
ar
X

iv
:1

91
0.

03
57

8v
1

 [
cs

.D
S]

 8
 O

ct
 2

01
9

Stack Sorting with Increasing and Decreasing Stacks∗

Giulio Cerbai† Lapo Cioni† Luca Ferrari†

Abstract

We introduce a sorting machine consisting of k + 1 stacks in series: the first k stacks
can only contain elements in decreasing order from top to bottom, while the last one has
the opposite restriction. This device generalizes [10], which studies the case k = 1. Here
we show that, for k = 2, the set of sortable permutations is a class with infinite basis, by
explicitly finding an antichain of minimal nonsortable permutations. This construction can
easily be adapted to each k ≥ 3. Next we describe an optimal sorting algorithm, again
for the case k = 2. We then analyze two types of left-greedy sorting procedures, obtaining
complete results in one case and only some partial results in the other one. We close the
paper by discussing a few open questions.

1 Introduction

The problem of sorting a permutation using a stack was first introduced by Knuth [6] in
the 1960s; in its classical formulation, the aim is to sort a permutation using a first-in/last-out
device. As it is well known, in this case a permutation π = π1 · · · πn is sortable if and only
if there do not exist three indices i < j < k such that πk < πi < πj . In the language of
permutation patterns, we say that the set of sortable permutations is a class with basis {231},
meaning that each of these permutations cannot contain the pattern 231 as a subpermutation; a
class is a downset in the permutation pattern poset and each class is determined by the minimal
elements in its complement, which form its basis. Recall that the set of permutations can be
partially ordered by means of the relation of “being a pattern”, and we write σ ≤ π to mean
that σ is a pattern of π. The resulting poset is called the permutation pattern poset, and a
downset (i.e., a subset closed by going downwards) of the permutation pattern poset is usually
called a class. For the basics on permutation patterns in combinatorics and computer science,
we refer to [3].

More generally (see [11]), one can consider a network of sorting devices, each of which is
represented as a node in a directed graph; when there is an arc from node S to node T , the
machine is allowed to pop an element from S and push it into T ; if we mark two distinct vertices
as the input and the output, then the sorting problem consists of looking for a sequence of
operations that allows us to move a permutation from the input to the output, finally obtaining
the identity permutation.

In this framework, some of the typical problems are the following:

∗G. C. and L. F. are members of the INdAM Research group GNCS; they are partially supported by IN-
dAM - GNCS 2019 project “Studio di proprietá combinatoriche di linguaggi formali ispirate dalla biologia e da
strutture bidimensionali” and by a grant of the ”Fondazione della Cassa di Risparmio di Firenze” for the project
”Rilevamento di pattern: applicazioni a memorizzazione basata sul DNA, evoluzione del genoma, scelta sociale”.

†Dipartimento di Matematica e Informatica “U. Dini”, University of Firenze, Firenze, Italy,
giulio.cerbai@unifi.it, lapo.cioni@unifi.it, luca.ferrari@unifi.it

1

http://arxiv.org/abs/1910.03578v1

• characterize the permutations that can be sorted by a given network;

• enumerate sortable permutations with respect to their length;

• if the network is too complex, find a specific algorithm that sorts “many” input permuta-
tions and characterize such permutations.

Concerning the last problem, note that, for a given network of devices, although the set
of sortable permutations forms a class in general, this is not true anymore if one chooses a
specific sorting strategy; this approach leads in general to more complicated characterizations
which involve other kinds of patterns (as it happens, for instance, for West 2-stack-sortable
permutations [12]).

Although it is very hard to obtain interesting results for large networks, a lot of work has
been done for some particular, small networks (see [2] for a dated survey, or [5] for a more
recent one); in this work we restrict our attention to the case of stacks connected in series,
with the restriction that the elements are maintained inside each stack either in increasing or in
decreasing order. Our starting point is [10], where Rebecca Smith proved that the permutations
sorted by a decreasing stack followed by an increasing one form a class with basis {3241, 3142}.
In the present paper, we try to find some information on what happens when we add more
decreasing stacks in front. Our first result is that the device having two decreasing stacks
followed followed by an increasing one does not have a finite basis. Our proof can be easily
adapted to show the same property for any number of decreasing stacks in front. Next, we
provide an optimal algorithm to sort permutations, again in the case of two decreasing stacks
followed by an increasing one. Our algorithm is optimal in the sense that it is able to sort all
sortable permutations. Finally, we select a couple of (greedy) strategies and we prove that one of
them can be studied in a very neat way, whereas the other one seems to be too difficult to allow
a simple description of sortable permutations in terms of patterns, even including generalized
versions of them.

