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Abstract. In this paper, closed forms of the summation formulas for generalized Tribonacci numbers

are presented. Then, some previous results are recovered as particular cases of the present results. As special

cases, we give summation formulas of Tribonacci, Tribonacci-Lucas, Padovan, Perrin, Narayana and some

other third order linear recurrance sequences. All the summing formulas of well known recurrence sequences

which we deal with are linear except the cases Pell-Padovan and Padovan-Perrin.
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1. Introduction

In this work, we investigate linear summation formulas of generalized Tribonacci numbers. Some sum-

ming formulas of the Pell and Pell-Lucas numbers are well known and given in [8, 9], see also [6]. For linear

sums of Fibonacci, Tribonacci, Tetranacci, Pentanacci and Hexanacci numbers, see [7,20], [5,12], [17, 26],

[18], and [19] respectively.

First, in this section, we present some background about generalized Tribonacci numbers. The general-

ized Tribonacci sequence {Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is defined as follows:

(1.1) Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3

where W0,W1,W2 are arbitrary complex numbers and r, s, t are real numbers. The generalized Tribonacci

sequence has been studied by many authors, see for example [1,2,3,4,10,11,13,14,15,21,22,23,24,25].

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −
s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t 6= 0. Therefore, recurrence (1.1) holds for all integer n.
1
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If we set r = s = t = 1 and W0 = 0,W1 = 1,W2 = 1 then {Wn} is the well-known Tribonacci sequence

and if we set r = s = t = 1 and W0 = 3,W1 = 1,W2 = 3 then {Wn} is the well-known Tribonacci-Lucas

sequence.

In fact, the generalized Tribonacci sequence is the generalization of the well-known sequences like Tri-

bonacci, Tribonacci-Lucas, Padovan (Cordonnier), Perrin, Padovan-Perrin, Narayana, third order Jacobsthal

and third order Jacobsthal-Lucas. In literature, for example, the following names and notations (see Table

1) are used for the special case of r, s, t and initial values.

Table 1 A few special case of generalized Tribonacci sequences.

Sequences (Numbers) Notation OEIS [16]

Tribonacci {Tn} = {Wn(0, 1, 1; 1, 1, 1)} A000073, A057597

Tribonacci-Lucas {Kn} = {Wn(3, 1, 3; 1, 1, 1)} A001644, A073145

third order Pell {P
(3)
n } = {Wn(0, 1, 2; 2, 1, 1)} A077939, A077978

third order Pell-Lucas {Q
(3)
n } = {Wn(3, 2, 6; 2, 1, 1)} A276225, A276228

third order modified Pell {E
(3)
n } = {Wn(0, 1, 1; 2, 1, 1)} A077997, A078049

Padovan (Cordonnier) {Pn} = {Wn(1, 1, 1; 0, 1, 1)} A000931

Perrin (Padovan-Lucas) {En} = {Wn(3, 0, 2; 0, 1, 1)} A001608, A078712

Padovan-Perrin {Sn} = {Wn(0, 0, 1; 0, 1, 1)} A000931, A176971

Pell-Padovan {Rn} = {Wn(1, 1, 1; 0, 2, 1)} A066983, A128587

Pell-Perrin {Cn} = {Wn(3, 0, 2; 0, 2, 1)} -

Jacobsthal-Padovan {Qn} = {Wn(1, 1, 1; 0, 1, 2)} A159284

Jacobsthal-Perrin (-Lucas) {Dn} = {Wn(3, 0, 2; 0, 1, 2)} A072328

Narayana {Nn} = {Wn(0, 1, 1; 1, 0, 1)} A078012

third order Jacobsthal {J
(3)
n } = {Wn(0, 1, 1; 1, 1, 2)} A077947

third order Jacobsthal-Lucas {j
(3)
n } = {Wn(2, 1, 5; 1, 1, 2)} A226308

Note that the sequence {Cn} is’t in the database of http://oeis.org [16], yet.

2. Sum formulas of Generalized Tribonacci Numbers with Positive Subscripts

The following Theorem presents some linear summing formulas of generalized Tribonacci numbers with

positive subscripts.

Theorem 2.1. For n ≥ 0, we have the following formulas:

(a): (Sum of the generalized Tribonacci numbers) If r + s+ t− 1 6= 0, then

n∑

k=0

Wk =
Wn+3 + (1− r)Wn+2 + (1− r − s)Wn+1 −W2 + (r − 1)W1 + (r + s− 1)W0

r + s+ t− 1
.

http://oeis.org
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(b): If 2s+ 2rt+ r2 − s2 + t2 − 1 = (r + s+ t− 1) (r − s+ t+ 1) 6= 0 then

n∑

k=0

W2k =

(−s+ 1)W2n+2 + (t+ rs)W2n+1 + (t2 + rt)W2n + (−1 + s)W2

+(−t− rs)W1 + (−1 + r2 − s2 + rt + 2s)W0

(r + s+ t− 1) (r − s+ t+ 1)

and

n∑

k=0

W2k+1 =

(r + t)W2n+2 + (s− s2 + t2 + rt)W2n+1 + (t− st)W2n + (−r − t)W2

+(−1 + s+ r2 + rt)W1 + (−t+ st)W0

(r − s+ t+ 1) (r + s+ t− 1)
.

