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Configurations Of Consecutive Primitive Roots

N. A. Carella

Abstract : Let p ≥ 2 be a large prime, and let k ≪ log p be a small integer. This note proves the
existence of various configurations of (k+1)-tuples of consecutive and quasi consecutive primitive
roots n+a0, n+a1, n+a2, . . . , n+ak in the finite field Fp, where a0, a1, . . . , ak is a fixed (k+1)-tuples
of distinct integers.
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1 Introduction

Let p ≥ 2 be a large prime, and let Fp be a finite field. The order ordp α = d of an element
α ∈ Fp is the smallest divisor d | p − 1 for which αd ≡ 1 mod p. An element of maximal order
ordp(α) = p−1 is called a primitive root. This note is concerned with the configurations of subsets
of primitive roots in finite fields. A configuration deals with the existence of (k+1)-tuples of quasi
consecutive primitive roots

n+ a0, n+ a1, n+ a2, . . . , n+ ak, (1)

where a0, a1, . . . , ak is a fixed (k + 1)-tuples of distinct integers, in a finite field Fp, or in large
subsets A ⊂ Fp. The corresponding counting functions have the forms

∑

n∈Fp

Ψ(n+ a0)Ψ (n+ a1) · · ·Ψ(n+ ak) f (n+ a0) f (n+ a1) · · · f (n+ ak) , (2)

and
∑

n∈A
Ψ(n+ a0)Ψ (n+ a1) · · ·Ψ(n+ ak) f (n+ a0) f (n+ a1) · · · f (n+ ak) , (3)

respectively, where Ψ : N −→ {0, 1} is the characteristic function of primitive roots modulo p, see
Section 9, and f : N −→ Z is an arithmetic function. The function f restricts the sequence of
(k + 1)-tuples of quasi consecutive primitive roots to certain subsequence of integers. There are
many possible classes of clusters and constellations of primitive roots generated by the different
classes of (k + 1)-tuples. The precise results for some of the various restricted (k + 1)-tuples of
configurations of quasi consecutive primitive roots are detailed below.

1.1 Consecutive Primitive Roots

The earliest works on consecutive primitive roots seems to be that in [6] or before. The author
proved a general result for the existence of consecutive primitive roots. The proof is based on the
divisors dependent characteristic function for primitive roots, see Lemma 9.1. Later, a qualitative
result for the existence of some consecutive primitive roots was proved in [56]. A quantitative and
weaker result for two consecutive primitive roots is proved in [50], the same result, but emphasizing
the numerical aspects, is also proved in [10]. More recently, some partial result but no proof for
k-consecutive primitive roots appears in [55].

Theorem 1.1. Let p ≥ 2 be a large prime, and let k ≪ log p be an integer. Then, the finite field

Fp contains (k+1)-tuples of consecutive primitive roots. Furthermore, the number of (k+1)-tuples
has the asymptotic formula

N(k, p) =

(

ϕ(p− 1)

p− 1

)k+1

p+O(p1−ε), (4)

where ε > 0 is an arbitrary small number.

The complete proof for this case is given in Section 15.

Theorem 1.2. Let p ≥ 2 be a large prime, and let k ≪ log p be an integer. Then, any large subset

of elements A ⊂ Fp of cardinality p1−ε/2 ≪ #A contains (k + 1)-tuples of consecutive primitive

roots. Furthermore, the number of (k + 1)-tuples has the asymptotic formula

N(k, p,A) =

(

ϕ(p− 1)

p− 1

)k+1

#A+O(p1−ε), (5)

where ε > 0 is an arbitrary small number.

The average length of (k + 1)-tuples is k ≪ log p/log log log p. This statistic is dependent on
the primes decomposition of the average totient p− 1. Asymptotically, highly composite totients
p− 1 have slightly shorter lengths k ≪ log p/log log p. The Fermat and Germain totients have the
longest lengths, namely, k ≪ log p, the details appears in Lemma 14.1. The distribution of (k+1)-
tuples of consecutive primitive roots is a very interesting research problem. The numerical data is
not adequate to make any strong heuristic, but it suggests that the (k + 1)-tuples of consecutive
primitive roots are not uniformly distributed.
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1.2 Consecutive Squarefree Primitive Roots

The result for a single squarefree primitive root n in a finite field Fp, which is a special case of
Theorem 1.4, is proved in Theorem 17.1. A result for two consecutive squarefree primitive roots n
and n+1 in a finite field Fp is given in Theorem 17.2 and a result for three consecutive squarefree
primitive roots n, n + 1 and n + 2 is given in Theorem 17.3. The next case for four squarefree
primitive roots n, n+1, n+2 and n+3 is not feasible, see (15). However, there are other sequences
of integers that support long strings of quasi consecutive squarefree primitive roots.

Theorem 1.3. Let p ≥ 2 be a large prime, and let k ≪ log p be an integer. For any admissible

(k+1)-tuples a0 < a1 < · · · < ak, the finite field Fp contains (k+1)-tuples of consecutive squarefree

primitive roots

n+ a0, n+ a1, n+ a2, . . . , n+ ak. (6)

Furthermore, the number of (k + 1)-tuples has the asymptotic formula

N(k, p) =
∏

q≥2

(

1− ω(q)

q2

)(

ϕ(p− 1)

p− 1

)k+1

p+O(p1−ε), (7)

where ε > 0 is an arbitrary small number.

The complete proof for this case is given in Section 17.

1.3 Consecutive s-Power Free Primitive Roots

Let s ≥ 2 be a small integer. A primitive root n ∈ Fp is s-power free if and only if it is not
divisible by an s-power, exempli gratia, rs ∤ n for all prime r ≥ 2. This idea generalizes the idea of
squarefree primitive roots.

Theorem 1.4. Let p ≥ 2 be a large prime, and let s ≥ 2 be a small integer. Then, the finite

field Fp contains s-power free primitive roots. Furthermore, the number of such elements has the

asymptotic formula

Ns(p) =
1

ζ(s)

ϕ(p− 1)

p− 1
p+O(p1−ε), (8)

where ζ(s) is the zeta function, and ε > 0 is an arbitrary small number.

Theorem 1.5. Let p ≥ 2 be a large prime, and let a0 6= a1 and s ≥ 2 be small integers. Then,

the finite field Fp contains a pair of consecutive s-power free primitive roots n + a0 and n + a1.
Furthermore, the number of such pairs has the asymptotic formula

Ns(2, p) =
∏

q≥2

(

1− ρ(q)

qs

)(

ϕ(p− 1)

p− 1

)2

p+O(p1−ε), (9)

where ρ(s) = 1, 2, and ε > 0 is an arbitrary small number.

The complete proofs for these cases are given in Section 18.

1.4 Consecutive Primitive Roots And Relatively Prime

The earliest work considered the existence of primitive roots relatively prime to p − 1. In other
words, the case q = p− 1 was proved in [27] using the divisors dependent characteristic function
in Lemma 9.1. A generalized version for q ≤ p− 1, using the divisors free characteristic function
in Lemma 9.2, is realized in Theorem 1.6. In addition, for a ≥ 1, a result for two consecutive
primitive roots n, n + a, and relative prime to q = q(a) is proved in Theorem 1.7. Both of these
results are appear to be new in the literature.

Theorem 1.6. Let p ≥ 2 be a large prime, and let q < p be an integer. Then, the finite field Fp

contains primitive roots relatively prime to q. Furthermore, the number of such elements has the

asymptotic formula

Nr(p, q) =
ϕ(q)

q

ϕ(p− 1)

p− 1
p+O(p1−ε), (10)

where ε > 0 is an arbitrary small number.
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Theorem 1.7. Let p ≥ 2 be a large prime, let q < p be an integer, and let a ≥ 1 be a fixed integer.

Then, the finite field Fp contains a pair of quasi consecutive primitive roots n, n + a, relatively
prime to q = q(a). Furthermore, the number of such pairs has the asymptotic formula

Nr(2, p, q) = c2(q, a)

(

ϕ(q)

q

)2
ϕ(p− 1)

p− 1
p+O(p1−ε), (11)

where c2(q, a) ≥ 0 is a dependence correction factor, and ε > 0 is an arbitrary small number.

Both parameters c2(q, a) ≥ 0 and q = q(a) depend on a ≥ 1. For instance, for a = 2b + 1 odd,
the value q = q(a) must be odd, and c2(q, a) > 0, otherwise c2(q, a) = 0 for even q. The complete
proof for both of these cases are given in Section 19.

2 Results For Arithmetic Functions

Several results for some arithmetic functions required in later sections are recorded here.

2.1 Prime Divisors Counting Function

Let pi ≥ 2 denotes the ith prime in increasing order, and let n ∈ N be an integer. An integer has
a unique prime decomposition n = pv11 · pv22 · · · pvtt , where vi ≥ 1.

Definition 2.1. The prime divisors counting function ω : N −→ N is defined by ω(n) = t.

The number of prime divisors ω(n) of a random integer n ∈ N is a normal random variable with
mean log logn, and standard error

√
log logn, as verified below.

Theorem 2.1. Let x ≥ 1 be a large number, and a ≤ q = o(log x) be a pair of integers. Then,

ω(n) has the followings average orders in an arithmetic progression.

(i)
∑

n≤x
n≡a mod q

ω(n) =
1

ϕ(q)
x log log x+ xβ(q, a) +O

(

x

log x

)

,

(ii)
∑

n≤x
n≡a mod q

(ω(n)− log logn)
2 ≤ C(q, a)

ϕ(q)
x log log x,

where β(q, a) 6= 0 and C(q, a) are constants.

Proof. (i) Let {x} ∈ (0, 1) be the fractional function. The finite sum
∑

k≤x/p 1 tallies the number
of integers n ≤ x divisible by a prime p ≤ x. Thus,

∑

n≤x
n≡a mod q

ω(n) =
∑

p≤x
p≡a mod q

∑

k≤x/p

1 (12)

= x
∑

p≤x
p≡a mod q

1

p
−

∑

p≤x
p≡a mod q

{

x

p

}

.

Apply Mertens theorem in arithmetic progression to the first finite sum, and estimate the second
finite sum to obtain this:

∑

n≤x
n≡a mod q

ω(n) = x

(

1

ϕ(q)
log log x+ β(q, a) +O

(

1

log x

))

+O

(

x

ϕ(q) log x

)

, (13)

where β(q, a) 6= 0 is a constant. �
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Observe that there are a few versions of Mertens theorem in arithmetic progression, see [13, The-
orem 15.4], [32], et alii. The basic case q = 2 of Theorem 2.1 is proved in [13, Theorem 7.2], [43,
Proposition 2.6], et cetera. The more general concept of the Erdos-Kac theorem provides finer
details on the distribution of the random variable ω(n) ∈ N.

Lemma 2.1. Let n ≥ 1 be a large integer, then

(i) The average number ω(n) of prime divisors p | n satisfies

ω(n) ≪ log logn.

(ii) The maximal number ω(n) of prime divisors p | n satisfies

ω(n) ≪ log n/log logn.

Proof. (i) Set a = 1 and q = 2 in Theorem 2.1-i. (ii) Set n =
∏

p≤x p, and employ routine
calculations. �

Both of these results are standard results in analytic number theory, see [40, Theorem 2.6].

2.2 Mobius Function

Definition 2.2. The Mobius function µ : N −→ {−1, 0, 1} is defined by

µ(n) =

{

(−1)ω(n) n = p1p2 · · · pv
0 n 6= p1p2 · · · pv,

(14)

where the pi ≥ 2 are primes.

The function µ is quasiperiodic. It has a period of 4, that is, µ(4) = · · · = µ(4m) = 0 for any
integer m ∈ Z. But, its interperiods values are pseudorandom, that is, the values

µ(n), µ(n+ 4), · · · , µ(n+ 4m) (15)

are not periodic as n→ ∞.

Definition 2.3. An integer n ∈ N is said to be s-power free if for each prime p | n, the maximal
prime power divisor is ps−1 || n. Equivalently, the p-adic valuation vp(n) = s− 1 for any s ≥ 2.

The 2-free integers are usually called squarefree integers.

Definition 2.4. The characteristic function for s-power free integers is defined by

µs(n) =

{

1 if ps ∤ n for any prime p | n,
0 if ps | n for any prime p | n. (16)

The characteristic function for s-power free integers is closely linked to the Mobius function.

Lemma 2.2. For any integer n ≥ 1, the characteristic function for squarefree integers has the

expansion

µ(n)2 =
∑

d2|n
µ(d). (17)

More generally, the characteristic function for s-power free integers has the expansion

µs(n) =
∑

ds|n
µ(d). (18)

The case s = 2 for squarefree integers is usually denoted by µ2(n) = µ2(n). Some early works on
this topic appear in [7] and [36].
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Definition 2.5. A pair of integers a and q are relatively prime if and only if gcd(a, q) = 1. The
characteristic function for relatively prime integers is defined by

∑

d|a
d|q

µ(d) =

{

1 if and only if gcd(a, q) = 1,
0 if and only if gcd(a, q) 6= 1.

(19)

Lemma 2.3. Let n ≥ 1 be an integer. Then,

(i)
∑

d|n
µ(n) =

{

1 if n = 1,
0 if n 6= 1.

(ii)
∑

d|n
µ2(n) = 2ω(n).

