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INVOLUTIVE LATIN SOLUTIONS OF THE YANG-BAXTER EQUATION

MARCO BONATTO, MICHAEL KINYON, DAVID STANOVSKÝ, AND PETR VOJTĚCHOVSKÝ

Abstract. Wolfgang Rump showed that there is a one-to-one correspondence between nondegenerate
involutive set-theoretic solutions of the Yang-Baxter equation and binary algebras in which all left
translations Lx are bĳections, the squaring map is a bĳection, and the identity (xy)(xz) � (yx)(yz)
holds. We call these algebras rumples in analogy with quandles, another class of binary algebras
giving solutions of the Yang-Baxter equation. We focus on latin rumples, that is, on rumples in which
all right translations are bĳections as well.

We prove that an affine latin rumple of order n exists if and only if n � p
p1 k1

1 · · · p
pm km
m for some

distinct primes pi and positive integers ki . A large class of affine solutions is obtained from nonsingular
near-circulant matrices A, B satisfying [A, B] � A2. We characterize affine latin rumples as those latin
rumples for which the displacement group generated by LxL−1

y is abelian and normal in the group
generated by all translations.

We develop the extension theory of rumples sufficiently to obtain examples of latin rumples that
are not affine, not even isotopic to a group. Finally, we investigate latin rumples in which the dual
identity (zx)(yx) � (zy)(xy) holds as well, and we show, among other results, that the generators
LxL−1

y of their displacement group have order dividing four.

1. Introduction

The quantum Yang-Baxter equation is one of the fundamental equations of mathematical
physics. A set-theoretic solution of the Yang-Baxter equation over a set X is a mapping r : X × X →
X × X such that

(YB) (r × 1)(1 × r)(r × 1) � (1 × r)(r × 1)(1 × r)

holds as an equality of mappings X × X × X → X × X × X. The study of set-theoretic solutions
of (YB) was initiated by Drinfeld [9] and it has resulted in a rich line of research devoted to the
existence and classification of set-theoretic solutions of various kinds.

The space of set-theoretic solutions is vast, containing classical algebraic structures such as
monoids, distributive lattices and certain self-distributive structures, as well as classes of algebras
that have only recently begun to receive attention.

A set-theoretic solution r � (r1 , r2) of (YB) is

• left nondegenerate if for each x ∈ X, the mapping y 7→ r1(x , y) is a permutation of X;
• right nondegenerate if for each y ∈ X, the mapping x 7→ r2(x , y) is a permutation of X;
• nondegenerate if r is both left and right nondegenerate;
• bĳective if r is a permutation of X × X;
• involutive if r2

� idX×X .

Date: October 8, 2019.
2000 Mathematics Subject Classification. Primary: 16T25. Secondary: 20N05.
Key words and phrases. Quantum Yang-Baxter equation, nondegenerate involutive solution, involutive latin solution,

cycle set, affine quasigroup.
M. Kinyon partially supported by Simons Foundation Collaboration Grant 359872. D. Stanovský partially supported

by GAČR grant 18-20123S. P. Vojtěchovský partially supported by 2019 PROF grant of the University of Denver.
1

http://arxiv.org/abs/1910.02148v1


Bĳective nondegenerate solutions correspond to biracks [12, 10], while involutive nondegenerate
solutions correspond to nondegenerate cycle sets [33].

An algebraic definition of a nondegenerate cycle set can be given as follows. A left quasigroup is
a binary algebra (X, ·) in which all left translations Lx : y 7→ x y are bĳections of X. A cycle set is
then a left quasigroup (X, ·) in which the identity

(Rℓ) (x · y) · (x · z) � (y · x) · (y · z)

holds. This can also be conveniently expressed using left translations, namely as

(R′
ℓ
) Lx·yLx � Ly·xLy .

A binary algebra (X, ·) is uniquely 2-divisible if the squaring map

σ : X → X; x 7→ x · x � x2

is a bĳection of X. A cycle set X is nondegenerate if it is uniquely 2-divisible.
We propose to rename nondegenerate cycle sets as rumples, both to acknowledge Rump’s con-

tributions and to highlight the similarity of rumples to quandles. Thus, a rumple is a uniquely
2-divisible left quasigroup satisfying (Rℓ).

Several structures, algebraic or otherwise, have been developed to construct and classify solu-
tions of (YB). For example, bĳective 1-cocycles [11], I-type structures [4, 19], cycle sets [7, 33, 39]
and braces [6, 16, 34] all stem from the study of involutive, nondegenerate solutions. Braces have
been generalized to skew-braces [20] for bĳective, nondegenerate solutions. Skew braces have been
generalized to semi-braces [5] for left nondegenerate solutions.

Many rumples of a combinatorial flavor are obtained from so-called multipermutational solu-
tions of (YB); they include the 2-reductive medial quandles studied in [23]. We are more interested
in rumples that are algebraically connected or, even more strongly, that are quasigroups. Since the
multiplication tables of finite quasigroups are precisely latin squares, it is customary to designate
quasigroups within various classes of algebras by the adjective latin, cf. latin quandles. The main
results of this paper are concerned with latin rumples.

We conclude this introduction with a summary of the paper. In §2, we introduce additional
notation and terminology, and besides adumbrating Rump’s basic results [33] in our preferred
notation and terminology, we also discuss how rumples interact with other kinds of set-theoretic
solutions of (YB), such as biracks, racks, biquandles and quandles. In the brief §3, we build upon
Rump’s results and show that there is a one-to-one correspondence between latin rumples and
involutive, nondegenerate solutions r � (r1 , r2) of (YB) in which both r1 and r2 are quasigroups.

In §4, we give a thorough study of affine latin rumples. We answer the question for which finite
orders n there exist affine latin rumples (see Theorem 4.11), we obtain a class of latin rumples from
matrices A, B ∈ GLp(p) that are close to circulant matrices and satisfy [A, B] � A2 or equivalently,
[B ,A−1] � I. This last equation is the Heisenberg commutation relation, and so finding solutions
of (YB) based on such matrices is essentially the same as classifying finite dimensional modules
of the first Weyl algebra over finite fields with invertible generators ([27], p.7). We do not pursue
this connection any further here, but consider it to be an interesting possible future direction for
the study of affine rumples. We conclude the section by paying close attention to the displacement
group and using it to characterize affine latin rumples within the class of all latin rumples (see
Theorem 4.18).

In §5, we study latin rumples isotopic to groups (a class that properly contains affine latin
rumples) and we again characterize them in terms of their displacement groups (see Theorem 5.3).
In §6 we develop the theory of central extensions of latin rumples and we construct latin rumples
that are not affine, nor even isotopic to a group. Finally, in §7 we study latin rumples which satisfy
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not only the identity (Rℓ) but also its mirror image

(Rr) (z · x) · (y · x) � (z · y) · (x · y) ,

or equivalently,

(R′
r) Ry·xRx � Rx·yRy .

2. Rumples

2.1. Quasigroup properties. In a left quasigroup (X, ·), we denote by x\y the unique solution
u ∈ X to the equation x · u � v, and refer to the binary operation \ as left division. Then

(2.1) x · (x\y) � y � x\(x · y)

holds for every x, y ∈ Q. Conversely, any algebra (X, ·, \) satisfying (2.1) is a left quasigroup
with left division \. A homomorphism of left quasigroups (X1, ·1, \1) → (X2, ·2, \2) is a mapping
f : X1 → X2 satisfying f (x ·1 y) � f (x) ·2 f (y) for every x, y ∈ X. It then follows that f (x\1 y) �
f (x)\2 f (y), too.

Dually, a right quasigroup is a binary algebra (X, ·) in which all right translations Rx : y → yx are
bĳections of X. Then the unique solution v ∈ X to v · x � y will be denoted by y/x. Right division
satisfies the identities (x · y)/y � x � (x/y) · y. A quasigroup is a left quasigroup that is also a right
quasigroup.

We adopt the following notational convention for quasigroups. The multiplication operation
will be denoted by both juxtapositon and by ·. The · multiplication is less binding than the division
operations, which are in turn less binding than juxtapositon. For instance, x/yz · uv abbreviates
(x/(y · z)) · (u · v).

The left multiplication group of a left quasigroup X is the permutation group generated by all left
translations, i.e.,

LMlt(X) � 〈Lx : x ∈ X〉 .

If X is a quasigroup, we also define the multiplication group as the permutation group generated by
all left and right translations, i.e.,

Mlt(X) � 〈Lx , Rx : x ∈ X〉 .

Two binary algebras (X1, ·1), (X2, ·2) are isotopic if there are bĳections f , g, h : X1 → X2 such that
f (x) ·2 g(y) � h(x ·1 y) holds for all x, y ∈ X1.

2.2. Rump left quasigroups and rumples. A left quasigroup satisfying (Rℓ) will be called a Rump
left quasigroup. Thus Rump left quasigroups are the cycle sets of [33], and also the RC quasigroups of
[7] (but note that RC quasigroups need not be quasigroups).

If (X, ·) is a uniquely 2-divisible binary algebra, then for every x ∈ X there exists a unique
element x1/2 ∈ X, the square root of x, such that x1/2x1/2

� x. As already mentioned in §1, we
define a rumple to be a uniquely 2-divisible, Rump left quasigroup (i.e., a nondegenerate cycle set
in Rump’s own terminology).

Rump proved that, in our terminology, a finite Rump left quasigroup is a rumple, that is, is
uniquely 2-divisible [33, Thm. 2]. Rump’s proof, though short on its own, uses deep structure
theory. Here we give a short combinatorial proof that uses nothing more than the left Rump
identity (Rℓ).

Theorem 2.1. Let (X, ·) be a Rump left quasigroup such that LMlt(X) is a torsion group. Then the squaring
map σ : X → X is surjective.
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Proof. Let (X, ·) be a Rump left quasigroup and fix c ∈ X. Define a sequence (cn)n≥0 by setting
c0 � c and cn � (cn−1\c)cn−1 for n ≥ 1. Then

c2
n � (cn−1\c)cn−1 · (cn−1\c)cn−1 � cn−1(cn−1\c) · cn−1cn−1 � Lc(c

2
n−1)

for every n ≥ 1, using (Rℓ) in the second equality. By induction, we have c2
n � Ln+1

c (c) for
every n ≥ 0. Since LMlt(X) is a torsion group, there exists n ≥ 0 such that Ln+1

c � idX . Then
σ(cn) � c2

n � Ln+1
c (c) � c. �

Corollary 2.2 (Rump [33, Thm. 2]). Every finite Rump left quasigroup is a rumple.