2 Many decreasing stacks followed by an increasing one.

Generalizing the approach of [10], here we will consider a sorting device made by k de-
creasing stacks in series, denoted by D1, . . . ,Dk, followed by an increasing stack I. Recall that
“decreasing” (resp., “increasing”) stack means that the elements inside the stack have to be in
decreasing (resp., increasing) order from top to bottom. When k = 0, we just have a single
increasing stack, so we obtain the usual Stacksort procedure. When k = 1, we obtain exactly
the DI machine described in [10]. In the sequel we denote our machine with D

k
I.

The D
k
I machine can perform the following operations:

• d0: push the next element of the input permutation into the first decreasing stack D1;

• di, for i = 1, . . . , k−1: pop an element from Di and push it into the next decreasing stack
Di+1;

• dk: pop an element from the last decreasing stack Dk and push it into the increasing stack
I;

• dk+1: pop an element from the increasing stack I and output it (by placing it on the right
of the list of elements that have already been output).

Notice that each operation can be performed only if it does not violate the restrictions of
the stacks; in this case, we call it a legal operation. For the special case of the operation dk+1,

2

we will assume that dk+1 is legal both if we are pushing into the output the smallest among the
elements not already in the output and if all the other operations are not legal.

Remark 2.1. If an occurrence of the pattern 231 is pushed into the last stack I, then the input
permutation cannot be sorted. Moreover, this is the only situation that corresponds to a failure
in the sorting procedure. This is a consequence of the classical result of Knuth [6], where in
fact the only stack is used exactly as if it were increasing.

For any given k, we are now interested in characterizing the set

Sortk = {π ∈ S | there is a sequence of legal operations of the D
k
I machine that sorts π}.

If π ∈ Sortk, we say that π is k-sortable. Notice that we are using the sorting machine in the
most general setting, so using a standard argument it is easy to show that Sortk is a class for
every k. The natural way to describe Sortk is therefore to understand its basis. Here we show
that, even when k = 2, the basis of Sortk is infinite, by explicitly finding an infinite antichain
of permutations which are not 2-sortable and are minimal with respect to the pattern ordering.
The construction of the infinite antichain described in the next theorem can be easily adapted
to every k ≥ 2. The software PermLab [1], developed by Michael Albert, has been an extremely
useful tool to find such an antichain. This result is in sharp contrast with what happens when
k = 1, which is the case considered in [10], where it is shown that the basis is finite (of cardinality
2). We start by stating some useful lemmas, whose proofs are straightforward.

Lemma 2.2. Let π be an input permutation for the D
k
I machine; if i < j and πi > πj , then πi

is necessarily pushed into I before πj . In other words, the decreasing stacks D1, . . . ,Dk cannot
repair inversions.

Lemma 2.3. Let π be an input permutation for the D
k
I machine and let a < b < c be elements

of π. Focus on the instant when, during the sorting process, b is pushed into the increasing
stack. Then, if any of the following conditions holds, π cannot be sorted anymore:

1. c is in Dj and a is in Dk, with k ≤ j;

2. c is in Dj , for some j, and a is still in the input;

3. c and a are still in the input, with a following c.

Proof. The previous lemma implies that, if any of the above conditions is satisfied, an
occurrence of the pattern 231 is pushed into the increasing stack, so π cannot be sorted anymore
due to Remark 2.1. �

Rephrasing the last lemma, if we try to sort π and, when b is pushed into the increasing
stack, one of the listed conditions holds, then there is no hope to complete the procedure to
obtain a sorted output.

Theorem 2.4. For j ≥ 0, define the permutation:

α(j) = 2j + 4, 3, ω(j), 1, 5, 2,

where ω(j) = 2j + 2, 2j + 5, 2j, 2j + 3, 2j − 2, 2j + 1, . . . , 6, 9, 4, 7. Then the set of permutations
{α(j)}j≥0 constitutes an infinite antichain in the permutation pattern poset, each of whose el-
ement is not 2-sortable. Moreover, α(j) is minimal with respect to such a property, i.e. if we
remove any element of α(j) we obtain a 2-sortable permutation.