2.3 Extreme Values Of The Totient Function

Some estimates for the extreme values of the Euler totient function are stated in this subsection.
The Euler totient function counts the number of relatively prime integers ϕ(n) = #{k : gcd(k, n) =
1}. For each n ∈ N, this counting function is compactly expressed by the analytic formula

ϕ(n) = n
∑

d|n

µ(d)

d
= n

∏

p|n

(

1− 1

p

)

. (20)

The explicit lower bound
ϕ(n)

n
>

1

eγ log logn+ 5/(2 log logn)
(21)

and other estimates are given in [48, Theorem 7]. The maximal values of the Euler function occurs
at the prime arguments. Id est, ϕ(p) = p − 1 < p. There are other subsets of integers that have
nearly maximal values. In fact, asymptotically, these integers and the primes number have the
same order of magnitudes.

Lemma 2.4. Let x ≥ 1 be a large number, and let n = 1 +
∏

p≤log x p. Then

(i) ϕ(n) = n+O (n/log logn),

(ii) ϕ(n+ 1) = n/2 +O (n/logn).

Proof. (i) Observe that logn ≥ ∑

p≤log x log p, so that p ≤ log x ≤ 2 logn. Hence, a prime divisor
q | n = 1 +

∏

p≤log x p implies that q > logn. Consequently, there is the upper bound

ϕ(n) = n
∏

p|n

(

1− 1

p

)

(22)

≤ n

(

1− 1

logn

)

= n+O

(

1

log n

)

.

In the other direction, there is the lower bound

ϕ(n) = n
∏

p|n

(

1− 1

p

)

(23)

≥ n
∏

logn<p≤2 logn

(

1− 1

p

)

= n+O

(

n

log logn

)

.
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Both relations (22) and (23) confirm the claim. (ii) The prime divisors of n+1 are q = 2 and some
prime q > logn, so the claim follows from

ϕ(n+ 1) = (n+ 1)
∏

p|(n+1)

(

1− 1

p

)

≤ n

2

(

1− 1

log n

)

=
n

2
+O

(

n

logn

)

. (24)

�

Theorem 2.2. Let p ≥ 2 be a large prime. Then, the followings extreme values hold.

(i)
ϕ(n)

n
≤ n− 1, if n ≥ 2 is an integer.

(ii)
ϕ(n)

n
≥ e−γ

4 log logn
, if n ≥ 2 is a highly composite integer.

(iii)
ϕ(n)

n
≈ e−γ

log log logn
, if n ≥ 2 is an average integer.

The totient function have a wide range of values, as confirmed by Lemma 2.4, and this accounts
for the wide range and large gaps in the sequence of totient gaps

ϕ(2)− ϕ(1), ϕ(3)− ϕ(2), ϕ(4)− ϕ(3), . . . , ϕ(n+ 1)− ϕ(n), . . . . (25)

The gap can be as small as ϕ(n + 1) − ϕ(n) = 0, and it can be as large as ϕ(n + 1) − ϕ(n) =
n/2 +O (n/logn). For example, ϕ(4)− ϕ(3) = 0, and ϕ(2 · 3 · 5 + 1)− ϕ(2 · 3 · 5 + 2) = 14.

3 Summatory Functions For Squarefree Integers

The subset of 2-power free integers are usually called squarefree integers, and denoted by

Q2 = {n ∈ Z : µ2(n) 6= 0} (26)

and the complementary subset of non squarefree integers is denoted by

Q2 = {n ∈ Z : µ2(n) = 0}. (27)

The number of squarefree integers have the following asymptotic formulas.

Lemma 3.1. Let µ : Z −→ {−1, 0, 1} be the Mobius function. Then, for any sufficiently large

number x ≥ 1,
∑

n≤x

µ2(n) =
6

π2
x+O

(

x1/2
)

. (28)

Proof. Use Lemma 2.2 or confer to the literature. �

The constant coincides with the density of squarefree integers. Its approximate numerical value is

6

π2
=

∏

q≥2

(

1− 1

q2

)

= 0.607988295164627617135754 . . . , (29)

where q ≥ 2 ranges over the primes. The remainder term

R(x) =
∑

n≤x

µ2(n)− 6

π2
x (30)

is a topic of current research, its optimum value is expected to satisfies the upper bound R(x) =

O(x1/4+ε) for any small number ε > 0. Currently, R(x) = O
(

x1/2e−
√
log x

)

is the best uncondi-

tional remainder term.
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Lemma 3.2. Let µ(n) be the Mobius function. Then, for any sufficiently large number x ≥ 1,

∑

n≤x

µ2(n) =
6

π2
x+Ω

(

x1/4
)

. (31)

Proof. The generating series for squarefree integers is ζ(s)/ζ(2s) =
∑

n≥1 µ
2(n)n−s at s = 2. The

Perron intergral yields

∑

n≤x

µ2(n) =
1

i2π

∫ c+∞

c−∞

ζ(s)

ζ(s)

xs

s
ds =

1

ζ(2)
x+

∑

ζ(ρ)=0

cρx
ρ/2, (32)

where c 6= 0 is a constant. The coefficients cρ are indexed by the zeros ρ ∈ C of the zeta function
ζ(s). Since the zeta function has a zero ρ0 = 1/2 + i14.134725 . . ., the claim follows. �

Theorem 3.1. Let x ≥ 1 be a large number, let a and q be a pair of integers, 1 ≤ a < q = O(logc x),
with c ≥ 0 constant, and let µ : Z −→ {−1, 0, 1} be the Mobius function. Then,

∑

n≤x
n≡a mod q

µ(n)2 =
6

π2

∏

p|q

(

1− 1

p2

)−1
x

q
+ O

(

x

q
+ q1/2+ε

)

, (33)

where ε > 0 is an arbitrary small number.

Proof. Consult [25], [58], and the literature. �

The range of moduli q ≤ x2/3 is discussed and improved to q ≤ x1−ε in [41]. The q-dependence in
the constant

1

q

∑

n≥1
gcd(n,q)=1

µ(n)

n2
=

1

q

∏

p∤q

(

1− 1

p2

)

=
6

π2

1

q

∏

p|q

(

1− 1

p2

)−1

(34)

propagates the dependence in the asymptotic formula for consecutive s-power free integers. For

example, the probability or density of two consecutive squarefree integers is not
(

6/π2
)2
, but

a more complicated expression similar to (34). The equidistribution of s-power free integers in
arithmetic progressions is affirmed by the result below. This also indicates a level of distribution
of 2/3 over any arithmetic progression {n = qm+ a : m ≥ 1}.

Theorem 3.2. Let x ≥ 1 be a large number, let a and q be a pair of integers, 1 ≤ a < q = O(logc x),
with c ≥ 0 constant, and let µ : Z −→ {−1, 0, 1} be the Mobius function. Then,

∑

q≤x2/3 log−c−1 x

max
a mod q

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤x
n≡a mod q

µ(n)2 − ϕ(q)

dϕ(q/d)

∏

p∤q

(

1− 1

p2

)

x

q

∣

∣

∣

∣

∣

∣

∣

∣

≪ x

logc x
, (35)

where d = gcd(a, q) and c > 0 is an arbitrary constant.

Proof. Consult [46] and the literature. �

Lemma 3.3. Let x ≥ 1 be a large number, and let µ : Z −→ {−1, 0, 1} be the Mobius function. If

q = O(logc x) with c ≤ 0 constant, then,

∑

n≤x
gcd(n,q)=1

µ2(n) =
6

π2

∏

p∤q

(

1 +
1

p

)−1

x+O
(

x1/2
)

. (36)

Proof. The proof is lengthier and more difficult than Lemma 3.1, see [14, Lemma 2]. �
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4 Correlation Functions For Squarefree Integers

A sequence of squarefree integers

n+ a0, n+ a1, n+ a2, . . . , n+ ak, (37)

imposes certain restriction on the (k + 1)-tuple (a0, a1, . . . , ak). A stronger restriction is required
for sequence of prime (k + 1)-tuples , see [2], and the literature for extensive details.

Definition 4.1. A k-tuple (a0, a1, . . . , ak) is called admissible if the numbers a0, a1, . . . , ak is not
a complete residues system modulo p for any prime p ≤ k.

Lemma 4.1. Let x ≥ 1 be a large number, and let µ : Z −→ {−1, 0, 1} be the Mobius function.

Then,
∑

n≤x

µ(n)2µ(n+ 1)2 =
∏

p≥2

(

1− 2

p2

)

x+O
(

x2/3
)

. (38)

Proof. The earliest proof seems to be that in [7], and [36]. Recent proofs appear in [35], and the
literature. �

The constant coincides with the density of 2-consecutive squarefree integers. Its approximate
numerical value is

∏

q≥2

(

1− 2

q2

)

= 0.322699054242535576161483 . . . , (39)

where q ≥ 2 ranges over the primes.

Lemma 4.2. Let x ≥ 1 be a large number, and let µ : Z −→ {−1, 0, 1} be the Mobius function.

Then,
∑

n≤x

µ(n)2µ(n+ 1)2µ(n+ 2)2 =
∏

p≥2

(

1− 3

p2

)

x+O
(

x2/3
)

. (40)

The earliest result in this direction appears to be
∑

n≤x

µ(n)2µ(n+ t)2 = cx+O
(

x2/3
)

, (41)

where c > 0 is the constant (29), is studied in [36]. Except for minor adjustments, the generalization
to sequences of (k + 1)-tuples of squarefree integers has the same structure.

Theorem 4.1. Let a ≥ 1 and s ≥ 2 be small integers. Let x ≥ 1 be a large number, and let

µs : Z −→ {−1, 0, 1} be the s-power free characteristic function. Then,

∑

n≤x

µ(n+ a0)
2µ(n+ a1)

2 · · ·µ(n+ ak)
2 =

∏

p≥2

(

1− ρ(s)

p2

)

x+O
(

x2/3+ε
)

, (42)

where q ≥ 1 is a constant, and

ρ(s) = #{m ≤ p2 : qm+ ai ≡ 0 mod p2 for i = 0, 1, 2, ..., k}, (43)

and ε > 0 is an arbitrary small number depending on k and q.

Proof. Consult [36], [35, Theorem 1.2], [54], and the literature. �

The literature does not seem to offer any results for squarefree twin integers n and n + a, which
are relatively prime to q = q(a). A plausible result might have the form given below.

Conjecture 4.1. Let x ≥ 1 be a large number, and let µ : Z −→ {−1, 0, 1} be the Mobius function.

If a ≥ 1 is a fixed integer, and q = O(logc x) with c ≥ 0 constant, then,

∑

n≤x
gcd(n,q)=1

gcd(n+a,q)=1

µ(n)2µ(n+ a)2 = c2(q, a)
∏

p∤q

(

1 +
1

p

)−2
∏

p≥2

(

1− 2

p2

)

x+O
(

x1−δ
)

, (44)

where dependence correction factor c2(q, a) ≥ 0, and δ > 0 is a small number.
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The dependence correction factor c2(q, a) ≥ 0, and the parameter q = q(a) depends on a ≥ 1.
For instance, for a = 2b + 1 odd, the value q = q(a) must be odd, and c2(q, a) > 0, otherwise
c2(q, a) = 0 for even q.

5 Summatory Functions For s-Power Free Integers

The subset of k-power free integers is usually denoted by

Qs = {n ∈ Z : µs(n) 6= 0} (45)

and the complementary subset of non s-free integers is denoted by

Qs = {n ∈ Z : µs(n) = 0}. (46)

The number s-power free integers have the following asymptotic.

Lemma 5.1. Given an integer s ≥ 2, let µs(n) be the sth-Mobius function. Then, for any

sufficiently large number x ≥ 1,

∑

n≤x

µs(n) =
1

ζ(s)
x+O

(

x1/s
)

. (47)

Proof. The basic sth-Mobius function µs is explained in Definition 2.4. This result is attributed
to Gegenbauer, 1885. Recent proofs are provided in [29] and the literature. �

Lemma 5.2. Given an integer s ≥ 2, let µs(n) be the sth-Mobius function. Then, for any

sufficiently large number x ≥ 1,

∑

n≤x

µs(n) =
1

ζ(2s)
x+Ω

(

x1/2s
)

. (48)

Proof. Same as the proof of Lemma 3.2, mutatis mutandus. �

Conjecture 5.1. Given a pair of integers s ≥ 2, and q ≥ 2, let µs(n) be the sth-Mobius function.

Then, for any sufficiently large number x ≥ 1,

∑

n≤x
gcd(n,q)=1

µs(n) =
1

ζ(2s)

∏

p∤q

(

1 +
1

p

)−1

x+O
(

x1/2s
)

. (49)

6 Correlation Functions For s-Power Free Integers

Theorem 6.1. Let s ≥ 2) be an integer. Let x ≥ 1 be a large number, and let µs : Z −→ {−1, 0, 1}
be the characteristic function of s-power free integers. Then,

∑

n≤x

µs(n)µs(n+ a) =
∏

p≥2

(

1− ρ(p, a)

ps

)

x+O
(

xα(s)+ε
)

, (50)

where

ρ(p) =

{

2 if ps ∤ a,
1 if ps | a, (51)

and

α(p, a) =
14

7s+ 8
(52)

and ε > 0 is an arbitrary small number.