(c): If r + t 6= 0 ∧ s = 1 then

n∑

k=0

W2k =
1

r + t
(W2n+1 + tW2n −W1 + rW0)

and
n∑

k=0

W2k+1 =
1

r + t
(W2n+2 + tW2n+1 −W2 + rW1) .

Note that (c) is a special case of (b).

Proof.

(a): Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.

tWn−3 = Wn − rWn−1 − sWn−2

we obtain

tW0 = W3 − rW2 − sW1

tW1 = W4 − rW3 − sW2

tW2 = W5 − rW4 − sW3

...

tWn−1 = Wn+2 − rWn+1 − sWn

tWn = Wn+3 − rWn+2 − sWn+1.

If we add the equations by side by, we get

n∑

k=0

Wk =
Wn+3 + (1− r)Wn+2 + (1− r − s)Wn+1 −W2 + (r − 1)W1 + (r + s− 1)W0

r + s+ t− 1
.
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(b) and (c): Using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.

rWn−1 = Wn − sWn−2 − tWn−3

we obtain

rW3 = W4 − sW2 − tW1

rW5 = W6 − sW4 − tW3

...

rW2n+1 = W2n+2 − sW2n − tW2n−1.

rW2n+3 = W2n+4 − sW2n+2 − tW2n+1

Now, if we add the above equations by side by, we get

(2.1) r(−W1+

n∑

k=0

W2k+1) = (W2n+2−W2−W0+

n∑

k=0

W2k)−s(−W0+

n∑

k=0

W2k)− t(−W2n+1+

n∑

k=0

W2k+1).

Similarly, using the recurrence relation

Wn = rWn−1 + sWn−2 + tWn−3

i.e.

rWn−1 = Wn − sWn−2 − tWn−3

we write the following obvious equations;

rW2 = W3 − sW1 − tW0

rW4 = W5 − sW3 − tW2

rW6 = W7 − sW5 − tW4

...

rW2n = W2n+1 − sW2n−1 − tW2n−2

rW2n+2 = W2n+3 − sW2n+1 − tW2n.

Now, if we add the above equations by side by, we obtain

(2.2) r(−W0 +

n∑

k=0

W2k) = (−W1 +

n∑

k=0

W2k+1)− s(−W2n+1 +

n∑

k=0

W2k+1)− t(−W2n +

n∑

k=0

W2k).

Then, solving the system (2.1)-(2.2), the required results of (b) and (c) follow.

Taking r = s = t = 1 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.2. If r = s = t = 1 then for n ≥ 0 we have the following formulas:
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(a):
∑n

k=0 Wk = 1
2 (Wn+3 −Wn+1 −W2 +W0).

(b):
∑

n

k=0 W2k = 1
2 (W2n+1 +W2n −W1 +W0).

(c):
∑n

k=0 W2k+1 = 1
2 (W2n+2 +W2n+1 −W2 +W1).

From the above Proposition, we have the following Corollary which gives linear sum formulas of Tri-

bonacci numbers (take Wn = Tn with T0 = 0, T1 = 1, T2 = 1).

Corollary 2.3. For n ≥ 0, Tribonacci numbers have the following properties.

(a):
∑

n

k=0 Tk = 1
2 (Tn+3 − Tn+1 − 1).

(b):
∑n

k=0 T2k = 1
2 (T2n+1 + T2n − 1).

(c):
∑

n

k=0 T2k+1 = 1
2 (T2n+2 + T2n+1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the above Proposition, we have the following Corollary

which presents linear sum formulas of Tribonacci-Lucas numbers.

Corollary 2.4. For n ≥ 0, Tribonacci-Lucas numbers have the following properties.

(a):
∑n

k=0 Kk = 1
2 (Kn+3 −Kn+1).

(b):
∑

n

k=0 K2k = 1
2 (K2n+1 +K2n + 2).

(c):
∑

n

k=0 K2k+1 = 1
2 (K2n+2 +K2n+1 − 2).

Taking r = 2, s = 1, t = 1 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.5. If r = 2, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a):
∑

n

k=0 Wk = 1
3 (Wn+3 −Wn+2 − 2Wn+1 −W2 +W1 + 2W0) .

(b):
∑n

k=0 W2k = 1
3 (W2n+1 +W2n −W1 + 2W0) .

(c):
∑

n

k=0 W2k+1 = 1
3 (W2n+2 +W2n+1 −W2 + 2W1) .

From the last Proposition, we have the following Corollary which gives linear sum formulas of third-order

Pell numbers (take Wn = P
(3)
n with P

(3)
0 = 0, P

(3)
1 = 1, P

(3)
2 = 2).

Corollary 2.6. For n ≥ 0, third-order Pell numbers have the following properties:

(a):
∑n

k=0 P
(3)
k

= 1
3 (P

(3)
n+3 − P

(3)
n+2 − 2P

(3)
n+1 − 1).

(b):
∑

n

k=0 P
(3)
2k = 1

3 (P
(3)
2n+1 + P

(3)
2n − 1).