The number of rumples up to isomorphism has been recorded for small orders in the On-Line
Encyclopedia of Integer Sequences [35] as sequence A290887:

order 1 2 3 4 5 6 7 8
number of rumples 1 2 5 23 88 595 3456 34528

2.3. Rumples and the Yang-Baxter equation. The left component function r1 of a left nondegen-
erate solution r � (r1 , r2) of (YB) is a left quasigroup and thus has its own left division operation.
It turns out to be useful to view r1 itself as the left division operation r1(x , y) � x\y of a left
quasigroup (X, ·, \). Put another way, it is more convenient to work with the operation · defined
by x · y � z if and only if r1(x , z) � y instead of r1(x , y) � z. In the special case of involutive left
nondegenerate solutions, the right component function r2 must also have a specific form.

Lemma 2.3. Let (X, ·, \) be a left quasigroup. Then the mapping r : X × X → X × X defined by
r(x , y) � (x\y , r2(x , y)) is involutive if and only if r2(x , y) � (x\y)x for all x , y ∈ X.

Proof. If r2
� idX×X , then (x\y)\r2(x , y) � x and so r2(x , y) � (x\y)x. Conversely, if r2(x , y) �

(x\y)x, then it is straightforward to check that r2
� idX×X . �

The following result explains why one is led naturally to the left Rump identity (Rℓ) from
set-theoretic solutions of (YB).

Theorem 2.4 (Rump [33, Prop. 1]). There is a one-to-one correspondence between Rump left quasigroups
and involutive left nondegenerate solutions of the Yang-Baxter equation.

(1) If (X, ·) is a Rump left quasigroup, then r(x , y) � (x\y , (x\y)x) is an involutive left nondegenerate
solution of (YB).

(2) If r(x , y) � (r1(x , y), r2(x , y)) is an involutive left nondegenerate solution of (YB), then the
operation · given by x · y � z ⇐⇒ r1(x , z) � y defines a Rump left quasigroup (X, ·).

The correspondence of Theorem 2.4 restricts to rumples and nondegenerate solutions.

Theorem 2.5 (Rump [33, Props. 1 and 2]). There is a one-to-one correspondence between rumples and
involutive nondegenerate solutions of the Yang-Baxter equation.

(1) If (X, ·) is a rumple, then r(x , y) � (x\y , (x\y)x) is an involutive nondegenerate solution of (YB).
(2) If r(x , y) � (r1(x , y), r2(x , y)) is an involutive nondegenerate solution of (YB), then the operation

· given by x · y � z ⇐⇒ r1(x , z) � y defines a rumple (X, ·).

Note that involutive solutions are obviously bĳective. Bĳective nondegenerate solutions of the
Yang-Baxter equation are called biracks. Biracks can be used to construct coloring invariants of knots
and links [10, Chapter 5]. Invariance with respect to the 3rd Reidemeister move is equivalent to the
Yang-Baxter equation, while the invariance with respect to the 2nd Reidemeister move is ensured
by bĳectivity and nondegeneracy. To achieve invariance with respect to the 1st Reidemeister move,
it suffices to impose the condition

(2.2) there is a permutation t of X such that r(t(x), x) � (t(x), x),
4



cf. [30]. A biquandle is a birack satisfying (2.2). See [10] or [12] for an alternative axiomatization of
biracks and biquandles based on exchange laws.

Via the correspondence of Theorem 2.5, rumples form a subclass of biquandles:

Proposition 2.6. Let X be a rumple and let r(x , y) � (x\y , (x\y)x) be the corresponding nondegenerate
involutive solution. Then (X, r) is a biquandle.

Proof. It remains to verify the condition (2.2). Let t(x) � σ−1(x) � x1/2. Then r(t(x), x) � r(x1/2, x) �
(x1/2\x , (x1/2\x)x1/2) � (x1/2 , x) � (t(x), x). �

A rack is a birack r � (r1 , r2) satisfying r2(x , y) � x. Algebraically, a rack is a left quasigroup
satisfying the left self-distributive law

(x y)(xz) � x(yz) .

We point out that if a left quasigroup (X, ·) is a rack with left division \, then (X, \) is also a rack and
conversely. Hence the correspondence between racks and bĳective nondegenerate solutions with
r2(x , y) � x can be stated in terms of left division operations, analogously to the correspondence
in Theorem 2.5. Note that for racks, the condition (2.2) is equivalent to idempotence xx � x.
Idempotent racks are known as quandles [25, 31].

The definitions of racks and Rump left quasigroups are syntactically very similar but they behave
quite differently as algebraic structures.

The analogy between quandles and rumples can be further strengthened by the following
compilation of two results in the literature; see Stein [38] for finite latin quandles and Etingof,
Schedler and Soloviev [11, Theorem 2.15] for finite rumples.

Proposition 2.7. If X is a finite latin quandle or a finite rumple, then the group LMlt(X) is solvable.

2.4. Intersection of rumples and quandles. There is a class of natural examples in the intersection
of quandles and rumples:

Example 2.8. The conjugation quandle over a group G satisfies (Rℓ) if and only if G is nilpotent of
class 2.

It is easy to characterize the intersection of rumples and racks. A left quasigroup is called
2-reductive if it satisfies the identity (x y)z � yz. Expressing the Rump identity by (R′

ℓ
), i.e.,

LxyLx � LyxLy, left distributivity by LxyLx � LxLy, and 2-reductivity by Lxy � Ly, we immediately
obtain:

Proposition 2.9. For a left quasigroup, any two of the following three conditions imply the third:
• left distributivity;
• left Rump identity;
• 2-reductivity.

The intersection of the classes of Rump left quasigroups and racks is the class of 2-reductive racks.

In the context of the Yang-Baxter equation, the intersection of rumples and racks corresponds to
multipermutational solutions of level 2 with r2(x , y) � x. Following [11, §3.2], a solution (X, r) is
called multipermutational of level n if the n-th retract Retn(X, r) is trivial. (Level 2 has been studied
extensively in [18, 24]). A rack is multipermutational of level 2 if and only if Lyx � Lzx for every x,
y, z, which is in turn equivalent to 2-reductivity, since Lyx � Lxx � Lx.

The intersection of rumples and quandles is the class of 2-reductive quandles which was studied
in [23, §6, 8], where a general construction was given and 2-reductive quandles were counted up
to isomorphism for all orders up to 16.

See [28] on the interplay between self-distributivity and other types of solutions to the Yang-
Baxter equation.
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2.5. ∆-bĳectivity. A binary algebra (X, ·) is said to be ∆-bĳective if the mapping

∆(·) : X × X → X × X, (x , y) 7→ (x y , yx)

is bĳective. In this subsection we show that a Rump left quasigroup is ∆-bĳective if and only if it
is a rumple. The idea comes from [33] but our proofs are different.

Lemma 2.10. Let (X, ·) be a ∆-bĳective binary algebra. Then ∆−1
(·)

� ∆(∗) for some binary operation ∗ on X.

Proof. Write ∆−1
(·)
(x , y) � (x ∗ y , x ⋄ y). The equation ∆(·)∆−1

(·)
� idX×X then says

(2.3) (x ∗ y)(x ⋄ y) � x and (x ⋄ y)(x ∗ y) � y ,

while the first component of ∆−1
(·)
∆(·) � idX×X yields (x y) ∗ (yx) � x. Replacing x with x ⋄ y and y

with x ∗ y, we get
x ⋄ y � [(x ⋄ y)(x ∗ y)] ∗ [(x ∗ y)(x ⋄ y)] � y ∗ x ,

using (2.3) in the second equality. �

Lemma 2.11. Every ∆-bĳective binary algebra is uniquely 2-divisible.

Proof. Let ∗ be the binary operation on X such that ∆(∗) � ∆−1
(·)

(by Lemma 2.10). The components of
the equations∆(·)∆(∗)(x , x) � (x , x) and∆(∗)∆(·)(x , x) � (x , x) give (x∗x)(x∗x) � x and (xx)∗(xx) � x.
Thus x ∗ x is the unique square root of x in (X, ·). �

The converse implication of Lemma 2.11 is not true for general binary algebras, as witnessed by
a nontrivial cyclic group of odd order.

Lemma 2.12. Every rumple (X, ·) is ∆-bĳective and

∆
−1
(·)
(x , y) � ((x\y2)1/2 , (y\x2)1/2)

holds for all x , y ∈ X.

Proof. Set x ∗ y � (x\y2)1/2. We will show that ∆−1
(·)

� ∆(∗). Consider the identity yx · yx � x y · xx,

a consequence of (Rℓ). This is equivalent to (x y)\(yx)2 � x2, and then taking square roots, we
have (x y) ∗ (yx) � x. Reversing the roles of x and y, we also have (yx) ∗ (x y) � y. This establishes
∆(∗)∆(·) � idX×X .

Next set u � (x\y2)1/2. Then

(2.4) (u\x)u · (u\x)z � u(u\x) · uz � x · uz ,

using (Rℓ). Taking z � u, we have [(u\x)u]2 � x · u2
� y2 and so (u\x)u � y. Using this in (2.4),

we have y · (u\x)z � x · uz. Setting z � u\x, we get y · (u\x)2 � x2, and so (u\x)2 � y\x2. Taking
square roots and then multiplying on the left by u, we obtain (x\y2)1/2(y\x2)1/2

� x. Reversing
the roles of x and y, we also have (y\x2)1/2(x\y2)1/2

� y. This establishes ∆(·)∆(∗) � idX×X . �

Combining Lemmas 2.11 and 2.12, we obtain:

Proposition 2.13. A Rump left quasigroup is ∆-bĳective if and only if it is a rumple.

