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Abstract

Divisor functions have attracted the attention of number theorists from Dirichlet
to the present day. Here we consider associated divisor functions c

(r)
j (n) which

for non-negative integers j, r count the number of ways of representing n as an
ordered product of j + r factors, of which the first j must be non-trivial, and their
natural extension to negative integers r. We give recurrence properties and explicit

formulae for these novel arithmetic functions. Specifically, the functions c
(−j)
j (n)

count, up to a sign, the number of ordered factorisations of n into j square-free
non-trivial factors. These functions are related to a modified version of the Möbius
function and turn out to play a central role in counting the number of sum systems
of given dimensions.

Sum systems are finite collections of finite sets of non-negative integers, of pre-
scribed cardinalities, such that their set sum generates consecutive integers with-
out repetitions. Using a recently established bijection between sum systems and
joint ordered factorisations of their component set cardinalities, we prove a for-
mula expressing the number of different sum systems in terms of associated divisor
functions.

1 Introduction

The recent work [4] gives a construction formula for all sum systems, which are finite
collections of finite sets of non-negative integers, of prescribed cardinalities, such that the
process of taking one element from each component set and adding them up generates
each number in an arithmetic progression exactly once. Thus a sum system is of the form
A1, . . . , Am ⊂ N0,

m
∑

k=1

Ak =

{

0, 1, . . . ,

m
∏

k=1

|Ak| − 1

}

.

Such systems play a role in the construction of principal reversible cuboids and (in the
simple case of only two component sets) of other matrices with integer entries and specific
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symmetry properties, e.g. most-perfect pandiagonal squares, cf. [7]. The construction of
sum systems of given cardinalities a1, . . . , am for the m component sets is based on a joint
ordered factorisation of these cardinalities, defined as follows (cf. [4], Definition 6.6).

Definition 1. Let m ∈ N and a ∈ N
m. Then we call

((j1, f1), (j2, f2), . . . , (jL, fL)) ∈ ({1, . . . , m} × (N+ 1))L,

where L ∈ N, a joint ordered factorisation of a = (a1, . . . , am) if
∏

jl=j

fl = aj (j ∈ {1, . . . , m})

and jl 6= jl−1 (l ∈ {2, . . . , L}).

In other words, a joint ordered factorisation of an n-tuple of natural numbers a1, . . . , am
arises from writing each of these numbers as a product of non-trivial factors, i.e. fac-
tors ≥ 2, and then arranging all factors in a linear chain such that no two adjacent
factors arise from the factorisation of the same number. Given a joint ordered factorisa-
tion, the sets

Ak =
∑

jl=k

(

l−1
∏

s=1

fs

)

{0, 1, . . . , fl − 1} (j ∈ {1, . . . , m})

form a sum system, and conversely any sum system arises from some joint ordered fac-
torisation of its dimensions in this way (cf. [4], Theorem 6.7). This establishes a bijection
between sum systems and joint ordered factorisations.

As an illustrative example, consider the casem = 5, (a1, a2, a3, a4, a5) = (4, 6, 8, 12, 20).
An example of a joint ordered factorisation of this quintuple of dimensions is

((1, 2), (5, 2), (2, 2), (5, 5), (3, 4), (5, 2), (4, 4), (3, 2), (4, 3), (1, 2), (2, 3)),

yielding the corresponding sum system

A1 ={0, 1, 7680, 7681}

A2 ={0, 4, 15360, 15364, 30720, 30724}

A3 ={0, 40, 80, 120, 3840, 3880, 3920, 3960}

A4 ={0, 320, 640, 960, 1280, 1600, 1920, 2240, 2560, 2880, 3200, 3520}

A5 ={0, 2, 8, 10, 16, 18, 24, 26, 32, 34, 160, 162, 168, 170, 176, 178, 184, 186, 192, 194}.

Thus, inscribing the above numbers on the faces of the five platonic polyhedra and adding
the numbers obtained in each roll of these five dice, we obtain a random number generator
for the integers 0, 1, . . . , 46079 (= a1a2a3a4a5 − 1) with uniform probability distribution.

