ϕ
(3)

1̇,1̇,2̇
77

(1̇, 2̇, 2̇)

ϕ
(3)

1̇,2̇,2̇
77

ϕ
(2)

1̇,2̇,2̇

oo

' •
|| ""
• // • •oo

• //

OO

•

OO

•

OO

oo

Then, the corresponding multi-staircase algebra A(Λ) is defined by

A(Λ) = kQΛ/ < ϕ
(2)

1̇,2̇,1̇
ϕ

(1)

2̇,2̇,1̇
−ϕ(1)

2̇,1̇,1̇
ϕ

(2)

2̇,2̇,1̇
, ϕ

(3)

1̇,1̇,2̇
ϕ

(1)

2̇,1̇,2̇
−ϕ(1)

2̇,1̇,1̇
ϕ

(3)

2̇,1̇,2̇
, ϕ

(3)

1̇,1̇,2̇
ϕ

(2)

1̇,2̇,2̇
−ϕ(2)

1̇,2̇,1̇
ϕ

(3)

1̇,2̇,1̇
>.

Proposition 4.4. ([27, Proposition 3.6]) Let Λ be a m-dimensional Young diagram with
m > 2, then A(Λ) is strongly simply connected.

Our main result Theorem 3.4 implies that a multi-staircase algebra is τ -tilting finite
if and only if it is representation-finite. Therefore, we focus on the representation-finite
multi-staircase algebras.

Proposition 4.5. ([27, Subsection 5.2]) Let Λ = (λ, µ) be a flat 3-dimensional Young
diagram and A(Λ) := A(λ, µ), then A(λ, µ) is Morita equivalent to A(µ, λ).

We call A(Λ) a tri-staircase algebra if Λ is a 3-dimensional Young diagram and A(Λ)
is flat if Λ is flat. Then we have the following classification.

Proposition 4.6. ([27, Theorem 5.2]) A proper tri-staircase algebra A(Λ) is

(1) representation-finite if and only if A(Λ) = A(λ, µ) is flat and (λ, µ) � (λ′, µ′),
where (λ′, µ′) comes up in the following list (x ∈ N):

(1, 5, 2), (4, 4, 1), (1, 5, 12), (2, 2, 22), (1, 2, 23), (3, 3, 13), (1, 3, 14),
(1, 2, 2, 13), (22, 2, 13), (12, 2, 13), (12, 2, 14), (1, x, 1), (1, 2, 1x), (2, 2, 1x).

(2) tame concealed if and only if A(Λ) = A(λ, µ) is flat and (λ, µ) comes up in the
following list:

(2, 3, 2), (3, 5, 1), (2, 6, 1), (1, 3, 2, 1), (2, 4, 12), (1, 6, 12), (1, 4, 13),
(1, 2, 2, 2, 1), (12, 3, 12), (1, 22, 2, 2), (1, 2, 22, 12), (12, 2, 2, 12),

(2, 2, 2, 13), (2, 3, 14), (1, 2, 2, 14), (1, 2, 2, 14), (1, 3, 15), (13, 2, 13), (12, 2, 15).

(3) tame, but not tame concealed if and only if either Λ equals Λ0:

2
2 2

1

or A(Λ) = A(λ, µ) is flat and (λ, µ) comes up in the following list:

(2, 3, 3), (3, 3, 3), (4, 5, 1), (1, 3, 22), (1, 3, 3, 1), (3, 4, 12), (2, 2, 23),
(22, 2, 2, 1), (22, 2, 22), (1, 2, 23, 1), (12, 2, 22, 1), (3, 3, 14), (22, 2, 14).

Otherwise, A(Λ) is of wild representation type.

Proposition 4.7. ([27, Theorem 6.1]) Let A(Λ) be a proper multi-staircase algebra with
a m-dimensional Young diagram Λ, then A(Λ) is representation-infinite if m > 4.
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Theorem 4.8. Let A(Λ) be a proper tri-staircase algebra with a 3-dimensional Young
diagram Λ, then

Λ (1, x, 1) (1, 2, 1x)

#sτ -tilt A(Λ)
[

2x+3
x+1

] [
2x+5
x+2

]
where [ xy ] = x+y

x

(
x
y

)
.

Proof. If Λ = (1, x, 1) or (1, 2, 1x), then A(Λ) is a Dynkin algebra of type D. The result
follows Lemma 2.15. �

5. Staircase Algebras

In this section, we focus on the multi-staircase algebras with Young diagrams, which are
called staircase algebras briefly. Since a Young diagram Y (λ) corresponds to a partition
λ ` n of a positive integer n, we may denote a staircase algebra by A(λ).

