ON SOME PROPERTIES OF THE FUNCTION OF THE NUMBER OF RELATIVELY PRIME SUBSETS OF $\{1,2, \ldots, n\}$

ADRIAN ŁYDKA

Abstract. In the paper we solve few problems proposed by Prapanpong Pongsriiam. Let $f(n)$ denote the number of relatively prime subsets of $\{1,2,3, \ldots, n\}$ and $g(n)$ denote the number of subsets A of $\{1,2,3, \ldots, n\}$ such that $\operatorname{gcd}(A)>$ 1 and $\operatorname{gcd}(A, n+1)=1$. We show that $f_{n}^{2}-f_{n-k} f_{n+k}>0$ for $n \geq k+1 \quad(k \geq$ $2)$. We also show $\frac{g(6 n-2)}{g(6 n-4)}>\frac{g(6 n)}{g(6 n-2)}>\frac{g(6 n+2)}{g(6 n)}<\frac{g(6 n+4)}{g(6 n+2)}$ for large n.

1. Introduction

A finite set A is said to be relatively prime if $\operatorname{gcd}(A)=1$.
Let $f X$) denote the number of relatively prime subsets of X.
Let $f(n)$ be the number of relatively prime subsets of $\{1,2,3, \ldots, n\}$ in other words $f(n)=f([1, n])$. Sometimes we write f_{n} instead of $f(n)$.

Moreover, define function $g(n)$ by formula

$$
\begin{equation*}
g(n)=\sum_{\substack{\emptyset \neq A \subseteq[1, n] \\ \operatorname{gcd}(A)>1 \\ \operatorname{gcd}(A, n+1)=1}} 1 \tag{1.1}
\end{equation*}
$$

We will use two inequalities
Lemma 1.1 (1 , Theorem 2).

$$
\begin{equation*}
2^{n}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-n 2^{\left\lfloor\frac{n}{3}\right\rfloor} \leq f(n) \leq 2^{n}-2^{\left\lfloor\frac{n}{2}\right\rfloor} . \tag{1.2}
\end{equation*}
$$

Moreover, we know that (Lemma 4 in [4])

$$
\begin{equation*}
g(n)=\sum_{\substack{2 \leq d \leq n \\(d, n+1)=1}} f\left(\left\lfloor\frac{n}{d}\right\rfloor\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(n)=\sum_{d \leq n} \mu(d)\left(2^{\left\lfloor\frac{n}{d}\right\rfloor}-1\right) . \tag{1.4}
\end{equation*}
$$

More information on the function f_{n} can be found in the sequence A085945 in [5].

In paper [4] Pongsriiam proved that $f_{n}^{2}-f_{n-1} f_{n+1}$ is positive for every odd number $n \geq 3$ and negative for every even number n.

[^0]Recall that a sequence $\left(a_{n}\right)_{n \geq 0}$ is said to be log-concave if $a_{n}^{2}-a_{n-1} a_{n+1}>0$ for every $n>1$ and is said to be log-convex if $a_{n}^{2}-a_{n-1} a_{n+1}<0$ for every $n>1$. Stirling numbers, Bessel numbers are examples of log-concave sequences. Some sequences are not log-concave, but have similar properties. For example, if $\left(F_{n}\right)_{n \geq 0}$ is the Fibonacci sequence or $F_{n}=f_{n}$, then $F_{n}^{2}-F_{n} F_{n+1}=(-1)^{n-1}$, which is positive for odd n and negative for even n (so called alternating sequence). In addition, the sequence $\left(f_{n}\right)_{n \geq 1}$ seems to have strong log-property ((Recall that $\left(a_{n}\right)_{n \geq 0}$ is said to be strong log-concave if $a_{n}^{2}-a_{n-k} a_{n+k}>0$ for every $k \geq 1$ and $n>k)$). For example, in the paper 4] Pongsriiam checked that $f_{n}^{2}-f_{n-2} f_{n+2}>$ $0($ for $2<n \leq 50), f_{n}^{2}-f_{n-3} f_{n+3}>0($ for $3<n \leq 50)$ and $f_{n}^{2}-f_{n-4} f_{n+4}>0($ for $4<$ $n \leq 50)$. In our paper we prove that these inequalities are true for all $n>2,3,4$, respectively.