In the present paper, we answer the question of how many different joint ordered
factorisations of a given m-tuple of positive integers there are. Our main result is The-
orem 4, which expresses the number of joint ordered factorisations in terms of values of

2



certain associated divisor functions at a1, . . . , am (see Eq. (14) ). These functions turn
out to be closely linked to a modified version of the number theoretic Möbius function (cf.
[1] p. 77). In Section 2, we study some of their properties before tackling the counting
problem in Sections 3 and 4.

2 Non-trivial and Associated Divisor Functions

Divisor functions have been studied by many eminent number theorists, from Dirichlet
to the present day (e.g. [9], [5], [6]). The non-trivial and associated divisor functions
defined in [3] can be conveniently described in the framework of the commutative Dirichlet
convolution algebra of arithmetic functions. The convolution of arithmetic functions
f1, f2, . . . , fj is given by

(f1 ∗ f2 ∗ · · · ∗ fj)(n) =
∑

n1n2···nj=n

f1(n1)f2(n2) · · ·fj(nj), (1)

summing over all ordered factorisations of n ∈ N into j factors. We denote the jth
convolution power as follows, f ∗j := f ∗ f ∗ · · · ∗ f, where the right-hand side has j
repetitions of f ; by the usual convention, f ∗0 = e. The function e(n) = δn,1 (n ∈ N) is
the neutral element of the Dirichlet convolution product, and the convolution inverse of
the constant function 1 is the well-known Möbius function µ.

In analogy to the standard jth divisor function dj = 1∗j (cf. [10] p. 9), which counts
the ordered factorisations of its argument into j positive integer factors, we define the
jth non-trivial divisor function cj = (1− e)∗j , which counts the ordered factorisations of
its argument into j non-trivial integer factors, i.e. into factors > 1.

Furthermore, for non-negative integer r, the associated (j, r)-divisor function is de-

fined as c
(r)
j = (1 − e)∗j ∗ 1∗r. In view of Eq. (1), it counts the ordered factorisations of

its argument into j + r factors, of which the first j must be non-trivial.

As the constant function 1 has a convolution inverse, the latter definition extends
naturally to negative upper indices, giving the associated (j,−r)-divisor function c

(−r)
j =

(1−e)∗j∗µ∗r. (Note that 1−e does not have a convolution inverse, so there is no analogous

extension to negative lower indices.) The functions c
(−r)
0 = µ∗r were studied by Popovici

[8]. In the associated (j,−r)-divisor functions, the modified Möbius function

(µ− e)(n) =

{

(−1)Ω(n) if n is square-free
0 otherwise (including the case n = 1)

(n ∈ N),

where Ω(n) is the number of prime factors of n, appears naturally. Indeed, if j ≥ r, then

c
(−r)
j = (1− e)∗j−r ∗ ((1− e) ∗ µ)∗r = (−1)r(1− e)∗j−r ∗ (µ− e)∗r;
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if j < r, then

c
(−r)
j = ((1− e) ∗ µ)∗j ∗ µ∗r−j = (−1)j(µ− e)∗j ∗ µ∗r−j.

Note that c
(r)
j (n) involves factorisation of n into j + r factors if r ≥ 0, into max{j,−r}

factors if r < 0, of which at least j must be non-trivial, so c
(r)
j (n) = 0 if j > Ω(n). (Also,

if r < 0, then at least −r factors must be square-free.)

The special case j = −r,

c
(−j)
j (n) = (−1)j

∑

n1n2···nj=n

(µ− e)(n1) (µ− e)(n2) · · · (µ− e)(nj) (n ∈ N), (2)

turns out to be of particular importance (cf. Theorem 4 below). The value of c
(−j)
j (n)

can be interpreted as (−1)Ω(n)+j times the number of ordered factorisations of n into j
non-trivial, square-free factors.

The following statement aids the calculation of the associated divisor functions either
via a recurrent scheme similar to Pascal’s triangle, or directly in terms of the prime
factorisation of their argument.