3

Proof. We start by proving (using induction) that α(j) is not 2-sortable, for every j. If
j = 0, it is easy to check that α(0) = 43152 cannot be sorted using the D

2
I machine. Let j ≥ 1

and α(j) = α1 · · ·α2j+5. Since α1 = 2j + 4 > α2 = 3, α1 has to be pushed into D2 before α2

enters D1. Notice that the maximum of α(j) is α4 = 2j + 5 and there are elements following it
in α(j) which are smaller than both α1 and α4, so we cannot push α1 into I due to the previous
lemma. Thus the only option we are left with is to push α3 = 2j + 2 into D1 immediately
above α2. Now, the next element of the input is the maximum α4, and of course we can push it
through the decreasing stacks and finally into I. Observe that pushing the maximum available
element in I is always convenient. So the second maximum α1 = 2j + 4, which is currently
contained in D2, can be pushed into I similarly, leaving us with just the elements α3 and α2

in D1, with α3 on top. The next element of the input is α5 = 2j < α3, so pushing α3 into D2

is forced. Now, getting rid of the two maximal elements of α(j) already pushed into I, notice
that we are in the same configuration that arises when processing α(j−1) after considering the
first two elements, so we can conclude that α(j) is not 2-sortable by inductive hypothesis. An
example of the above argument for j = 2 is shown in Figure 1. In passing, we observe that
the optimal sorting strategy here would be, at each step, to push the maximum and second
maximum element still available into I; in the general case, this strategy fails since 3 remains
stuck in D1, blocked by a larger element in D2, until we reach the final portion of α(j). This
crucial remark will be useful in the last part of this proof.

We now prove that α(j) is minimal not 2-sortable. This can be proved with a case by case
analysis, depending on the element we choose to remove. We show in detail just some of these
cases, leaving the remaining ones to the reader.

• If we remove the first element α1 = 2j + 4, we can push the new first element α2 = 3
directly into D2; from now on, we can follow the sorting procedure outlined above, pushing
at each step the maximum and second maximum available elements into I. However in
this case, before processing the three last elements 1, 5, 2, we have that both 3 and 4 are
in D2, whereas in processing α(j) we have 3 inside D1 and 4 inside D2. Therefore we can
now push 1 into D1 and 5 into I and finally 4, 3, 2, 1 in the correct order, as desired.

• If we remove α2 = 3, we can sort the resulting permutation using the same procedure,
this time obtaining a configuration with just 4 in D2 and 1, 5, 2 in the input.

• Consider the removal of an element x = αi, for some i = 3, . . . , 2j + 2. In the first part
of the sorting procedure, the element 3 is stuck into D1, similarly to what happens when
processing α(j). However, as soon as we scan the element that follows x in α(j), when we
push maximum and second maximum in I we are left for a moment with the stack D2

empty (and just 3 in D1), because we removed the element x that had to occupy D2. So
we can take advantage of this fact and move 3 into D2, concluding the sorting procedure
as in the previous cases.

• The removal of the elements 1, 5, 2 can be dealt with in a similar way.

Thus we have seen that, in any case, removing any element of α(j) results in a 2-sortable
permutation, so α(j) is minimal not 2-sortable. �

Corollary 2.5. The basis of Sort2 is infinite, since it contains the infinite antichain {α(j)}j≥0

defined in the previous theorem.

Remark 2.6. Theorem 2.4 remains true if we permute the elements 1,2,3 of α(j), for every j.

4

output input

D1D2I

836947152

Step 1

output input

D1D2I

8

36947152

Step 2

output input

D1D2I

8 3

6947152

Step 3

output input

D1D2I

8 3
6

947152

Step 4

output input

D1D2I

8
3
6
9

47152

Step 5

output input

D1D2I

8
9

3
6

47152

Step 6

output input

D1D2I

9 8 3
6

47152

Step 7

output input

D1D2I

9
8

3
6

47152

Step 8

output input

D1D2I

9
8 6 3

47152

Step 9

Figure 1: The recursive construction described in Theorem 2.4 with input α(2) = 836947152
(on the right). The last step corresponds to input α(1) = 6347152 after having pushed the first
two elements into the machine.

3 An optimal algorithm for the D
2
I-machine

The results of the previous section suggest that it may be very hard to enumerate k-sortable
permutations when k ≥ 2. In the present section, we show that, when k = 2, we are at least
able to design an optimal algorithm, called D2I, which sorts all 2-sortable permutations.

Algorithm D2I can be explicitly described as follows:

1. If Top(I) is the next element to be output, then perform d3.

2. If all the elements contained in D1 and D2 are the next elements to be output, then move
them to the output.

3. If each of the previous instructions cannot be executed, perform d1, provided that condi-
tion (β) holds.

4. If each of the previous instructions cannot be executed, perform d0, provided that condi-
tion (γ) holds.

5. If each of the previous instructions cannot be executed, perform d2, provided that condi-
tion (α) holds.

6. Otherwise, perform d3.

Conditions (α), (β) and (γ) are the following (we remark that, when a stack is empty, any
statement about it is considered to be true):

(α) Top(D2) < Top(I).

5

(β) Top(D2) < Top(D1) and Top(D1) < Top(I).

(γ) Top(D1) < Input, Input < Top(I) and the sequence of elements from Input to the first
element larger than Top(D2) is increasing.