(c):
∑n

k=0 P
(3)
2k+1 = 1

3 (P
(3)
2n+2 + P

(3)
2n+1).

Taking Wn = Q
(3)
n with Q

(3)
0 = 3, Q

(3)
1 = 2, Q

(3)
2 = 6 in the last Proposition, we have the following

Corollary which presents linear sum formulas of third-order Pell-Lucas numbers.

Corollary 2.7. For n ≥ 0, third-order Pell-Lucas numbers have the following properties:

(a):
∑

n

k=0 Q
(3)
k

= 1
3 (Q

(3)
n+3 −Q

(3)
n+2 − 2Q

(3)
n+1 + 2).

(b):
∑n

k=0 Q
(3)
2k = 1

3 (Q
(3)
2n+1 +Q

(3)
2n + 4).



6 YÜKSEL SOYKAN

(c):
∑

n

k=0 Q
(3)
2k+1 = 1

3 (Q
(3)
2n+2 +Q

(3)
2n+1 − 2).

From the last Proposition, we have the following Corollary which gives linear sum formulas of third-order

modified Pell numbers (take Wn = E
(3)
n with E

(3)
0 = 0, E

(3)
1 = 1, E

(3)
2 = 1).

Corollary 2.8. For n ≥ 0, third-order modified Pell numbers have the following properties:

(a):
∑

n

k=0 E
(3)
k

= 1
3 (E

(3)
n+3 − E

(3)
n+2 − 2E

(3)
n+1)

(b):
∑n

k=0 E
(3)
2k = 1

3 (E
(3)
2n+1 + E

(3)
2n − 1)

(c):
∑

n

k=0 E
(3)
2k+1 = 1

3 (E
(3)
2n+2 + E

(3)
2n+1 + 1).

Taking r = 0, s = 1, t = 1 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.9. If r = 0, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a):
∑

n

k=0 Wk = Wn+3 +Wn+2 −W2 −W1.

(b):
∑n

k=0 W2k = W2n+1 +W2n −W1.

(c):
∑

n

k=0 W2k+1 = W2n+2 +W2n+1 −W2.

From the last Proposition, we have the following Corollary which gives linear sum formulas of Padovan

numbers (take Wn = Pn with P0 = 1, P = 1, P2 = 1).

Corollary 2.10. For n ≥ 0, Padovan numbers have the following properties.

(a):
∑n

k=0 Pk = Pn+3 + Pn+2 − 2.

(b):
∑

n

k=0 P2k = P2n+1 + P2n − 1.

(c):
∑n

k=0 P2k+1 = P2n+2 + P2n+1 − 1.

Taking Wn = En with E0 = 3, E2 = 0, E2 = 2 in the last Proposition, we have the following Corollary

which presents linear sum formulas of Perrin numbers.

Corollary 2.11. For n ≥ 0, Perrin numbers have the following properties.

(a):
∑

n

k=0 Ek = En+3 + En+2 − 2.

(b):
∑n

k=0 E2k = E2n+1 + E2n.

(c):
∑

n

k=0 E2k+1 = E2n+2 + E2n+1 − 2.

Taking Wn = Sn with S0 = 0, S2 = 0, S2 = 1 in the last Proposition, we have the following Corollary

which gives linear sum formulas of Padovan-Perrin numbers.

Corollary 2.12. For n ≥ 0, Padovan-Perrin numbers have the following properties.

(a):
∑n

k=0 Sk = Sn+3 + Sn+2 − 1.

(b):
∑

n

k=0 S2k = S2n+1 + S2n.

(c):
∑n

k=0 S2k+1 = S2n+2 + S2n+1 − 1.
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If r = 0, s = 2, t = 1 then (r − s+ t+ 1) = 0 so we can’t use Theorem 2.1 (b). In other words, the

method of the proof Theorem 2.1 (b) can’t be used to find
∑

n

k=0 W2k and
∑

n

k=0 W2k+1. Therefore we need

another method to find them which is given in the following Theorem.

Theorem 2.13. If r = 0, s = 2, t = 1 then for n ≥ 0 we have the following formulas:

(a):
∑

n

k=0 Wk = 1
2 (Wn+3 +Wn+2 −Wn+1 −W2 −W1 +W0) .

(b):
∑

n

k=0 W2k = W2n+1 + (W2 −W1 −W0)n+W0 −W1.

(c):
∑n

k=0 W2k+1 = 1
2 (W2n+3 +W2n+2 −W2n+1 + 2n (−W2 +W1 +W0)−W2 +W1 −W0) .

Proof.

(a): Taking r = 0, s = 2, t = 1 in Theorem 2.1 (a) we obtain (a).

(b) and (c): Using the recurrence relation

Wn = 2Wn−2 +Wn−3

we obtain

0∑

k=0

W2k = W0

1∑

k=0

W2k = W0 +W2 = W3 +W2 − 2W1

2∑

k=0

W2k = W0 +W2 +W4 = W5 + 2W2 − 3W1 −W0

...
n∑

k=0

W2k = W2n+1 + (W2 −W1 −W0)n+W0 −W1.