Example 5.1. Let n = 8 and λ = (3, 3, 2), then its quiver Qλ is given by

(1̇, 1̇) (2̇, 1̇)
α2̇,1̇oo (3̇, 1̇)

α3̇,1̇oo

(1̇, 2̇)

β1̇,2̇

OO

(2̇, 2̇)

β2̇,2̇

OO

α2̇,2̇oo (3̇, 2̇)

β3̇,2̇

OO

α3̇,2̇oo

(1̇, 3̇)

β1̇,3̇

OO

(2̇, 3̇)

β2̇,3̇

OO

α2̇,3̇oo

' • •oo •oo

•

OO

•

OO

oo •

OO

oo

•

OO

•

OO

oo

The corresponding staircase algebra A(λ) is defined by

A(λ) := kQλ/ < β2̇,2̇α2̇,1̇ − α2̇,2̇β1̇,2̇, β3̇,2̇α3̇,1̇ − α3̇,2̇β2̇,2̇, β2̇,3̇α2̇,2̇ − α2̇,3̇β1̇,3̇ >.

Let λ be a partition, we denote by λT the transposed partition given by the columns
of the Young diagram (from right to left). Then, [26, Lemma 4.2] implies that A(λ) is
Morita equivalent to A(λT ).

We recall the classification of representation types of staircase algebras.

Proposition 5.2. ([26, Theorem 4.5]) A staircase algebra A(λ) with λ ` n is

(1) representation-finite if and only if one of the following holds:
• λ ∈ {(n), (n− k, 1k), (n− 2, 2), (22, 1n−4)} for k 6 n.
• n 6 8 and λ /∈ {(4, 3, 1), (32, 2), (3, 22, 1), (4, 2, 12)}.

(2) tame concealed if and only if λ comes up in the following list:

(6, 3), (6, 2, 1), (5, 22), (4, 3, 1), (4, 2, 12), (3, 22, 1), (32, 13), (23, 13), (3, 2, 14).

(3) tame, but not tame concealed if and only if λ comes up in the following list:

(52), (5, 4), (42, 1), (33), (32, 2), (3, 23), (25), (24, 1).

Otherwise, A(λ) is of wild representation type.

Theorem 5.3. Let A(λ) be a staircase algebra with λ ` n, then

λ (n) (n− k, 1k)

#sτ -tilt A(λ) 1
n+2

(
2n+2
n+1

)
Proof. If λ = (n) or (n − k, 1k), then A(λ) is a Dynkin algebra of type A. The result
follows Lemma 2.15. �
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6. Two Special Cases

Given a representation-finite multi-staircase algebra A(Λ), we want to find the number
of support τ -tilting A(Λ)-modules and we have showed some cases in Theorem 4.8 and
5.3. Among others, we are interested in Λ = (2, 2, 1x) and λ = (n− 2, 2) or (22, 1n−4).

In this section, we will give detailed description on the number of support τ -tilting
A(Λ)-modules for these cases.

(1) Let Λn := kQ/ < αµ− βν > with n > 4 and Q:

2 µ
%%

1
α 99

β
%%

4 // 5 // · · · // n− 1 // n

3 ν

99

This is the multi-staircase algebra A(Λ) for Λ = (2, 2, 1x) with x > 0.
(2) Let Θn := kQ/ < αβ − µν > with n > 4 and Q:

2 µ
%%

α
yy

1
β
%%

4
νyy

// 5 // · · · // n− 1 // n

3

This is the staircase algebra A(λ) for λ = (n− 2, 2) or (22, 1n−4) with n > 4.

Proposition 6.1. Let A = Λn or Θn, then the number of tilting A-modules is not equal
to the number of τ -tilting A-modules.

Proof. Since there exists a simple A-module S such that gl.dim S > 1, then A is not
hereditary. Note that [62, Theorem 2.1] implies that a triangular algebra A is hereditary
if and only if every τ -tilting A-module is tilting. Then, the result follows. �

Let A be an algebra, a right A-module M is said to be support-rank s if there exists
exactly s nonzero orthogonal idempotents e1, e2, . . . , es such that Mei 6= 0.

Proposition 6.2. Let M be a support τ -tilting module with support-rank s, then we have
|M | = s.