In the sequel, each of the di’s, for i = 0, 1, 2, 3, will be called an operation, exactly as we
did until now. Instead, each of the six items in the above description of algorithm D2I will
be called an instruction. Therefore, an instruction of D2I consists of performing a (legal)
operation, provided that some constraints are satisfied.

It is not difficult to realize that instruction 2 of the above algorithm is not essential for its
correctness, so in principle we could remove it. However, in some cases (and in particular in
the proof of the optimality) it is convenient to have it.

Algorithm D2I sets certain priorities between operations, provided that certain conditions
are fulfilled. In general, given any two operations d̃ and d̄, we will use the notation d̃✄ d̄ to mean
that d̃ has higher priority than d̄ (and so, if both d̃ and d̄ are legal, d̃ is performed). Moreover,
we denote with (ω)d any operation d which, in order to be performed, has to be legal and also
to satisfy an additional constraint ω.

Using these notations, we can illustrate algorithm D2I (in which instruction 2 has been
removed) with the following chain of priorities:

d3 ✄
(β)d1 ✄

(γ)d0 ✄
(α)d2.

Notice that condition (α) is equivalent to saying that operation d2 is legal; however, for
homogeneity’s sake, we have preferred to state it explicitly in the description of our algorithm.

Remarks.

1. If, at some point, algorithm D2I performs instruction 6, then the input permutation is not
sorted at the end of the process, and this is the only obstruction to the sorting process.
In other words, D2I sorts a permutations if and only if it never executes instruction 6.

2. To some extent, algorithm D2I generalizes Smith’s algorithm for a decreasing stack and
an increasing stack in series. More specifically, interpreting the first stack of our device
as the input container (and so removing the decreasing constraint) and operation d1 as
the input operation, which insert the current element of the input permutation into the
(new) first decreasing stack, we obtain precisely Smith’s algorithm.

The proof of the optimality of our algorithm is not trivial, and requires several steps. Our
first goal is to prove some properties of algorithm D2I.

Lemma 3.1. At every step, we have Top(D2) < Top(I).

Proof. By induction on the step number. At the beginning of the sorting process, the
statement in the lemma is true since all the stacks are empty. Now suppose that the statement
holds at step n, and consider all possible instructions that can be performed: a simple case-by-
case analysis shows that the same inequality is true also at step n+ 1. �

Corollary 3.2. The last instruction of D2I can be executed only if D2 is empty.

Proof. The previous lemma tells that condition (α) is always true, so instruction 5 of D2I
can always be executed provided that D2 is not empty. �

6

Lemma 3.3. At every step, we have Top(D1) < Top(I).

Proof. The proof works by induction, exactly in the same way as Lemma 3.1. However, it
is worth giving the details in at least one case. Suppose that, at step n of the algorithm, we
have Top(D1) < Top(I) and we perform instruction 5, that is we move Top(D2) into I. Notice
that, at step n, we must have Top(D1) < Top(D2), otherwise condition (β) would hold, and so
instruction 3 would be performed by D2I instead of instruction 5. Therefore, at step n+1, we
have Top(D1) < Top(I), because Top(I) at step n+ 1 is exactly Top(D2) at step n. �

Corollary 3.4. The last instruction of D2I can be executed only if D1 is empty.

Proof. We know from Corollary 3.2 that D2 must be empty in order to execute instruction
6. If D1 were not empty, then condition (β) would be satisfied, thanks to the previous lemma,
and so instruction 3 would be performed. �

From now on, we aim at showing that, if π is a 2-sortable permutation, then there exists a
sorting algorithm for π which has many properties that also D2I has. In the end, we will prove
that such properties do characterize algorithm D2I.

Proposition 3.5. Let π be a 2-sortable permutation. There exists a sorting algorithm for π
which performs operation d0 (resp., d1, d2) only if condition (γ) (resp., (β), (α)) holds.

Proof. Condition (α) is obviously necessary in order to perform d2, since I is an increasing
stack.

Consider now condition (β). Again, in order to perform d1 we must have Top(D2) <
Top(D1), since D2 is a decreasing stack. Moreover, we will show that it is necessary to have
Top(D1) < Top(I) if we want to perform d1 and eventually sort the input. Indeed, suppose
that Top(I) < Top(D1) and set Top(I) = b, Top(D2) = a and Top(D1) = c. There are two
cases to analyze. If a < b, then performing d1 would force b to reach the output before a, which
would cause the sorting process to fail. On the other hand, if b < a, we must have that b is the
next element to be output. Therefore we can perform d3 until Top(I) is not the next element
to be output. But in this case necessarily a < Top(I), and we are thus led to the previous case.