This result can be also proved by mathematical induction. Note that from (a) we get

n∑

k=0

W2k+1 =
1

2
(W2n+3 +W2n+2 +W2n+1 −W2 −W1 +W0)−

n∑

k=0

W2k.

Now, (c) follows from the last equation.

From the above Theorem we have the following Corollary which gives sum formulas of Pell-Padovan

numbers (take Wn = Rn with R0 = 1, R1 = 1, R2 = 1).

Corollary 2.14. For n ≥ 0, Pell-Padovan numbers have the following property:

(a):
∑n

k=0 Rk = 1
2 (Rn+3 +Rn+2 −Rn+1 − 1) .

(b):
∑

n

k=0 R2k = R2n+1 − n.

(c):
∑n

k=0 R2k+1 = 1
2 (R2n+3 +R2n+2 −R2n+1 + 2n− 1) .

Taking Wn = Cn with C0 = 3, C1 = 0, C2 = 2 in the last Theorem, we have the following Corollary

which presents sum formulas of Pell-Perrin numbers.
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Corollary 2.15. For n ≥ 0, Pell-Perrin numbers have the following property:

(a):
∑n

k=0 Ck = 1
2 (Cn+3 + Cn+2 − Cn+1 + 1) .

(b):
∑

n

k=0 C2k = C2n+1 − n+ 3.

(c):
∑n

k=0 C2k+1 = 1
2 (C2n+3 + C2n+2 − C2n+1 + 2n− 5) .

Taking r = 0, s = 1, t = 2 in Theorem 2.1 (a) and (b) (or (c)), we obtain the following Proposition.

Proposition 2.16. If r = 0, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a):
∑

n

k=0 Wk = 1
2 (Wn+3 +Wn+2 −W2 −W1) .

(b):
∑n

k=0 W2k = 1
2 (W2n+1 + 2W2n −W1) .

(c):
∑

n

k=0 W2k+1 = 1
2 (W2n+2 + 2W2n+1 −W2) .

Taking Wn = Qn with Q0 = 1, Q1 = 1, Q2 = 1 in the last Proposition, we have the following Corollary

which presents linear sum formulas of Jacobsthal-Padovan numbers.

Corollary 2.17. For n ≥ 0, Jacobsthal-Padovan numbers have the following properties.

(a):
∑n

k=0 Qk = 1
2 (Qn+3 +Qn+2 − 2) .

(b):
∑

n

k=0 Q2k = 1
2 (Q2n+1 + 2Q2n − 1) .

(c):
∑n

k=0 Q2k+1 = 1
2 (Q2n+2 + 2Q2n+1 − 1) .

From the last Proposition, we have the following Corollary which gives linear sum formulas of Jacobsthal-

Perrin numbers (take Wn = Dn with D0 = 3, D1 = 0, D2 = 2).

Corollary 2.18. For n ≥ 0, Jacobsthal-Perrin numbers have the following properties.

(a):
∑n

k=0 Dk = 1
2 (Dn+3 +Dn+2 − 2) .

(b):
∑

n

k=0 D2k = 1
2 (D2n+1 + 2D2n) .

(c):
∑n

k=0 D2k+1 = 1
2 (D2n+2 + 2D2n+1 − 2) .

Taking r = 1, s = 0, t = 1 in Theorem 2.1 (a) and (c), we obtain the following Proposition.

Proposition 2.19. If r = 1, s = 0, t = 1 then for n ≥ 0 we have the following formulas:

(a):
∑n

k=0 Wk = Wn+3 −W2.

(b):
∑

n

k=0 W2k = 1
3 (W2n+2 +W2n+1 + 2W2n −W2 −W1 +W0).

(c):
∑

n

k=0 W2k+1 = 1
3 (2W2n+2 + 2W2n+1 +W2n − 2W2 +W1 −W0).

From the last Proposition, we have the following Corollary which presents linear sum formulas of

Narayana numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 1).

Corollary 2.20. For n ≥ 0, Narayana numbers have the following properties.

(a):
∑n

k=0 Nk = Nn+3 − 1.
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(b):
∑n

k=0 N2k = 1
3 (N2n+2 +N2n+1 + 2N2n − 2).

(c):
∑

n

k=0 N2k+1 = 1
3 (2N2n+2 + 2N2n+1 +N2n − 1).

Taking r = 1, s = 1, t = 2 in Theorem 2.1 (a) and (c), we obtain the following Proposition.

Proposition 2.21. If r = 1, s = 1, t = 2 then for n ≥ 0 we have the following formulas:

(a):
∑n

k=0 Wk = 1
3 (Wn+3 −Wn+1 −W2 +W0).

(b):
∑

n

k=0 W2k = 1
3 (W2n+1 + 2W2n −W1 +W0).

(c):
∑n

k=0 W2k+1 = 1
3 (W2n+2 + 2W2n+1 −W2 +W1).

Taking Wn = J
(3)
n with J

(3)
0 = 0, J

(3)
1 = 1, J

(3)
2 = 1 in the last Proposition, we have the following

Corollary which presents linear sum formulas of third order Jacobsthal numbers.

Corollary 2.22. For n ≥ 0, third order Jacobsthal numbers have the following properties.