Remark 2.14. Let (X, ·) be a rumple. Motivated by the particular form of∆−1
(·)

in Lemma 2.12, define

X∂
� (X, ∗) by

x ∗ y � (x\y2)1/2 .

Then X∂ is a rumple, called the dual rumple of X. The left division in X∂ is x\∗y � (x y2)1/2 and
the unique square root of x in X∂ is xx. If X is latin, then so is X∂ with x/∗y � y2/x2. Finally,
(X∂)∂ � X but the two rumples X and X∂ are not necessarily isomorphic. See [7] for more details.
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2.6. The displacement group. Displacement groups have proven to be very useful in the theory
of quandles (see [2, 22]). It will become apparent that they are also important for rumples.

Let X be a left quasigroup. The positive displacement group Dis+(X) and the negative displacement
group Dis−(X) are the subgroups of LMlt(X) defined, respectively, by

Dis+(X) � 〈LxL−1
y : x , y ∈ X〉 and Dis−(X) � 〈L−1

x Ly : x , y ∈ X〉 .

The displacement group Dis(X) is the group

Dis(X) � 〈LxL−1
y , L

−1
x Ly : x , y ∈ X〉 .

Note that for a fixed e ∈ X, we have Dis+(X) � 〈LxL−1
e : x ∈ X〉 and Dis−(X) � 〈L−1

e Lx : x ∈ X〉

since LxL−1
y � LxL−1

e (LyL−1
e )−1 and L−1

x Ly � (L−1
e Lx)

−1L−1
e Ly.

The Rump identity (R′
ℓ
) can be restated as LxL−1

y � L−1
xyLyx, hence, for Rump left quasigroups,

Dis+(X) ≤ Dis−(X) � Dis(X) .

Lemma 2.15. Let X be a rack or a rumple. Then Dis(X) � Dis+(X) � Dis−(X).

Proof. The argument is easy for racks. We have LxLy � LxyLx and hence LyL−1
x � L−1

x Lxy, which
implies Dis+(X) ≤ Dis−(X). Also, L−1

x Ly � L−1
x Lx(x\y) � Lx\yL−1

x , which implies Dis−(X) ≤ Dis+(X).
Suppose now that X is a rumple. From the remark preceding the lemma, Dis+(X) ≤ Dis−(X).

Using ∆-bĳectivity, for every a, b ∈ X, there exist x, y ∈ X such that x y � a and yx � b. Thus
L−1

a Lb � LxL−1
y by (R′

ℓ
) and we get Dis−(X) ≤ Dis+(X). �

Problem 2.16. If X is a Rump left quasigroup, does Dis+(X) � Dis−(X)?

Proposition 2.17. Let X be a left quasigroup such that Dis(X) � Dis+(X) � Dis−(X). Then:

(1) Dis(X) E LMlt(X).
(2) LMlt(X)/Dis(X) is a cyclic group.
(3) Dis(X) � {Lk1

x1
. . . Lkn

xn
: 0 ≤ n , xi ∈ X,

∑
ki � 0}.

Proof. (1) It is sufficient to prove that every conjugate of LxL−1
y by L±1

z is in Dis(X). Clearly,
L−1

z LxL−1
y Lz ∈ Dis(X). For the other conjugate, write LxL−1

y � L−1
x1

Ly1 · · · L−1
xn

Lyn for some x1, . . . , xn,
y1, . . . , yn ∈ X, and regroup LzLxL−1

y L−1
z � (LzL−1

x1
)(Ly1 L−1

x2
) · · · (Lyn L−1

z ) ∈ Dis(X).
(2) Fix e ∈ X. For every x ∈ X, we have L−1

x Le ∈ Dis(X), and thus LxDis(X) � LeDis(X). Con-
sequently, for α � Lk1

x1 . . . L
kn
xn

∈ LMlt(X) we have αDis(X) � Lk1+···+kn
e Dis(X), so LMlt(X)/Dis(X) �

〈LeDis(X)〉.
(3) Let S � {Lk1

x1
. . . Lkn

xn
: 0 ≤ n , xi ∈ X,

∑
ki � 0}. Every α ∈ S can be written as α � Lk1

x1
. . . Lkn

xn
,

where ki � ±1 for every 1 ≤ i ≤ n. We prove by induction on n that α ∈ Dis(X). If n � 2, we
are done by the definition of Dis(X), so suppose that n > 2. If k1 � kn then there must be an
m such that 1 < m < n and

∑m
i�1 ki � 0 �

∑n
i�m+1 ki . By the induction hypothesis, α is then a

product of two elements of Dis(X). Finally suppose that k1 � −kn . Then
∑n−1

i�2 ki � 0 and hence
α � LxβL−1

y or α � L−1
x βLy for some β ∈ Dis(X) and some x , y ∈ X. In the former case, we can write

β � L−1
u1

Lv1 · · · L−1
us

Lvs for some ui, vi and observe that α � LxβL−1
y is a product of factors of the form

LaL−1
b

, while in the latter case we can write β � Lu1 L−1
v1

· · · Lus L−1
vs

and observe that α � L−1
x βLy is a

product of factors of the form L−1
a Lb. �

We deduce the following result for racks and rumples. For racks, this was already known, cf.
[22, Prop. 2.1].

Proposition 2.18. The conditions (1)–(3) of Proposition 2.17 hold when X is a rack or a rumple.
7



3. Latin rumples

Recall that a rumple is a uniquely 2-divisible left quasigroup satisfying the identity (Rℓ). A latin
rumple is a rumple that is a quasigroup. It is not necessary to assume unique 2-divisibility in the
definition of a latin rumple:

Proposition 3.1. A binary algebra (X, ·) is a latin rumple if and only if it is a quasigroup satisfying (Rℓ).
Furthermore, in a latin rumple (X, ·), the squaring map is given by σ � Ree Le R−1

e , where e is any element
of X.

Proof. Suppose that (X, ·) is a quasigroup satisfying (Rℓ) and let e ∈ X. The bĳection σ � Ree Le R−1
e

then satisfies
σ(x) � e(x/e) · ee � (x/e)e · (x/e)e � x2,

where we have used (Rℓ) in the second step. �

Latin rumples form a very natural class of set-theoretic solutions of the Yang-Baxter equation.

Theorem 3.2. There is a one-to-one correspondence between latin rumples and involutive solutions r �

(r1 , r2) of the Yang-Baxter equation in which both r1, r2 are quasigroup operations.

Proof. Let (r1 , r2) : X × X → X × X be an involutive solution of the Yang-Baxter equation in which
both r1, r2 are quasigroup operations. By Theorem 2.5, the operation · defined by x y � z ⇐⇒
r1(x , z) � y defines a rumple (X, ·). Since r1 is a quasigroup (not just a left quasigroup), (X, ·) is
latin.

Conversely, if (X, ·) is a latin rumple then Theorem 2.5 shows that r � (r1 , r2) with r1(x , y) �
x\y and r2(x , y) � (x\y)x is an involutive nondegenerate solution, and so (X, r1) � (X, \) is a
left quasigroup and (X, r2) is a right quasigroup. Since (X, ·) is a quasigroup, (X, r1) is also a
quasigroup. To show that r2 is a left quasigroup, we note that the equation (x\y)x � z has a
unique solution y in X, namely y � x(z/x). �

Example 3.3. An exhaustive search using the finite model builder Mace4 [32] reveals that up to
isomorphism there are only two nontrivial latin rumples of order less than 12, namely

X4,1 0 1 2 3
0 0 1 3 2
1 2 3 1 0
2 1 0 2 3
3 3 2 0 1

and

X4,2 0 1 2 3
0 1 3 0 2
1 0 2 1 3
2 2 0 3 1
3 3 1 2 0

.

It turns out that both X4,1 and X4,2 are self-dual in the sense of Remark 2.14, and both satisfy the
right Rump identity (Rr).

We will need additional structure theory to find more latin rumples.

4. Affine latin rumples

4.1. Linear and affine representations. Let (G,+) be an abelian group with identity element 0, let
ϕ and ψ be endomorphisms of (G,+), and let c ∈ G. Then the binary algebra (G, ∗) defined by

(4.1) x ∗ y � ϕ(x) + ψ(y) + c

is called affine over (G,+). If c � 0, it is called linear over (G,+). We will denote the algebra (G, ∗) by
Aff(G,+, ϕ, ψ, c) or by Aff(G, ϕ, ψ, c) if the group operation on G is understood from the context.

Note that Aff(G,+, ϕ, ψ, c) is a left quasigroup if and only if ψ ∈ Aut(G,+), and it is latin if and
only if ϕ, ψ ∈ Aut(G,+). Also note that (4.1) shows that an affine quasigroup Aff(G,+, ϕ, ψ, c) is
isotopic to the abelian group (G,+).
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An algebra (G, ∗) is called affine (resp. linear) if it is affine (resp. linear) over some abelian group
(G,+). In the literature, affine quasigroups are also called central or T-quasigroups [36, 37]. (We will
resist the urge to use the T-terminology for Rump quasigroups.)

Our definitions of linear and affine binary algebras are compatible with the definitions of linear
and affine solutions of the Yang-Baxter equation from [11, Section 3.1]. Formally, linear (affine)
nondegenerate involutive solutions correspond, in the sense of Theorem 2.5, to linear (affine)
rumples.

Proposition 4.1. An affine binary algebra Aff(G,+, ϕ, ψ, c) satisfies (Rℓ) if and only if

(4.2) [ϕ, ψ] � ϕψ − ψϕ � ϕ2.

If Aff(G,+, ϕ, ψ, c) is a quasigroup then (4.2) holds if and only if

(4.3) [ψ, ϕ−1] � 1,

which is further equivalent to

(4.4) [ϕ−1 , ψ−1] � ψ−2.

Proof. Let us write ϕx instead of ϕ(x), etc. For x, y, z ∈ G we have

(x ∗ y) ∗ (x ∗ z) � (ϕx + ψy + c) ∗ (ϕx + ψz + c) � ϕ2x + ϕψy + ϕc + ψϕx + ψ2z + ψc + c ,

while

(y ∗ x) ∗ (y ∗ z) � (ϕy + ψx + c) ∗ (ϕy + ψz + c) � ϕ2 y + ϕψx + ϕc + ψϕy + ψ2z + ψc + c.

