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ON SOME PROPERTIES OF THE FUNCTION OF THE

NUMBER OF RELATIVELY PRIME SUBSETS OF {1, 2, ..., n}

ADRIAN  LYDKA

Abstract. In the paper we solve few problems proposed by Prapanpong
Pongsriiam. Let f(n) denote the number of relatively prime subsets of {1, 2, 3, . . . , n}
and g(n) denote the number of subsets A of {1, 2, 3, . . . , n} such that gcd(A) >

1 and gcd(A, n+1) = 1 . We show that f2
n−fn−kfn+k > 0 for n ≥ k+1 (k ≥

2). We also show
g(6n−2)
g(6n−4)

>
g(6n)

g(6n−2)
>

g(6n+2)
g(6n)

<
g(6n+4)
g(6n+2)

for large n.

1. Introduction

A finite set A is said to be relatively prime if gcd(A) = 1.
Let fX) denote the number of relatively prime subsets of X .
Let f(n) be the number of relatively prime subsets of {1, 2, 3, . . . , n} in other

words f(n) = f([1, n]). Sometimes we write fn instead of f(n).
Moreover, define function g(n) by formula

(1.1) g(n) =
∑

∅6=A⊆[1,n]
gcd(A)>1

gcd(A,n+1)=1

1.

We will use two inequalities

Lemma 1.1 ([1], Theorem 2).

(1.2) 2n − 2⌊
n

2 ⌋ − n2⌊
n

3 ⌋ ≤ f(n) ≤ 2n − 2⌊
n

2 ⌋.

Moreover, we know that (Lemma 4 in [4])

(1.3) g(n) =
∑

2≤d≤n
(d,n+1)=1

f
(⌊n

d

⌋)

.

and

(1.4) f(n) =
∑

d≤n

µ(d)
(

2⌊
n

d ⌋ − 1
)

.

More information on the function fn can be found in the sequence A085945 in
[5].

In paper [4] Pongsriiam proved that f2
n − fn−1fn+1 is positive for every odd

number n ≥ 3 and negative for every even number n.
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Recall that a sequence (an)n≥0 is said to be log-concave if a2
n − an−1an+1 > 0

for every n > 1 and is said to be log-convex if a2
n − an−1an+1 < 0 for every

n > 1. Stirling numbers, Bessel numbers are examples of log-concave sequences.
Some sequences are not log-concave, but have similar properties. For example, if
(Fn)n≥0 is the Fibonacci sequence or Fn = fn, then F 2

n − FnFn+1 = (−1)n−1 ,
which is positive for odd n and negative for even n (so called alternating sequence).
In addition, the sequence (fn)n≥1 seems to have strong log-property ((Recall that
(an)n≥0 is said to be strong log-concave if a2

n − an−kan+k > 0 for every k ≥ 1 and
n > k)). For example, in the paper [4] Pongsriiam checked that f2

n − fn−2fn+2 >
0(for2 < n ≤ 50), f2

n− fn−3fn+3 > 0(for3 < n ≤ 50) and f2
n− fn−4fn+4 > 0(for4 <

n ≤ 50). In our paper we prove that these inequalities are true for all n > 2, 3, 4,
respectively.

In this paper we prove that f2
n − fn−kfn+k > 0(for large n ≥ k + 1 and k ≥ 2)

We also propose new term :almost strong log-concave sequence if a2
n−an−kan+k >

0 for every k ≥ k0 and n > k) for some constant k0 ≥ 2.
In paper [4] Pongsriiam also asked is it true that

(1.5)
g(6n− 2)

g(6n− 4)
>

g(6n)

g(6n− 2)
>

g(6n+ 2)

g(6n)
<

g(6n+ 4)

g(6n+ 2)
.

In Section.3. we prove above inequalities for large n.