In this paper we prove that $f_{n}^{2}-f_{n-k} f_{n+k}>0$ (for large $n \geq k+1$ and $k \geq 2$)
We also propose new term :almost strong log-concave sequence if $a_{n}^{2}-a_{n-k} a_{n+k}>$ 0 for every $k \geq k_{0}$ and $n>k$) for some constant $k_{0} \geq 2$.

In paper [4] Pongsriiam also asked is it true that

$$
\begin{equation*}
\frac{g(6 n-2)}{g(6 n-4)}>\frac{g(6 n)}{g(6 n-2)}>\frac{g(6 n+2)}{g(6 n)}<\frac{g(6 n+4)}{g(6 n+2)} \tag{1.5}
\end{equation*}
$$

In Section,3, we prove above inequalities for large n.

2. SIGN OF $f_{n}^{2}-f_{n-k} f_{n+k}>0$ FOR $n>k$ IN GENERAL

First, using formula (1.4), we can write the following GP/PARI code :
$a(n)=\operatorname{sum}\left(k=1, n, \operatorname{moebius}(k) *\left(2^{\text {floor }}(n / k)-1\right)\right)$
$\operatorname{for}\left(n=6,50, \operatorname{print}\left(a(n)^{2}-a(n-l) * a(n+l)\right)\right)$.
for $(l=2 . .8)$
We obtain that inequality $f_{n}^{2}-f_{n-k} f_{n+k}>0$ is true for $k=2,3, \ldots, 8$ and $n \leq 50$. Using estimation (1.2) we get

$$
\begin{align*}
f_{n}^{2} & \geq\left(2^{n}-2^{\left\lfloor\frac{n}{2}\right\rfloor}-n 2^{\left\lfloor\frac{n}{3}\right\rfloor}\right)^{2} \tag{2.1}\\
& =2^{2 n}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}+2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor}
\end{align*}
$$

and

$$
\begin{align*}
f_{n-k} f_{n+k} & \leq\left(2^{n-k}-2^{\left\lfloor\frac{n-k}{2}\right\rfloor}\right)\left(2^{n+k}-2^{\left\lfloor\frac{n+k}{2}\right\rfloor}\right) \tag{2.2}\\
& =2^{2 n}-2^{n+\left\lfloor\frac{n+k}{2}\right\rfloor-k}-2^{n+\left\lfloor\frac{n-k}{2}\right\rfloor+k}+2^{\left\lfloor\frac{n-k}{2}\right\rfloor+\left\lfloor\frac{n+k}{2}\right\rfloor}
\end{align*}
$$

So

$$
\begin{align*}
f_{n}^{2}-f_{n-k} f_{n+k} \geq & 2^{n+\left\lfloor\frac{n+k}{2}\right\rfloor}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-k+\left\lfloor\frac{n+k}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \\
& +2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+k}{2}\right\rfloor+\left\lfloor\frac{n-k}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.3}
\end{align*}
$$

2.1. Case $\mathbf{k}=2$.

$$
\begin{align*}
f_{n-2} f_{n+2} & \leq\left(2^{n-2}-2^{\left\lfloor\frac{n-2}{2}\right\rfloor}\right)\left(2^{n+2}-2^{\left\lfloor\frac{n+2}{2}\right\rfloor}\right) \tag{2.4}\\
& =2^{2 n}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor-1}+2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}
\end{align*}
$$

We show that $f_{n}^{2}-f_{n-2} f_{n+2}$ for $n \geq 51$.