Hence the identity (x ∗ y) ∗ (x ∗ z) � (y ∗ x) ∗ (y ∗ z) holds if and only if ϕ2u + ψϕu � ϕψu for
every u ∈ G. Multiplying ϕψ − ψϕ � ϕ2 by ϕ−1 from both sides, we obtain ψϕ−1 − ϕ−1ψ � 1.
Multiplying further by ψ−1 from both sides, we obtain ϕ−1ψ−1 − ψ−1ϕ−1

� ψ−2. �

Note that the constant c plays no role in Proposition 4.1.
As the following example shows, an affine rumple can admit multiple affine representations;

even the underlying abelian group is not necessarily determined up to isomorphism.

Example 4.2. The rumple with multiplication table

0 1 2 3
0 1 0 3 2
1 3 2 1 0
2 1 0 3 2
3 3 2 1 0

is isomorphic to both Aff(Z4 , 2,−1, 1) and Aff(Z2
2 ,
(

1 1
1 1

)
,
(

1 0
0 1

)
,
(

1
0

)
).

The situation is different for affine latin rumples, however, because for any affine quasigroup,
the underlying abelian group is uniquely determined. This follows from the fact that isotopic
groups are isomorphic [36, Prop. 1.4].

When classifying affine quasigroups (and affine latin rumples in particular) up to isomorphism,
the following theorem is very useful.

Theorem 4.3 (Drápal [8, Thm. 3.2]). Let Q � Aff(G,+, ϕ, ψ, c) and Q′
� Aff(G,+, ϕ′, ψ′, c′) be affine

quasigroups. Then Q is isomorphic to Q′ if and only if there are α ∈ Aut(G,+) and u ∈ Im(1 − ϕ − ψ)
such that ϕ′

� ϕα � αϕα−1, ψ′
� ψα � αψα−1 and c′ � α(c + u).
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When F is a field, the endomorphisms of the additive group (Fn ,+) can be identified with n × n
matrices with entries in F, as we already did in Example 4.2. In this context, we will denote the
generic endomorphisms ϕ and ψ by A and B, respectively, and (4.1) becomes x ∗ y � Ax + B y + c.

By Proposition 4.1, there is then an affine latin rumple over (Fn ,+) if and only if any of the
equivalent equations

[A, B] � A2 ,(4.5)

[B ,A−1] � I ,(4.6)

[A−1, B−1] � B−2(4.7)

have a solution in Aut(Fn ,+) � GLn(F). Here, (4.6) is a particular instance of the canonical
commutation relation used, for instance, in the matrix interpretation of the Heisenberg uncertainty
principle. It is also the defining relation of the (first) Weyl algebra [27, p.7], and so finding matrices
satisfying (4.3) is essentially the same as classifying modules over the Weyl algebra with the
constraint that the generators should be invertible matrices.

Lemma 4.4. Let F be a field and A, B ∈ GLn(F). If Aff(Fn ,+,A, B , c) is an affine latin rumple then the
matrices A, A2, B−1 and B−2 have trace 0.

Proof. From (4.5), we have tr(A2) � tr(AB)−tr(BA) � 0. Also, A � A−1A2
� A−1[A, B] � B−A−1BA,

and so tr(A) � tr(B) − tr(A−1BA) � 0. From (4.7), we have tr(B−2) � 0. Finally, B−1
� BB−2

�

B[A−1, B−1] � BA−1B−1 − A−1, and so tr(B−1) � 0. �

Example 4.5. A straightforward calculation in GAP [14] combining Proposition 4.1 and Theorem
4.3 allows us to determine all affine latin rumples over Z2

2, Z4
2, Z3

3 and Z2
4 × Z

2
2 up to isomorphism.

For the first three abelian groups, see Table 1. There are 18 affine latin rumples over the group
Z

2
4 × Z

2
2. Larger abelian groups that admit affine latin rumples are beyond the reach of standard

GAP routines.

4.2. The spectrum of affine latin rumples. For an abelian group G, let Nalr(G) be the number
of affine latin rumples over G up to isomorphism. For a positive integer n, let Nalr(n) be the
number of affine latin rumples of size n up to isomorphism. In this section we determine the
spectrum of finite affine latin rumples, that is, the set {n ∈ N : Nalr(n) > 0}. We also show that
Nalr(G) �

∏
p Nalr(Gp), where Gp are p-primary components of G; Nalr(Z

k
p) > 0 if and only if p

divides k; Nalr(Z
b1
pa1 × · · · × Zbr

par ) � 0 if p does not divide some bi; and Nalr(Zn) � 0.

Proposition 4.6. Let G �

∏
p Gp be a decomposition of a finite abelian group G into its p-primary

components Gp. Then Nalr(G) �
∏

p Nalr(Gp).

Proof. This is immediate from the fact that Aut(G) is isomorphic to
∏

p Aut(Gp). �

Given a permutation π of {1, . . . , n}, the associated permutation matrix Pπ is defined by

Pπ(x1, . . . , xn)
T
� (xπ(1) , . . . , xπ(n))

T .

Proposition 4.7. Let F be a field. There exists a solution A, B ∈ GLn(F) of the equation (4.5) if and only if
F has positive characteristic dividing n.

Proof. Suppose that A, B ∈ GLn(F) satisfy (4.5). From the equivalent identity (4.6) we see that
n � tr(I) � tr(BA−1) − tr(A−1B) � 0, which can happen only if F has positive characteristic
dividing n.

Conversely, suppose that F has positive characteristic dividing n. Let A � (ai, j) � Pπ for
π � (1, . . . , n)−1, i.e., ai+1,i � 1 � a1,n for all i � 1, . . . , n − 1 and ai, j � 0 otherwise. Let B � I − D,
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Table 1. Affine latin rumples of small orders

Aff
(
Z

2
2 ,
(

0 1
1 0

)
,
(

1 0
1 1

)
,
(

0
0

) )
Aff

(
Z

2
2 ,
(

0 1
1 0

)
,
(

1 0
1 1

)
,
(

1
0

) )

Aff

(
Z

4
2 ,

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
,

(
0 0 0 1
1 0 1 0
0 1 0 1
1 0 0 0

)
,

(
0
0
0
0

))
Aff

(
Z

4
2 ,

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
,

(
0 0 0 1
1 0 1 0
0 1 0 1
1 0 0 0

)
,

(
0
0
0
1

))

Aff

(
Z

4
2 ,

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
,

(
0 0 0 1
1 0 1 0
0 1 1 1
1 0 0 1

)
,

(
0
0
0
0

))
Aff

(
Z

4
2 ,

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
,

(
0 0 0 1
1 0 1 0
1 0 0 0
0 1 1 0

)
,

(
0
0
0
0

))

Aff

(
Z

4
2 ,

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
,

(
0 0 0 1
1 0 1 0
1 0 0 0
0 1 1 0

)
,

(
0
0
0
1

))
Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,

(
0 0 1 0
1 0 0 1
1 0 0 0
0 1 1 0

)
,

(
0
0
0
0

))

Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,

(
0 0 1 0
1 0 0 1
1 0 0 0
0 1 1 0

)
,

(
0
0
0
1

))
Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,

(
0 0 1 0
1 0 0 1
1 0 0 0
0 1 1 0

)
,

(
0
0
1
0

))

Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,

(
0 1 1 0
1 0 1 1
1 0 0 1
1 1 1 0

)
,

(
0
0
0
0

))
Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
,

(
0 1 1 0
1 0 1 1
1 0 0 1
1 1 1 0

)
,

(
0
0
0
1

))

Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0

)
,

(
0 0 1 0
1 0 0 1
1 0 1 0
0 1 1 1

)
,

(
0
0
0
0

))
Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0

)
,

(
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0

)
,

(
0
0
0
0

))

Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0

)
,

(
0 1 1 0
0 0 1 1
1 0 1 1
1 1 1 1

)
,

(
0
0
0
0

))
Aff

(
Z

4
2 ,

(
0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0

)
,

(
0 1 1 0
0 0 1 1
1 0 1 1
1 1 1 1

)
,

(
0
0
0
1

))

Aff
(
Z

3
3 ,
(

0 0 2
1 0 0
0 1 0

)
,
(

0 1 0
2 0 1
2 1 0

)
,
(

0
0
0

))
Aff

(
Z

3
3 ,
(

0 0 2
1 0 0
0 1 0

)
,
(

0 2 0
2 0 2
1 1 0

)
,
(

0
0
0

))
Aff

(
Z

3
3 ,
(

0 0 2
1 0 0
0 1 0

)
,
(

0 2 0
2 0 2
1 1 0

)
,
(

0
0
1

))
Aff

(
Z

3
3 ,
(

0 0 1
1 0 0
0 1 0

)
,
(

0 1 0
2 0 1
1 1 0

)
,
(

0
0
0

))
Aff

(
Z

3
3 ,
(

0 0 1
1 0 0
0 1 0

)
,
(

0 1 0
2 0 1
1 1 0

)
,
(

0
0
1

))
Aff

(
Z

3
3 ,
(

0 0 1
1 0 0
0 1 0

)
,
(

0 2 0
2 0 2
2 1 0

)
,
(

0
0
0

))

where D � (di, j) is the matrix defined by di+1,i � i for all i � 1, . . . , n − 1 and di, j � 0 otherwise.
Then

[B ,A−1] � (I − D)A−1 − A−1(I − D) � A−1D − DA−1
� I ,

where the last equality follows from the fact that A−1D is a diagonal matrix with diagonal
(1, 2, . . . , n − 1, 0), DA−1 is a diagonal matrix with diagonal (0, 1, 2, . . . , n − 1), and 0 − (n − 1) � 1
since the characteristic of F divides n. �

The following lemma is standard [26, Thms. 41 and 42]. Recall that a congruence of a quasigroup
(X, ·, \, /) is an equivalence relation ∼ on X such that x y ∼ uv, x\y ∼ u\v and x/y ∼ u/v whenever
x ∼ u and y ∼ v.