Finally, we analyze condition (γ). The inequality Top(D1) < Input is necessary in order
to perform d0, since D1 is decreasing; the inequality Input < Top(I) is necessary as well, by
an argument similar to that employed for condition (β). We will now show that requiring
the third constraint of (γ) to perform d0 does not prevent the procedure to sort the input.
Suppose that the third constraint of (γ) is not satisfied and set x = Top(D2). This means that
currently the input consists of a (nonempty) increasing sequence of elements smaller than x
whose last term (call it b) is bigger than the next one (call it a). Of course, it is a ≤ x as well.
First of all, if it were possible to perform d1, then necessarily Top(D2) < Top(D1); since we are
supposing to be able to perform d0, we already know that Top(D1) < Input, thus we would have
Top(D2) < Input; this would imply that the third constraint of (γ) is satisfied, which is not. If
we decide to perform d0, we still cannot perform d1 of course, so we can continue to perform d0
until we reach a. At that point, the only possible operation to perform would be d2. However,
the same configuration could have been reached by performing d2 before starting executing
d0. This essentially means that the set of configurations that are reachable by performing d2
whenever the third constraint of (γ) is not satisfied is a superset of the set of configurations
that are reachable by performing d0 in the same situation. Thus, if the input is 2-sortable, then
it is 2-sortable also by an algorithm which executes d0 only if (γ) is satisfied. �

At this point, it is convenient to make a brief recap. What we have shown until now is that,
if π is a 2-sortable permutation, then there exists a sorting algorithm for π having the following
features:

7

• if Top(I) is the next element to be output, it performs d3;

• it executes instruction 2 of D2I whenever it is possible to execute it;

• it performs operation d0 (resp., d1, d2) only if condition (γ) (resp., (β), (α)) hold;

• if no other operation is allowed, it performs d3.

In order to conclude our proof, we now need to show that, if π is 2-sortable, then there exists
a sorting algorithm ALG for π which satisfies the above listed properties and, in addition,
performs operations d0, d1, d2 in exactly the same order as algorithm D2I does. This would
mean precisely that ALG coincides with D2I, as desired.

We start by comparing operations d1 and d2. From now on, any sorting algorithm having
the properties listed above will be called special, and we will denote a generic special algorithm
with ALG .

Proposition 3.6. Let π be a 2-sortable permutation. There exists a special sorting algorithm
ALG for π for which (β)d1 ✄

(α)d2.

Proof. Suppose that, at a certain point of the execution of ALG on π, it is possible to
perform both d1 and d2. Clearly, we can suppose that both instruction 1 and 2 of D2I cannot
be executed by ALG. This implies that there must exist an element a of π still in the input,
which is smaller than Top(D2). Set x = Top(D2) and y = Top(D1). If we perform d2, then
we would have x = Top(I) < Top(D1) = y (since we are supposing that it was possible to
perform also d1). This means that a could overcome y only when y is already inside I, and
this can happen only if x has already been output. This however would cause the output to be
unsorted, since in the output x would come before a, and x > a. We can thus conclude that,
in the hypothesis of the proposition, performing d2 would make the sorting process fail, and so
(β)d1 ✄

(α)d2, as desired. �

We can now observe that, if π is a 2-sortable permutation, then there exists a special sorting
algorithm ALG for π such that Lemmas 3.1 and 3.3 and Corollaries 3.2 and 3.4 hold. In fact, all
the proofs of the above mentioned results do not depend on the specific algorithm D2I, except
for Lemma 3.3, where it is explicitly used that fact that (β)d1 ✄

(α)d2. However, in view of the
previous proposition, without loss of generality we can assume that there is a special sorting
algorithm for π which satisfies such a condition. In what follows, a special sorting algorithm
with this additional property will be called extraspecial (and still denoted ALG).

Before concluding our tour de force, we still need a final preparatory result.

Proposition 3.7. A permutation π is 2-sortable if and only if it does not contain any occurrence
bca of the pattern 231 such that, at some step of any extraspecial sorting algorithm for π, we
have b = Top(I) and c and a are still in the input.

Proof. Suppose that π is 2-sortable and that bca is an occurrence of 231 in π. Moreover,
suppose that, at some point of the extraspecial sorting algorithm ALG, we have b = Top(I)
and c and a are still in the input. Then, if we continue the execution of ALG, since the first
two stacks are decreasing, a can overcome c only inside the increasing stack; but c can enter
the increasing stack only if b is in the output. This will cause b to be output before a, and so
the input permutation would eventually not be sorted, which is a contradiction.