(a):
∑n

k=0 J
(3)
k

= 1
3 (J

(3)
n+3 − J

(3)
n+1 − 1).

(b):
∑

n

k=0 J
(3)
2k = 1

3 (J
(3)
2n+1 + 2J

(3)
2n − 1).

(c):
∑n

k=0 J
(3)
2k+1 = 1

3 (J
(3)
2n+2 + 2J

(3)
2n+1).

From the last Proposition, we have the following Corollary which gives linear sum formulas of third

order Jacobsthal-Lucas numbers (take Wn = jn with j
(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5).

Corollary 2.23. For n ≥ 0, third order Jacobsthal-Lucas numbers have the following properties.

(a):
∑n

k=0 j
(3)
k

= 1
3 (j

(3)
n+3 − j

(3)
n+1 − 3).

(b):
∑

n

k=0 j
(3)
2k = 1

3 (j
(3)
2n+1 + 2j

(3)
2n + 1).

(c):
∑n

k=0 j
(3)
2k+1 = 1

3 (j
(3)
2n+2 + 2j

(3)
2n+1 − 4).

3. Sum formulas of Generalized Tribonacci Numbers with Negative Subscripts

The following Theorem presents some linear summing formulas (identities) of generalized Tribonacci

numbers with negative subscripts.

Theorem 3.1. For n ≥ 1, we have the following formulas:

(a): (Sum of the generalized Tribonacci numbers with negative indices) If r + s+ t− 1 6= 0, then

n∑

k=1

W−k =
−(r + s+ t)W−n−1 − (s+ t)W−n−2 − tW−n−3 +W2 + (1− r)W1 + (1− r − s)W0

r + s+ t− 1
.

(b): If (r + s+ t− 1) (r − s+ t+ 1) 6= 0 then

n∑

k=1

W−2k =

−(r + t)W−2n+1 + (r2 + rt + s− 1)W−2n + (st− t)W−2n−1

+(1− s)W2 + (t+ rs)W1 + (1 − rt− 2s− r2 + s2)W0

(r + s+ t− 1) (r − s+ t+ 1)



10 YÜKSEL SOYKAN

and

n∑

k=1

W−2k+1 =

(s− 1)W−2n+1 − (t+ rs)W−2n − (t2 + rt)W−2n−1

+(r + t)W2 + (1− r2 − rt− s)W1 + (t− st)W0

(r + s+ t− 1) (r − s+ t+ 1)
.

(c): If (r + s+ t− 1) (r − s+ t+ 1) 6= 0 ∧ r + t = 0 ∧ s 6= 1 then

n∑

k=1

W−2k =
−W−2n − tW−2n−1 +W2 + tW1 + (1− s)W0

s− 1

and
n∑

k=1

W−2k+1 =
1

s− 1
(−W−2n+1 − tW−2n +W1 + tW0) .

Note that (c) is a special case of (b).

Proof.

(a): Using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n ⇒ W−n = −
s

t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

i.e.

tW−n = W−n+3 − rW−n+2 − sW−n+1

or

W−n =
1

t
W−n+3 −

r

t
W−n+2 −

s

t
W−n+1

we obtain

tW−n = W−n+3 − rW−n+2 − sW−n+1

tW−n+1 = W−n+4 − rW−n+3 − sW−n+2

tW−n+2 = W−n+5 − rW−n+4 − sW−n+3

...

tW−2 = W1 − r ×W0 − s×W−1

tW−1 = W2 − r ×W1 − s×W0.

If we add the above equations by side by, we get

n∑

k=1

W−k =

−(rW−n−1 + s(W−n−1 +W−n−2) + t(W−n−1 +W−n−2 +W−n−3)

−W2 + (r − 1)W1 + (r + s− 1)W0)

r + s+ t− 1
.
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(b) and (c): Using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n

i.e.

sW−n+1 = W−n+3 − rW−n+2 − tW−n

we obtain

sW−2n+1 = W−2n+3 − rW−2n+2 − tW−2n

sW−2n+3 = W−2n+5 − rW−2n+4 − tW−2n+2

...

sW−3 = W−1 − rW−2 − tW−4

sW−1 = W1 − rW0 − tW−2.

If we add the equations by side by, we get

(3.1) s

n∑

k=1

W−2k+1 = (−W−2n+1 +W1 +
n∑

k=1

W−2k+1)− r(−W−2n +W0 +
n∑

k=1

W−2k)− t(
n∑

k=1

W−2k).

Similarly, using the recurrence relation

W−n+3 = rW−n+2 + sW−n+1 + tW−n

i.e.

sW−n+1 = W−n+3 − rW−n+2 − tW−n

we obtain

sW−2n = W−2n+2 − rW−2n+1 − tW−2n−1

sW−2n+2 = W−2n+4 − rW−2n+3 − tW−2n+1

...

sW−6 = W−4 − rW−5 − tW−7

sW−4 = W−2 − rW−3 − tW−5

sW−2 = W0 − rW−1 − tW−3.

If we add the above equations by side by, we get

s

n∑

k=1

W−2k = (−W−2n +W0 +

n∑

k=1

W−2k)− r(

n∑

k=1

W−2k+1)− t(W−2n−1 −W−1 +

n∑

k=1

W−2k+1).