Lemma 4.8. Let X � Aff(G,+, ϕ, ψ, c) be an affine quasigroup. The congruences of X are in one-to-one
correspondence with subgroups of (G,+, 0) that are invariant under ϕ and ψ. Given a congruence ∼, the
corresponding subgroup is the equivalence class of ∼ containing 0. Given a subgroup H, the corresponding
congruence is defined by x ∼ y if and only if x − y ∈ H.

If X � Aff(G,+, ϕ, ψ, c) is an affine latin rumple and H is a subgroup of (G,+) invariant under
ϕ and ψ, we denote by X/H the factor of X modulo the congruence of X corresponding to H.
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Proposition 4.9. Let p be a prime and let X be an affine latin rumple over Zb1
pa1 × · · · × Z

br

par . Then each b1,
. . . , br is divisible by p.

Proof. Let G � Z
b1
pa1 × · · · × Zbr

par with a1 > a2 > · · · > ar . We may assume without loss of generality
that (X, ∗) � Aff(G, ϕ, ψ, 0) for someϕ,ψ ∈ Aut(G). The subset pG � {px : x ∈ G} is a characteristic
subgroup of G and hence invariant under ϕ and ψ. By Lemma 4.8, the rumple X/pG is affine over
the group G/pG � Zb1+···+br

p . By Proposition 4.7, p divides
∑r

i�1 bi.
The map x 7→ px is an endomorphism of X as p(x∗y) � p(ϕx+ψy) � ϕ(px)+ψ(p y) � (px)∗(p y).

The image pX is isomorphic to a quotient of X, and hence is affine over pG by Lemma 4.8. Applying
p repeatedly, we conclude that the rumple par X is affine over the group par G, which is isomorphic
to Zb1

pc1 × · · · × Z
br−1
pcr−1 for suitable c1, . . . , cr−1 > 0. As above, we deduce that p divides

∑r−1
i�1 bi.

Hence p divides br . Repeating the above argument with par X instead of X finishes the proof. �

Proposition 4.10. Let p be a prime. An affine latin rumple of order pk exists if and only if p divides k.

Proof. If p divides k then Proposition 4.7 furnishes an example over the elementary abelian group
Z

k
p . For the converse, suppose that there is an affine latin rumple over G � Z

b1
pa1 × · · · × Z

br

par with

|G | � pa1b1+···+ar br � pk . By Proposition 4.9, p divides each of b1, . . . , br and thus p divides k. �

Combining Propositions 4.6 and 4.10, we obtain:

Theorem 4.11. Let p1, . . . , pm be distinct primes. An affine latin rumple of order pk1
1 · · · pkm

m exists if and
only if pi divides ki for every 1 ≤ i ≤ m.

We do not fully understand for which finite abelian groups G we get Nalr(G) � 0. For instance,
among the abelian groups of order 64, Proposition 4.9 guarantees Nalr(G) � 0 for all groups except
for G � Z

2
8, Z2

4 ×Z
2
2 and Z6

2, while Proposition 4.7 yields Nalr(Z
6
2) > 0. Computer calculations show

that Nalr(Z
2
8) � 0 and Nalr(Z

2
4 × Z

2
2) � 18.

Problem 4.12. For which finite abelian groups G is there a latin rumple affine over G?

We conclude this subsection with a supplemental nonexistence result.

Lemma 4.13. There are no affine latin rumples over cyclic groups.

Proof. Since all endomorphisms of a cyclic group G commute, we have [ϕ, ψ] � 0 for every ϕ,
ψ ∈ End(G). If ϕ2

� [ϕ, ψ] holds, ϕ cannot be invertible. �

4.3. A class of affine latin rumples. In this subsection we expand upon the example from the proof
of Proposition 4.7. Recall that a square matrix is a circulant if it is constant on all broken diagonals,
and denote by Circ(c1 , . . . , cn) the n × n circulant matrix with first row equal to (c1, . . . , cn). As
in the proof of Proposition 4.7, let D � (di, j) be the n × n matrix defined by di+1,i � i for all
i � 1, . . . , n − 1 and di, j � 0 otherwise.

Lemma 4.14. Let A�Circ(0, . . . , 0, 1) be the permutation matrix corresponding to the n-cycle (1, . . . , n)−1.
Then an n × n matrix B satisfies [A, B] � A2 if and only if B � Circ(c1 , . . . , cn) − D for some c1, . . . , cn.

Proof. Since A is invertible, we can work with the equivalent identity [B ,A−1] � I instead. Using
A−1

� Circ(0, 1, 0, . . . , 0) and B � (bi, j), we have

BA−1 − A−1B �

©­­­­­«

b1,n − b2,1, b1,1 − b2,2, · · · b1,n−1 − b2,n
b2,n − b3,1, b2,1 − b3,2, · · · b2,n−1 − b3,n

...
...

...
...

bn−1,n − bn ,1, bn−1,1 − bn ,2, · · · bn−1,n−1 − bn ,n

bn ,n − b1,1, bn ,1 − b1,2, · · · bn ,n−1 − b1,n

ª®®®®®¬
.
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Then [B ,A−1] � I holds if and only if we have (reading off the main diagonal)

(4.8) b1,n − b2,1 � b2,1 − b3,2 � · · · � bn−1,n−2 − bn ,n−1 � bn ,n−1 − b1,n � 1,

and (reading off the broken diagonal just above the main diagonal)

(4.9) b1,1 − b2,2 � b2,2 − b3,3 � · · · � bn−1,n−1 − bn ,n � bn ,n − b1,1 � 0,

and similarly on the remaining broken diagonals. All solutions of the linear system (4.8) are of the
form b1,n � c, b2,1 � c − 1, . . . , bn ,n−1 � c − n for some c, while all solutions of (4.9) are of the form
b1,1 � b2,2 � · · · � bn ,n � c for some c. The claim follows. �

In order to construct an affine latin rumple from A � Circ(0, . . . , 0, 1) and B � Circ(c1, . . . , cn)−D,
we must ensure that B is invertible. The following result characterizes invertible matrices of the
form Circ(c1, . . . , cn) − D with entries in Zp in the special case when n � p. (By Propositon 4.9, the
case n � p is precisely the case we care about.)

Proposition 4.15. Let p be a prime, c1, . . . , cp ∈ Zp and B � Circ(c1, . . . , cp) − D. Then det(B) ≡
c1 + · · · + cp−1 (mod p).

Proof. Call a selection P of p cells from the square Zp × Zp a permutation pattern if every row and
every column contain precisely one cell from P. Given a permutation pattern P and an integer k,
let Pk be the pattern with cells {(i + k , j + k) : (i , j) ∈ P}, where we add coordinates modulo p. Let
[P] � {Pk : k ∈ Z}. We will add contributions to det(B) in groups corresponding to the classes [P]
of permutation patterns. Observe that all permutations corresponding to the patterns in a given
class [P] have the same sign since they have the same cycle structure.

Suppose that P is a (broken) diagonal so that [P] � {P}. If the diagonal in B corresponding to
P is constant with all entries equal to ci , for some 1 ≤ i ≤ p − 1, then its contribution to det(B) is
c

p

i
≡ ci (mod p). In the nonconstant case the contribution of P is cp(cp − 1) · · · (cp − (p − 1)) ≡ 0

(mod p) since one of the factors is equal to 0.
Now suppose that P is not a diagonal. We claim that P � Pm if and only if p divides m and thus

[P] � {Pk : 0 ≤ k < p}. Indeed, if P � Pm , gcd(m , p) � 1 and (i , j) ∈ P, then P must contain the
distinct cells (i + km , j + km), 0 ≤ k < p, and hence P is a diagonal. Suppose that P intersects the
nonconstant diagonal of B in d cells. If d � 0 then every Pk contributes the same amount to det(B)
and hence the contribution of [P] is congruent to 0 modulo p. We can therefore assume that d > 0
and note that d ≤ p − 2 because if P contains p − 1 cells from the nonconstant diagonal of B then P
must also contain the last cell from the nonconstant diagonal, a contradiction. The contribution of
P is then of the form ±ci1 · · · cip−d

(cp − j1) · · · (cp − jd), where 1 ≤ ik < p and 0 ≤ jd < p, while the
contribution of Pk is ±ci1 · · · cip−d

(cp − j1 − k) · · · (cp − jd − k). The combined contribution of [P] is
therefore ±ci1 · · · cip−d

· s, where

s �

∑
0≤k<p

(cp − j1 − k) · · · (cp − jd − k) ≡
∑

0≤k<p

(cp − j1 + k) · · · (cp − jd + k).

We will show that s ≡ 0 (mod p), finishing the proof.
For 1 ≤ i ≤ d, let ei � cp − ji so that s �

∑
0≤k<p(e1+ k) · · · (ed + k). Let us view s as a polynomial in

variables e1, . . . , ed and let us determine the coefficients of all monomials. The monomial e1 · · · ed

has coefficient 1+1+ · · ·+1 � p ≡ 0 (mod p). Every monomial of the form ei1 · · · eiℓ with 0 ≤ ℓ < d

has coefficient 0 + 1d−ℓ
+ 2d−ℓ

+ · · · + (p − 1)d−ℓ .
It now suffices to show that 1t

+ 2t
+ · · · + (p − 1)t ≡ 0 (mod p) for every 1 ≤ t ≤ p − 2 since we

have already observed that 1 ≤ d − ℓ ≤ d ≤ p − 2. Let ω be a primitive (p − 1)st root of unity in
Zp . Then 1t

+ 2t
+ · · · + (p − 1)t

� 1t
+ ωt

+ ω2t
+ · · · + ω(p−2)t

� (1− ω(p−1)t)(1 − ωt)−1 ≡ 0 (mod p)

since ωp−1
� 1 and ωt

, 1. �
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Corollary 4.16. Let A � Circ(0, . . . , 0, 1) and B � (c1, . . . , cp) − D be p × p matrices, where c1, . . . ,
cp ∈ Zp satisfy c1 + · · · + cp−1 . 0 (mod p). Then for every c ∈ Zp , Aff(Zp

p ,A, B , c) is an affine latin
rumple of order pp .