Proof. Different proofs are given in [47], [1, Theorem 1.2], which have slightly different remainder
terms. �
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The main problems in this area are the determination of the best remainder terms for various
summatory functions. For instance, the remainder term

Rs(x) =
∑

n≤x

µs(n)−
1

ζ(2s)
x (53)

in Theorem 6.1 is expected to satisfies the upper bound Rs(x) = O(x1/2s+ε) for any small number
ε > 0. A survey of the literature on s-power free integers and arithmetic functions is presented in

[45]. Currently, Rs(x) = O
(

x1/2se−
√
log x

)

is the best unconditional remainder term.

The literature does not seem to offer any results for s-power free twin integers n and n+ a, with
a ≥ 1. A plausible result might have the form given below.

Conjecture 6.1. Given a pair of integers a ≥ 1 and s ≥ 2. Let x ≥ 1 be a large number, and let

µ : Z −→ {−1, 0, 1} be the Mobius function. If a ≥ 1, and q = O(logc x) with c ≥ 0 constant, then,

∑

n≤x
gcd(n,q)=1

gcd(n+a,q)=1

µs(n)µs(n+ 1) = cs(q, a)
∏

p∤q

(

1 +
1

p

)−s
∏

p≥2

(

1− 2

ps

)

x+O
(

x1/2s−δ
)

, (54)

where cs(q, a) ≥ 0 is a constant, and δ > 0 is a small number.

The constant cs(q, a) ≥ 0 and the parameter q = q(a) depend on a ≥ 1. For instance, for a = 2b+1
odd, the value q = q(a) must be odd, and cs(q, a) > 0, otherwise cs(q, a) = 0 for even q.

7 Probabilities For Consecutive Squarefree Integers

The events of 2 consecutive squarefree integersX0 andX1 are dependent random variables. Similar,
the events of 3 consecutive squarefree integers X0, X1, and X2 are dependent random variables.
The probability P (µ(X0) = ±1, µ(X1) = ±1) for 2 consecutive squarefree integers is asymptotic
to the constant attached to the main term in Lemma 4.1. Specifically,

∏

q≥2

(

1− 2

q2

)

=

(

6

π2

)2
∏

q≥2

(

1 +
1

q2(q2 − 2)

)−1

= 0.322699054242535576161483 . . . . (55)

The reduction from independent events is measured by the dependence correction factor

c2(2) =
∏

q≥2

(

1 +
1

q2(q2 − 2)

)−1

= 0.872985953449313618771745 . . . . (56)

The probability P (µ(X0) = ±1, µ(X1) = ±1, µ(X2) = ±1) for 3 consecutive squarefree integers is
asymptotic to the constant attached to the main term in Lemma 4.2. Specifically,

∏

q≥2

(

1− 3

q2

)

=

(

6

π2

)3
∏

q≥2

(

1 +
3q2 − 1

q4(q2 − 3)

)−1

= 0.125524878896821220184683 . . . . (57)

The reduction from independent events is measured by the dependence correction factor

c2(3) =
∏

q≥2

(

1 +
3q2 − 1

q4(q2 − 3)

)−1

= 0.558526979127689105533330 . . . . (58)

Accordingly, consecutive squarefree integers are highly correlated.
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8 Primitive Roots Test

For a prime p ≥ 2, the multiplicative group of the finite fields Fp is a cyclic group for all primes.

Definition 8.1. The order min{k ∈ N : uk ≡ 1 mod p} of an element u ∈ Fp is denoted by
ordp(u). An element is a primitive root if and only if ordp(u) = p− 1.

The Euler totient function counts the number of relatively prime integers ϕ(n) = #{k ≤ n :
gcd(k, n) = 1}.
Lemma 8.1. (Fermat-Euler) If a ∈ Z is an integer such that gcd(a, n) = 1, then aϕ(n) ≡ 1 mod n.

Lemma 8.2. (Primitive root test) An integer u ∈ Z is a primitive root modulo an integer n ∈ N
if and only if

uϕ(n)/p − 1 6≡ 0 mod n (59)

for all prime divisors p | ϕ(n).
The primitive root test is a special case of the Lucas primality test, introduced in [31, p. 302]. A
more recent version appears in [9, Theorem 4.1.1], and similar sources.

Lemma 8.3. (Complexity of primitive root test) Given a prime p ≥ 2, and primes decomposition

of the squarefree part p1p2 · · · pv | p−1, a primitive root modulo p can be determined in deterministic

polynomial time O(logc p), some constant c > 1.

Proof. The mechanics of the deterministic polynomial time algorithm are specified in [53, Chapter
11]. By [8, Theorem 1.2], the algorithm is repeated at most O

(

(log p)1+ε
)

times for each u =

O
(

(log p)1+ε
)

, with ε > 0. These prove the claim. �

9 Representations of the Characteristic Functions

The characteristic function Ψ : G −→ {0, 1} of primitive elements is one of the standard an-
alytic tools employed to investigate the various properties of primitive roots in cyclic groups G.
Many equivalent representations of the characteristic function Ψ of primitive elements are possible.
Several of these representations are studied in this section.

9.1 Divisors Dependent Characteristic Function

A representation of the characteristic function dependent on the orders of the cyclic groups is
given below. This representation is sensitive to the primes decompositions q = pe11 p

e2
2 · · · pett , with

pi prime and ei ≥ 1, of the orders of the cyclic groups q = #G.

Lemma 9.1. Let G be a finite cyclic group of order p−1 = #G, and let 0 6= u ∈ G be an invertible

element of the group. Then

Ψ(u) =
ϕ(p− 1)

p− 1

∑

d|p−1

µ(d)

ϕ(d)

∑

ord(χ)=d

χ(u) =

{

1 if ordp(u) = p− 1,
0 if ordp(u) 6= p− 1.

(60)

Proof. A full proof appears in [8, Lemma 3.1]. �

There are other proofs in the literature. Some details on this characteristic function are given
in [16, p. 863], [33, p. 258], [38, p. 18]. The works in [12], and [59] attribute this formula to
Vinogradov. But some authors make an earlier reference to Landau.

The characteristic function for multiple primitive roots is used in [11, p. 146] to study consecutive
primitive roots. In [15] it is used to study the gap between primitive roots with respect to the
Hamming metric. And in [59] it is used to prove the existence of primitive roots in certain small
subsets A ⊂ Fp. In [12] it is used to prove that some finite fields do not have primitive roots of
the form aτ + b, with τ primitive and a, b ∈ Fp constants. In addition, the Artin primitive root
conjecture for polynomials over finite fields was proved in [44] using this formula.
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9.2 Divisors Free Characteristic Function

It often difficult to derive any meaningful result using the usual divisors dependent characteristic
function of primitive elements given in Lemma 9.1. This difficulty is due to the large number of
terms that can be generated by the divisors, for example, d | p − 1, involved in the calculations,
see [16], [15] for typical applications and [37, p. 19] for a discussion.

A new divisors-free representation of the characteristic function of primitive element is developed
here. This representation can overcomes some of the limitations of its counterpart in certain
applications. The divisors representation of the characteristic function of primitive roots, Lemma
9.1, detects the order ordp(u) of the element u ∈ Fp by means of the divisors of the totient p− 1.
In contrast, the divisors-free representation of the characteristic function, Lemma 9.2, detects the
order ordp(u) ≥ 1 of the element u ∈ Fp by means of the solutions of the equation τn − u = 0 in
Fp, where u, τ are constants, and 1 ≤ n < p− 1, gcd(n, p− 1) = 1, is a variable.

Lemma 9.2. Let p ≥ 2 be a prime, and let τ be a primitive root mod p. If u ∈ Fp is a nonzero

element, and ψ 6= 1 is a nonprincipal additive character of order ordψ = p, then

Ψ(u) =
∑

gcd(n,p−1)=1

1

p

∑

0≤m≤p−1

ψ ((τn − u)m) =

{

1 if ordp(u) = p− 1,
0 if ordp(u) 6= p− 1.

(61)

Proof. A full proof appears in [8, Lemma 3.2]. �

9.3 Arbitrary Subset Characteristic Function

The previous construction easily generalize to arbitrary subset of the ring Z/pZ, and other rings.

Lemma 9.3. Let p ≥ 2 be a prime, and let A ⊂ Z/pZ be an arbitrary subset. Let ψ 6= 1 be a

nonprincipal additive character of order ordψ = p. Then,

ΨA(u) =
∑

x∈A

1

p

∑

0≤m≤p−1

ψ ((x− u)m) =

{

1 if u ∈ A,
0 if u 6∈ A. (62)

Proof. Consider the equation
x− u = 0 (63)

where u is fixed, and a variable x ∈ A. Clearly, it has a solution if and only if the fixed element
u ∈ A. �

10 Estimates Of Exponential Sums

This section provides simple estimates for the exponential sums of interest in this analysis. There
are two objectives: To determine an upper bound, proved in Theorem 10.2, and to show that

∑

gcd(n,p−1)=1

ei2πbτ
n/p =

∑

gcd(n,p−1)=1

ei2πτ
n/p + E(p), (64)

where E(p) is an error term, this is proved in Lemma 10.1.

10.1 Incomplete And Complete Exponential Sums

Theorem 10.1. ([51], [39]) Let p ≥ 2 be a large prime, and let τ ∈ Fp be an

element of large multiplicative order ordp(τ) | p− 1. Then, for any b ∈ [1, p− 1], and x ≤ p− 1,

∑

n≤x

ei2πbτ
n/p ≪ p1/2 log p. (65)

Proof. A complete proof appears in [8, Theorem 5.1]. �
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This seems to be the best possible upper bound. A similar upper bound for composite moduli
p = m is also proved, [op. cit., equation (2.29)].

Theorem 10.2. Let p ≥ 2 be a large prime, and let τ be a primitive root modulo p. Then,

∑

gcd(n,p−1)=1

ei2πbτ
n/p ≪ p1−ε (66)

for any b ∈ [1, p− 1], and any arbitrary small number ε ∈ (0, 1/2).

Proof. A complete proof appears in [8, Theorem 5.2]. �

The upper bound given in Theorem 10.2 seems to be optimum. A different proof, which has a
weaker upper bound, appears in [19, Theorem 6], and related results are given in [4], [18], [21],
and [22, Theorem 1].

10.2 Equivalent Exponential Sums

For any fixed 0 6= b ∈ Fp, the map τn −→ bτn is one-to-one in Fp. Consequently, the subsets

{τn : gcd(n, p− 1) = 1} and {bτn : gcd(n, p− 1) = 1} ⊂ Fp (67)

have the same cardinalities. As a direct consequence the exponential sums

∑

gcd(n,p−1)=1

ei2πbτ
n/p and

∑

gcd(n,p−1)=1

ei2πτ
n/p, (68)

have the same upper bound up to an error term. An asymptotic relation for the exponential sums
(68) is provided in Lemma 10.1. This result expresses the first exponential sum in (68) as a sum
of simpler exponential sum and an error term.

Lemma 10.1. Let p ≥ 2 be a large primes. If τ be a primitive root modulo p, then,

∑

gcd(n,p−1)=1

ei2πbτ
n/p =

∑

gcd(n,p−1)=1

ei2πτ
n/p +O(p1/2 log3 p), (69)

for any b ∈ [1, p− 1].

Proof. A complete proof appears in [8, Lemma 5.1]. �

The same proof works for many other subsets of elements A ⊂ Fp. For example,

∑

n∈A
ei2πbτ

n/p =
∑

n∈A
ei2πτ

n/p +O(p1/2 logc p), (70)

for some constant c > 0.

11 Asymptotic Formulas For The Main Terms

The notation f(x) ≍ g(x) is defined by a|f(x)|< |g(x)|< b|f(x)| for some constants a, b > 0. The
symbol f ≪ g denote f = O(g).

11.1 Main Term For k + 1 Consecutive Primitive Roots

Lemma 11.1. Let p ≥ 2 be a large prime, let k ≪ log p, and let ϕ be the totient function. Then,

∑

n∈Fp

∏

0≤i≤k





1

p

∑

gcd(ni,p−1)=1

1



 =

(

ϕ(p− 1)

p− 1

)k+1

p+O
(

log2 p
)

. (71)
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Proof. Each inner sum has the exact value ϕ(p− 1)/p. Hence,

M(k, p) =
∑

n∈Fp

∏

0≤i≤k





1

p

∑

gcd(ni,p−1)=1

1





=

(

ϕ(p− 1)

p

)k+1
∑

n∈Fp

1 (72)

=

(

ϕ(p− 1)

p

)k+1

p.

Last, but not least use the readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(73)

to obtain the standard form of the main term. �

11.2 Main Term For k + 1 Consecutive Squarefree Primitive Roots

The list of numbers a0, a1, . . . , ak forms an increasing sequence of distinct integers, an admissible
(k + 1) tuple, see Definition 4.1.

Lemma 11.2. Let p ≥ 2 be a large prime, let k ≪ log p, and let ϕ be the totient function. Then,

∑

n∈Fp

∏

0≤i≤k





1

p

∑

gcd(ni,p−1)=1

µ(n+ ai)
2



 =
∏

q≥2

(

1− ρ(q)

q2

)(

ϕ(p− 1)

p− 1

)k+1

p+O
(

x2/3+ε
)

, (74)

where ε > 0 is an arbitrarily small number.