Proof. Since there exists exactly s nonzero orthogonal idempotents e1, e2, . . . , es such that
Mei 6= 0, we have M(1−

∑s
i=1 ei) = 0. Let P := (1−

∑s
i=1 ei)A, then

|M | = n− |P | = n− (n− s) = s

follows the fact that (M,P ) becomes a support τ -tilting pair. �

Assume that |A| = n, let as(A) be the number of support τ -tilting A-modules with
support-rank s for any 0 6 s 6 n. Note that an(A) is just the number of τ -tilting
A-modules. Then, the number of all support τ -tilting A-modules is

a(A) :=
∑n

s=0 as(A).

As a beginning, we have Λ4 ' Θ4 and the following result.

Proposition 6.3. Let Pi be the indecomposable projective Λ4-modules, then

P1 =
1

2 3
4
, P2 = 2

4 , P3 = 3
4 and P4 = 4 .

Then, the Hasse quiver H(sτ -tilt Λ4) implies that

a0(Λ4) = 1, a1(Λ4) = 4, a2(Λ4) = 10, a3(Λ4) = 16 and a4(Λ4) = 15.

and all support τ -tilting Λ4-modules are shown in Appendix A.
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From now on, let An and Dn be the path algebra of type A and type D, respectively.
We denote by Qs(A) the set of support τ -tilting A-modules with support-rank s.

6.1. The number of support τ-tilting Λn-modules.

Lemma 6.4. For any n > 4 and 1 6 s 6 n− 3, we have

as(Λn) = as(Λn−1) + as−1(Λn).

Proof. Let en be the idempotent of Λn at vertex n. For any support τ -tilting Λn-module
M satisfying Men = 0, it is obvious that M is a support τ -tilting Λn−1-module. Then,
let Qs(Λn; en) be the set of the support τ -tilting Λn-modules with support-rank s and
Men 6= 0. We show that there is a bijection

q : Qs(Λn; en)←→ Qs−1(Λn).

The result follows this bijection.
Let X be an indecomposable Λn-module with support-rank t 6 n − 3 and Xen 6= 0.

Then the radical series of X are pairwise non-isomorphic simple modules Si and X is of
the following form

Sn−t+1

...
Sn−1
Sn

.

We denote X by [n− t+ 1, n].
Let T ∈ Qs(Λn; en). There exists at least one indecomposable direct summand of T ,

say X, satisfies Xen 6= 0 and we choose X = [n− t+ 1, n] of largest possible length t.
Then, Tem = 0 for any arrow m −→ n − t + 1. In fact, if t = n − 3, the statement is
obvious since s 6 n − 3. Now, assume that t 6 n − 4 and there is an indecomposable
direct summand Y of T satisfying Y en−t 6= 0, then Y en = 0 follows the maximality of X.
It is enough to consider the following five types of Y :

S1
S2 S3

S4

...
Sn−t

...
Sa

,

S2 S3
S4

...
Sn−t

...
Sa

,

S2
S4

...
Sn−t

...
Sa

,

S3
S4

...
Sn−t

...
Sa

,

S4

...
Sn−t

...
Sa

,

where n− t 6 a 6 n−1. One can check that soc(τ(Y )) = Sa+1 for any type above. Then,
a+ 1 > n− t+ 1 implies HomΛn(X, τ(Y )) 6= 0. We get a contradiction.

Therefore, we can divide T into a direct sum W ⊕ Z such that

• the support of W is {en−t+1, . . . , en−1, en} and it is disjoint with the support of Z.
• the support of Z does not contain em with m −→ n− t+ 1.

We denote by Q[n−t+1,n] the quiver with vertices {n− t+ 1, . . . , n− 1, n} and let

Λ[n−t+1,n] := kQ[n−t+1,n].

Then, W becomes a τ -tilting Λ[n−t+1,n]-module and X is the unique indecomposable
projective-injective Λ[n−t+1,n]-module. Deleting X from W , we obtain a support τ -tilting
Λ[n−t+1,n]-module with support-rank t− 1.
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Now, we write T = X ⊕ U , then U is the direct sum of Z and a support τ -tilting Λn-
module by deleting X from W . Thus, U is a support τ -tilting Λn-module with support-
rank s− 1. The map from Qs(Λn; en) to Qs−1(Λn) is given by q(T ) = U .

(1) (Injection) Since X is the indecomposable projective-injective Λ[n−t+1,n]-module
and the maximality of X = [n− t+ 1, n], q is injective.