Theorem 1. Let j ∈ N0, r ∈ Z. Then

(a)

c
(r+1)
j = c

(r)
j+1 + c

(r)
j ; (3)

(b) if n = pa11 pa22 · · · paνν with distinct primes p1, p2, . . . , pν , then

c
(r)
j (n) =

j
∑

k=0

(−1)k
(

j
k

) ν
∏

l=1

(

al + r + j − k − 1
al

)

. (4)

Proof. Eq. (3) follows immediately from the observation that c
(r)
j+1 = (1 − e)∗j+1 ∗ 1∗r =

(1− e)∗j ∗ 1 ∗ 1∗r − (1− e)∗j ∗ e ∗ 1∗r. For part (b), the binomial theorem gives

c
(r)
j =

j
∑

k=0

(−1)k
(

j
k

)

e∗k ∗ 1∗j−k+r, (5)

and Eq. (4) follows from the identity (cf. [3] Lemma 1)

1∗j(n) =
ν
∏

k=1

(

ak + j − 1
ak

)

, (6)

which holds for all integers j. As 1 and 1∗−1 = µ are multiplicative arithmetic functions
and the Dirichlet convolution of multiplicative functions is multiplicative, it is sufficient
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to verify (6) for a single prime power. For positive j, 1∗j(pa) is, by Eq. (1), equal to the

number of j-part partitions of a, i.e. to

(

a+ j − 1
a

)

. Furthermore, again by Eq. (1),

1∗−j(pa) = µ∗j(pa) is equal to (−1)a times the number of ways of writing a as an ordered

sum of j terms, each either 0 or 1, i.e. to (−1)a
(

j
a

)

=

(

−j + a− 1
a

)

. �

In the specific case of a power of a square-free number n, the product in Eq. (4) turns
into a power; then, using the last identity in the above proof, we can derive the formula

c
(r−j+1−a)
j (na) = (−1)aΩ(n)+jc

(−r)
j (na).

We note the following relationships between the associated divisor functions and the
standard divisor functions dj (and their inverses with respect to Dirichlet convolution).

Theorem 2. Let j ∈ N0, r ∈ Z. Then

dr =

∞
∑

k=0

(

k + r − 1
k

)

c
(−k)
k . (7)

More generally, for any u ∈ N0 and v ∈ Z,

c
(r+v)
j+u =

∞
∑

k=j

(

k + r − 1
k − j

)

c
(v−k)
u+k . (8)

Proof. The identity (7) follows from the inverse binomial formula,

1∗r = (e+ µ− e)∗−r =
∞
∑

k=0

(−1)k
(

r + k − 1
k

)

(µ− e)∗k.

The series is pointwise convergent because µ− e is pointwise nilpotent in the convolution
algebra. Hence induction on j gives

(1− e)∗j ∗ 1∗k =

∞
∑

k=j

(

k + r − 1
k − j

)

(e− µ)∗k,

and Eq. (8) follows by convolution with (1− e)∗u ∗ 1∗v on both sides. �

Remark. Curiously, the binomial coefficient appearing in Eqs (7) and (8) can be expressed

as the associated divisor function of a kth prime power, c
(r)
j (pk) =

(

k + r − 1
k − j

)

(cf. [3]

Lemma 5, [10] p. 62 for j = 0), giving an alternate form as the sum over products of the
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form c
(r)
j (pk)c

(−k)
k (n). For j = 0, this is equal to the number of weak compositions of k

into r parts (cf. [11] p. 15). We also note that Eq. (5) provides a converse to Eq. (7).

Taking r = 2 in Eq. (7) gives an expression for the standard divisor function (number

of divisors), d2 =
∞
∑

k=0

(k + 1)c
(−k)
k . Taking r = 1 yields the identity 1 =

∞
∑

k=0

c
(−k)
k . We note

that the sum
∞
∑

k=0

|c
(−k)
k |,which gives the number of ordered factorisations into (any number

of) square-free, non-trivial factors, generates all odd integers; indeed,
∞
∑

k=0

|c
(−k)
k (p1p

m
2 )| =

2m+ 1 (m ∈ N0).