Proof. Rearrange the finite sum and observe that each inner sum has the exact value ϕ(p− 1)/p =
∑

gcd(n,p−1)=1 1. Hence,

M(k, p) =
∑

n∈Fp





µ(n+ a0)
2

p

∑

gcd(n0,p−1)=1

1 · · · µ(n+ ak)
2

p

∑

gcd(nk,p−1)=1

1





=

(

ϕ(p− 1)

p

)k+1
∑

n∈Fp

µ(n+ a0)
2 · · ·µ(n+ ak)

2 (75)

=
∏

q≥2

(

1− ω(q)

q2

)(

ϕ(p− 1)

p− 1

)k+1

p+O
(

x2/3+ε
)

.

The last line follows from Theorem 4.1 applied to the correlation function, and ε > 0 is an arbitrarily
small number. Now, use the readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(76)

to obtain the standard form of the main term. �

11.3 Main Term For Squarefree Twin Primitive Roots

Lemma 11.3. Let p ≥ 2 be a large prime, let ϕ be the totient function, and let µ be the Mobius

function. Then,

∑

n∈Fp





µ2(n)

p

∑

gcd(n0,p−1)=1

1









µ2(n+ 1)

p

∑

gcd(n1,p−1)=1

1



 (77)

=
∏

q≥2

(

1− 2

q2

)(

ϕ(p− 1)

p− 1

)2

p+O
(

p2/3
)

.
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Proof. Rearrange it and simplify it as

M2(2, p) =
∑

n∈Fp





µ2(n)

p

∑

gcd(n0,p−1)=1

1









µ2(n+ 1)

p

∑

gcd(n1,p−1)=1

1





=

(

ϕ(p− 1)

p

)2
∑

n∈Fp

µ2(n)µ2(n+ 1) (78)

=

(

ϕ(p− 1)

p

)2




∏

q≥2

(

1− 2

q2

)

p+O
(

p2/3
)





The last line follows from Lemma 4.1 or Theorem 4.1 applied to the correlation function. Lastly,
use the readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(79)

to obtain the standard form of the main term. �

11.4 Main Term For Squarefree Triple Primitive Roots

Lemma 11.4. Let p ≥ 2 be a large prime, let ϕ be the totient function, and let µ be the Mo-

bius function. Then, the number of three consecutive squarefree primitive root has the asymptotic

formula

∑

n∈Fp





µ2(n)

p

∑

gcd(n0,p−1)=1

1









µ2(n+ 1)

p

∑

gcd(n1,p−1)=1

1









µ2(n+ 2)

p

∑

gcd(n1,p−1)=1

1





=
∏

q≥2

(

1− 3

q2

)(

ϕ(p− 1)

p− 1

)3

p+O
(

p2/3
)

. (80)

Proof. Rearrange it and simplify it as

M2(3, p) =
∑

n∈Fp





µ2(n)

p

∑

gcd(n0,p−1)=1

1









µ2(n+ 1)

p

∑

gcd(n1,p−1)=1

1





×





µ2(n+ 2)

p

∑

gcd(n2,p−1)=1

1





=

(

ϕ(p− 1)

p

)3
∑

n∈Fp

µ2(n)µ2(n+ 1)µ2(n+ 2) (81)

=

(

ϕ(p− 1)

p

)3




∏

q≥2

(

1− 3

q2

)

p+O
(

p2/3
)





The last line follows from Lemma 4.2 or Theorem 4.1 applied to the correlation function. Lastly,
use the readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(82)

to obtain the standard form of the main term. �

11.5 Main Term For s-Power Free Primitive Roots

Lemma 11.5. Let p ≥ 2 be a large prime, let s ≥ 2 be an integer, and let µs be the characteristic

function of s-power free integers. Then,

∑

n∈Fp

µs(n)

p

∑

gcd(m,p−1)=1

1 =
1

ζ(s)

ϕ(p− 1)

p− 1
p+O

(

p1/s
)

. (83)
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Proof. Simplify the double sum:

1

p

∑

n∈Fp

µs(n)
∑

gcd(m,p−1)=1

1 =
ϕ(p− 1)

p

∑

n∈Fp

µs(n). (84)

Replace the characteristic function for s-power free integers, see Lemma 2.2, and reverse the order
of summation:

ϕ(p− 1)

p

∑

n∈Fp

µs(n) =
ϕ(p− 1)

p

∑

n∈Fp

∑

ds|n
µ(d) (85)

=
ϕ(p− 1)

p

∑

d≤p1/s

µ(d)
∑

n∈Fp

ds|n

1

=
ϕ(p− 1)

p

∑

d≤p1/s

µ(d)
( p

ds
+O(1)

)

=
1

ζ(s)

ϕ(p− 1)

p
p+O

(

p1/s
)

,

where 1/ζ(s) =
∑

n≥1 µ(n)n
−s is the inverse zeta function. Now, use the readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(86)

to obtain the standard form of the main term. �

11.6 Main Term For s-Power Free Twin Primitive Roots

Lemma 11.6. Let p ≥ 2 be a large prime, let a0 6= a1 and s ≥ 2 be small integers. Let µs be the

s-power free characteristic function. Then,

∑

n∈Fp





µs(n+ a0)

p

∑

gcd(n0,p−1)=1

1









µs(n+ a1)

p

∑

gcd(n1,p−1)=1

1



 (87)

=
∏

q≥2

(

1− ρ(s)

qs

)(

ϕ(p− 1)

p− 1

)2

p+O
(

pα(s)+ε
)

,

where ρ(s) = 1, 2, α(s) < 1 and ε > 0 is an arbitrary small number.

Proof. Rearrange it and simplify it as

M2(2, p) =
∑

n∈Fp





µs(n)

p

∑

gcd(n0,p−1)=1

1









µs(n+ a)

p

∑

gcd(n1,p−1)=1

1





=

(

ϕ(p− 1)

p

)2
∑

n∈Fp

µs(n)µs(n+ a) (88)

=

(

ϕ(p− 1)

p

)2




∏

q≥2

(

1− ρ(s)

qs

)

p+O
(

pα(s)+ε
)





The last line follows from Theorem 6.1 applied to the correlation function. Lastly, use the read-
justment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(89)

to obtain the standard form of the main term. �
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11.7 Main Term For Relatively Prime Primitive Roots

Lemma 11.7. Let p ≥ 2 be a large prime, and let q ≤ p− 1 be a fixed integer. Then,

1

p

∑

n∈Fp

gcd(n,q)=1

∑

gcd(m,p−1)=1

1 =
ϕ(q)

q

ϕ(p− 1)

p− 1
p+O(log2 p). (90)

Proof. Simplify the double sum:

Mr(p, q) =
1

p

∑

n∈Fp

gcd(n,q)=1

∑

gcd(m,p−1)=1

1 (91)

=
ϕ(p− 1)

p

∑

n∈Fp

gcd(n,q)=1

1.

Replace the characteristic function for relatively prime numbers, see Definition 2.5, and rearrange
the order of summation:

ϕ(p− 1)

p

∑

n∈Fp

gcd(n,q)=1

1 =
ϕ(p− 1)

p

∑

n∈Fp

∑

d|n
d|q

µ(d) (92)

=
ϕ(p− 1)

p

∑

d|q
µ(d)

∑

n∈Fp

d|n

1

= p
ϕ(p− 1)

p

∑

d|q

µ(d)

d

=
ϕ(q)

q

ϕ(p− 1)

p− 1
p,

where ϕ(n)/n =
∑

d|n µ(d)/d, see Section 2. Lastly, use the readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(93)

to obtain the standard form of the main term. �

11.8 Main Term For Relatively Prime Twin Primitive Roots

The identity ϕ(n) =
∑

gcd(d,n)=1 1, and the estimate
∑

d|q|µ(d)|= O
(

qδ
)

for δ > 0 is a small
number, see Section 2, are used within the proofs.

Lemma 11.8. If p ≥ 2 is a large prime, let a ≥ 1 and q ≤ p− 1 be a pair of fixed integers. Then,

1

p

∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

∑

gcd(m,p−1)=1

1 = c2(q, a)

(

ϕ(q)

q

)2
ϕ(p− 1)

p− 1
p+O

(

p2δ
)

, (94)

where c2(q, a) ≥ 0 is a dependence correction factor, and δ > 0 is a small number.

Proof. Simplify the double sum:

1

p

∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

∑

gcd(m,p−1)=1

1 =
ϕ(p− 1)

p

∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

1. (95)
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Replace the characteristic function for relatively prime numbers, see Definition 2.5, and rearrange
the order of summation:

ϕ(p− 1)

p

∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

1 =
ϕ(p− 1)

p

∑

n∈Fp

∑

d|n
d|q

µ(d)
∑

e|n+a
e|q

µ(e) (96)

=
ϕ(p− 1)

p

∑

d|q
µ(d)

∑

e|q
µ(e)

∑

n∈Fp

d|n
e|n+1

1

=
ϕ(p− 1)

p

∑

d|q
µ(d)

∑

e|q
µ(e)

(

c2(q, a)
p

de
+O(1)

)

,

where c2(q, a) ≥ 0 is a dependence correction factor. Continuing yield

ϕ(p− 1)

p

∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

1 = c2(q, a)p
ϕ(p− 1)

p

∑

d|q

µ(d)

d

∑

e|q

µ(e)

e
+O





∑

d|q
|µ(d)|

∑

e|q
|µ(e)|





= c2(q, a)

(

ϕ(q)

q

)2
ϕ(p− 1)

p
p+O

(

q2δ
)

, (97)

where δ > 0 is a small number, and
∑

d|q|µ(d)|= O(qδ) = O
(

pδ
)

. Lastly, use the readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(98)

to obtain the standard form of the main term. �

The above proof is a simplified version, it does not show the details of the dependence between the
variables d | and e | q in the last line of (96). It simply includes a dependence correction constant
c2(q) > 0.

11.9 Main Term For Squarefree And Relatively Prime Primitive Roots

Lemma 11.9. Let p ≥ 2 be a large prime, and let q = O(log p) be a fixed integer. Then,

1

p

∑

n∈Fp

gcd(n,q)=1

∑

gcd(m,p−1)=1

µ(n)2 =
6

π2

∏

p∤q

(

1 +
1

p

)−1
ϕ(p− 1)

p− 1
p+O

(

p1/2
)

(99)

Proof. Simplify the double sum:

Mr(p, q) =
1

p

∑

n∈Fp

gcd(n,q)=1

∑

gcd(m,p−1)=1

µ(n)2 (100)

=
ϕ(p− 1)

p

∑

n∈Fp

gcd(n,q)=1

µ(n)2.

Apply Lemma 3.3 to the inner sum:

ϕ(p− 1)

p

∑

n∈Fp

gcd(n,q)=1

µ(n)2 =
ϕ(p− 1)

p





6

π2

∏

p∤q

(

1 +
1

p

)−1

p+O
(

p1/2
)





=
6

π2

∏

p∤q

(

1 +
1

p

)−1
ϕ(p− 1)

p
p+O

(

p1/2
)

.
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Lastly, use the readjustment
ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(101)

to obtain the standard form of the main term. �

11.10 Main Term For Squarefree And Relatively Prime Twin Primitive

Roots

Lemma 11.10. Assume conjecture 4.1. If p ≥ 2 is a large prime, let a ≥ 1 and q ≤ p − 1 be a

pair of fixed integers. Then,

1

p2

∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

∑

gcd(m0,p−1)=1
gcd(m1,p−1)=1

µ(n)2µ(n+ a)2 (102)

= c2(q, a)
∏

r|q

(

1− 1

rs

)

∏

p≥2

(

1− 2

ps

)(

ϕ(p− 1)

p− 1

)2

p+O
(

p2δ
)

,

where c2(q, a) ≥ 0 is a dependence correction factor, and δ > 0 is a small number.

Proof. Simplify the double sum:

1

p2

∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

∑

gcd(m0,p−1)=1
gcd(m1,p−1)=1

µ(n)2µ(n+ a)2 =

(

ϕ(p− 1)

p

)2
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

µ(n)2µ(n+ a)2. (103)

Set x = p, and apply Conjecture 4.1 to the inner finite sum:

Msr(2, p, q) =

(

ϕ(p− 1)

p

)2
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

µ(n)2µ(n+ a)2 (104)

=

(

ϕ(p− 1)

p

)2


c2(q, a)
∏

p∤q

(

1 +
1

p

)−2
∏

p≥2

(

1− 2

p2

)

p+O
(

p1−δ
)





= c2(q, a)
∏

p∤q

(

1 +
1

p

)−2
∏

p≥2

(

1− 2

p2

)(

ϕ(p− 1)

p

)2

p+ O
(

p1−δ
)

,

where c2(q, a) ≥ 0 is a dependence correction factor, and δ > 0 is a small number. Lastly, use the
readjustment

ϕ(p− 1)

p
=
ϕ(p− 1)

p− 1

(

1− 1

p

)

(105)

to obtain the standard form of the main term. �

12 The Estimates For The Error Terms

The upper bounds for exponential sums over subsets of elements in finite fields Fp studied in Section
10 are used to estimate the error terms for the different configurations of consecutive primitive roots
in Theorem 1.2 and the other results.