(2) (Surjection) Let U ∈ Qs−1(Λn), then there are at least 4 idempotents outside of
the support of U .
• If there are exactly 4 idempotents e1, e2, e3 and ei with 4 6 i 6 n outside of the

support of U , then s = n−3 and U becomes a support τ -tilting Λ[4,n]-module
with support-rank n − 4. Let P := [4, n] be the indecomposable projective
Λ[4,n]-module, then (U, P ) becomes a support τ -tilting pair for Λ[4,n]. Thus,

T := U ⊕ P ∈ Qn−3(Λn; en).
• Otherwise, there are at least two idempotents in {e4, e5, . . . , en} outside of the

support of U . Let i < j be the smallest such numbers, then we can find an
indecomposable projective Λn-module P := [i+1, n] such that (U, P ) becomes
a support τ -tilting pair for Λn. Thus,

T := U ⊕ P ∈ Qs(Λn; en).
Therefore, q is surjective.

�

Lemma 6.5. For any n > 4, we have

an−2(Λn) = an−2(Λn−1) + an−3(Λn) + an−3(An−3).

Proof. We construct a surjection q from Qn−2(Λn; en) to Qn−3(Λn). Similar to the proof
of Lemma 6.4, one can show that any module T in Qn−2(Λn; en) is of the form T = X⊕U ,
where X is indecomposable, Xen 6= 0 and X is of maximal possible length. Then the
support of X is contained either in {e2, e4, . . . , en} or {e3, e4, . . . , en} such that X is
uniquely determined. Therefore, the map q is defined by deleting X from T .

Note that q is not an injection. Let X1 be the indecomposable module with support
{e2, e4, . . . , en}, andX2 the indecomposable module with support {e3, e4, . . . , en}. Starting
with a τ -tilting Λ[4,n]-module U , we have

X1 ⊕ U,X2 ⊕ U ∈ Qn−2(Λn; en).

But both of them are mapped to U . These are the an−3(Λ[4,n]) = an−3(An−3) pairs of
elements of Qn−2(Λn; en), which are identified by q. �

In order to compute an−1(Λn), we consider a factor algebra of An. For any n > 3, we
define A1

n := kQ/ < ab >, where

Q : 1
a // 2

b // 3 // · · · // n− 1 // n .

Moreover, we assume A1
2 := A2.

Example 6.6. Let Pi be the indecomposable projective A1
3-modules, then

P1 = 1
2, P2 = 2

3 and P3 = 3.

The Hasse quiver of sτ -tilt A1
3 is as follows.
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1
2⊕ 2

3⊕ 3

2
3⊕ 3

1
2⊕ 1⊕ 3

1
2⊕ 2

3⊕ 2

1⊕ 3

1
2⊕ 11

2⊕ 2

2
3⊕ 2

1

2

3

0

Then, we can see that a0(A1
3) = 1, a1(A1

3) = 3, a2(A1
3) = 5 and a3(A1

3) = 3.

Theorem 6.7. Assume that A1
2 := A2. For any n > 4, we have

(1) as(A1
n) = as(A1

n−1) + as−1(A1
n) for any 1 6 s 6 n− 2.

(2) an−1(A1
n) = an−1(A1

n−1)+an−1(An−1)+an−2(An−2)+
∑n−1

i=3 ai−1(A1
i−1) ·an−i(An−i).

(3) an(A1
n) = an−1(An−1) + an−2(An−2).

Proof. (1) The proof is similar to the proof of Lemma 6.4.
(2) Let T ∈ Qn−1(A1

n), there exists exactly one idempotent ei such that Tei = 0.
• If i = 1, then T is a τ -tilting An−1-module.
• If i = 2, then we can divide T into a direct sum T1 ⊕ T2 such that T1 is a
τ -tilting A1-module and T2 is a τ -tilting An−2-module.
• If 3 6 i 6 n− 1, then we can divide T into a direct sum T1⊕ T2 such that T1

is a τ -tilting A1
i−1-module and T2 is a τ -tilting An−i-module.

• If i = n, then T is a τ -tilting A1
n−1-module.

It is easy to see that the above is a complete classification.
(3) Let T ∈ Qn(A1

n).
• If T = 1

2⊕ U with Ue1 = 0, then U is a τ -tilting An−1-module.
• If T = 1

2⊕ U with Ue1 6= 0, then U = 1⊕ V with V e1 = 0. Since τ(1) = S2,
then V e2 = 0. Thus, V is a τ -tilting An−2-module.