Since

W−1 = (−
s

t
W0 −

r

t
W1 +

1

t
W2).
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it follows that

s

n∑

k=1

W−2k = (−W−2n +W0 +

n∑

k=1

W−2k)− r(

n∑

k=1

W−2k+1)(3.2)

−t(W−2n−1 − (−
s

t
W0 −

r

t
W1 +

1

t
W2) +

n∑

k=1

W−2k+1).

Then, solving system (3.1)-(3.2) the required results of (b) and (c) follow.

Note that (c) of the above theorem can be written as follows: If r + t = 0 ∧ s 6= 1 then

n∑

k=1

W−2k =
−W−2n + rW−2n−1 +W2 − rW1 + (1 − s)W0

s− 1

and
n∑

k=1

W−2k =
−W−2n + rW−2n−1 +W2 − rW1 + (1− s)W0

s− 1
.

Next, we present several sum formulas (identities).

Taking r = s = t = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.2. If r = s = t = 1 then for n ≥ 1 we have the following formulas:

(a):
∑n

k=1 W−k = 1
2 (−3W−n−1 − 2W−n−2 −W−n−3 +W2 −W0) .

(b):
∑

n

k=1 W−2k = 1
2 (−W−2n+1 +W−2n +W1 −W0) .

(c):
∑n

k=1 W−2k+1 = 1
2 (−W−2n −W−2n−1 +W2 −W1) .

From the above Proposition, we have the following Corollary which gives linear sum formulas of Tri-

bonacci numbers (take Wn = Tn with T0 = 0, T1 = 1, T2 = 1).

Corollary 3.3. For n ≥ 1, Tribonacci numbers have the following properties.

(a):
∑

n

k=1 T−k = 1
2 (−3T−n−1 − 2T−n−2 − T−n−3 + 1).

(b):
∑n

k=1 T−2k = 1
2 (−T−2n+1 + T−2n + 1).

(c):
∑

n

k=1 T−2k+1 = 1
2 (−T−2n − T−2n−1).

Taking Wn = Kn with K0 = 3,K1 = 1,K2 = 3 in the above Proposition, we have the following Corollary

which gives linear sum formulas of Tribonacci-Lucas numbers.

Corollary 3.4. For n ≥ 1, Tribonacci-Lucas numbers have the following properties:

(a):
∑n

k=1 K−k = 1
2 (−3K−n−1 − 2K−n−2 −K−n−3).

(b):
∑

n

k=1 K−2k = 1
2 (−K−2n+1 +K−2n − 2).

(c):
∑n

k=1 K−2k+1 = 1
2 (−K−2n −K−2n−1 + 2).

Taking r = 2, s = 1, t = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.5. If r = 2, s = 1, t = 1 then for n ≥ 1 we have the following formulas:

(a):
∑n

k=1 W−k = 1
3 (−4W−n−1 − 2W−n−2 −W−n−3 +W2 −W1 − 2W0) .
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(b):
∑n

k=1 W−2k = 1
3 (−W−2n+1 + 2W−2n +W1 − 2W0) .

(c):
∑

n

k=1 W−2k+1 = 1
3 (−W−2n −W−2n−1 +W2 − 2W1) .

From the last Proposition, we have the following Corollary which gives linear sum formulas of third-order

Pell numbers (take Wn = P
(3)
n with P

(3)
0 = 0, P

(3)
1 = 1, P

(3)
2 = 2).

Corollary 3.6. For n ≥ 1, third-order Pell numbers have the following properties.

(a):
∑n

k=1 P
(3)
−k

= 1
3 (−4P

(3)
−n−1 − 2P

(3)
−n−2 − P

(3)
−n−3 + 1).

(b):
∑

n

k=1 P
(3)
−2k = 1

3 (−P
(3)
−2n+1 + 2P

(3)
−2n + 1).

(c):
∑n

k=1 P
(3)
−2k+1 = 1

3 (−P
(3)
−2n − P

(3)
−2n−1).

Taking Wn = Q
(3)
n with Q

(3)
0 = 3, Q

(3)
1 = 2, Q

(3)
2 = 6 in the last Proposition, we have the following

Corollary which gives linear sum formulas of third-order Pell-Lucas numbers.

Corollary 3.7. For n ≥ 1, third-order Pell-Lucas numbers have the following properties.

(a):
∑

n

k=1 Q
(3)
−k

= 1
3 (−4Q

(3)
−n−1 − 2Q

(3)
−n−2 −Q

(3)
−n−3 − 2).

(b):
∑n

k=1 Q
(3)
−2k = 1

3 (−Q
(3)
−2n+1 + 2Q

(3)
−2n − 4).

(c):
∑

n

k=1 Q
(3)
−2k+1 = 1

3 (−Q
(3)
−2n −Q

(3)
−2n−1 + 2).

From the last Proposition, we have the following Corollary which presents linear sum formulas of third-

order modified Pell numbers (take Wn = E
(3)
n with E

(3)
0 = 0, E

(3)
1 = 1, E

(3)
2 = 1).

Corollary 3.8. For n ≥ 1, third-order modified Pell numbers have the following properties.