Remark 4.17. The isomorphism problem for affine latin rumples of the form Aff(Zp
p ,A, B , c) with

A � Circ(0, . . . , 0, 1) and B � (c1, . . . , cp) − D is tractable for small values of p. It is also possible
to generalize the construction of Corollary 4.16 further by considering matrices that do not differ
much from Circ(0, . . . , 0, 1), say A � Circ(0, . . . , 0, 1) + aEi+1,i , where Ei, j is the matrix whose only
nonzero entry 1 is located in row i and column j. One can then obtain statements analogous to
Lemma 4.14 and Proposition 4.15. The details will be presented elsewhere.

4.4. A characterization of affine latin rumples. In this subsection we obtain a characterization of
affine latin rumples among latin rumples in terms of the displacement group and the multiplication
group. According to Proposition 2.17, for every rumple X, the displacement group Dis(X) is normal
in LMlt(X), and thus Dis(X) is normal in Mlt(X) if and only if Dis(X)R

±1
x ⊆ Dis(X) for every x ∈ X.

Recall that a permutation group G acts regularly on X if for every x, y ∈ X there is a unique
g ∈ G such that g(x) � y.

Theorem 4.18. The following conditions are equivalent for a latin rumple X:
(1) X is affine;
(2) Dis(X) is abelian and normal in Mlt(X).

Proof. Suppose that (1) holds. In an affine rumple (X, ∗) � Aff(G, ϕ, ψ, c), we have

LxL−1
y (z) � ϕ(x) + ψ(ψ−1(z − ϕ(y) − c)) + c � ϕ(x) − ϕ(y) + z.

Hence, since ϕ is surjective, we have Dis(X) � {αx : x ∈ X}, where αx(z) � x + z. It is now clear
that Dis(X) is an abelian group. Moreover,

α
Ry

x (z) � αx(z/y) ∗ y � ϕ(x + ϕ−1(z − ψ(y) − c)) + ψ(y) + c � ϕ(x) + z ,

α
R−1

y

x (z) � αx(z ∗ y)/y � ϕ−1((ϕ(z) + ψ(y) + c) + x − ψ(y) − c) � ϕ−1(x) + z

shows that α
Ry

x � αϕ(x) and α
R−1

y

x � αϕ−1(x) are elements of Dis(X).
Now suppose that (2) holds. Pick e ∈ X arbitrarily and let G � Dis(X), ϕ( f ) � f Re e , ψ( f ) � f σ,

where σ � Ree Le R−1
e (cf. Proposition 3.1), and c � Lee L−1

e . We will show that X is isomorphic to
Aff(G, ϕ, ψ, c). First observe that both ϕ, ψ are well-defined because Dis(X) EMlt(X). Consider
the map

ξ : X → Aff(G, ϕ, ψ, c), x 7→ LxL−1
e

and note that ξ is injective since X is a (left) quasigroup. The identity Ly/(e\x)L
−1
e (x) � y shows that

Dis(X) is transitive and hence regular, being abelian. This implies that G � Dis(X) � {LxL−1
e : x ∈

G} and thus that ξ is bĳective. It remains to prove that ξ is a homomorphism. We want to show
that ξ(x) ∗ ξ(y) � ϕ(LxL−1

e )ψ(LyL−1
e )c � (LxL−1

e )Re e (LyL−1
e )σ(Lee L−1

e ) is equal to ξ(x y) � LxyL−1
e .

Since Dis(X) is regular, it is sufficient to check that the two permutations agree at a single point,
for instance at e · ee. Now,

(ξ(x) ∗ ξ(y))(e · ee) � (LxL−1
e )Re e (LyL−1

e )σ(Lee L−1
e )(e · ee) � (LxL−1

e )Re eσLyL−1
e σ

−1(ee · ee)

� (LxL−1
e )Re eσLyL−1

e (ee) � (LxL−1
e )Re eσ(ye)

� (LxL−1
e )Re e (ye · ye)

(Rℓ)
� (LxL−1

e )Re e (e y · ee)

� Ree LxL−1
e (e y) � x y · ee � LxyL−1

e (e · ee) � ξ(x y)(e · ee). �
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Corollary 4.19. The following conditions are equivalent for a latin rumple X:
(1) X is linear;
(2) X contains an idempotent element and Dis(X) is abelian and normal in Mlt(X).

Proof. If X is linear then 0 is an idempotent element. Conversely, in the construction in the proof of
Theorem 4.18, use an idempotent element e and observe that c � Lee L−1

e � 1, the identity element
in Dis(X). �

5. Latin rumples isotopic to groups

For the purposes of the present section, we extend the definition of linear representation. Let
(G, ◦) be an arbitrary loop, not necessarily associative or commutative. A binary algebra (G, ∗) is
called right linear (resp. left linear) over (G, ◦) if there exist ϕ : G → G and ψ ∈ End(G, ◦) (resp.
ϕ ∈ End(G, ◦) and ψ : G → G) such that

x ∗ y � ϕ(x) ◦ ψ(y)

for all x, y ∈ G. As in the case of linear representations, note that (G, ∗) is a left quasigroup if and
only if ϕ is bĳective, and a right quasigroup if and only if ψ is bĳective.

Let us recall basic facts about loop isotopes (see [36] for details). For a quasigroup X, fix e , f ∈ X
and define a binary operation ◦e , f : X × X → X by

x ◦e , f y � (x/e)( f \y).

Then (X, ◦e , f ) is a loop with identity element f e and X is isotopic to (X, ◦e , f ). Loop isotopes of this
form are said to be principal. Thus every quasigroup X is isotopic to a loop and every loop isotope
of X is isomorphic to a principal loop isotope of X. Moreover, a group is isomorphic to all of its
loop isotopes. Therefore, if a quasigroup X is isotopic to a group G then all loop isotopes of X are
isomorphic to G.

The left multiplication group LMlt(X, ◦e , f ) is generated by all permutations of the form Lx/e L−1
f

,

x ∈ X. From this observation, we see immediately that Dis+(X) � LMlt(X, ◦e , f ) for every e , f ∈ X.

Proposition 5.1. A quasigroup X is isotopic to a group if and only if Dis+(X) acts regularly on X. In such
a case, Dis+(X) is isomorphic to all group isotopes of X.

Proof. Note that if X is a loop with identity element 1 then Dis+(X) � LMlt(X) since LxL−1
1 � Lx.

Let us first show that a loop X is a group if and only if LMlt(X) acts regularly on X. The direct
implication is obvious. Conversely, suppose that LMlt(X) acts regularly on X. For g ∈ LMlt(X)
there is x ∈ X such that g(1) � x and thus g � Lx by regularity. Hence the composition of any
two left translations LxLy is a left translation, necessarily Lxy on account of Lxy(1) � LxLy(1). This
means that X is a group.

Now let X be a quasigroup. If X is isotopic to a group G then there is a principal loop isotope
(X, ◦e , f ) isomorphic to G. Then Dis+(X) � LMlt(X, ◦e , f ) acts regularly on X by the first paragraph.
Conversely, suppose that Dis+(X) acts regularly on X and let (X, ◦e , f )be any loop isotope of X. Then
LMlt(X, ◦e , f ) � Dis+(X) acts regularly and hence (X, ◦e , f ) is a group by the first paragraph. �

Since transitive abelian permutation groups act regularly, we have the following corollary which
can be traced to Belousov [1].

Corollary 5.2. A quasigroup X is isotopic to an abelian group if and only if Dis+(X) is abelian.

Theorem 5.3. For a latin rumple X, the following conditions are equivalent:
(1) X is right linear over a group;
(2) X is isotopic to a group;
(3) Dis(X) acts regularly on X.
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Proof. The equivalence of (2) and (3) follows from Proposition 5.1. Obviously, (1) implies (2).
We prove that (2) implies (1). Let X be (principally) isotopic to a group (X, ◦), i.e., there are
permutations ϕ, ψ of X such that x y � ϕ(x) ◦ ψ(y) for all x , y ∈ X. We may assume without loss
of generality that ψ(1) � 1, otherwise, set ϕ̄(x) � ϕ(x) ◦ ψ(1) and ψ̄(y) � ψ(1)−1 ◦ ψ(y) so that
x y � ϕ̄(x) ◦ ψ̄(y). Writing (Rℓ) in terms of ◦, ϕ and ψ (and replacing z with ψ−1(z)), we have

ϕ(ϕ(x) ◦ ψ(y)) ◦ ψ(ϕ(x) ◦ z) � ϕ(ϕ(y) ◦ ψ(x)) ◦ ψ(ϕ(y) ◦ z)

for all x , y , z ∈ X. Rearranging this, we have

ϕ(ϕ(y) ◦ ψ(x))−1 ◦ ϕ(ϕ(x) ◦ ψ(y)) � ψ(ϕ(y) ◦ z) ◦ ψ(ϕ(x) ◦ z)−1 ,

and we note that the left hand side is independent of z. Substituting first z � 1 and then z � ϕ(x)−1

therefore yields

ψ(ϕ(y)) ◦ ψ(ϕ(x))−1
� ψ(ϕ(y) ◦ ϕ(x)−1)

for all x , y ∈ X. Since ϕ is a bĳection, it follows that ψ is an automorphism and X is right linear
over (X, ◦). �

Corollary 5.4. For a latin rumple X, the following conditions are equivalent:

(1) X is right linear over an abelian group;
(2) X is isotopic to an abelian group;
(3) Dis(X) is abelian.

We conclude this section with another characterization of affine latin rumples.

Lemma 5.5. Let (G, ◦) be a group. If a quasigroup (G, ∗) is both left linear and right linear over (G, ◦),
then there are ϕ, ψ ∈ Aut(G, ◦) and c ∈ G such that x ∗ y � ϕ(x) ◦ c ◦ ψ(y) for all x , y ∈ G.

Proof. The direct implication is obvious. For the converse, suppose that for every x, y ∈ G we have

(5.1) x ∗ y � ϕ1(x) ◦ g1(y) � f2(x) ◦ ψ2(y)

for some bĳections g1, f2 of G and some automorphisms ϕ1, ψ2 of (G, ◦). With x � y � 1, (5.1)
yields g1(1) � f2(1) and we will call this element c. Define bĳections ψ1, ϕ2 by g1(x) � c ◦ ψ1(x)
and f2(x) � ϕ2(x) ◦ c. Note that ψ1(1) � 1 � ϕ2(1). Then (5.1) implies

x ∗ y � ϕ1(x) ◦ c ◦ ψ1(y) � ϕ2(x) ◦ c ◦ ψ2(y) .