On the other hand, suppose that π is not 2-sortable and let ALG be any extraspecial
algorithm. Since π is not 2-sortable, at some point ALG output an element y which is not the

8

correct one; in other words, there exists x < y which is still inside one of the decreasing stacks or
in the input. However, the decreasing stacks must be empty, as a consequence of Corollaries 3.2
and 3.4, hence x must be in the input. Moreover, if the z is the first element of the input when
y goes to the output, then necessarily z > y, since otherwise condition (γ) would be satisfied
(which is not possible, since ALG executes instruction 6). Thus, in particular, z 6= x, and the
elements yzx constitute an occurrence of 231 in π which violates the required condition. �

We are finally ready to conclude our proof of the optimality of D2I.

Theorem 3.8. The sorting algorithm D2I is optimal, i.e. it sorts all 2-sortable permutations.

Proof. Let π be a sortable permutation. Then there exists an extraspecial algorithm ALG
which sorts π. The only possibility for ALG to be different from D2I is that the order in which
ALG performs operations d0, d1 and d2 may be different. However, we already know that, for
an extraspecial algorithm, (β)d1 ✄

(α)d2. What remains to do is to compare d0 with d2 and d0
with d1.

First, suppose that ALG is in a certain configuration, in which both d0 and d2 can be
performed. We can further assume that condition (β) is not satisfied, otherwise d2 would
certainly not be performed, as a consequence of Proposition 3.6. Set c = Top(I), b = Top(D2)
and a = Top(D1), and call y the first element of the current input which is greater than b (if it
exists). Since we are supposing that condition (γ) is satisfied, the sequence from the beginning of
the current input to y is increasing. If there were an element x < b following y, then performing
d2 would prevent to successfully sort the permutation, as a consequence of Proposition 3.7 (the
three elements b, y and x would constitute the “bad” occurrence of 231). Therefore, also keeping
in mind that b > a (since a < c as a consequence of condition (γ) and we are supposing that
condition (β) is not satisfied), we can assert that the set of all numbers contained in D1,D2

and in the input before y (if such an element exists) is precisely the set of all numbers ≤ b
which are not already in the output. It is now possible to show that, using algorithm D2I, such
numbers reach the output before any other number makes any move. Indeed, D2I performs
d0 and pushes the first number of the current input inside D1 (above a). Then the algorithm
keeps performing d0 until y is reached (in fact condition (β) keeps failing to be satisfied, since
all numbers before y in the input are < b); at this point, D1 and D2 contains precisely the
next elements to be output, so D2I performs instruction 2. We can thus conclude that, in the
considered configuration, using algorithm D2I does not prevent the permutation to be sorted,
hence performing d0 instead of d2 is irrelevant (if not necessary).

Now suppose that ALG is in a certain configuration, in which both d0 and d1 can be
performed. Letting Top(I) = d, Top(D2) = a, Top(D1) = b and Input = c, we then know
that a < b < c < d. If ALG chose to perform d0, then c would be pushed into D2, with b
still in the same stack. Clearly, sooner or later, there would be a step of ALG moving b from
D2 to D1. Let us now focus on this exact moment (when b is pushed into D1) and call the
resulting configuration ℵ: we claim that, if we modify ALG by just performing d1 instead of
d0 in the configuration described at the beginning of the present paragraph, we can reach the
same configuration ℵ mentioned above. So suppose that, after having performed d0 and before
moving b to D2, the elements that ALG has pushed into D1 are c, c1, . . . , ck. Clearly, when b
is moved into D2, such elements must all be inside I, since they are all greater than b and D2

is decreasing. If, in the meanwhile, a has not been pushed into I, then we can reach the same
configuration by first moving b into D2 (thus performing d1) and then moving all the elements
c, c1, . . . , ck into I by performing the same sequence of operations. Otherwise, if a would have
been moved into I before all elements c, c1, . . . , ck reach I (possibly together with some further
elements from D2), this should have been done in a configuration in which both d0 and d1

9

were not legal (since we have already shown that both d0 ✄ d2 and d1 ✄ d2). This is however
impossible, since we will now see that d1 is certainly legal. Indeed, focussing on the instant
immediately before a is pushed into I, since b is into D1, Top(D1) > b (since D2 is decreasing)
and we know that b > a, hence Top(D2) < Top(D1). Moreover, since ALG is extraspecial, we
also know from Lemma 3.3 that Top(D1) < Top(I). Therefore condition β is satisfied, hence
d1 is legal. Summing up, we have shown that, if both d0 and d1 are legal, then performing d0
leads to a configuration which can be reached also performing d1 instead. As a consequence,
performing d1 instead of d0 preserves sortability. �

The sequence counting permutations of length n that are sortable using the D2I machine
starts 1,1,2,6,24,117,651,3961,25661,174062,1222784, and appears to be new to [8].