3 An Auxiliary Counting Problem

We now turn to the question of counting the number of joint ordered factorisations of
a given m-tuple. In the present section, we first consider the following combinatorial
problem. Given a number of coloured (but otherwise identical) blocks, with any number
of blocks to each of several colours, in how many ways can all blocks be arranged in a
linear sequence such that no two adjacent blocks have the same colour? Note that the
answer may very well be 0; indeed, if there are 2 more blocks of one colour than of all
the other colours taken together, then there is no possible arrangement.

In the following, we make extensive use of the standard multi-index notation sum-
marised in the Appendix below. We denote by en the number of different ways |n| objects,
of which there are nj of type j, j ∈ {1, . . . , m}, and which are otherwise indistinguishable,
can be linearly arranged such that no neighbouring objects have the same type. Then,
for any n ∈ N

m, the identity
(

|n|
n

)

=
∑

1m≤k≤n

(

n− 1m
k − 1m

)

ek (9)

holds. Indeed,

(

|n|
n

)

is the number of linear arrangements of all objects ignoring the

non-adjacency condition. Given any such arrangement, consider the associated collapsed
arrangement where any group of contiguous objects of the same type is replaced with
a single such object, resulting in an arrangement of size k ≤ n satisfying the adjacency

condition. There are ek different collapsed arrangements of size k, and

(

n− 1m
k − 1m

)

different

arrangements giving rise to each collapsed arrangement.

Theorem 3. Let n ∈ N
m, m ∈ N. Then

en =
∑

0m≤k≤n−1m

(−1)|k|
(

n− 1m
k

)(

|n− k|
n− k

)

. (10)
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Proof. The power series for the generating function

∑

k∈Nm
0

e1m+k

xk

k!

can be shown to be convergent for all x ∈ R
m by comparison with exponential series

using the a priori estimate

e1m+k ≤

(

|k + 1m|
k + 1m

)

≤ m|k|+m,

where we used Eq. (9) in the first and the multinomial theorem in the second inequality.
Using the exponential series

exp
m
∑

j=1

xj =
∑

k∈Nm
0

xl

k!
(x ∈ R

m)

and the identity (9) between two applications of the multivariate Cauchy product formula,
we find

∑

k∈N0

e1m+k

xk

k!
=

(

∑

k∈N0

e1m+k

xk

k!

)





∑

l∈Nm
0

xl

l!









∑

l∈Nm
0

(−1)|l|
xl

l!





=

(

∑

n∈N0

(

∑

0m≤k≤n

(

n
k

)

e1m+k

)

xn

n!

)





∑

l∈Nm
0

(−1)|l|
xl

l!





=

(

∑

n∈N0

(

|n+ 1m|
n+ 1m

)

xn

n!

)





∑

l∈Nm
0

(−1)|l|
xl

l!





=
∑

k∈Nm
0

(

∑

0m≤l≤k

(−1)|l|
(

k
l

)(

|k + 1m − l|
k + 1m − l

)

)

xk

k!
(x ∈ R

m),

from which Eq. (10) can be read off. �

In the special case m = 2, working out the repeated binomial sums using Gould’s com-
binatorial identities (3.48) and (3.47) [2] gives

en1,n2
=

(

2
n2 − n1 + 1

)

=







2 if n1 = n2,
1 if |n1 − n2| = 1,
0 otherwise.

(11)

This reflects the obvious fact that with only two types of objects, the non-adjacency
condition enforces an alternating arrangement, for which there are two possibilities if the
numbers of objects of both types are equal, one possibility if they differ by one, and no
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possibility otherwise. We emphasise that m = 2 is a rather untypical case and that for
m ≥ 3 much more complex arrangements are possible.

Remark. Eq. (10) can be given a direct combinatorial interpretation (and a somewhat
more convoluted proof) in the following manner. We call any arrangement of the |n|
objects ignoring the non-adjacency condition with t objects that are each followed by
an object of the same type marked with a tick an annotated arrangement with t ticks.
(Clearly there is no annotated version with t ticks of any arrangement which has fewer
than t objects followed by an object of the same type.) For each t ∈ N0, let At be the
set of all annotated arrangements with t ticks. Its cardinality is

|At| =
∑

k∈Nm
0
,|k|=t

(

n− 1m
k

)(

|n− k|
n− k

)

. (12)