(a):
∑

n

k=1 E
(3)
−k

= 1
3 (−4E

(3)
−n−1 − 2E

(3)
−n−2 − E

(3)
−n−3).

(b):
∑n

k=1 E
(3)
−2k = 1

3 (−E
(3)
−2n+1 + 2E

(3)
−2n + 1).

(c):
∑

n

k=1 E
(3)
−2k+1 = 1

3 (−E
(3)
−2n − E

(3)
−2n−1 − 1).

Taking r = 0, s = 1, t = 1 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.9. If r = 0, s = 1, t = 1 then for n ≥ 1 we have the following formulas:

(a):
∑

n

k=1 W−k = −2W−n−1 − 2W−n−2 −W−n−3 +W2 +W1.

(b):
∑n

k=1 W−2k = −W−2n+1 +W1.

(c):
∑

n

k=1 W−2k+1 = −W−2n −W−2n−1 +W2.

Taking Wn = Pn with P0 = 1, P1 = 1, P2 = 1 in the last Proposition, we have the following Corollary

which gives linear sum formulas of Padovan numbers.

Corollary 3.10. For n ≥ 1, Padovan numbers have the following properties.

(a):
∑n

k=1 P−k = −2P−n−1 − 2P−n−2 − P−n−3 + 2.

(b):
∑

n

k=1 P−2k = −P−2n+1 + 1.

(c):
∑n

k=1 P−2k+1 = −P−2n − P−2n−1 + 1.
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From the last Proposition, we have the following Corollary which presents linear sum formulas of Perrin

numbers (take Wn = En with E0 = 3, E = 0, E2 = 2).

Corollary 3.11. For n ≥ 1, Perrin numbers have the following properties.

(a):
∑

n

k=1 E−k = −2E−n−1 − 2E−n−2 − E−n−3 + 2.

(b):
∑n

k=1 E−2k = −E−2n+1.

(c):
∑n

k=1 E−2k+1 = −E−2n − E−2n−1 + 2.

Taking Wn = Sn with S0 = 0, S1 = 0, S2 = 1 in the last Proposition, we have the following Corollary

which gives linear sum formulas of Padovan-Perrin numbers.

Corollary 3.12. For n ≥ 1, Padovan-Perrin numbers have the following properties.

(a):
∑n

k=1 S−k = −2S−n−1 − 2S−n−2 − S−n−3 + 1.

(b):
∑

n

k=1 S−2k = −S−2n+1.

(c):
∑

n

k=1 S−2k+1 = −S−2n − S−2n−1 + 1.

If r = 0, s = 2, t = 1 then (r + s+ t− 1) (r − s+ t+ 1) = 0 so we can’t use Theorem 3.1 (b) and (c).

In other words, the method of the proof Theorem 3.1 (b) and (c) can’t be used to find
∑

n

k=0 W2k and
∑n

k=0 W2k+1. Therefore we need another method to find them which is given in the following Theorem.

Theorem 3.13. If r = 0, s = 2, t = 1 then for n ≥ 1 we have the following formulas:

(a):
∑n

k=1 W−k = 1
2 (−3W−n−1 − 3W−n−2 −W−n−3 +W2 +W1 −W0) .

(b):
∑

n

k=1 W−2k = −W−2n+1 +W−2n + (W1 −W0) + (W2 −W1 −W0)n.

(c):
∑

n

k=1 W−2k+1 = 1
2 (W−2n+1 − 3W−2n −W−2n−1 + (W2 −W1 +W0) + 2(−W2 +W1 +W0)n).

Proof.

(a): Taking r = 0, s = 2, t = 1 in Theorem 3.1 (a) we obtain (a).

(b) and (c): Proof can be done as in the proof of Theorem 2.13. Induction also can be used for the

proof.

From the last Theorem, we have the following Corollary which gives sum formula of Pell-Padovan

numbers (take Wn = Rn with R0 = 1, R = 1, R2 = 1).

Corollary 3.14. For n ≥ 1, Pell-Padovan numbers have the following property:

(a):
∑

n

k=1 R−k = 1
2 (−3R−n−1 − 3R−n−2 −R−n−3 + 1) .

(b):
∑

n

k=1 R−2k = −R−2n+1 + R−2n − n.

(c):
∑n

k=1 R−2k+1 = 1
2 (R−2n+1 − 3R−2n −R−2n−1 + 1 + 2n).

Taking Wn = Cn with C0 = 3, C = 0, C2 = 2 in the last Theorem, we have the following Corollary which

gives sum formulas of Pell-Perrin numbers.
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Corollary 3.15. For n ≥ 1, Pell-Perrin numbers have the following property:

(a):
∑n

k=1 C−k = 1
2 (−3C−n−1 − 3C−n−2 − C−n−3 − 1)

(b):
∑

n

k=1 C−2k = −C−2n+1 + C−2n − 3− n

(c):
∑n

k=1 C−2k+1 = 1
2 (C−2n+1 − 3C−2n − C−2n−1 + 5 + 2n)

Taking r = 0, s = 1, t = 2 in Theorem 3.1 (a) and (b), we obtain the following Proposition.