Lemma 12.1. Let p ≥ 2 be a large prime, and let τ be a primitive root mod p. If the element

u 6= 0,±1, v2 is not a primitive root, then,

S(p, k) =
∑

u∈Fp





1

p

∑

gcd(n,p−1)=1,

∑

0<m≤p−1

ei2π((τ
n−u)m)



 ≪ p1−ε (106)

for all sufficiently large primes p ≥ 2, and an arbitrarily small number ε > 0.
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Proof. By hypothesis u 6= 0,±1, v2 is not a primitive root. Thus, S1 6= −ϕ(p− 1). Rearrange the
finite sum as

S1 =
∑

u∈Fp

1

p

∑

gcd(n,p−1)=1,

∑

0<m≤p−1

ei2π((τ
n−u)m) (107)

=
1

p

∑

u∈Fp





∑

0<m≤p−1,

e−i2πum/p









∑

gcd(n,p−1)=1

ei2πmτn/p





=
1

p

∑

u∈Fp





∑

0<m≤p−1,

e−i2πum/p









∑

gcd(n,p−1)=1

ei2πτ
n/p +O(p1/2 log3 p)





=
1

p

∑

u∈Fp

Up · Vp.

The third line in equation (107) follows from Lemma 10.1. The first exponential sum Up has the
exact evaluation

|Up|=

∣

∣

∣

∣

∣

∣

∑

0<m≤p−1

e−i2πum/p

∣

∣

∣

∣

∣

∣

= 1, (108)

where
∑

0<m≤p−1 e
i2πum/p = −1 for any u ∈ [1, p − 1]. The second exponential sum Vp has the

upper bound

|Vp| =

∣

∣

∣

∣

∣

∣

∑

gcd(n,p−1)=1

ei2πτ
n/p +O

(

p1/2 log3 p
)

∣

∣

∣

∣

∣

∣

≪

∣

∣

∣

∣

∣

∣

∑

gcd(n,p−1)=1

ei2πτ
n/p

∣

∣

∣

∣

∣

∣

+ p1/2 log3 p (109)

≪ p1−ε,

where ε < 1/2 is an arbitrarily small number, see Theorem 10.2. Taking absolute value in (107),
and replacing the estimates (108) and (109) return

|S1| ≤ 1

p

∑

u∈Fp

|Up| · |Vp| (110)

≪ 1

p

∑

u∈Fp

(1) · p1−ε

≪ 1

pε

∑

u∈Fp

1

≪ p1−ε.

�

No effort was made to optimize the error term in Lemma 12.1. However, it should be noted that
the best possible is p1/2+ε, see Theorem 10.2.

12.1 Error Term For k + 1 Consecutive Primitive Roots

Lemma 12.2. Let p ≥ 2 be a large prime, let k < log p/log log log p be an integer, and let τ be a

primitive root mod p. If the element n+ ai 6= 0,±1, v2 is not a primitive root for i = 0, 1, 2, ..., k,
then,

E(k, p) =
∑

n∈Fp

∏

0≤i≤k









1

p

∑

gcd(ni,p−1)=1
0<mi≤p−1

ei2π((τ
ni−n−ai)mi)









≪ p1−ε (111)
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for all sufficiently large primes p ≥ 2, and an arbitrarily small number ε > 0.

Proof. By hypothesis n+ai 6= 0,±1, v2 is not a primitive root for i = 0, 1, 2, ..., k. Thus, E(k, p) 6=
−(ϕ(p− 1)/p)k+1p. Rewrite the multiple finite sum as a product E(p, τ) = S1 ×S2. The first sum
indexed by m = m0 and n = n0 has a nontrivial upper bound

|S1| ≪ p1−ε, (112)

see Lemma 12.1. The product of the remaining sums indexed by mi and ni, i ∈ {1, 2, . . . k − 1}
have the trivial upper bound

|S2| ≤

∣

∣

∣

∣

∣

∣

∣

∣

1

p

∑

gcd(n1,p−1)=1
0<m1≤p−1

ei2π((τ
n1−n−a1)m1)

∣

∣

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

∣

∣

1

p

∑

gcd(nk,p−1)=1
0<mk≤p−1

ei2π((τ
nk−n−ak)mk)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ϕ(p− 1)

p
· · · ϕ(p− 1)

p
(113)

≤
(

ϕ(p− 1)

p

)k

.

Merging (112) and (113) returns

|E(p, τ)| ≤ |S1| |S2| (114)

≤
(

p1−ε
)

×
(

ϕ(p− 1)

p

)k

≤ p1−ε.

The last inequality uses ϕ(p− 1)/p ≤ 1. �

12.2 Error Term For s-Power Free Primitive Roots

Lemma 12.3. Let p ≥ 2 be a large prime, let τ be a primitive root mod p, and let µs be the

characteristic function of s-power free integers. If the element n 6= 0,±1, v2 is not a primitive

root, then,

E(s, p) =
∑

n∈Fp









µs(n)

p

∑

gcd(m,p−1)=1
1≤a≤p−1

ψ ((τm − n)a)









≪ p1−ε (115)

for all sufficiently large primes p ≥ 2, and an arbitrarily small number ε > 0.

Proof. Same as Lemma 12.1, mutatis mutandus. �

12.3 Error Term For k + 1 Consecutive Squarefree Primitive Roots

Lemma 12.4. Let p ≥ 2 be a large prime, let 0 ≤ a0, a1, a2, . . . , ak be an admissible (k + 1)-tuple
of integers, and let τ be a primitive root modulo p. If the element n + ai 6= 0,±1, v2 is not a

primitive root for i = 0, 1, 2, ..., k, then,

Es(k, p) =
∑

n∈Fp

∏

0≤i≤k









µ2(n+ ai)

p

∑

gcd(ni,p−1)=1
1≤bi≤p−1

ψ ((τni − n− ai)bi)









≪ p1−ε (116)

for all sufficiently large primes p ≥ 2, and an arbitrarily small number ε > 0.

Proof. Same as Lemma 12.2, mutatis mutandus. �
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12.4 Error Term For Restricted k + 1 Consecutive Primitive Roots

Lemma 12.5. Let p ≥ 2 be a large prime, let 0 ≤ a0, a1, a2, . . . , ak be an admissible (k + 1)-tuple
of integers, and let τ be a primitive root modulo p. If the element n + ai 6= 0,±1, v2 is not a

primitive root for i = 0, 1, 2, ..., k, and f(n) ≪ 1 is a bounded arithmetic function, then,

Es(k, p) =
∑

n∈Fp

∏

0≤i≤k









f(n+ ai)

p

∑

gcd(ni,p−1)=1
1≤bi≤p−1

ψ ((τni − n− ai)bi)









≪ p1−ε (117)

for all sufficiently large primes p ≥ 2, and an arbitrarily small number ε > 0.

Proof. Use the fact that |f(n)|≪ 1, and the same technique as Lemma 12.2, mutatis mutandus. �

13 Some Collections Of Primes

Some information on the collections of primes of interest in the theory of consecutive and quasi
consecutive primitive roots are recorded in this Section.

13.1 Average Primes

The subset of average random primes is taken to be

P = {2, 3, 5, 7, 11, 13, · · ·}. (118)

It consists of all the primes numbers. An average random prime p ≥ 2 has the average totient
p− 1 = ϕ(p), has the mean numbers of prime divisors,

ω(p− 1) ≪ log log p, (119)

and the average value
ϕ(p− 1)

p− 1
=

∏

q|p−1

≈ 1

log log log p
, (120)

where r ≤ q ranges over the primes. The theory of the set of primes is highly developed, and a
topic of extensive research.

13.2 Primorial Primes

The subset of primorial primes

A = {p = 2 · 3 · 5 · 7 · · · q + 1 : prime q ≥ 2} (121)

is studied in [5], and listed in OEIS A014545. A primorial prime has highly composite totient
p− 1 = ϕ(p), the maximal numbers of prime divisors

ω(p− 1) ≪ log p/log log p, (122)

see Lemma 2.1, and the minimal value

ϕ(p− 1)

p− 1
=

∏

q|p−1

(

1− 1

q

)

≈ 1

log log p
, (123)

where r ≤ q ranges over the primes, see Theorem 2.2. The heuristic claims that there are infinitely
many primorial primes. The theory of the subset of primes is at a rudimentary stage, and a topic
of current research.
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13.3 Coprimorial Primes

The subset of coprimorial primes is defined by

B = {p = 3 · 5 · 7 · · · q + 2 : prime q ≥ 2}. (124)

The heuristic seems to show the existence of infinitely many coprimorial primes. The collection of
these primes is not a topic of research in the literature. The totient p− 1 = ϕ(p) of a coprimorial
prime has very few prime divisors

ω(p− 1) ≪ 1, (125)

and nearly maximal value
ϕ(p− 1)

p− 1
=

∏

q|p−1

(

1− 1

q

)

≈ 2. (126)

The coprimorial primes have Germain primes type structure.

13.4 Germain Primes

The subset of Germain primes is defined by

S = {p = 2a · q + 1 : prime q ≥ 2 and a ≥ 1}. (127)

The heuristic claims that there are infinitely many Germain primes. The theory of the subset of
Germain primes is not fully developed, but it is a topic of current research. The totient p−1 = ϕ(p)
of a Germain prime has two prime divisors

ω(p− 1) = 2, (128)

and the nearly maximal value

ϕ(p− 1)

p− 1
=

∏

q|p−1

(

1− 1

q

)

≈ 2, (129)

where r ≤ q ranges over the primes.

13.5 Fermat Primes

The subset of Fermat primes is defined by

S = {p = 22
n

+ 1 : n ≥}. (130)

The heuristic claims that there are finitely many Fermat primes. The theory of this subset of
primes is not fully developed, but it is a topic of current research. The totient p − 1 = ϕ(p) of a
Fermat prime has one prime divisor

ω(p− 1) = 1, (131)

and the maximal value
ϕ(p− 1)

p− 1
=

∏

q|p−1

(

1− 1

q

)

= 2. (132)

where r ≤ q ranges over the primes.

14 Maximal Length Of Consecutive Primitive Roots

The number of prime divisors ω(n) of a random integer n ∈ N is a normal random variable with
mean log logn, and standard error

√
log logn, see Theorem 2.1, and Lemma 2.1. Roughly, there

are three major classes of totients p−1 = ϕ(p) and the corresponding classes of the primes divisors
counting function ω(p− 1).
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(1) The subset of primorial primes p = 2·3·5·7 · · ·q+1 have highly composite totients p−1 = ϕ(p)
and the maximal numbers of prime divisors, see Subsection 13.2.

(2) The average primes p ≥ 2. The average totients p − 1 = ϕ(p) have the mean numbers of
prime divisors, Subsection 13.1.

(3) The subset of Fermat primes, Germain primes, and coprimorial primes. The totient p− 1 =
ϕ(p) of any of these primes has the minimal number of prime divisors. These primes are
described in Section 13.

Lemma 14.1. Let p ≥ 2 be a large prime. Then, the maximal length k ≥ 1 of a string of

consecutive primitive roots is as follows.

(i) k ≪ log p/log log log p, if ω(p− 1) ≪ log p/log log p.

(ii) k ≪ log p/log log log log p, if ω(p− 1) ≪ log log p.

(iii) k ≪ log p, if ω(p− 1) ≪ 1.

Proof. The existence of an (k + 1)-tuple implies that

p

(

ϕ(p− 1)

p− 1

)k+1

≫ p1−ε (133)

is true, with ε ∈ (0, 1/2), see Theorem 1.1. Equivalently, this is

k ≪ ε log p

log
(

p−1
ϕ(p−1)

) ≪ ε log p

logω(p− 1)
. (134)

The three different cases are for

p− 1

ϕ(p− 1)
≈ log log p,

p− 1

ϕ(p− 1)
≈ log log log p, and

p− 1

ϕ(p− 1)
≈ 2 (135)

respectively. �

Definition 14.1. Given a prime p ≥ 2, and k the longest run of consecutive primitive roots in
the finite field Fp, the length merit ratio is defined by m̂ = k/log p.

The length merit ratio varies as p → ∞, but it remains bounded by a constant m̂ ≪ 1. The
Fermat primes p = 22

n

+ 1, n ≥ 0, the Germain primes p = 2aq + 1, q ≥ 2 primes and a ≥ 1, and
some other collections, are expected to have the largest length merit ratio. Some numerical data
for small primes are provided here. Observe that these small cases are subject to the Strong law
of small numbers,[20].

Example 14.1. Extreme Case 1. Some statistic for the finite field Fp with p = p = 24 + 1 = 17.

Prime p = 17
Parameters ω(p− 1) = 1, ϕ(p− 1) = 8
Primitive roots 3, 5, 6, 7, 10, 11, 12, 14
Length k 3
Merit factor k/log p = 1.058869

Similarly, the prime p = 216 + 1 has the parameters, ω(p − 1) = 1, ϕ(p − 1) = 215, and log p =
11.09. Thus, Lemma 14.1 predicts the existence of some 11-tuples or larger k-tuples of consecutive
primitive roots in the set of primitive roots R = {3, 5, 7, 11, 13, 15, . . . .}.
Example 14.2. Extreme Case 3. Some statistic for the finite field Fp with p = 2 · 3 · 5 + 1 = 31.