4 Some further algorithms

As we have seen in the previous section, there exists an optimal algorithm for the D
2
I

machine which is able to sort all sortable permutations. However, it is not a very easy one:
in order to understand which operation should be performed at each step, one needs to check
certain conditions, which in some cases are rather weird. Another approach could be to consider
some much easier algorithms, which of course fail to be optimal, but have the nice feature of
being more intuitive.

In the present section we briefly sketch two very natural algorithms, one of which turns out
to be “too easy” whereas the other one reveals to be “too hard”.

4.1 A left-greedy algorithm

Our first proposal is a left-greedy procedure for the D
k
I machine: at each step, we perform

the operation dj having maximum index j among the legal available operations. In other words,
such a left-greedy procedure is characterized by the following chain of priorities:

dk+1 ✄ dk ✄ dk−1 ✄ · · · d1 ✄ d0.

Setting Sort
(lg)
k = {π : π is sorted by the left-greedy procedure}, it turns out that Sort

(lg)
k is

in fact a class which we are able to characterize completely. The choice of a left-greedy strategy,
instead of a right-greedy one, is suggested by the results contained in [9].

Proposition 4.1. For every k ≥ 0, Sort
(lg)
k is a class with basis {231}.

Proof. We start by proving that if π contains 231, then π /∈ Sort
(lg)
k . Let bca be an

occurrence of the pattern 231 in π. If b is pushed into I before c, then π cannot be sorted, as a
consequence of Lemma 2.3. Then suppose that b is stuck into a decreasing stack Dj, for some
j. In particular, since the algorithm is left-greedy, this implies that Dk is not empty (more
precisely, each stack Di, with i ≥ j, has to contain at least one element). Let z be the first
element that reaches Dk without going directly into I and consider the step in which z is pushed
into Dk; again because we are using a left-greedy strategy, the next stack I cannot be empty at
that moment. Let y = Top(I). Note that y < z, otherwise z would be pushed into I. Moreover,
since y is not pushed into the output, there must still be an element t < y that is not in the
output (and neither in I, of course). In particular, t follows z, because z is the top of Dk. We
are thus in a position to apply Lemma 2.3 with the three elements t < y < z, which is enough

to conclude that π /∈ Sort
(lg)
k .

10

Conversely, we have to show that, if π /∈ Sort
(lg)
k , then π contains the pattern 231. Factorize

π as π = α1α2 · · ·αr, where each αi is a maximal decreasing sequence. W.l.o.g., we can suppose
that, if α1 contains i elements, then α1 6= i(i − 1) · · · 21; otherwise, in fact, we could simply
remove α1 and consider the remaining permutation: since by hypothesis π is not sortable, there
must be an index h such that αh is not the set of the next elements to be output. So suppose
that α1 = π1π2 · · · πi 6= i(i − 1) · · · 21, hence πi < πi+1. All the elements of α1 are pushed into
the increasing stack, whereas πi+1 remains stuck into Dk. Notice that the hypothesis on α1

implies that not all elements inside the increasing stack can be output, since there is at least
one element x following πi+1 in π which is smaller than all elements of α1. Such an element x
is still in the input when πi+1 reaches Dk (since all the remaining decreasing stacks are clearly
empty). Call y the top of the increasing stack when πi+1 reaches Dk: then the three elements
y, πi+1 and x are an occurrence of the pattern 231 in π. �

As a consequence of the previous proposition, our left-greedy procedures sort precisely the
same permutations as Stacksort does. Thus, in a sense, adding any number of decreasing
stacks before an increasing one does not improve the sorting power of the machine, provided
that we always perform the leftmost legal operation. This does not mean, however, that the
left-greedy algorithms are equivalent to Stacksort. Indeed, taking for instance k = 1 and the
input permutation 2341, the left-greedy D

k
I machine returns 2134 as output, whereas Stacksort

returns 2314. In other words, while the preimage of the identity permutation is the same for
Stacksort and for every left-greedy D

k
I machine, the preimages of other permutations are in

general different. It would be certainly interesting to investigate more deeply the preimage of a
generic permutation for the left-greedy D

k
I machine.

4.2 A quasi left-greedy algorithm.

There is a better way to design an algorithm which is quasi left-greedy and is able to sort
more permutations than the previous one. The idea is to give the increasing stack a privileged
role, using it only when no other operation is possible. Formally, at each step we choose to
perform the first legal operation according to the following priority rule:

dk+1 ✄ dk−1 ✄ dk−2 ✄ · · ·✄ d1 ✄ d0 ✄ dk.

This quasi left-greedy procedure is similar to the optimal algorithm for the D
2
I machine

described in Section 3, the only difference being that no additional conditions are required in
order to perform operations (other than the fact that each operation can be performed only if
it is legal, of course).