$$
\begin{align*}
f_{n}^{2}-f_{n-2} f_{n+2} & \geq 2^{n+\left\lfloor\frac{n}{2}\right\rfloor-1}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.5}\\
& >2^{n+\left\lfloor\frac{n}{2}\right\rfloor-1}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}>2^{n+\left\lfloor\frac{n}{2}\right\rfloor-1}-2^{n+\left\lfloor\frac{n}{3}\right\rfloor+\log _{2} n+1}>0,
\end{align*}
$$

because $\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor-\log _{2} n-2 \geq \frac{n-1}{2}-\frac{n}{3}-\log _{2} n-2=\frac{n-6 \log _{2} n-15}{6}>0$ for $n \geq 51$. (Consider function $h(x)=x-6 \log _{2} x-15, h(51)=36-6 \log _{2} 55>0$, $h^{\prime}(x)=1-\frac{6}{x \ln 2}>0$ for $\left.x \geq 51 \geq 6 \ln 2\right)$.

2.2. Case $\mathbf{k}=\mathbf{3}$.

$$
\begin{align*}
f_{n}^{2}-f_{n-3} f_{n+3} \geq & 2^{n+\left\lfloor\frac{n+1}{2}\right\rfloor+1}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-2+\left\lfloor\frac{n+1}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \\
& +2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+1}{2}\right\rfloor+\left\lfloor\frac{n-1}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.6}
\end{align*}
$$

We show that $f_{n}^{2}-f_{n-3} f_{n+3}$ for $n \geq 51$.
First we see that

$$
\begin{equation*}
2^{n+\left\lfloor\frac{n+1}{2}\right\rfloor+1}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+1}{2}\right\rfloor+\left\lfloor\frac{n-1}{2}\right\rfloor}>0 \tag{2.7}
\end{equation*}
$$

So, it is enough to prove that

$$
\begin{equation*}
2^{n-2+\left\lfloor\frac{n+1}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \geq 0 \tag{2.8}
\end{equation*}
$$

for $n \geq 51$.
We have $\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor-3-\log _{2} n \geq \frac{n}{2}-\frac{n}{3}-3-\log _{2} n$.
Consider function $h(x)=\frac{x}{2}-\frac{x}{3}-3-\log _{2} x$. We have $h(51)=\frac{33}{6}-\log _{2} 51>0$ and $h^{\prime}(x)=\frac{1}{6}-\frac{1}{x \ln 2}, h^{\prime}(x)>0$ for $x>51>\frac{6}{\ln 2}$. So inequality (2.8) is true.
2.3. Case $\mathrm{k}=4$.

$$
\begin{align*}
f_{n}^{2}-f_{n-4} f_{n+4} & \geq 2^{n+\left\lfloor\frac{n}{2}\right\rfloor+2}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-2+\left\lfloor\frac{n}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \\
& +n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.9}\\
f_{n}^{2}-f_{n-4} f_{n+4} & \geq 2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-2+\left\lfloor\frac{n}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \\
& +n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.10}
\end{align*}
$$

Now inequality (2.8) implies statement.

2.4. Case $\mathrm{k}=5$.

$$
\begin{align*}
f_{n}^{2}-f_{n-5} f_{n+5} \geq & 2^{n+\left\lfloor\frac{n+5}{2}\right\rfloor}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-5+\left\lfloor\frac{n+5}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \tag{2.11}\\
& +2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+5}{2}\right\rfloor+\left\lfloor\frac{n-5}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor}
\end{align*}
$$

We prove that for $n \geq 36$ above term is positive.
This term is great than

$$
\begin{equation*}
2^{n+\left\lfloor\frac{n+1}{2}\right\rfloor+1}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}=2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}\left(2^{\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor}-2^{\log _{2} n}\right) \tag{2.12}
\end{equation*}
$$

$$
\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor-\log _{2} n \geq \frac{n}{2}-\frac{n}{3}-\log _{2} n \geq 0, \text { for } n \geq 36
$$

2.5. Case $\mathrm{k}=6$.

$$
\begin{align*}
f_{n}^{2}-f_{n-6} f_{n+6} \geq & 2^{n+\left\lfloor\frac{n+6}{2}\right\rfloor}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-6+\left\lfloor\frac{n+6}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \\
& +2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+6}{2}\right\rfloor+\left\lfloor\frac{n-6}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.13}
\end{align*}
$$