2. Sign of f2
n − fn−kfn+k > 0 for n > k in general

First, using formula (1.4), we can write the following GP/PARI code :
a(n) = sum(k = 1, n,moebius(k) ∗ (2floor(n/k)− 1))
for(n = 6, 50, print(a(n)2 − a(n− l) ∗ a(n+ l))).
for(l = 2..8)
We obtain that inequality f2

n−fn−kfn+k > 0 is true for k = 2, 3, ..., 8 and n ≤ 50.
Using estimation (1.2) we get

f2
n ≥

(

2n − 2⌊
n

2 ⌋ − n2⌊
n

3 ⌋
)2

= 22n − 2n+⌊n

2 ⌋+1 − n2n+⌊n

3 ⌋+1 + 22·⌊n

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.1)

and

fn−kfn+k ≤
(

2n−k − 2⌊
n−k

2 ⌋
)(

2n+k − 2⌊
n+k

2 ⌋
)

= 22n − 2n+⌊n+k

2 ⌋−k − 2n+⌊n−k

2 ⌋+k + 2⌊
n−k

2 ⌋+⌊n+k

2 ⌋
(2.2)

So

f2
n − fn−kfn+k ≥ 2n+⌊n+k

2 ⌋ − 2n+⌊n

2 ⌋+1 + 2n−k+⌊n+k

2 ⌋ − n2n+⌊n

3 ⌋+1

+ 22·⌊n

2 ⌋ − 2⌊
n+k

2 ⌋+⌊n−k

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.3)

2.1. Case k=2.

fn−2fn+2 ≤
(

2n−2 − 2⌊
n−2

2 ⌋
)(

2n+2 − 2⌊
n+2

2 ⌋
)

= 22n − 2n+⌊n

2 ⌋+1 − 2n+⌊n

2 ⌋−1 + 22·⌊n

2 ⌋
(2.4)
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We show that f2
n − fn−2fn+2 for n ≥ 51.

f2
n − fn−2fn+2 ≥ 2n+⌊n

2 ⌋−1 − n2n+⌊n

3 ⌋+1 + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋

> 2n+⌊n

2 ⌋−1 − n2n+⌊n

3 ⌋+1 > 2n+⌊n

2 ⌋−1 − 2n+⌊n

3 ⌋+log2 n+1 > 0,

(2.5)

because
⌊

n
2

⌋

−
⌊

n
3

⌋

− log2 n − 2 ≥ n−1
2 − n

3 − log2 n − 2 =
n−6 log2 n−15

6 > 0 for
n ≥ 51. (Consider function h(x) = x − 6 log2 x − 15, h(51) = 36 − 6 log2 55 > 0,
h′(x) = 1− 6

x ln 2 > 0 for x ≥ 51 ≥ 6 ln 2).

2.2. Case k=3.

f2
n − fn−3fn+3 ≥ 2n+⌊n+1

2 ⌋+1 − 2n+⌊n

2 ⌋+1 + 2n−2+⌊n+1

2 ⌋ − n2n+⌊n

3 ⌋+1

+ 22·⌊n

2 ⌋ − 2⌊
n+1

2 ⌋+⌊n−1

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.6)

We show that f2
n − fn−3fn+3 for n ≥ 51.

First we see that

2n+⌊n+1

2 ⌋+1 − 2n+⌊n

2 ⌋+1 + 22·⌊n

2 ⌋ − 2⌊
n+1

2 ⌋+⌊n−1

2 ⌋ > 0(2.7)

So, it is enough to prove that

(2.8) 2n−2+⌊n+1

2 ⌋ − n2n+⌊n

3 ⌋+1 ≥ 0

for n ≥ 51.
We have

⌊

n+1
2

⌋

−
⌊

n
3

⌋

− 3− log2 n ≥ n
2 − n

3 − 3− log2 n.

Consider function h(x) = x
2 − x

3 − 3− log2 x. We have h(51) = 33
6 − log2 51 > 0

and h′(x) = 1
6 − 1

x ln 2 , h
′(x) > 0 for x > 51 > 6

ln 2 . So inequality (2.8) is true.

2.3. Case k=4.

f2
n − fn−4fn+4 ≥ 2n+⌊n

2 ⌋+2 − 2n+⌊n

2 ⌋+1 + 2n−2+⌊n

2 ⌋ − n2n+⌊n

3 ⌋+1

+ n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.9)

f2
n − fn−4fn+4 ≥ 2n+⌊n

2 ⌋+1 + 2n−2+⌊n

2 ⌋ − n2n+⌊n

3 ⌋+1

+ n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.10)

Now inequality (2.8) implies statement.