Prime p = 31
Parameters ω(p− 1) = 3, ϕ(p− 1) = 8
Primitive roots 3, 11, 12, 13, 17, 21, 22, 24
Length k 3
Merit factor k/log p = 0.873620
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Table 1: Maximal k-Tuple of Primitive Roots Indexed By p.
p k m̂ p k m̂ p k m̂
3 1 0.910239 29 2 0.593948 61 2 0.486514
5 2 1.242669 31 3 0.873620 67 3 0.713488
7 1 0.513898 37 4 1.107751 71 3 0.703782
11 3 1.251097 41 3 0.807847 73 3 0.699225
13 2 0.779742 43 3 0.797617 79 3 0.686585
17 3 1.058868 47 4 1.038921 83 7 1.584125
19 3 1.018869 53 5 1.259353 89 6 1.336708
23 3 0.956786 59 5 1.226230 97 5 1.092965

Table 2: Least Prime p and Maximal k-Tuple of Primitive Roots.
p k m̂ p k m̂
3 = 2 · 1 + 1 1 0.910239226 83 = 22 · 41 + 1 7 1.584125933
5 = 2 · 2 + 1 2 1.242669869 347 = 2 · 173 + 1 8 1.367679228
11 = 2 · 5 + 1 3 1.251097174 269 = 22 · 67 + 1 9 1.608662072
37 = 22 · 32 + 1 4 1.107751574 563 = 2 · 281 + 1 10 1.578960758
53 = 22 · 13 + 1 5 1.259353244 467 = 2 · 233 + 1 11 1.789686094
89 = 23 · 11 + 1 6 1.336708859 1187 = 22 · 33 · 11 + 1 12 1.695110528

15 Consecutive Primitive Roots

Consecutive primitive roots is one of the simplest configuration of a subset of two or more primitive
roots. A more general result was proved by Carlitz [6] using a counting technique based on Lemma
9.1. A new proof and counting technique
based on Lemma 9.2 is given here.

15.1 Strings Of k + 1 Consecutive Primitive Roots

Let a0, a1, a2, . . . , ak be a fixed (k + 1)-tuple of distinct integers. Let p ≥ 2 be a large prime, and
let τ ∈ Fp be a primitive root. A string of k + 1 consecutive primitive roots n + a0, n + a1, n +
a2, . . . , n+ ak exists if and only if the system of equations

τn0 = n+ a0, τn1 = n+ a1, τn2 = n+ a2, . . . , τnk = n+ ak, (136)

has one or more solutions. A solution consists of a (k+1)-tuple n0, n1, . . . , nk of integers such that
gcd(ni, p− 1) = 1 for i = 0, 1, . . . , k, and some n ∈ Fp. Let

N(k, p) = # {n ∈ Fp : ordp(n+ ai) = p− 1} (137)

for i = 0, 1, . . . , k, denotes the number of solutions.

Proof. (Theorem 1.1): The total number of solutions is written in terms of characteristic function
for primitive roots, see Lemma 9.2, as

N(k, p) =
∑

n∈Fp

Ψ(n+ a0)Ψ (n+ a1) · · ·Ψ(n+ ak) (138)

=
∑

n∈Fp

∏

0≤i≤k









1

p

∑

gcd(ni,p−1)=1
0≤ui≤p−1

ψ ((τni − n− ai)ui))









= M(k, p) + E(k, p).
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The main term is determined by the indices u0 = u1 = · · · = uk = 0, and has the form

M(k, p) =
∑

n∈Fp

∏

0≤i≤k





1

p

∑

gcd(ni,p−1)=1

1



 , (139)

and the error term is determined by the indices u0 6= 0, u1 6= 0, . . . , uk 6= 0, and has the form

E(k, p) =
∑

n∈Fp

∏

0≤i≤k









1

p

∑

gcd(ni,p−1)=1
1≤ui≤p−1

ψ ((τni − n− ai)ui))









. (140)

Applying Lemma 11.1 to the main term and Lemma 12.2 to the error term, yield

N(k, p) = M(k, p) + E(k, p) (141)

=

(

ϕ(p− 1)

p− 1

)k+1

p+O(log2 p) +O(p1−ε)

=

(

ϕ(p− 1)

p− 1

)k+1

p+O(p1−ε)

> 0,

for all sufficiently large primes p ≥ 2, and an arbitrary small number ε > 0.
�

16 Probabilities Functions For Consecutive Primitive Roots

The forms of the main terms in Theorem 1.1 and Theorem 1.2 imply that a primitive root in a
finite field Fp is a nearly independent random variable X = X(p).

Definition 16.1. The probability of primitive roots in a finite field Fp is defined by

P (ordp (X) = p− 1) =
ϕ(p− 1)

p− 1
+O

(

1

pε

)

, (142)

where ε > 0 is a small number.

The occurrence of each primitive root is approximately an independent variable X with probability
P (ordpX = p− 1) = ϕ(p− 1)/(p− 1), as demonstrated in Definition 16.1. A random (k+1)-tuple
of consecutive primitive roots is denoted by

Zk = (X0, X1, . . . , Xk) , (143)

where each primitive root Xi has order ordp (Xi) = p− 1. The Fermat prime numbers p = 22
m

+1
and the Germain primes p = 2aq + 1, where a ≥ 1 and q ≥ 2 is prime, have the simpler totients
p−1, see Section 13, and descriptions of the probabilities functions of the k+1-tuples. The precise
form for Germain primes is

P (Zk) =

(

ϕ(p− 1)

p− 1

)k+1

=

(

1

2
− 1

2q

)k+1

, (144)

Table 1 demonstrates this well, almost all the listed cases have Germain primes; the exception could
be an instance of the Strong Law of Small Numbers. On the other extreme are the collections of
highly composite totients p− 1. The precise form for primorial primes p = 2 · 3 · 5 · · · q + 1, where
q ≥ 3 is prime, is

P (Zk) =

(

ϕ(p− 1)

p− 1

)k+1

=
∏

r≤q

(

1− 1

q

)k+1

, (145)

where r ≤ q ranges over the primes. Some numerical data are displayed in Figure 1 and Figure 2.
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Figure 1: Probability Function of Consecutive Primitive Roots, p = 216 + 1
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Figure 2: Probability Function of Consecutive Primitive Roots, p = 2 · 3 · · · 31 + 1
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17 Consecutive Squarefree Primitive Roots

The result for the existence of multiple consecutive squarefree primitive roots seems to be new
in the literature. The first cases for 2 consecutive squarefree primitive roots n and n + 1, and
3 consecutive squarefree primitive roots n, n + 1 and n + 2 are feasible. But, the existence of 4
consecutive squarefree primitive roots n, n + 1, n + 2 and n+ 3 is infeasible. However, there are
quasi consecutive squarefree primitive roots of length k ≪ log p for a wide range of prime numbers.
To describe these possibilities, let (a0, a1, a2, . . . , ak) be a fixed integers (k + 1)-tuple of distinct
integers. A string of k+1 quasi consecutive squarefree primitive roots n+a0, n+a1, n+a2, . . . , n+ak
is a solution of the systems of equations:

1. τn0 = n+ a0, τn1 = n+ a1, τ
n2 = n+ a2, . . . , τnk = n+ ak,

the primitive root condition.

2. µ2(n+ a0) = 1, µ2(n+ a1) = 1, . . . , µ2(n+ ak) = 1,
the squarefree condition.

A solution is a tuple (n, n0, n1, . . . , nk) ∈ Nk+2, with gcd(ni, p− 1) = 1, for i = 0, 1, . . . k. Let

N2(k, p) = #
{

n ∈ Fp : ordp(n+ ai) = p− 1, µ2(n+ ai) = 1
}

(146)

for i = 0, 1, . . . , k, denotes the number of solutions.

17.1 Strings Of k + 1 Consecutive Squarefree Primitive Roots

Proof. (Theorem 1.2): The total number of solutions is written in terms of characteristic function
for primitive roots, see Lemma 9.2, and the characteristic function for squarefree integers, see
Lemma 2.2, as

N2(k, p) =
∑

n∈Fp

∏

0≤i≤k

Ψ(n+ ai)µ
2(n+ ai) (147)

=
∑

n∈Fp

∏

0≤i≤k









1

p

∑

gcd(ni,p−1)=1
0≤ui≤p−1

ψ ((τni − n− ai)ui))









= M2(k, p) + E2(k, p).

The main term is determined by the indices u0 = u1 = · · · = uk = 0, and has the form

M2(k, p) =
∑

n∈Fp

∏

0≤i≤k





µ2(n+ ai)

p

∑

gcd(ni,p−1)=1

1



 , (148)

and the error term is determined by the indices u0 6= 0, u1 6= 0, . . . , uk 6= 0, and has the form

E2(k, p) =
∑

n∈Fp

∏

0≤i≤k









µ2(n+ ai)

p

∑

gcd(ni,p−1)=1
1≤ui≤p−1

ψ ((τni − n− ai)ui))









. (149)

Applying Lemma 11.2 to the main term and Lemma 12.4 to the error term, yield

N2(k, p) = M2(k, p) + E2(k, p) (150)

=
∏

q≥2

(

1− ω(q)

q2

)(

ϕ(p− 1)

p− 1

)k+1

p+O
(

p2/3
)

+O(p1−ε)

=
∏

q≥2

(

1− ω(q)

q2

)(

ϕ(p− 1)

p− 1

)k+1

p+O(p1−ε)

> 0,

for all sufficiently large primes p ≥ 2, and an arbitrary small number ε > 0. �
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17.2 Squarefree Primitive Roots

Let p ≥ 2 be a large prime, and let τ ∈ Fp be a primitive root. A squarefree primitive root n ∈ Fp

exists if and only if the system of equations

τm = n and µ2(n) = 1, (151)

has one or more solutions (m,n) ∈ N× N such that gcd(m, p− 1) = 1, and n ≥ 2. Let

N2(p) = #
{

n ∈ Fp : ordp(n) = p− 1 and µ2(n) = 1
}

(152)

denotes the number of solutions.

Theorem 17.1. For any large prime p ≥ 2, the finite field Fp contains squarefree primitive roots.

Furthermore, the total number has the asymptotic formula

N2(p) =
∏

q≥2

(

1− 1

q2

)(

ϕ(p− 1)

p

)

p+O(p1−ε), (153)

where ε > 0 is an arbitrary small number.

Proof. The total number of solutions is written in terms of characteristic function for primitive
roots, see Lemma 9.2, and the characteristic function for squarefree integers, see Lemma 2.2, as

∑

n∈Fp

Ψ(n)µ2(n) =
∑

n∈Fp









µ2(n)

p

∑

gcd(m,p−1)=1
0≤u≤p−1

ψ ((τm − n)u)









= M2(p) + E2(p). (154)

The main term M2(p) is determined by the index u = 0, and the error term E2(p) is determined
by the index u 6= 0. Applying Lemma 11.5 to the main term and Lemma 12.4 to the error term,
yield

N2(p) = M2(p) + E2(p) (155)

=
∏

q≥2

(

1− 1

q2

)(

ϕ(p− 1)

p

)

p+O
(

p1/2
)

+O(p1−ε)

=
∏

q≥2

(

1− 1

q2

)(

ϕ(p− 1)

p

)

p+O(p1−ε)

> 0,

for all sufficently large primes p ≥ 2, and an arbitrary small number ε > 0. �

17.3 Squarefree Twin Primitive Roots

Let p ≥ 2 be a large prime, and let τ ∈ Fp be a primitive root. Each squarefree twin primitive
roots n+ a0 and n+ a1 is a solution of the systems of equations

1. τn0 = n+ a0, τn1 = n+ a1, the primitive root condition.

2. µ2(n+ a0) = 1, µ2(n+ a1) = 1, the squarefree condition.

A solution is a triple (n, n0, n1) ∈ N× N× N such that gcd(ni, p− 1) = 1 for i = 0, 1. Let

N2(2, p) = #
{

n ∈ Fp : ordp(n+ ai) = p− 1, and µ2(n+ ai) = 1
}

(156)

for i = 0, 1, denotes the number of solutions.
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Theorem 17.2. For any large prime p ≥ 2, the finite field Fp contains 2 consecutive squarefree

primitive roots. Furthermore, the number of pairs has the asymptotic formula

N2(2, p) =
∏

q≥2

(

1− 2

q2

)(

ϕ(p− 1)

p− 1

)2

p+O(p1−ε), (157)

where ε > 0 is an arbitrary small number. The simplest case is for a0 = 0, a1 = 1.

Proof. The total number of solutions is written in terms of characteristic function for primitive
roots, see Lemma 9.2, and the characteristic function for squarefree integers, see Lemma 2.2, as

N2(2, p) = sumn∈FpΨ(n+ a0)Ψ (n+ a1)µ
2(n+ a0)µ

2(n+ a1) (158)

=
∑

n∈Fp









µ2(n+ a0)

p

∑

gcd(n0,p−1)=1
0≤u0≤p−1

ψ ((τn0 − n− a0)u0)









×









µ2(n+ a1)

p

∑

gcd(n1,p−1)=1
0≤u1≤p−1

ψ ((τn1 − n− a1)u1)









= M2(2, p) + E2(2, p).

The main term M2(2, p) is determined by the indices u0 = u1 = 0, and the error term E2(2, p) is
determined by the indices u0 6= 0, u1 6= 0. Applying Lemma 11.3 to the main term and Lemma
12.4 to the error term, yield

N2(2, p) = M2(2, p) + E2(2, p) (159)

=
∏

q≥2

(

1− 2

q2

)(

ϕ(p− 1)

p− 1

)2

p+O
(

p2/3
)

+O(p1−ε)

=
∏

q≥2

(

1− 2

q2

)(

ϕ(p− 1)

p− 1

)2

p+O(p1−ε)

> 0,

for all sufficently large primes p ≥ 2, and an arbitrary small number ε > 0. �

17.4 Squarefree Triple Primitive Roots

Let p ≥ 2 be a large prime, and let τ ∈ Fp be a primitive root. Each squarefree triple primitive
roots n+ a0, n+ a1, and n+ a2 is a solution of the systems of equations

1. τn0 = n+ a0, τn1 = n+ a1, τn2 = n+ a2, the primitive root condition.