Proposition 3.16. If r = 0, s = 1, t = 2 then for n ≥ 1 we have the following formulas:

(a):
∑

n

k=1 W−k = 1
2 (−3W−n−1 − 3W−n−2 − 2W−n−3 +W2 +W1) .

(b):
∑n

k=1 W−2k = 1
2 (−W−2n+1 +W1) .

(c):
∑

n

k=1 W−2k+1 = 1
2 (−W−2n − 2W−2n−1 +W2) .

From the last Proposition, we have the following Corollary which gives linear sum formulas of Jacobsthal-

Padovan numbers (take Wn = Qn with Q0 = 1, Q1 = 1, Q2 = 1).

Corollary 3.17. For n ≥ 1, Jacobsthal-Padovan numbers have the following properties.

(a):
∑n

k=1 Q−k = 1
2 (−3Q−n−1 − 3Q−n−2 − 2Q−n−3 + 2) .

(b):
∑

n

k=1 Q−2k = 1
2 (−Q−2n+1 + 1) .

(c):
∑n

k=1 Q−2k+1 = 1
2 (−Q−2n − 2Q−2n−1 + 1) .

Taking Wn = Dn with D0 = 3, D1 = 0, D2 = 2 in the last Proposition, we have the following Corollary

which gives linear sum formulas of Jacobsthal-Perrin numbers.

Corollary 3.18. For n ≥ 1, Jacobsthal-Perrin numbers have the following properties.

(a):
∑n

k=1 D−k = 1
2 (−3D−n−1 − 3D−n−2 − 2D−n−3 + 2) .

(b):
∑

n

k=1 D−2k = −1
2 D−2n+1.

(c):
∑n

k=1 D−2k+1 = 1
2 (−D−2n − 2D−2n−1 + 2) .

Taking r = 1, s = 0, t = 1 in Theorem 3.1, we obtain the following Proposition.

Proposition 3.19. If r = 1, s = 0, t = 1 then for n ≥ 1 we have the following formulas:

(a):
∑n

k=1 W−k = −2W−n−1 −W−n−2 −W−n−3 +W2.

(b):
∑

n

k=1 W−2k = 1
3 (−2W−2n+1 +W−2n −W−2n−1 +W2 +W1 −W0) .

(c):
∑

n

k=1 W−2k+1 = 1
3 (−W−2n+1 −W−2n − 2W−2n−1 + 2W2 −W1 +W0) .

From the above Proposition, we have the following Corollary which gives linear sum formulas of Narayana

numbers (take Wn = Nn with N0 = 0, N1 = 1, N2 = 1).

Corollary 3.20. For n ≥ 1, Narayana numbers have the following properties.

(a):
∑n

k=1 N−k = −2N−n−1 −N−n−2 −N−n−3 + 1.
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(b):
∑n

k=1 N−2k = 1
3 (−2N−2n+1 +N−2n −N−2n−1 + 2) .

(c):
∑

n

k=1 N−2k+1 = 1
3 (−N−2n+1 −N−2n − 2N−2n−1 + 1) .

Taking r = 1, s = 1, t = 2 in Theorem 3.1, we obtain the following Proposition.

Proposition 3.21. If r = 1, s = 1, t = 2 then for n ≥ 1 we have the following formulas:

(a):
∑n

k=1 W−k = 1
3 (−4W−n−1 − 3W−n−2 − 2W−n−3 +W2 −W0).

(b):
∑

n

k=1 W−2k = 1
3 (−W−2n+1 +W−2n +W1 −W0) .

(c):
∑n

k=1 W−2k+1 = 1
3 (−W−2n − 2W−2n−1 +W2 −W1) .

Taking Wn = Jn with J0 = 0, J1 = 1, J2 = 1 in the last Proposition, we have the following Corollary

which gives linear sum formulas of third order Jacobsthal numbers.

Corollary 3.22. For n ≥ 1, third order Jacobsthal numbers have the following properties.

(a):
∑n

k=1 J
(3)
−k

= 1
3 (−4J

(3)
−n−1 − 3J

(3)
−n−2 − 2J

(3)
−n−3 + 1).

(b):
∑

n

k=1 J
(3)
−2k = 1

3 (−J
(3)
−2n+1 + J

(3)
−2n + 1).

(c):
∑n

k=1 J
(3)
−2k+1 = 1

3 (−J
(3)
−2n − 2J

(3)
−2n−1).

From the last Proposition, we have the following Corollary which gives linear sum formulas of third

order Jacobsthal-Lucas numbers (take Wn = j
(3)
n with j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5).

Corollary 3.23. For n ≥ 1, third order Jacobsthal-Lucas numbers have the following properties.

(a):
∑n

k=1 j
(3)
−k

= 1
3 (−4j

(3)
−n−1 − 3j

(3)
−n−2 − 2j

(3)
−n−3 + 3).

(b):
∑

n

k=1 j
(3)
−2k = 1

3 (−j
(3)
−2n+1 + j

(3)
−2n − 1).

(c):
∑n

k=1 j
(3)
−2k+1 = 1

3 (−j
(3)
−2n − 2j

(3)
−2n−1 + 4).
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