�

Remark 6.8. For any n > 2 and 0 6 s 6 n, the as(A1
n) is as follows.

n

s
0 1 2 3 4 5 6 7 8 9 10 a(A1

n)

2 1 2 2 5

3 1 3 5 3 12

4 1 4 9 12 7 33

5 1 5 14 26 33 19 98

6 1 6 20 46 79 98 56 306

7 1 7 27 73 152 250 306 174 990

8 1 8 35 108 260 510 816 990 561 3289

9 1 9 44 152 412 922 1738 2728 3289 1859 11154

10 1 10 54 206 618 1540 3278 6006 9295 11154 6292 38454

Based on the above data, we can see that

(1) a(A1
n) = an(A1

n+1).
(2) an−1(A1

n) = an−1(A1
n−1) + an−2(A1

n).
(3) an(A1

n) is the sequence A005807 in Sloane’s OEIS [58].
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Example 6.9. Let A1
4

op
be the opposite algebra of A1

4 and Pi the indecomposable pro-
jective A1

4
op

-modules, then

P1 =
1
2
3
, P2 = 2

3, P3 = 3
4 and P4 = 4.

The Hasse quiver H(sτ -tilt A1
4

op
) can verify the formulas in Theorem 6.7 and all support

τ -tilting A1
4

op
-modules are shown in Appendix B.

Lemma 6.10. Assume that Λ3 := A3. For any n > 5, we have

an−1(Λn) = an−1(Λn−1) + an−1(Dn−1) + 2an−1(A1
n−1) +

n−1∑
i=4

ai−1(Λi−1) · an−i(An−i).

Proof. Let T ∈ Qn−1(Λn), there exists exactly one idempotent ei such that Tei = 0.

• If i = 1, then T is a τ -tilting Dn−1-module.
• If i = 2 or 3, then βν = 0 or αµ = 0, and T becomes a τ -tilting A1

n−1-module.
• If 4 6 i 6 n− 1, then we can divide T into a direct sum T1 ⊕ T2 such that T1 is a
τ -tilting Λi−1-module and T2 is a τ -tilting An−i-module.
• If i = n, then T is a τ -tilting Λn−1-module.

It is easy to see that the above is a complete classification. �

Lemma 6.11. Let n > 4, then an(Λn) = an−1(Λn)− 1.

Proof. We explain the relation between Qn(Λn) and Qn−1(Λn). Let T be a τ -tilting Λn-
module and P1 the indecomposable projective module at vertex 1. Starting with Λn,

(1) If T = P1 ⊕ U with Ue1 = 0, then U ∈ Qn−1(Λn).
(2) If T = P1 ⊕U with Ue1 6= 0, Ue2 = 0, Ue3 6= 0 or Ue1 6= 0, Ue2 6= 0, Ue3 = 0, then

U ∈ Qn−1(Λn).
(3) If T = P1 ⊕ U with Ue1 6= 0, Ue2 6= 0, Ue3 6= 0, then

(a) if T = P1 ⊕ 1
2⊕ 1

3⊕ V with V e1 = 0, then V e2 = V e3 = 0 since τ(1
2) = S3 and

τ(1
3) = S2. Thus, V is a τ -tilting Λ[4,n]-module. Furthermore, we have

T −→ 1⊕ 1
2⊕ 1

3⊕ V ∈ H(sτ -tilt Λn).
Note that any left mutation of the latter one goes to Qn−1(Λn).

(b) Otherwise, U ∈ Qn−1(Λn).

On the other hand, there is a surjection from Qn−1(Λn) to Qn(Λn)/S, where

S =
{
P1 ⊕ 1

2⊕ 1
3⊕ V | V is a τ -tilting Λ[4,n]-module

}
.

Let U ∈ Qn−1(Λn), then U does not contain P1 as a direct summand.

• If U = 1⊕ 1
2⊕ V or 1⊕ 1

3⊕ V with a τ -tilting Λ[4,n]-module V , then U is mapped
to 1⊕ 1

2⊕ 1
3⊕ V .

• If U = 1⊕ 1
2⊕ 1

3⊕ Z with Z ∈ Qn−3(Λ[4,n]) and Z is a left mutation of V , then U
is mapped to 1⊕ 1

2⊕ 1
3⊕ V .

• Otherwise, U is mapped to P1 ⊕ U .

Therefore,

an(Λn) =an−1(Λn)− (an−4(Λ[4,n]) + 1) + an−3(Λ[4,n])

=an−1(Λn)− (an−4(An−3) + 1) + an−3(An−3).