2. µ2(n+ a0) = 1, µ2(n+ a1) = 1, µ2(n+ a2) = 1,
the squarefree condition.

A solution is a triple (n, n0, n1, n2) ∈ N4 such that gcd(ni, p− 1) = 1 for i = 0, 1, 2. Let

N2(3, p) = #
{

n ∈ Fp : ordp(n+ ai) = p− 1, and µ2(n+ ai) = 1
}

(160)

for i = 0, 1, 2, denotes the number of solutions.

Theorem 17.3. For any large prime p ≥ 2, the finite field Fp contains 3 consecutive squarefree

primitive roots. Furthermore, the number of pairs has the asymptotic formula

N2(3, p) =
∏

q≥2

(

1− 3

q2

)(

ϕ(p− 1)

p− 1

)3

p+O(p1−ε), (161)

where ε > 0 is an arbitrary small number.
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Proof. The simplest case is for a0 = 0, a1 = 1, a2 = 2. The total number of solutions is written in
terms of characteristic function for primitive roots, see Lemma 9.2, and the characteristic function
for squarefree integers, see Lemma 2.2, as

N2(3, p) =
∑

n∈Fp

Ψ(n)Ψ (n+ 1)Ψ (n+ 2)µ2(n)µ2(n+ 1)µ2(n+ 2) (162)

=
∑

n∈Fp









µ2(n)

p

∑

gcd(n0,p−1)=1
0≤u0≤p−1

ψ ((τn0 − n)u0)









×









µ2(n+ 1)

p

∑

gcd(n1,p−1)=1
0≤u1≤p−1

ψ ((τn1 − n− 1)u1)









×









µ2(n+ 1)

p

∑

gcd(n2,p−1)=1
0≤u2≤p−1

ψ ((τn2 − n− 2)u2)









= M2(3, p) + E2(3, p). (163)

The main termM2(3, p) is determined by the indices u0 = u1 = u2 = 0, and the error term E2(3, p)
is determined by the indices u0 6= 0, u1 6= 0, u2 6= 0. Applying Lemma 11.4 to the main term and
Lemma 12.4 to the error term, yield

N2(3, p) = M2(3, p) + E2(3, p) (164)

=
∏

q≥2

(

1− 3

q2

)(

ϕ(p− 1)

p− 1

)3

p+O
(

p2/3
)

+O(p1−ε)

=
∏

q≥2

(

1− 3

q2

)(

ϕ(p− 1)

p− 1

)3

p+O(p1−ε)

> 0,

for all sufficiently large primes p ≥ 2, and an arbitrary small number ε > 0. �

18 Consecutive s-Power Free Primitive Roots

18.1 s-Power Free Primitive Roots

Let p ≥ 2 be a large prime, and let τ ∈ Fp be a primitive root. A s-power free primitive root
n ∈ Fp exists if and only if the system of equations

τm = n and µs(n) = 1, (165)

has one or more solutions (m,n) ∈ N× N such that gcd(m, p− 1) = 1, and n ≥ 2. Let

Ns(p) = # {n ∈ Fp : ordp(n) = p− 1, µs(n) = ±1} , (166)

see Lemma 2.2, denotes the number of solutions.

Theorem 18.1. Let s ≥ 2 be a fixed integer. For any large prime p ≥ 2, the finite field Fp contains

squarefree primitive roots. Furthermore, the total number has the asymptotic formula

Ns(p) =
∏

q≥2

(

1− 1

qs

)(

ϕ(p− 1)

p− 1

)

p+ O(p1−ε), (167)

where ε > 0 is an arbitrary small number.
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Proof. (Theorem 1.4): The total number of solutions is written in terms of characteristic function
for primitive roots, see Lemma 9.2, and the characteristic function for s-power free integers, see
Lemma 2.2, as

∑

n∈Fp

Ψ(n)µs(n) =
∑

n∈Fp









µs(n)

p

∑

gcd(n,p−1)=1
0≤u≤p−1

ψ ((τn − n)u)









= Ms(p) + Es(p). (168)

The main term Ms(p) is determined by the indices u = 0, and the error term Es(p) is determined
by the indices u 6= 0. Applying Lemma 11.5 to the main term and Lemma 12.4 to the error term,
yield

Ns(p) = Ms(p) + Es(p) (169)

=
∏

q≥2

(

1− 1

qs

)(

ϕ(p− 1)

p− 1

)

p+O
(

p1/s
)

+O(p1−ε)

=
∏

q≥2

(

1− 1

qs

)(

ϕ(p− 1)

p− 1

)

p+O(p1−ε)

> 0,

for all sufficiently large primes p ≥ 2, and an arbitrary small number ε > 0. �

18.2 s-Power Free Twin Primitive Roots

Given a triple of small integers a0 6= a1 and s ≥ 2. Let p ≥ 2 be a large prime, and let τ ∈ Fp be
a primitive root. Each string of 2 consecutive s-powerfree primitive roots n + a0 and n + a1 is a
solution of the systems of equations:

1. τn0 = n+ a0, τn1 = n+ a1; the primitive root condition.

2. µs(n+ a0) = 1, µs(n+ a1) = 1; the s-power free condition.

A solution is a triple (n, n0, n1) ∈ N× N× N, with gcd(ni, p− 1) = 1, for i = 0, 1. Let

Ns(2, p, a) = # {n ∈ Fp : ordp(n+ ai) = p− 1, and µs(n+ ai) = ±1} , (170)

for i = 0, 1, denotes the number of solutions.

Proof. (Theorem 1.5): The total number of solutions is written in terms of characteristic function
for primitive roots, see Lemma 9.2, and the characteristic function for squarefree integers, see
Lemma 2.2, as

Ns(2, p) =
∑

n∈Fp

Ψ(n+ a0)Ψ (n+ a1)µs(n+ a0)µs(n+ a1) (171)

=
∑

n∈Fp









µs(n+ a0)

p

∑

gcd(n0,p−1)=1
0≤u0≤p−1

ψ ((τn0 − n− a0)u0)









×









µs(n+ a)

p

∑

gcd(n1,p−1)=1
0≤u1≤p−1

ψ ((τn1 − n− a1)u1)









= Ms(2, p) + Es(2, p).
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The main term Ms(2, p) is determined by the indices u0 = u1 = 0, and the error term Es(2, p) is
determined by the indices u0 6= 0, u1 6= 0. Applying Lemma 11.6 to the main term and Lemma
12.4 to the error term, yield

Ns(2, p) = Ms(2, p) + Es(2, p) (172)

=
∏

q≥2

(

1− ρ(s)

qs

)(

ϕ(p− 1)

p− 1

)2

p+O
(

pα(s)−ε
)

+O(p1−ε)

=
∏

q≥2

(

1− ρ(s)

qs

)(

ϕ(p− 1)

p− 1

)2

p+O(p1−ε)

> 0,

where ρ(s) = 1, 2, and ε > 0 is an arbitrary small number, for all sufficiently large primes p ≥ 2. �

19 Relatively Prime Primitive Roots

The first proof based on Lemma 9.1 and restricted to q = p − 1 was given in [27]. A new proof
based on Lemma 9.2, and for any q ≤ p− 1, is given here. The second result for consecutive and
relatively prime to q ≥ 2 appears to be a new result in the literature.

19.1 Relatively Prime Primitive Roots

Proof. (Theorem 1.6) For a large prime p ≥ 2, the total number of primitive roots relatively prime
to a fixed integer q is precisely

Nr(p, q) =
∑

n∈Fp

gcd(n,q)=1

Ψ(n). (173)

In terms of characteristic function for primitive roots, see Lemma 9.2, this is written as

Nr(p, q) =
∑

n∈Fp

gcd(n,q)=1

Ψ(n)

=
∑

n∈Fp

gcd(n,q)=1





1

p

∑

gcd(m,p−1)=1,

∑

0≤u≤p−1

ψ ((τm − n)u)



 (174)

=
1

p

∑

n∈Fp

gcd(n,q)=1

∑

gcd(m,p−1)=1

1 +
1

p

∑

n∈Fp

gcd(n,q)=1

∑

gcd(m,p−1)=1,

∑

0<u≤p−1

ψ ((τm − n)u)

= Mr(p, q) + Er(p, q).

The main term Mr(p, q) is determined by a finite sum over the trivial additive character ψ = 1,
and the error term Er(p, q) is determined by a finite sum over the nontrivial additive characters
ψ(t) = ei2πt/p 6= 1. Applying Lemma 11.7 to the main term and Lemma 12.1 to the error term,
yield

Nr(p, q) = Mr(p, q) + Er(p, q) (175)

=
ϕ(q)

q

ϕ(p− 1)

p− 1
p+O(log2 p) +O(p1−ε)

=
ϕ(q)

q

ϕ(p− 1)

p− 1
p+O(p1−ε)

> 0,

for all sufficiently large primes p ≥ 2, and an arbitrary small number ε > 0. �
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19.2 Relatively Prime Twin Primitive Roots

The dependence correction factor c2(q, a) ≥ 0, and the parameter q = q(a) depends on a ≥ 1. For
instance, for a = 1, the value q = q(a) must be odd, and c2(q, a) > 0, otherwise c2(q, a) = 0 for
even q. Basically, the vanishing and nonvanishing are described in these cases:

c2(q, a) =







> 0 if a = 2b+ 1, and q = 2c+ 1, with b ≥ 0, c ≥ 0,
= 0 if a = 2b+ 1, and q = 2c, with b ≥ 0, c ≥ 1,
> 0 if a = 2b, and q ≥ 1, with b ≥ 1.

(176)

To continue the analysis, assume that the parameters a ≥ 1 and q ≥ 1 are admissible, and
c2(q, a) > 0. Let p ≥ 2 be a large prime, and let τ ∈ Fp be a primitive root. Each pair of quasi
consecutive primitive roots n, n+a and relatively prime to q = q(a) ≥ 2 is a solution of the systems
of equations:

1. τn0 = n, τn1 = n+ a; the primitive root condition.

2. gcd(n, q) = 1, gcd(n+ a, q) = 1. the relatively prime condition.

A solution is a triple (n, n0, n1) ∈ N× N× N, with gcd(ni, p− 1) = 1, for i = 0, 1. Let

Nr(2, p, q) = # {n ∈ Fp : ordp(n) = ordp(n+ a) = p− 1, gcd(n, q) = gcd(n+ 1, q) = 1} (177)

denotes the number of solutions.

Proof. (Theorem 1.7): For a large prime p ≥ 2, the total number of pairs of quasi consecutive
primitive roots, both relatively prime to a fixed integer q ≥ 2, is precisely

Nr(2, p, q) =
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

Ψ(n)Ψ(n+ a). (178)

In terms of characteristic function for primitive roots, see Lemma 9.2, this is written as

Nr(2, p, q) =
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1









1

p

∑

0≤u≤p−1
gcd(c,p−1)=1

ψ ((τc − n)u)

















1

p

∑

0≤v≤p−1
gcd(d,p−1)=1

ψ
(

(τd − n− a)v
)









= Mr(2, p, q) + Er(2, p, q). (179)

The main term Mr(2, p, q), which is determined by the indices u = v = 0, has the form

Ms(2, p, q) =
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1









1

p

∑

0≤u≤p−1
gcd(c,p−1)=1

1

















1

p

∑

0≤v≤p−1
gcd(d,p−1)=1

1









, (180)

and the error term Er(2, p, q), which is determined by the indices u 6= 0, v 6= 0, has the form

Er(2, p, q) =
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1









1

p

∑

1≤u≤p−1
gcd(c,p−1)=1

ψ ((τc − n)u)

















1

p

∑

1≤v≤p−1
gcd(d,p−1)=1

ψ
(

(τd − n− a)v
)









.

(181)
Applying Lemma 11.8 to the main term and Lemma 12.2 to the error term, yield
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Nr(2, p, q) = Mr(2, p, q) + Er(2, p, q) (182)

= c2(q, a)

(

ϕ(q)

q

)2
ϕ(p− 1)

p− 1
p+O(pε) +O(p1−ε)

= c2(q, a)

(

ϕ(q)

q

)2
ϕ(p− 1)

p− 1
p+O(p1−ε)

> 0,

where c2(q, a) > 0 is a dependence correction factor with respect to an admissible pair a, q ≥ 1,
for all sufficiently large primes p ≥ 2, and an arbitrary small number ε > 0. �

20 Squarefree And Relatively Prime Primitive Roots

The first result for squarefree and relatively prime primitive roots with respect to a fixed integer
q ≤ p− 1 is given here. The second result for squarefree and relatively prime twin primitive roots
n, n+ a with respect to a fixed integer q ≥ 2, and conditional on Conjecture 4.1, is a new result
in the literature.

20.1 Squarefree And Relatively Prime Primitive Roots

Theorem 20.1. Let p ≥ 2 be a large prime, and let q = O(log p) be an integer. Then, the finite

field Fp contains squarefree primitive roots relatively prime to q ≥ 2. Furthermore, the number of

such elements has the asymptotic formula

Nsr(p, q) =
6

π2

∏

p∤q

(

1 +
1

p

)−1
ϕ(p− 1)

p− 1
p+O(p1−ε), (183)

where ε > 0 is an arbitrary small number.