2.4. Case k=5.

f2
n − fn−5fn+5 ≥ 2n+⌊n+5

2 ⌋ − 2n+⌊n

2 ⌋+1 + 2n−5+⌊n+5

2 ⌋ − n2n+⌊n

3 ⌋+1

+ 22·⌊n

2 ⌋ − 2⌊
n+5

2 ⌋+⌊n−5

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.11)

We prove that for n ≥ 36 above term is positive.
This term is great than

(2.12) 2n+⌊n+1

2 ⌋+1 − n2n+⌊n

3 ⌋+1 = 2n+⌊n

3 ⌋+1
(

2⌊
n+1

2 ⌋−⌊n

3 ⌋ − 2log2 n
)

⌊

n+1
2

⌋

−
⌊

n
3

⌋

− log2 n ≥ n
2 − n

3 − log2 n ≥ 0, for n ≥ 36.
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2.5. Case k=6.

f2
n − fn−6fn+6 ≥ 2n+⌊n+6

2 ⌋ − 2n+⌊n

2 ⌋+1 + 2n−6+⌊n+6

2 ⌋ − n2n+⌊n

3 ⌋+1

+ 22·⌊n

2 ⌋ − 2⌊
n+6

2 ⌋+⌊n−6

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.13)

We prove that for n ≥ 36 above term is positive.
This term is great than

(2.14) 2n+⌊n

2 ⌋+2 − n2n+⌊n

3 ⌋+1 = 2n+⌊n

3 ⌋+1
(

2⌊
n

2 ⌋−⌊
n

3 ⌋+1 − 2log2 n
)

,

but
⌊

n
2

⌋

−
⌊

n
3

⌋

+ 1− log2 n ≥ n−1
2 − n

3 + 1− log2 n ≥ 0, for n ≥ 36.

2.6. Case k=7.

f2
n − fn−7fn+7 ≥ 2n+⌊n+7

2 ⌋ − 2n+⌊n

2 ⌋+1 + 2n−7+⌊n+7

2 ⌋ − n2n+⌊n

3 ⌋+1

+ 22·⌊n

2 ⌋ − 2⌊
n+7

2 ⌋+⌊n−7

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.15)

We prove that for n ≥ 36 above term is positive.
This term is great than

(2.16) 2n+⌊n+1

2 ⌋+2 − n2n+⌊n

3 ⌋+1 = 2n+⌊n

3 ⌋+1
(

2⌊
n+1

2 ⌋−⌊n

3 ⌋+1 − 2log2 n
)

,

but
⌊

n+1
2

⌋

−
⌊

n
3

⌋

+ 1− log2 n ≥ n
2 − n

3 + 1− log2 n ≥ 0, for n ≥ 36.

2.7. Case k=8.

f2
n − fn−8fn+8 ≥ 2n+⌊n+8

2 ⌋ − 2n+⌊n

2 ⌋+1 + 2n−8+⌊n+8

2 ⌋ − n2n+⌊n

3 ⌋+1

+ 22·⌊n

2 ⌋ − 2⌊
n+8

2 ⌋+⌊n−8

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.17)

We prove that for n ≥ 36 above term is positive.
This term is great than

(2.18) 2n+⌊n

2 ⌋+3 − n2n+⌊n

3 ⌋+1 = 2n+⌊n

3 ⌋+1
(

2⌊
n

2 ⌋−⌊
n

3 ⌋+2 − 2log2 n
)

,

but
⌊

n
2

⌋

−
⌊

n
3

⌋

+ 2− log2 n ≥ n−1
2 − n

3 + 2− log2 n ≥ 0, for n ≥ 36.

2.8. Case k ≥ 9.

f2
n − fn−kfn+k ≥ 2n+⌊n+k

2 ⌋ − 2n+⌊n

2 ⌋+1 + 2n−k+⌊n+k

2 ⌋ − n2n+⌊n

3 ⌋+1

+ 22·⌊n

2 ⌋ − 2⌊
n+k

2 ⌋+⌊n−k

2 ⌋ + n2⌊
n

2 ⌋+⌊n

3 ⌋+1 + n222·⌊n

3 ⌋
(2.19)

We prove that for n ≥ k + 1 above term is positive.
This term is great than

2n+⌊n+k

2 ⌋−1 − n2n+⌊n

3 ⌋+1(2.20)

It is enough to show that

(n+

⌊

n+ k

2

⌋

− 1)− (n+
⌊n

3

⌋

+ 1 + log2 n) ≥ 0,(2.21)

but
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(n+

⌊

n+ k

2

⌋

− 1)− (n+
⌊n

3

⌋

+ 1 + log2 n) ≥
n+ k − 1

2
− 1−

n

3
− 1− log2 n

=
n

6
+

k − 5

2
− log2 n

(2.22)

Let i(x) = x
6 + k−5

2 − log2 x, i(k + 1) = 4k−14
6 − log2(k + 1). Function i(x) is

increasing for x ≥ 8 and i(k + 1) > 0 for k ≥ 9.