Indeed, given any element of At, we find kj ticked objects of type j ∈ {1, . . . , m}, so
|k| = t. Considering the nj objects of type j in the arrangement (ignoring the other

types for the moment), the ticks can occur in nj − 1 places, so there are

(

nj − 1
kj

)

pos-

sibilities. Taking ticked objects together with their following object and single unticked
objects as groups, there will be nj − kj such groups. Among all types, the groups can be

arranged in

(

|n− k|
n− k

)

ways, hence we obtain Eq. (12). Now to verify Eq. (10), consider

an arrangement of the objects. Let l ∈ {0, . . . , |n| −m} be the number of objects in this
arrangement followed by an object of the same type. Annotated versions of this arrange-
ment will appear in the sets A0, . . . , Al. In the set At, it will have t ticks which can be

placed in l places, so there are

(

l
t

)

annotated versions of this (fixed) arrangement in this

set. We now count the total of its appearances (as different annotated arrangements)
in the sets A0, . . . , Al, counting its appearances in odd-indexed sets negative, those in
even-indexed sets positive. Thus in total we count this arrangement

l
∑

t=0

(−1)t
(

l
t

)

= (1− 1)l = δl,0

times. Hence the only arrangements counted in the alternating total are those with l = 0
objects followed by an object of the same colour. This gives

en =

|n|−m
∑

t=0

(−1)t|At|

and hence, by Eq. (12), formula (10).
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4 The Number of Joint Ordered Factorisations

Given an m-tuple of integers a = (a1, a2, . . . , am) ∈ N
m, with aj ≥ 2 (j ∈ {1, . . . , m}),

we can use Theorem 3 to count the joint ordered factorisations of a where aj is split
into a prescribed number nj of non-trivial factors. Indeed, we can think of taking nj

placeholders marked as type j (and otherwise indistinguishable), for j ∈ {1, . . . , m}, and
arranging all these placeholders according to the rules of the auxiliary counting problem
of Section 3, and then putting the factors for each aj into the blocks of type j in their
given order. As there are en admissible arrangements of the placeholders and cnj

(aj)
different non-trivial ordered factorisations of aj , we obtain the number of joint ordered
factorisations from Eq. (10) as

en

m
∏

j=1

cnj
(aj) =

∑

0m≤k≤n−1m

(−1)|k|
(

n− 1m
k

)(

|n− k|
n− k

) m
∏

j=1

cnj
(aj). (13)

The sum over all n ∈ N
m (which is a finite sum since cnj

(aj) = 0 if nj exceeds Ω(aj),
the number of prime factors of aj counting multiplicities) then gives the total number of
joint ordered factorisations of a, which can be expressed as follows.

Theorem 4. Let m ∈ N and a ∈ N
m such that aj ≥ 2 (j ∈ {1, . . . , m}). Then the number

of different joint ordered factorisations of a is

Na =
∑

l∈Nm

(

|l|
l

) m
∏

j=1

c
(−lj)
lj

(aj). (14)

Proof. Summing the expression (13) over n ∈ N
m, changing the summation variable by

setting n = k + l and interchanging the order of the sums, we find

Na =
∑

k∈Nm
0

∑

l∈Nm

(

k + l − 1m
k

)(

|l|
l

) m
∏

j=1

ckj+lj (aj)

=
∑

l∈Nm

(

|l|
l

) m
∏

j=1

(

∞
∑

k=0

(

k + lj − 1
k

)

ck+lj(aj)

)

.

Now consider the functions which appear in the right-hand side product. By the binomial
formula for negative powers in the Dirichlet convolution algebra of arithmetic functions,

∞
∑

k=0

(−1)k
(

k + lj − 1
k

)

clj+k = (1− e)∗lj ∗

∞
∑

k=0

(

k + lj − 1
k

)

(e− 1)∗k

= (1− e)∗lj ∗ (e− (e− 1))∗−lj = (1− e)∗lj ∗ µ∗lj = c
(−lj)
lj

,

and hence the result. �
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Remarks. 1. In view of the interpretation given to Eq. (2) in Section 2, Eq. (14) can be
read as

Na = (−1)
∑m

j=1
Ω(aj )

∞
∑

n=m

(−1)n
∑

l∈Nm,|l|=n

(

|l|
l

) m
∏

j=1

Flj (aj),

where we denote by Flj (aj) the number of ordered factorisations of aj into lj non-trivial,
square-free factors. Thus Na can be construed as an alternating sum over n of the number
of ways the integers a1, a2, . . . , am can be split into a total of n non-trivial, square-free
factors, and these factors can be linearly arranged without further constraints.