Note that an−4(An−3) = an−3(An−3), then the result follows. �

Finally, we can determine the number of support τ -tilting Λn-modules.



τ -TILTING FINITE SIMPLY CONNECTED ALGEBRAS 21

Theorem 6.12. Assume that Λ3 := A3 and n > 5, then

(1) an(Λn) = an−1(Λn)− 1.
(2) an−1(Λn) = an−1(Λn−1)+ 3n−7

2n−4

(
2n−4
n−3

)
+2( 1

n−1

(
2n−4
n−2

)
+ 1

n−2

(
2n−6
n−3

)
)+
∑n−1

i=4 ai−1(Λi−1)·
1

n−i+1

(
2(n−i)
n−i

)
.

(3) an−2(Λn) = an−2(Λn−1) + an−3(Λn) + 1
n−2

(
2n−6
n−3

)
.

(4) as(Λn) = as(Λn−1) + as−1(Λn) for any 1 6 s 6 n− 3.

Proof. It follows Lemma 2.15, 6.4, 6.5, 6.7, 6.10 and 6.11. �

Remark 6.13. Let n > 3 and 0 6 s 6 n, then as(Λn) is as follows.

n

s
0 1 2 3 4 5 6 7 8 9 10 a(Λn)

3 1 3 5 5 14

4 1 4 10 16 15 46

5 1 5 15 33 54 53 161

6 1 6 21 54 113 193 192 580

7 1 7 28 82 195 402 706 705 2126

8 1 8 36 118 313 715 1463 2618 2617 7889

9 1 9 45 163 476 1191 2654 5404 9803 9802 29548

10 1 10 55 218 694 1885 4539 9943 20175 36984 36983 111487

6.2. The number of support τ-tilting Θn-modules. The Auslander-Reiten quiver
ΓΘn of Θn is given by Boos [26, Appendix A.2], one can observe that

(1) Θn is a representation-finite tiled algebra of type D.
(2) (The number of vertices in ΓDn) − (The number of vertices in ΓΘn) = 1, and the

extra one is a sincere Dn-module.
(3) Every indecomposable Θn-module M is a brick, that is, EndΘnM = k.

For any n > 4, we define D1
n := kQ/ < ab >, where

Q : 1 a
&&
3

bxx

// 4 // · · · // n− 1 // n

2

Moreover, we assume D1
3 := A1

3.

Example 6.14. Let Pi be the indecomposable projective D1
4-modules, then

P1 =
1
3
4
, P2 = 2, P3 = 2

3
4 and P4 = 4.

The Hasse quiver H(sτ -tilt D1
4) implies that

a0(D1
4) = 1, a1(D1

4) = 4, a2(D1
4) = 9, a3(D1

4) = 14 and a4(D1
4) = 9.

Then, all support τ -tilting D1
4-modules are shown in Appendix C.

Theorem 6.15. For any n > 5, we have

(1) as(D1
n) = as(D1

n−1) + as−1(D1
n) for any 1 6 s 6 n− 2.

(2) an−1(D1
n) = an−1(D1

n−1) + an−2(D1
n) + an−2(An−2).

(3) an(D1
n) = an−1(D1

n−1) + an−1(An−1) + an−3(An−3) +
∑n−1

i=4 ai−1(D1
i−1) · an−i(An−i).
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Proof. The first statement and the second statement are similar to Lemma 6.4 and 6.5.
Let T be a τ -tilting D1

n-module and P1 the indecomposable projective module at vertex
1, then T is of form P1 ⊕ U with Ue2 6= 0 and U ∈ Qn−1(D1

n).

• If Ue1 = 0, then U is a τ -tilting An−1-module.
• If Ue3 = 0, then U = 1⊕ 2⊕ V , where V is a τ -tilting An−3-module.
• If Uei = 0 with 4 6 i 6 n − 1, then we can divide U into a direct sum U1 ⊕ U2

such that U1 is a τ -tilting D1
i−1-module and U2 is a τ -tilting An−i-module.

• If Uen = 0, then U is a τ -tilting D1
n−1-module.