We prove that for $n \geq 36$ above term is positive.
This term is great than

$$
\begin{equation*}
2^{n+\left\lfloor\frac{n}{2}\right\rfloor+2}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}=2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor+1}-2^{\log _{2} n}\right) \tag{2.14}
\end{equation*}
$$

but $\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor+1-\log _{2} n \geq \frac{n-1}{2}-\frac{n}{3}+1-\log _{2} n \geq 0$, for $n \geq 36$.

2.6. Case $\mathbf{k}=7$.

$$
\begin{align*}
f_{n}^{2}-f_{n-7} f_{n+7} \geq & 2^{n+\left\lfloor\frac{n+7}{2}\right\rfloor}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-7+\left\lfloor\frac{n+7}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \\
& +2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+7}{2}\right\rfloor+\left\lfloor\frac{n-7}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.15}
\end{align*}
$$

We prove that for $n \geq 36$ above term is positive.
This term is great than

$$
\begin{equation*}
2^{n+\left\lfloor\frac{n+1}{2}\right\rfloor+2}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}=2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}\left(2^{\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor+1}-2^{\log _{2} n}\right) \tag{2.16}
\end{equation*}
$$

but $\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor+1-\log _{2} n \geq \frac{n}{2}-\frac{n}{3}+1-\log _{2} n \geq 0$, for $n \geq 36$.

2.7. Case $\mathrm{k}=8$.

$$
\begin{align*}
f_{n}^{2}-f_{n-8} f_{n+8} \geq & 2^{n+\left\lfloor\frac{n+8}{2}\right\rfloor}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-8+\left\lfloor\frac{n+8}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \tag{2.17}\\
& +2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+8}{2}\right\rfloor+\left\lfloor\frac{n-8}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor}
\end{align*}
$$

We prove that for $n \geq 36$ above term is positive.
This term is great than

$$
\begin{equation*}
2^{n+\left\lfloor\frac{n}{2}\right\rfloor+3}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}=2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1}\left(2^{\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor+2}-2^{\log _{2} n}\right) \tag{2.18}
\end{equation*}
$$

but $\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{3}\right\rfloor+2-\log _{2} n \geq \frac{n-1}{2}-\frac{n}{3}+2-\log _{2} n \geq 0$, for $n \geq 36$.
2.8. Case $k \geq 9$.

$$
\begin{align*}
f_{n}^{2}-f_{n-k} f_{n+k} \geq & 2^{n+\left\lfloor\frac{n+k}{2}\right\rfloor}-2^{n+\left\lfloor\frac{n}{2}\right\rfloor+1}+2^{n-k+\left\lfloor\frac{n+k}{2}\right\rfloor}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \\
& +2^{2 \cdot\left\lfloor\frac{n}{2}\right\rfloor}-2^{\left\lfloor\frac{n+k}{2}\right\rfloor+\left\lfloor\frac{n-k}{2}\right\rfloor}+n 2^{\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{3}\right\rfloor+1}+n^{2} 2^{2 \cdot\left\lfloor\frac{n}{3}\right\rfloor} \tag{2.19}
\end{align*}
$$

We prove that for $n \geq k+1$ above term is positive.
This term is great than

$$
\begin{equation*}
2^{n+\left\lfloor\frac{n+k}{2}\right\rfloor-1}-n 2^{n+\left\lfloor\frac{n}{3}\right\rfloor+1} \tag{2.20}
\end{equation*}
$$

It is enough to show that

$$
\begin{equation*}
\left(n+\left\lfloor\frac{n+k}{2}\right\rfloor-1\right)-\left(n+\left\lfloor\frac{n}{3}\right\rfloor+1+\log _{2} n\right) \geq 0 \tag{2.21}
\end{equation*}
$$

but

$$
\begin{align*}
\left(n+\left\lfloor\frac{n+k}{2}\right\rfloor-1\right)-\left(n+\left\lfloor\frac{n}{3}\right\rfloor+1+\log _{2} n\right) \geq \frac{n+k-1}{2} & -1-\frac{n}{3}-1-\log _{2} n \tag{2.22}\\
& =\frac{n}{6}+\frac{k-5}{2}-\log _{2} n
\end{align*}
$$