With x � 1 we obtain c ◦ ψ1(y) � c ◦ ψ2(y) and hence ψ1 � ψ2. The equality ϕ1 � ϕ2 follows by
setting y � 1. We finish the proof by taking ϕ � ϕ1 and ψ � ψ2. �

Theorem 5.6. A latin rumple is affine if and only if it is left linear over a group.

Proof. Let (X, ∗) be a latin rumple. The necessity is obvious, so assume (X, ∗) is left linear over a
group (X, ◦). Since (X, ∗) is isotopic to (X, ◦), it follows from Theorem 5.3 that (X, ∗) is also right
linear over (X, ◦). By Lemma 5.5, there are ϕ, ψ ∈ Aut(X, ◦) and c ∈ X such that

(5.2) x ∗ y � ϕ(x) ◦ c ◦ ψ(y)

for all x , y ∈ X. It remains to show that (X, ◦) is abelian.
Writing (Rℓ) in terms of (5.2) and canceling ψ(c) ◦ ψ2(z) on the right, we get

(5.3) ϕ2(x) ◦ ϕ(c) ◦ ϕψ(y) ◦ c ◦ ψϕ(x) � ϕ2(y) ◦ ϕ(c) ◦ ϕψ(x) ◦ c ◦ ψϕ(y)

for all x , y ∈ X. Setting x � 1 and rearranging yields

(5.4) ϕψ(y) � [ϕ(c−1 ◦ ϕ(y) ◦ c)] ◦ [c ◦ ψϕ(y) ◦ c−1]
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for all y ∈ X. Observe that α(y) � ϕ(c−1 ◦ ϕ(y) ◦ c) and β(y) � c ◦ ψϕ(y) ◦ c−1 define two
automorphisms of (X, ◦). Now, for all x , y ∈ X,

α(x) ◦ α(y) ◦ β(x) ◦ β(y) � α(x ◦ y) ◦ β(x ◦ y) � ϕψ(x ◦ y) � ϕψ(x) ◦ ϕψ(y)

� α(x) ◦ β(x) ◦ α(y) ◦ β(y) ,

using (5.4) in the second and fourth equalities. Canceling, we have α(y) ◦ β(x) � β(x) ◦ α(y) for all
x , y ∈ X. Since α and β are permutations, (X, ◦) is abelian. �

6. Nilpotent latin rumples

6.1. Central extensions. All the latin rumples X we have seen so far are affine, hence isotopic to
an abelian group G and such that Dis(X) � G is abelian and normal in Mlt(X). In this section we
will present a construction based on central extensions that produces examples of nonaffine latin
rumples, even latin rumples not isotopic to groups.

We adapt the general construction of central extensions from the commutator theory of universal
algebra [13, §7] to the class of rumples. (See [39] for other types of rumple extensions.)

Let (G,+) be an abelian group, (F, ·) a left quasigroup, ϕ ∈ End(G,+), ψ ∈ Aut(G,+) and
θ : F × F → G. A central extension Ext(G, F, ϕ, ψ, θ) of (G,+) by (F, ·) is the binary algebra (G × F, ∗)
with multiplication

(a , x) ∗ (b , y) � (ϕ(a) + ψ(b) + θ(x , y), x y).

Note that we recover affine rumples as a special case of central extensions by setting F � 1.
It is easy to see that Ext(G, F, ϕ, ψ, θ) is a left quasigroup with

(a , x)\(b , y) � (ψ−1(c − ϕ(a) − θ(x , x\y)), x\y)

and that it is latin if and only if F is latin and ϕ ∈ Aut(G,+). Straightforward calculation yields:

Proposition 6.1. Let (G,+) be an abelian group, F a Rump left quasigroup, ϕ ∈ End(G,+),ψ ∈ Aut(G,+)
and θ : F × F → G. Then Ext(G, F, ϕ, ψ, θ) is a Rump left quasigroup if and only if [ϕ, ψ] � ϕ2 and

(6.1) ϕ(θ(x , y) − θ(y , x)) + ψ(θ(x , z) − θ(y , z)) + θ(x y , xz) − θ(yx , yz) � 0

for every x, y, z ∈ F.

A Rump left quasigroup is said to be nilpotent if it is obtained from the trivial quasigroup by
finitely many iterations of central extensions. If a nilpotent Rump left quasigroup can be obtained
in n but no fewer steps, we say that it has nilpotence class n. (This is in accordance with the abstract
definition of nilpotence thanks to [13, Proposition 7.1].)

Proposition 6.2. Every finite nilpotent latin rumple has order p
p1k1

1 · · · p
pr kr
r for some distinct primes

p1, . . . , pr and integers k1, . . . , kr .

Proof. Let X � Ext(G, F, ϕ, ψ, θ) be a finite nilpotent latin rumple, where we can assume that G
is a nontrivial group and F is a rumple of nilpotence class less than n, the nilpotence class of X.
Since X is latin, F is also latin and ϕ, ψ ∈ Aut(G) satisfy [ϕ, ψ] � ϕ2. Then for any c ∈ G the affine

rumple Y � Aff(G, ϕ, ψ, c) is latin and hence of order |G | � |Y | � p
p1k1

1 · · · p
pr kr
r by Theorem 4.11.

If n � 1 then X � Y and we are done. Otherwise |F | and thus also |X | � |G | · |F | have the desired
form by induction. �
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6.2. A class of central extensions over the Klein group. Throughout this subsection, let G � Z2×Z2
and A, B ∈ Aut(G) be given by

A �

(
0 1
1 0

)
, B �

(
1 0
1 1

)
.

We have already observed that [A, B] � A2 holds.
Let F be a rumple. Then a mapping θ : F × F → G can be written as

θ(x , y) �

(
α(x , y)

β(x , y)

)

for some α, β : F × F → Z2. The cocycle condition (6.1) becomes

(6.2)

(
0 1
1 0

) (
α(x , y) − α(y , x)

β(x , y) − β(y , x)

)
+

(
1 0
1 1

) (
α(x , z) − α(y , z)

β(x , z) − β(y , z)

)
+

(
α(x y , xz) − α(yx , yz)

β(x y , xz) − β(yx , yz)

)
�

(
0
0

)
,

which is equivalent to the system of linear equations

β(x , y) − β(y , x) + α(x , z) − α(y , z)+ α(x y , xz) − α(yx , yz) � 0,

α(x , y) − α(y , x) + α(x , z) − α(y , z) + β(x , z) − β(y , z)+ β(x y , xz) − β(yx , yz) � 0.

A solution is obtained by setting

(6.3) α � 0 and β(x , y) �

{
1, if x � y,
0, otherwise.

Indeed, x � z if and only if yx � yz, so β(x , z) � β(yx , yz), β(y , z) � β(x y , xz), and, of course,
β(x , y) � β(y , x).

Lemma 6.3. Suppose that G � Z2 × Z2, F is a nontrivial affine latin rumple, A, B ∈ Aut(G,+) and
θ : F × F → G are given by

A �

(
0 1
1 0

)
, B �

(
1 0
1 1

)
, θ(x , y) �

(
0

β(x , y)

)
, β(x , y) �

{
1, if x � y ,
0, otherwise.

Then Ext(G, F,A, B , θ) is a latin rumple with nonabelian Dis(X). In particular, X is not affine.

Proof. We have already verified that [A, B] � A2 and (6.1) holds, so X is a latin rumple. Denote a
typical element of G × F by

x �

((
x1

x2

)
, x

)
.

Straightforward calculation then yields

Lx(y) �

((
x2 + y1

x1 + y1 + y2 + β(x , y)

)
, x y

)
,

L−1
x (y) �

((
−x2 + y1

−x1 + x2 − y1 + y2 − β(x , x\y)

)
, x\y

)
,

L−1
x Ly(z) �

((
−x2 + y2 + z1

−x1 + x2 + y1 − y2 + z2 + β(y , z) − β(x , x\(yz))

)
, x\(yz)

)
,

L−1
x LyL−1

u Lv(z) �

((
w1

w2

)
, x\(y(u\(vz)))

)
,
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where

w1 � −x2 + y2 − u2 + v2 + z1,

w2 � −x1 + x2 + y1 − y2 − u1 + u2 + v1 − v2 + z2

+ β(v , z) − β(u , u\(vz))+ β(y , u\(vz)) − β(x , x\(y(u\(vz)))).

Since F is affine, the group Dis(F) is abelian and

x\(y(u\(vz))) � L−1
x LyL−1

u Lv(z) � L−1
u LvL−1

x Ly(z) � u\(v(x\(yz)))

holds. We then see that L−1
x LyL−1

u Lv(z) is equal to L−1
u LvL−1

x Ly(z) if and only if

(6.4) β(v , z) − β(u , u\(vz))+ β(y , u\(vz)) − β(x , x\(y(u\(vz))))

� β(y , z) − β(x , x\(yz)) + β(v , x\(yz)) − β(u , u\(v(x\(yz))))

for every x, y, u, v, z ∈ F. Thus Dis(X) is nonabelian if (6.4) fails for a choice of elements of F.
Setting u � y in (6.4) yields

β(v , z) − β(x , x\(vz)) � β(y , z) − β(x , x\(yz)) + β(v , x\(yz)) − β(y , y\(v(x\(yz)))).

Substituting z � y\x2 (which is equivalent to x\(yz) � x) and using β(x , x) � 1 then yields

(6.5) β(v , y\x2) − β(x , x\(v(y\x2))) � β(y , y\x2) − 1 + β(v , x) − β(y , y\(vx)).