Then, we get a complete classification. �

Remark 6.16. For any n > 3 and 0 6 s 6 n, the as(D1
n) is as follows.

n

s
0 1 2 3 4 5 6 7 8 9 10 a(D1

n)

3 1 3 5 3 12

4 1 4 9 14 9 37

5 1 5 14 28 42 28 118

6 1 6 20 48 90 132 90 387

7 1 7 27 75 165 297 429 297 1298

8 1 8 35 110 275 572 1001 1430 1001 4433

9 1 9 44 154 429 1001 2002 3432 4862 3432 15366

10 1 10 54 208 637 1638 3640 7072 11934 16796 11934 53924

Based on the above data, we can observe that

(1) a(D1
n) is the sequence A280891 in Sloane’s OEIS [58].

(2) an(D1
n) = an−2(D1

n) = an−2(An) is the sequence A000245.
(3) an−1(D1

n) = an(An) is just the Catalan number sequence.

Theorem 6.17. Assume that Θ3 := A1
3 and n > 5, then

(1) as(Θn) = as(Θn−1) + as−1(Θn) for any 1 6 s 6 n− 3.
(2) an−2(Θn) = an−2(Θn−1) + an−3(Θn) + an−3(An−3).
(3) an−1(Θn) = an−1(Θn−1)+an−1(D1

n−1)+2an−1(An−1)+
∑n−1

i=4 ai−1(Θi−1)·an−i(An−i).

Proof. The first statement and the second statement are similar to Lemma 6.4 and 6.5.
Let T ∈ Qn−1(Θn), there exists exactly one idempotent ei such that Tei = 0.

• If i = 1, then µν = 0 and T is a τ -tilting D1
n−1-module.

• If i = 2 or 3, then T becomes a τ -tilting An−1-module.
• If 4 6 i 6 n− 1, then we can divide T into a direct sum T1 ⊕ T2 such that T1 is a
τ -tilting Θi−1-module and T2 is a τ -tilting An−i-module.
• If i = n, then T is a τ -tilting Θn−1-module.

The above is a complete classification. �

We don’t have a good method to calculate an(Θn), but with the structure of ΓΘn

mentioned at the beginning of this subsection, we have the following conjecture.

Conjecture 6.18. For any n > 5, we have an(Θn) = an(Dn)− an−1(An−1).
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In fact, Example 6.3 and Theorem 6.17 imply that a3(Θ3) = a3(D3) − a2(A2) and
a4(Θ4) = a4(D4)−a3(A3). Similarly, we have a3(Θ4) = a3(D4) and a4(Θ5) = a4(D5), then
it is natural to conjecture that an−1(Θn) = an−1(Dn) for any n > 6.

Moreover, one can easily check by Theorem 6.17 (3) that for any n > 5,

an−1(Θn) = an−1(Dn)

if and only if

an(Θn) = an(Dn)− an−1(An−1).

Remark 6.19. Assume that n > 3, 0 6 s 6 n and Conjecture 6.18 is true, the as(Θn) is
as follows.

n

s
0 1 2 3 4 5 6 7 8 9 10 a(Θn)

3 1 3 5 3 12

4 1 4 10 16 15 46

5 1 5 15 33 55 63 172

6 1 6 21 54 114 196 252 644

7 1 7 28 82 196 406 714 990 2424

8 1 8 36 118 314 720 1476 2640 3861 9174

9 1 9 45 163 477 1197 2673 5445 9867 15015 34892

10 1 10 55 218 695 1892 4565 10010 20306 37180 58344 133276

Appendix A.