3. Proof that
g(6n−2)
g(6n−4) > g(6n)

g(6n−2) > g(6n+2)
g(6n) < g(6n+4)

g(6n+2) for large n.

3.1. g(6n−2)
g(6n−4) > g(6n)

g(6n−2) . Above inequality is equivalent to inequality

(3.1) [g(6n− 2)]2 > g(6n)g(6n− 4).

Using (1.3) we get estimation

g(6n− 2) =
∑

2≤d≤6n−2
(d,6n−1)=1

f

(⌊

6n− 2

d

⌋)

= f(3n− 1) + f(2n− 1)

+ f

(⌊

3n− 1

2

⌋)

+ χ5(6n− 1)f

(⌊

6n− 2

5

⌋)

+ C1(n),

(3.2)

where C1(n) =
∑

6≤d≤6n−2
(d,6n−1)=1

f
(⌊

6n−2
d

⌋)

≤ 6(n− 1)f(n− 1) ≤ 6(n− 1)2n−1.

Subsequently

g(6n− 4) =
∑

2≤d≤6n−4
(d,6n−3)=1

f

(⌊

6n− 4

d

⌋)

= f(3n− 2) + f

(⌊

3n

2

⌋

− 1

)

+ χ5(6n− 3)f

(⌊

6n− 4

5

⌋)

+ C2(n),

(3.3)

where C2(n) =
∑

6≤d≤6n−4
(d,6n−3)=1

f
(⌊

6n−4
d

⌋)

≤ 6(n− 1)f(n− 1) ≤ 6(n− 1)2n−1.

Similarly

g(6n) =
∑

2≤d≤6n
(d,6n+1)=1

f

(⌊

6n

d

⌋)

= f(3n) + f(2n) + f

(⌊

3n

2

⌋)

+ χ5(6n+ 1)f

(⌊

6n

5

⌋)

+ f(n) + C3(n),

(3.4)

where C3(n) =
∑

7≤d≤6n
(d,6n+1)=1

f
(⌊

6n
d

⌋)

≤ 6(n− 1)f(n− 1) ≤ 6(n− 1)2n−1.

Now, (3.1) is equivalent to inequality
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[

f(3n− 1) + f(2n− 1) + f

(⌊

3n− 1

2

⌋)

+ χ5(6n− 1)f

(⌊

6n− 2

5

⌋)

+ C1(n)

]2

>

[

f(3n) + f(2n) + f

(⌊

3n

2

⌋)

+ χ5(6n+ 1)f

(⌊

6n

5

⌋)

+ f(n) + C3(n)

]

·

[

f(3n− 2) + f

(⌊

3n

2

⌋

− 1

)

+ χ5(6n− 3)f

(⌊

6n− 4

5

⌋)

+ C2(n)

]

(3.5)

Above inequality after calculation, cancellation summands which are O
(

2
9
2
n
)

,

leads to inequality

[f(3n− 1)]2 + 2f(3n− 1)f(2n− 1) > f(3n)f(3n− 2) + f(3n− 2)f(2n),(3.6)

which is true for large n. So the inequality g(6n−2)
g(6n−4) > g(6n)

g(6n−2) is true for large n.

3.2. g(6n)
g(6n−2) > g(6n+2)

g(6n) . Above inequality is equivalent to inequality

(3.7) [g(6n)]2 > g(6n− 2)g(6n+ 2).

Above inequality after calculation, cancellation summands which are O
(

2
9
2
n
)

,

leads to inequality

[f(3n)]2 + 2f(3n)f(2n) > f(3n− 1)f(3n+ 1) + f(2n− 1)f(3n+ 1),(3.8)

which is true for large n.

3.3. g(6n+2)
g(6n) < g(6n+4)

g(6n+2) . Above inequality is equivalent to inequality

(3.9) [g(6n+ 2)]2 > g(6n)g(6n+ 4).

Above inequality after calculation, cancellation summands which are O
(

2
9
2
n
)

,

leads to inequality

[f(3n+ 1)]2 < f(3n)f(2n+ 1) + f(2n)f(3n+ 2),(3.10)

Using inequalities from Lemma.1.1. we can prove that above inequality is true
for large n.

We have proved that exists natural number n0 such that inequality from the title
of the section is true for n ≥ n0 . Exact value n0 needs more careful calculation.
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