Let $i(x)=\frac{x}{6}+\frac{k-5}{2}-\log _{2} x, i(k+1)=\frac{4 k-14}{6}-\log _{2}(k+1)$. Function $\mathrm{i}(\mathrm{x})$ is increasing for $x \geq 8$ and $i(k+1)>0$ for $k \geq 9$.
3. PROOF THAT $\frac{g(6 n-2)}{g(6 n-4)}>\frac{g(6 n)}{g(6 n-2)}>\frac{g(6 n+2)}{g(6 n)}<\frac{g(6 n+4)}{g(6 n+2)}$ FOR LARGE n.
3.1. $\frac{g(6 n-2)}{g(6 n-4)}>\frac{g(6 n)}{g(6 n-2)}$. Above inequality is equivalent to inequality

$$
\begin{equation*}
[g(6 n-2)]^{2}>g(6 n) g(6 n-4) \tag{3.1}
\end{equation*}
$$

Using (1.3) we get estimation

$$
\begin{align*}
g(6 n-2)= & \sum_{\substack{2 \leq d \leq 6 n-2 \\
(d, 6 n-1)=1}} f\left(\left\lfloor\frac{6 n-2}{d}\right\rfloor\right)=f(3 n-1)+f(2 n-1) \tag{3.2}\\
& +f\left(\left\lfloor\frac{3 n-1}{2}\right\rfloor\right)+\chi_{5}(6 n-1) f\left(\left\lfloor\frac{6 n-2}{5}\right\rfloor\right)+C_{1}(n),
\end{align*}
$$

where $C_{1}(n)=\sum_{\substack{6 \leq d \leq 6 n-2 \\(d, 6 n-1)=1}} f\left(\left\lfloor\frac{6 n-2}{d}\right\rfloor\right) \leq 6(n-1) f(n-1) \leq 6(n-1) 2^{n-1}$.
Subsequently

$$
\begin{align*}
g(6 n-4)= & \sum_{\substack{2 \leq d \leq 6 n-4 \\
(d, 6 n-3)=1}} f\left(\left\lfloor\frac{6 n-4}{d}\right\rfloor\right)=f(3 n-2)+f\left(\left\lfloor\frac{3 n}{2}\right\rfloor-1\right) \tag{3.3}\\
& +\chi_{5}(6 n-3) f\left(\left\lfloor\frac{6 n-4}{5}\right\rfloor\right)+C_{2}(n)
\end{align*}
$$

where $C_{2}(n)=\sum_{\substack{6 \leq d \leq 6 n-4 \\(d, 6 n-3)=1}} f\left(\left\lfloor\frac{6 n-4}{d}\right\rfloor\right) \leq 6(n-1) f(n-1) \leq 6(n-1) 2^{n-1}$.
Similarly

$$
\begin{align*}
g(6 n)= & \sum_{\substack{2 \leq d \leq 6 n \\
(d, 6 n+1)=1}} f\left(\left\lfloor\frac{6 n}{d}\right\rfloor\right)=f(3 n)+f(2 n)+f\left(\left\lfloor\frac{3 n}{2}\right\rfloor\right) \tag{3.4}\\
& +\chi_{5}(6 n+1) f\left(\left\lfloor\frac{6 n}{5}\right\rfloor\right)+f(n)+C_{3}(n)
\end{align*}
$$

where $C_{3}(n)=\sum_{\substack{7 \leq d \leq 6 n \\(d, 6 n+1)=1}} f\left(\left\lfloor\frac{6 n}{d}\right\rfloor\right) \leq 6(n-1) f(n-1) \leq 6(n-1) 2^{n-1}$.
Now, (3.1) is equivalent to inequality