Select x , y in F arbitrarily. Then x2
, y2 by unique 2-divisibility and hence β(y , y\x2) �

β(y y , y\(yx2)) � β(y2, x2) � 0. Select v ∈ F such that v , x (which yields β(v , x) � 0), v , y
(which implies v\x2

, y\x2, x2
, v(y\x2) and β(x , x\(v(y\x2))) � 0), v , y2/x (which implies

β(y , y\(vx)) � 0) and v , y\x2 (which yields β(v , y\x2) � 0). Altogether, (6.5) becomes 0 � −1.
When |F | ≥ 5, it is certainly possible to select x, y and v ∈ F as above. When |F | < 5 then F � X4,1
or F � X4,2 as in Example 3.3. In X4,1, choose x � 0, y � 1 and v � 2. In X4,2, choose x � 0, y � 1
and v � 3.

We have proved that Dis(X) is nonabelian. By Theorem 4.18, X is not affine. �

Example 6.4. Note that Lemma 6.3 is only one of many possible solutions to the matrix equation
(6.2). The corresponding system of linear equations over Z2 can be solved by standard methods of
linear algebra. All latin rumples X below were obtained as central extensions of Z2 × Z2:

• X of order 16 with Dis(X) � Z2 × Q8, where Q8 is the quaternion group,
• X of order 16 with Dis(X) abelian but not normal in Mlt(X),
• X of order 64 not isotopic to a group and satisfying the right Rump identity (Rr),
• X of order 108 with Dis(X) a nonnilpotent group.

7. Both-sided rumples

Recall that the two four-element latin rumples of Example 3.3 satisfy the right Rump identity
(Rr). In this section we investigate in a systematic way left quasigroups satisfying both (Rℓ) and
(Rr). Our first result will show that such left quasigroups are automatically latin rumples.

7.1. The two Rump identities and the squaring map.

Lemma 7.1. Let X be a left quasigroup and assume that the identity

(7.1) ((x\y)\y)x � y

holds for all x , y ∈ X. Then X is a quasigroup.
19



Proof. Define an operation / on X by setting

(7.2) y/x � (x\y)\y

and note that (7.1) immediately implies (y/x)x � y. Dividing by (x\y)\y on the left in (7.1) yields
((x\y)\y)\y � x, and thus yx/x � (x\yx)\yx � ((y\yx)\yx)\yx � y. �

Proposition 7.2. The following conditions are equivalent for a left quasigroup X:

(1) X satisfies (Rℓ) and (Rr);
(2) X is a rumple satisfying (Rr);
(3) X is a latin rumple satisfying (Rr).

In these equivalent situations, the right division operation is given by (7.2).

Proof. Obviously, (3) ⇒ (2) ⇒ (1). Suppose that (1) holds and let us establish (3) by showing that
(7.1) holds. Indeed, we have

(x\y)x · ((x\y)\y)x
(Rr )
� (x\y)((x\y)\y) · x((x\y)\y) � y · x((x\y)\y)

� x(x\y) · x((x\y)\y)
(Rℓ)
� (x\y)x · (x\y)((x\y)\y) � (x\y)x · y ,

from which (7.1) follows upon canceling (x\y)x on the left. By Lemma 7.1, X is a quasigroup. By
Proposition 3.1, X is a rumple. �

A both-sided rumple is a left quasigroup satisfying any of the three equivalent conditions of
Proposition 7.2.

It follows from Proposition 7.2 that the notion of both-sided rumple is self-dual. That is, if (X, ·)
is a both-sided rumple, then so is (X, ·op)with x ·op y � y ·x. Thus if an identity holds in a both-sided
rumple then its mirror image also holds. We will occasionally appeal to this observation.

Proposition 7.3. Let X be a both-sided rumple and let σ be the squaring map on X. Then:

(1) σ is an antiautomorphism of X.
(2) σ2 is an automorphism of X.
(3) σ2(x) � xx · xx � y y · yx � x y · y y � yx · x y for every x, y ∈ X.
(4) σ2

� Ly yLy � Ry yRy for every y ∈ X.

Proof. Note that (2) follows from (1), and (4) follows from (3). Let us prove (1). For every x, y ∈ X
we have

(x y · y y)(yx · yx)
(Rℓ)
� (x y · y y)(x y · xx)

(Rℓ )
� (y y · x y)(y y · xx)

(Rr )
� (yx · yx)(y y · xx)

(Rℓ)
� (x y · xx)(y y · xx)

(Rr )
� (x y · y y)(xx · y y)

and we deduce σ(yx) � σ(x)σ(y) upon canceling xx · y y on the left. For (3), we compute

(y\xx)y · (y\xx)y
(Rℓ)
� y(y\xx) · y y � xx · y y

(1)
� yx · yx.

Taking square roots of both sides, we obtain (y\xx)y � yx and therefore

y y · yx � y y · (y\xx)y
(Rr )
� y(y\xx) · y(y\xx) � xx · xx .

A dual argument yields xx · xx � x y · y y. Finally, substituting x y for x and yx for y into the
established identity yx � (y\xx)y yields

yx · x y � (yx\(x y · x y)) · yx
(Rℓ)
� (yx\(yx · y y)) · yx � y y · yx. �
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7.2. Both-sided rumples isotopic to groups.

Lemma 7.4. Let X be a both-sided rumple. Then x\y · y/x � y and x/y · y\x � y y for every x, y ∈ X.

Proof. The first identity follows form the right division formula in Proposition 7.2. By Proposition
7.3.2, σ2 is an automorphism with respect to multiplication and hence also with respect to left
division in X. By Proposition 7.3.3, σ2(x) � x(y y)·(y y·y y) � x(y y)·σ2(y), so x(y y) � σ2(x)/σ2(y) �
σ2(x/y). By Proposition 7.3.3 again, σ2(u) � vu · uv, from which we obtain σ2(x/y) � (y\x ·
x/y)(x/y · y\x) upon substituting x/y for u and y\x for v. Combining, we have

x(y y) � σ2(x/y) � (y\x · x/y)(x/y · y\x) � x(x/y · y\x)

and we obtain the second identity from the statement by canceling x on the left. �

Corollary 7.5. Let X be a both-sided rumple. Then for each e ∈ X, the principal loop isotope (X, ◦e ,e)
defined by x◦e ,e y � (x/e)(e\y) has exponent 2.

Proof. The principal loop isotope (X, ◦e ,e) has identity element ee. By Lemma 7.4, x ◦e ,e x � ee. �

Corollary 7.6. If a both-sided rumple X is isotopic to a group, then it is isotopic to an elementary abelian
2-group.

Proof. If a quasigroup X is isotopic to a group G then all loop isotopes of X are isomorphic to G.
We are done by Corollary 7.5. �

7.3. Generators of the displacement group. In this section we prove that all generators of the
displacement group Dis(X) of a both-sided rumple X have order dividing 4.

Lemma 7.7. Let X be a both-sided rumple. Then:

(1) L−1
xyLy y � L−1

yxLxx for every x, y ∈ X.
(2) LxxL−1

yxLy y � Lxy for every x, y ∈ X.

Proof. (1) We have

Ly y � Ly yLyL−1
y

7.3.4
� σ2L−1

y
7.3.2
� L−1

σ2(y)
σ2 7.3.3

� L−1
xy·yxσ

2.

Reversing the roles of x and y, we obtain Lxx � L−1
yx·xyσ

2. It therefore remains to prove L−1
xyL−1

xy·yx �

L−1
yxL−1

yx·xy, that is, Lxy·yxLxy � Lyx·xyLyx, which is a consequence of (R′
ℓ).

(2) Let us first establish

(7.3) (x\yx)x � y y and (x\yx)2 � x y.

For the first identity, calculate

xx · (x\yx)x
(Rr )
� x(x\yx) · x(x\yx) � yx · yx

7.3.2
� xx · y y

and cancel xx on the left. For the second identity, observe

yx · x y
7.3.3
� σ2(x)

7.3.4
� x(x\yx) · (x\yx)2 � yx · (x\yx)2

and cancel yx on the left. Then

LxxL−1
yxLy y � LxxLxL−1

x L−1
yxLy y

7.3.4
� σ2L−1

x L−1
yxLy y � σ2(Lx(x\yx)Lx)

−1Ly y

(R′
r )
� σ2(L(x\yx)xLx\yx)

−1Ly y
(7.3)
� σ2L−1

x\yxL−1
y yLy y � σ2L−1

x\yx

7.3.4
� L(x\yx)2

(7.3)
� Lxy . �
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Proposition 7.8. Let X be a both-sided rumple. Then

(LxL−1
y )4 � 1 � (RxR−1

y )4

for every x, y ∈ X.

Proof. We will prove the first equality. The second equality follows by a dual argument. We have

(LxL−1
y )2 � LxL−1

y · LxL−1
y

(R′
ℓ
)

� L−1
xyLyx · L−1

xxLxxLxL−1
y L−1

y yLy y

7.3.4
� L−1

xyLyx · L−1
xxσ

2σ−2Ly y
7.7.2
� L−1

xyLy yL−1
xyLxxL−1

xxLy y � L−1
xyLy yL−1

xyLy y .

Thus we have

(LxL−1
y )4 � L−1

xyLy yL−1
xyLy yLxL−1

y LxL−1
y

7.7.1
� L−1

xyLy yL−1
yxLxxLxL−1

y LxL−1
y

7.3.4
� L−1

xyLy yL−1
yxLy yLyL−1

y LxL−1
y

7.7.1
� L−1

xyLy yLy(LyxLy)
−1Ly yLxL−1

y

(R′
ℓ
)

� L−1
xyLy yLy(LxyLx)

−1Ly yLxL−1
y

7.3.4
� L−1

xyLxxL−1
xyLy yLxL−1

y

7.7.1
� L−1

xyLxxL−1
yxLxxLxL−1

y � L−1
xyLxxL−1

yxLy yLyL−1
y

7.7.2
� L−1

xyLxy � 1 . �

Although Proposition 7.8 is interesting in its own right, it also has an implication for loop
isotopes of a both-sided rumple X: it turns out that the conclusion of the proposition is equivalent
to the assertion that every loop isotopic to X is power-associative of exponent dividing 4. (The
proof is not difficult but it would take us a bit far afield of the main topic of this paper.) Combining
this with Corollary 7.5, we can conclude that if X is a both-sided rumple which is not isotopic to a
group, then some loop isotope achieves exponent 4. This is because if all loops isotopic to a given
quasigroup have exponent 2, then those loops are isomorphic abelian groups [3].
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