Proof. For a large prime p ≥ 2, the total number of primitive roots relatively prime to a fixed
integer q < p is precisely

Nsr(p, q) =
∑

n∈Fp

gcd(n,q)=1

Ψ(n)µ(n)2. (184)

In terms of characteristic function for primitive roots, see Lemma 9.2, this is written as

Nr(p, q) =
∑

n∈Fp

gcd(n,q)=1

Ψ(n)µ(n)2 (185)

=
∑

n∈Fp

gcd(n,q)=1





µ(n)2

p

∑

gcd(m,p−1)=1,

∑

0≤u≤p−1

ψ ((τm − n)u)





=
1

p

∑

n∈Fp

gcd(n,q)=1

∑

gcd(m,p−1)=1

µ(n)2 +
∑

n∈Fp

gcd(n,q)=1

µ(n)2

p

∑

gcd(m,p−1)=1,

∑

0<u≤p−1

ψ ((τm − n)u)

= Msr(p, q) + Esr(p, q).

The main term Msr(p, q) is determined by a finite sum over the trivial additive character ψ = 1,
and the error term Esr(p, q) is determined by a finite sum over the nontrivial additive characters
ψ(t) = ei2πt/p 6= 1. Applying Lemma 11.9 to the main term and Lemma 12.3 or Lemma 12.5 to
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the error term, yield

Nsr(p, q) = Msr(p, q) + Esr(p, q) (186)

=
6

π2

∏

p∤q

(

1 +
1

p

)−1
ϕ(p− 1)

p− 1
p+O(p1/2) +O(p1−ε)

=
6

π2

∏

p∤q

(

1 +
1

p

)−1
ϕ(p− 1)

p− 1
p+O(p1−ε)

> 0,

for all sufficiently large primes p ≥ 2, and an arbitrary small number ε > 0. �

20.2 Squarefree And Relatively Prime Twin Primitive Roots

The dependence correction factor c2(q, a) ≥ 0, and the parameter q = q(a) depends on a ≥ 1.
Basically, the vanishing and nonvanishing are described in these cases:

c2(q, a) =







> 0 if a = 2b+ 1, and q = 2c+ 1, with b ≥ 0, c ≥ 0,
= 0 if a = 2b+ 1, and q = 2c, with b ≥ 0, c ≥ 1,
> 0 if a = 2b, and q ≥ 1, with b ≥ 1.

(187)

To continue the analysis, assume that the parameters a ≥ 1 and q ≥ 1 are admissible, and
c2(q, a) > 0. Let p ≥ 2 be a large prime, and let τ ∈ Fp be a primitive root. Each pair of
squarefree twin primitive roots n, n + a and relatively prime to q = q(a) ≥ 2 is a solution of the
systems of equations:

1. τn0 = n, τn1 = n+ a; the primitive root condition.

2. µ(n)2, µ(n+ a)2; the squarefree condition.

3. gcd(n, q) = 1, gcd(n+ a, q) = 1. the relatively prime condition.

A solution is a triple (n, n0, n1) ∈ N× N× N, with gcd(ni, p− 1) = 1, for i = 0, 1. Let

Nsr(2, p, q) = # {n ∈ Fp : Conditions 1, 2, and 3 are satisfied.} (188)

denotes the number of solutions.

Theorem 20.2. Assume Conjecture 4.1. Let p ≥ 2 be a large prime, let a ≥ 1 and q = O(log p) be
a pair of integers. Then, the finite field Fp contains a pair n and n+a of squarefree primitive roots

and relatively prime to q ≥ 2. Furthermore, the number of such pairs has the asymptotic formula

Nsr(2, p, q) = c2(q, a)
∏

p∤q

(

1 +
1

p

)−2
∏

p≥2

(

1− 2

p2

)(

ϕ(p− 1)

p

)2

p+O(p1−ε), (189)

where c2(q, a) > 0 is a dependence correction factor, and ε > 0 is an arbitrary small number.

Proof. For a large prime p ≥ 2, the total number of squarefree twin primitive roots, both relatively
prime to a fixed integer q ≥ 2, is precisely

Nsr(2, p, q) =
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1

Ψ(n)Ψ(n+ a)µ(n)2µ(n+ a)2. (190)
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In terms of characteristic function for primitive roots, see Lemma 9.2, this is written as

Nsr(2, p, q) =
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1









µ(n)2

p

∑

0≤u≤p−1
gcd(c,p−1)=1

ψ ((τc − n)u)









(191)

×









µ(n+ a)2

p

∑

0≤v≤p−1
gcd(d,p−1)=1

ψ
(

(τd − n− a)v
)









= Msr(2, p, q) + Esr(2, p, q).

The main term Msr(2, p, q) is determined by the indices u = v = 0, and has the form

Ms(2, p, q) =
∑

n∈Fp

gcd(n,q)=1
gcd(n+a,q)=1









1

p

∑

0≤u≤p−1
gcd(c,p−1)=1

µ(n)2

















1

p

∑

0≤v≤p−1
gcd(d,p−1)=1

µ(n+ a)2









, (192)

and the error term Esr(2, p, q) is determined by the indices u 6= 0, v 6= 0, and has the form as (191).
Applying Lemma 11.10 to the main term and Lemma 12.5 to the error term, yield

Nsr(2, p, q) = Msr(2, p, q) + Esr(2, p, q) (193)

= c2(q, a)
∏

p∤q

(

1 +
1

p

)−2
∏

p≥2

(

1− 2

p2

)(

ϕ(p− 1)

p

)2

p+O
(

p1−δ
)

+O(p1−ε)

= c2(q, a)
∏

p∤q

(

1 +
1

p

)−2
∏

p≥2

(

1− 2

p2

)(

ϕ(p− 1)

p

)2

p+O(p1−ε)

> 0,

where c2(q, a) > 0 is an admissible dependence correction factor, for all sufficiently large primes
p ≥ 2, and an arbitrary small number ε > 0. �

21 Probabilities For Consecutive Squarefree Primitive Roots

The forms of the main terms in Theorem 1.3 and Theorem 1.4 imply that a squarefree primitive
root in a finite field Fp is a nearly independent random variable X = X(p).

Definition 21.1. The probability of squarefree primitive roots in a finite field Fp is defined by

P
(

ordp (X) = p− 1 and µ(X)2 6= 0
)

=
ϕ(p− 1)

p− 1

∏

q≥2

(

1− 1

q2

)

+ O

(

1

pε

)

, (194)

where ε > 0 is a small number.

Some calculations described below demonstrates that two or more consecutive squarefree primitive
roots are dependent random variables.

Lemma 21.1. Let p ≥ 2 be a large prime. Let Xi be a random squarefree primitive root. Then,

a pair of random consecutive squarefree primitive roots X0, X1 in a finite field Fp is a dependent

random variable. Specifically, the probability of a pair of random consecutive squarefree primitive

roots is

P (ord(X0) = p− 1, ord(X1) = p− 1 and µ(X0) = ±1, µ(X1) = ±1)

=

(

ϕ(p− 1)

p− 1

)2
∏

q≥2

(

1− 2

q2

)

+O

(

1

pε

)

, (195)

where ε > 0 is a small number.
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Proof. The density constant in the main term of Theorem 17.2 is the probability of having two
consecutive squafree primitive roots. Next, use a series of steps to reduces to a simpler product:

(

ϕ(p− 1)

p− 1

)2
∏

q≥2

(

1− 2

q2

)

=

(

ϕ(p− 1)

p− 1

)2
∏

q≥2

(

1− 1

q2

)2 (

1 +
1

q2(q2 − 2)

)−1

<

(

ϕ(p− 1)

p− 1

)2
∏

q≥2

(

1− 1

q2

)2

. (196)

The last line is product of the individual probabilities, which implies that the two properties of
the consecutive random integers X0, X1 are independent. The reduction from independent events
is measured by the dependence correction factor

c2(2) =
∏

q≥2

(

1 +
1

q2(q2 − 2)

)−1

= 0.87298595344931361877174511 . . . . (197)

�

Lemma 21.2. Let p ≥ 2 be a large prime. Let Xi be a random squarefree primitive root. Then, a

triple of random consecutive squarefree primitive roots X0, X1, X2 in a finite field Fp is a dependent

random variable. Specifically, the probability of a triple of random consecutive squarefree primitive

roots is

P (ord(X0) = ord(X1) = ord(X2) = p− 1 and µ(X0) = ±1, µ(X1) = ±1, µ(X2) = ±1)

=

(

ϕ(p− 1)

p− 1

)3
∏

q≥2

(

1− 3

q2

)

+O

(

1

pε

)

, (198)

where ε > 0 is a small number.

Proof. The density constant in the main term of Theorem 17.2 is the probability of having two
consecutive squafree primitive roots. Next, use a series of steps to reduces to a simpler product:

(

ϕ(p− 1)

p− 1

)3
∏

q≥2

(

1− 3

q2

)

=

(

ϕ(p− 1)

p− 1

)3
∏

q≥2

(

1− 1

q2

)3 (

1 +
3q2 − 1

q4(q2 − 3)

)−1

<

(

ϕ(p− 1)

p− 1

)3
∏

q≥2

(

1− 1

q2

)3

. (199)

The last line is product of the individual probabilities, which implies that the two properties of the
consecutive random integers X0, X1, X2 are independent. The reduction from independent events
is measured by the dependence correction factor

c2(3) =
∏

q≥2

(

1 +
3q2 − 1

q4(q2 − 3)

)−1

= 0.558526979127689105533330 . . . . (200)

�

The pattern of the probability function for consecutive squarefree primitive roots breaks down for

4 consecutive squarefree primitive roots since
(

1− 4
q2

)

= 0 at q = 2.
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22 Problems

Several interesting problems of different level of complexities are presented in this section. The
range of difficulty ranges from easy to very difficult.

22.1 Least Consecutive Primitive Roots In Finite Fields

Exercise 22.1. Let p ≥ 2 be a large prime, and let k = 2. Determine an asymptotic formula for
the least pair of consecutive primitive roots n and n + 1 in the finite field Fp. Is the magnitude
n = O(logc p), where c > 0 is a constant, correct?

Exercise 22.2. Let p ≥ 2 be a large prime, and let k = 2. Determine an asymptotic formula for
the least pair of consecutive squarefree primitive roots n and n + 1 in the finite field Fp. Is the
magnitude n = O(logc p), where c > 0 is a constant, correct?

Exercise 22.3. Let p ≥ 2 be a large prime, and let k = 3. Determine an asymptotic formula
for the least pair of consecutive primitive roots n, n + 1, and n + 2 in the finite field Fp. Is the
magnitude n = O(logc p), where c > 0 is a constant, correct?

Exercise 22.4. Let p ≥ 2 be a large prime, and let k = 3. Determine an asymptotic formula for
the least pair of consecutive squarefree primitive roots n, n+1, and n+ 2 in the finite field Fp. Is
the magnitude n = O(logc p), where c > 0 is a constant, correct?

Exercise 22.5. Show that there are infinitely many admissible 4-tuples (a0, a1, a2, a3), and each
one generates infinitely many squarefree integers 4-tuples (n+a0, n+a1, n+a2, n+a3) as n→ ∞.
For example, (n, n+ 1, n+ 3, n+ 5), with n ≥ 1.

22.2 Simultaneous Primitive Root In Finite Fields

Exercise 22.6. Let p ≥ 2 and q ≥ 2 be large distinct primes. Develop an algorithm for computing
a simultaneous primitive root u 6= ±1, v2 modulo p and modulo q.

Exercise 22.7. Let p ≥ 2, q ≥ 2, and r ≥ 2 be large distinct primes. Develop an algorithm for
computing a simultaneous primitive root u 6= ±1, v2 modulo p modulo q, and r.

22.3 Consecutive And Relatively Prime Primitive Roots

Exercise 22.8. Let p ≥ 2 be a large prime, and let q ≥ 1 be a fixed integer. Prove that there
are infinitely many consecutive prime primitive roots and relatively prime to q. Determine an
asymptotic formula for the number of k ≥ 3 consecutive primitive roots n, n+ a, and n+ b in the
finite field Fp and relatively prime to q.

Exercise 22.9. Let p ≥ 2 be a large prime, and let q ≥ 1 be a fixed integer. Prove a result on the
distribution of pairs of consecutive primitive roots relatively prime to q.

Exercise 22.10. Let p ≥ 2 be a large prime, and let B ≥ 1 be a fixed integer. Prove the existence
of pairs of consecutive smooth primitive roots relative to B.

22.4 Summatory Functions And Primitive Roots

Exercise 22.11. Let s ∈ Z be a fixed integer, and let p ≥ 1 be a prime. Evaluate the finite sum
∑

n<p

Ψ(n)ns.

.

Exercise 22.12. Let s ∈ Z be a fixed integer, and let p ≥ 1 be a prime. Evaluate the finite sum
∑

n<p

Ψ(n)nsµ(n).

.
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22.5 Length Merit Factor

Exercise 22.13. Determine the an effective upper bound C > 0 for the length merit factor
m = k/log p ≤ C for all primes p ≥ 2, see Definition 14.1.

Exercise 22.14. Compute a table of the length merit factor m = k/log p indexed by the primes
p ≤ 1000. .

Exercise 22.15. Compute a table of the length merit factor m = k/log p indexed by the length
k ≤ 50.
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