$$
\begin{align*}
& {\left[f(3 n-1)+f(2 n-1)+f\left(\left\lfloor\frac{3 n-1}{2}\right\rfloor\right)+\chi_{5}(6 n-1) f\left(\left\lfloor\frac{6 n-2}{5}\right\rfloor\right)+C_{1}(n)\right]^{2}} \tag{3.5}\\
& >\left[f(3 n)+f(2 n)+f\left(\left\lfloor\frac{3 n}{2}\right\rfloor\right)+\chi_{5}(6 n+1) f\left(\left\lfloor\frac{6 n}{5}\right\rfloor\right)+f(n)+C_{3}(n)\right] \\
& \quad \cdot\left[f(3 n-2)+f\left(\left\lfloor\frac{3 n}{2}\right\rfloor-1\right)+\chi_{5}(6 n-3) f\left(\left\lfloor\frac{6 n-4}{5}\right\rfloor\right)+C_{2}(n)\right]
\end{align*}
$$

Above inequality after calculation, cancellation summands which are $O\left(2^{\frac{9}{2} n}\right)$, leads to inequality

$$
\begin{equation*}
[f(3 n-1)]^{2}+2 f(3 n-1) f(2 n-1)>f(3 n) f(3 n-2)+f(3 n-2) f(2 n) \tag{3.6}
\end{equation*}
$$

which is true for large n. So the inequality $\frac{g(6 n-2)}{g(6 n-4)}>\frac{g(6 n)}{g(6 n-2)}$ is true for large n.
3.2. $\frac{g(6 n)}{g(6 n-2)}>\frac{g(6 n+2)}{g(6 n)}$. Above inequality is equivalent to inequality

$$
\begin{equation*}
[g(6 n)]^{2}>g(6 n-2) g(6 n+2) \tag{3.7}
\end{equation*}
$$

Above inequality after calculation, cancellation summands which are $O\left(2^{\frac{9}{2} n}\right)$, leads to inequality

$$
\begin{equation*}
[f(3 n)]^{2}+2 f(3 n) f(2 n)>f(3 n-1) f(3 n+1)+f(2 n-1) f(3 n+1) \tag{3.8}
\end{equation*}
$$

which is true for large n.
3.3. $\frac{g(6 n+2)}{g(6 n)}<\frac{g(6 n+4)}{g(6 n+2)}$. Above inequality is equivalent to inequality

$$
\begin{equation*}
[g(6 n+2)]^{2}>g(6 n) g(6 n+4) \tag{3.9}
\end{equation*}
$$

Above inequality after calculation, cancellation summands which are $O\left(2^{\frac{9}{2} n}\right)$, leads to inequality

$$
\begin{equation*}
[f(3 n+1)]^{2}<f(3 n) f(2 n+1)+f(2 n) f(3 n+2) \tag{3.10}
\end{equation*}
$$

Using inequalities from Lemma.1.1. we can prove that above inequality is true for large n.

We have proved that exists natural number n_{0} such that inequality from the title of the section is true for $n \geq n_{0}$. Exact value n_{0} needs more careful calculation.

References

[1] Nathanson, M. B., Affine invariants, relatively prime sets, and a phi function for subsets of $\{1,2,3, \ldots, n\}$, Integers 7 (2007), A1.
[2] Pongsriiam, P., A remark on relatively prime sets, Integers 13 (2013), A49.
[3] Pongsriiam, P., Relatively prime sets, divisor sums, and partial sums, J. Integer Seq. 16 (2013), Article 13.9.1.
[4] Pongsriiam, P., Local behaviors of the number of relatively prime sets, International Journal of Number Theory 12(6), 2016:1575-1593.
[5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org/
Institute of Mathematics and Cryptology, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland

E-mail address: adrian.lydka@wat.edu.pl

[^0]: 2010 Mathematics Subject Classification. Primary 11A25; Secondary 11B75.
 Key words and phrases. relatively prime set, log-concave.