(1) All τ -tilting Λ4-modules are

2
1

4
3⊕ 2

4⊕ 3
4⊕ 4 2

1

4
3⊕ 2

4⊕ 3
4⊕ 2

4
3

2
1

4
3⊕ 1

3⊕ 1
2⊕ 2

1
3 2

1

4
3⊕ 1

2⊕ 2
4⊕ 2

2
1

4
3⊕ 2

4⊕ 1
2⊕ 4 2

1

4
3⊕ 2

4⊕ 2⊕ 2
4
3

2
1

4
3⊕ 1

3⊕ 3⊕ 2
1
3 2

1

4
3⊕ 1

3⊕ 3
4⊕ 3

2
1

4
3⊕ 1

3⊕ 3
4⊕ 4 2

1

4
3⊕ 3⊕ 3

4⊕ 2
4
3

2
1

4
3⊕ 2⊕ 1

2⊕ 2
1
3

1⊕ 1
3⊕ 1

2⊕ 4

2
1

4
3⊕ 1

3⊕ 1
2⊕ 4 2

1

4
3⊕ 3⊕ 2⊕ 2

4
3

2
1

4
3⊕ 2⊕ 3⊕ 2

1
3

(2) All support τ -tilting Λ4-modules with support-rank 3 are

1
3⊕ 1

2⊕ 2
1
3

2⊕ 3⊕ 2
1
3

3⊕ 3
4⊕ 2

4
3 1

3⊕ 3
4⊕ 4 2

4⊕ 1
2⊕ 4 1⊕ 1

3⊕ 4

1
3⊕ 3⊕ 2

1
3

2
4⊕ 3

4⊕ 2
4
3 3⊕ 2⊕ 2

4
3 2

4⊕ 3
4⊕ 4 2

4⊕ 1
2⊕ 2 1⊕ 1

2⊕ 4

2⊕ 1
2⊕ 2

1
3

2
4⊕ 2⊕ 2

4
3 1⊕ 1

3⊕ 1
2

1
3⊕ 3

4⊕ 3

(3) All support τ -tilting Λ4-modules with support-rank 0 6 s 6 2 are

3
4⊕ 4 2

4⊕ 4 1
2⊕ 2 1

3⊕ 3 1⊕ 4 1 4 0

3
4⊕ 3 2

4⊕ 2 1
2⊕ 1 1

3⊕ 1 2⊕ 3 2 3
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Appendix B.

(1) All τ -tilting A1
4

op
-modules are

1
2
3
⊕ 2

3⊕ 3
4⊕ 4

1
2
3
⊕ 3

4⊕ 1⊕ 4
1
2
3
⊕ 1

2⊕ 2⊕ 4
1
2
3
⊕ 2

3⊕ 2⊕ 4

1
2
3
⊕ 2

3⊕ 3
4⊕ 3

1
2
3
⊕ 3

4⊕ 1⊕ 3
1
2
3
⊕ 1

2⊕ 1⊕ 4

(2) All support τ -tilting A1
4

op
-modules with support-rank 3 are

1
2
3
⊕ 1

2⊕ 1
1
2
3
⊕ 1

2⊕ 2
1
2
3
⊕ 2

3⊕ 3
1
2
3
⊕ 2

3⊕ 2
1
2
3
⊕ 1⊕ 3 1

2⊕ 2⊕ 4

4⊕ 1
2⊕ 1 2

3⊕ 3
4⊕ 4 3

4⊕ 2
3⊕ 3 1⊕ 3

4⊕ 4 3
4⊕ 1⊕ 3 2

3⊕ 2⊕ 4

(3) All support τ -tilting A1
4

op
-modules with support-rank 0 6 s 6 2 are

3
4⊕ 4 2

3⊕ 3 1
2⊕ 2 1⊕ 3 2⊕ 4 1 2

3
4⊕ 3 2

3⊕ 2 1
2⊕ 1 1⊕ 4 0 3 4

Appendix C.

(1) All τ -tilting D1
4-modules are

1
3
4
⊕ 2

3
4⊕ 2⊕ 4

1
3
4
⊕ 2

3
4⊕ 3

2⊕ 3
4

1
3
4
⊕ 2⊕ 1⊕ 4

1
3
4
⊕ 2

3
4⊕ 3

4⊕ 4
1
3
4
⊕ 3⊕ 3

2⊕ 3
4

1
3
4
⊕ 2⊕ 1⊕ 1

3

1
3
4
⊕ 2

3
4⊕ 2⊕ 3

2

1
3
4
⊕ 3⊕ 3

2⊕ 1
3

1
3
4
⊕ 2⊕ 3

2⊕ 1
3

(2) All support τ -tilting D1
4-modules with support-rank 3 are

1
3
4
⊕ 1⊕ 4

1
3
4
⊕ 1

3⊕ 3
1
3
4
⊕ 1

3⊕ 1
1
3
4
⊕ 3

4⊕ 4
1
3
4
⊕ 3

4⊕ 3

2
3
4⊕ 2⊕ 4

2
3
4⊕ 2⊕ 3

2 2⊕ 1
3⊕ 1 3

2⊕ 1
3⊕ 3 3

2⊕ 3
4⊕ 3

2
3
4⊕ 3

4⊕ 4
2
3
4⊕ 3

4⊕ 3
2 2⊕ 1

3⊕ 3
2 1⊕ 2⊕ 4

(3) All support τ -tilting D1
4-modules with support-rank 0 6 s 6 2 are

3
4⊕ 4 3

2⊕ 2 1
3⊕ 3 1⊕ 2 2⊕ 4 1 2

3
4⊕ 3 3

2⊕ 3 1
3⊕ 1 1⊕ 4 0 3 4
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