2. In the two-dimensional case m = 2, Eq. (11) gives a simple explicit form for e(n1,n2),
and we obtain directly from the left-hand side of Eq. (13) that

N(a1,a2) =
∞
∑

n=1

2 cn(a1) cn(a2) +
∞
∑

n=1

cn(a1) cn+1(a2) +
∞
∑

n=1

cn+1(a1) cn(a2).

In the symmetric case a1 = a2 = a considered in [7, 3], this gives, via cn + cn+1 =

(1− e)∗n ∗ (e+1− e) = c
(1)
n , the expression N(a,a) = 2

∞
∑

n=1

cn(a) c
(1)
n (a), which involves dif-

ferent divisor functions compared to Eq. (14) and reproduces Theorem 4 of [3]. Note that
the count given in [3] is N(a,a)/2, using the permutation symmetry of the two equally-sized
component sets of the sum system. More generally, when we have m equally sized compo-
nent sets in the sum system, then by the same permutation symmetry, N(a,a,...,a)/m! ∈ N0.
Clearly, this property extends to more general m-tuples a ∈ N

m provided that all num-
bers aj have the same factorisation structure, i.e. the multisets of exponents in the prime
factorisation coincide. The integer sequences (N(a,a)/2!)a∈N and (N(a,a,a)/3!)a∈N are equal
to sequences A0273013 and A0131514 in the OEIS (http://oeis.org), respectively, but it
seems that no such OEIS record exists for m ≥ 4.

We conclude with the observation that the number of m-part sum systems is at least
m!, and this value is attained if and only if all parts have prime cardinality.

Theorem 5. Let m ∈ N and a ∈ N
m such that aj ≥ 2 (j ∈ {1, . . . , m}). Then Na ≥ m!

and equality holds if and only if all aj are prime numbers.

Proof. Starting from the left-hand side of Eq. (13) and considering that e1m = m! by Eq.
(10) and c1(aj) = 1, we find

Na = m! +
∑

n∈N\{1m}

en

m
∏

j=1

cnj
(aj) ≥ m!. (15)

Suppose one of the dimensions, w.l.o.g. a1, is not a prime, and consider n = (2, 1, . . . , 1).

Then
m
∏

j=1

cnj
(aj) = c2(a1) ≥ 1 and e(2,1,...,1) =

(m+1)!
2!

by Eq. (10), so the sum in (15) is

strictly greater than 0. �
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Appendix

For the reader’s convenience, here is a summary of the standard multi-index notation
used in this paper. For m-tuples of integers, we apply the usual componentwise addition,
subtraction and scalar multiplication as well as the size function and the multi-factorial,

|n| =
m
∑

j=1

|nj|, n! =
m
∏

j=1

nj ! (n ∈ N
m
0 ),

respectively, and the partial ordering

n ≤ ñ ⇐⇒ nj ≤ ñj (j ∈ {1, . . . , m}).

We define the special m-tuples 0m = (0, . . . , 0), 1m = (1, . . . , 1) ∈ N
m
0 . In addition to the

usual binomial coefficients, we use the multi-binomial coefficients

(

n
ñ

)

=

m
∏

j=1

(

nj

ñj

)

=
n!

ñ! (n− ñ)!
(n, ñ ∈ N

m
0 , ñ ≤ n)

and the multinomial coefficients
(

|n|
n

)

=
|n|!

∏m

j=1 nj !
=

|n|!

n!
(n ∈ N

m
0 ).

Note that using the same bracket notation for these different quantities does not create
confusion, since the type (dimensionality) of the arguments determines which coefficient
is meant. Finally,

xn =
m
∏

j=1

x
nj

j (n ∈ N
m
0 , x ∈ R

m).
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