In analogy with the previous case, define Sort
(qlg)
k to be the set of permutations sorted by

the quasi left-greedy algorithm with k decreasing stacks; such permutations will be called qlg-
k-sortable permutations. We observe immediately that the permutation 231 is qlg-2-sortable.

Unfortunately, Sort
(qlg)
k is not in general a permutation class, except for the case k = 1, for

which we have the following result, whose proof can be found in [4].

Lemma 4.2. Sort
(qlg)
1 is a class with basis {213}.

When k > 1 things become much more involved. As an example, for k = 2, the permutation
631425 is qlg-2-sortable, whereas its subpermutation 52314 is not. In fact, a complete charac-

terization of Sort
(qlg)
2 appears to be quite hard. In the rest of the section we will prove some

partial results that should make abundantly clear that understanding the set of qlg-k-sortable
permutations is a very hard task.

11

Proposition 4.3. Let π be a qlg-2-sortable permutation. Then

• π avoids 3214;

• if π contains the pattern 52314, then each occurrence of 52314 can be extended to one of
the following patterns, where the additional elements are marked with a dot:

– 631̇425;

– 72̇1̇4536, 73̇1̇4526;

– 7̇2̇81̇4536, 7̇3̇81̇4526;

– 8̇2̇71̇4536, 8̇3̇71̇4526.

Proof. We start by proving that any sortable permutation π cannot contain the pattern
3214. Suppose that cbad is an occurrence of 3214 in π and let m be the smallest element that
follows b and precedes d. We focus on the instant when d is pushed into D1. Notice that:

• c has to be contained in I, because c > b > a and the stacks D1 and D2 are decreasing;

• m is still in D1; in fact it cannot go directly into D2 because there are elements in D2

which are larger than it (at least b or the elements that replaced it). Moreover it is the
smallest element before d, so the next element of the input cannot force m to be pushed
into D2.

Therefore we can apply Lemma 2.3 with the elements c, d and m and conclude that π cannot
be sorted.

We now consider the pattern 52314. Let ebcad be an occurrence of 52314 in π. Without
loss of generality, we can suppose that e is the rightmost element of π preceding b which plays
the role of 5. In fact, given any other occurrence êbcad of 52314, with ê to the right of e, any
extension of such an occurrence to one of the desired patterns would also give a similar extension
of ebcda. In other words, we can suppose that there is no element greater than e between e and
b in π. The fact that π is sortable, together with Lemma 2.3, guarantees that, when d is pushed
into D1, one of the two following configurations holds:

1. a, b and c are all contained in the increasing stack I;

2. a is contained in D1, while b and c are contained in D2.

In the first case, when a is pushed into I (with d still in the input, of course), D1 has to be
nonempty and the next element of the input z has to be smaller than a. So the elements b, a, z, d
form an occurrence of the pattern 3214, which is a contradiction with what we have just proved
above.

We now focus on the second case. When d is pushed into D1, we have:

output input

D1D2I

...

..

.e

..

.

..
b
..
c
..

..

.a

..

.d
↓

...

Suppose there is an element x between b and c in π such that x < b. If x > a, then bxad
is an occurrence of 3214, which is again a contradiction. If x < a, we have that ebxcad is an
occurrence of 631̇425, as desired. Otherwise, suppose that x > b for each x between b and c in
π. This implies that b is pushed directly into D2 by the algorithm, because c lies above b in D2

12

and no other element can push b into D2 before c enters. As a consequence, e must be already
in I when b is pushed into D1, thus, when e is pushed into I, setting y1 = top(D1) and denoting
with y2 the next element of the input, we have e > y1 > y2. Moreover, it cannot be y2 = b,
otherwise b could not go directly into D2, because it would be blocked by the smallest element
t inside D1 which is greater than y2 (such an element exists since y1 > y2).

output input

D1D2I

...

..

.e
↓

..

.

..
t
..
y1

y2...b...

We are now left with two distinct cases: e either precedes or follows y1.

1. If e precedes y1, we have the pattern ey1y2bcad. Note that y1 < d as a consequence of our
choice of e, and also y1 < b, otherwise y1bad would be an occurrence of 3214. Therefore
we have the following possibilities:

• y1 > y2 > a, hence y1y2ad is an occurrence of 3214, against the fact that π is sortable;

• y1 > a > y2, hence ey1y2bcad is an occurrence of 73̇1̇4526.

• a > y1 > y2, hence ey1y2bcad is an occurrence of 72̇1̇4536.

2. If e follows y1, a thorough case by case analysis, similar to the previous one, leads to the
remaining four patterns 7̇2̇81̇4536, 7̇3̇81̇4526, 8̇2̇71̇4536 and 8̇3̇71̇4526. �

The above proposition cannot be inverted, since there exist permutations that are not qlg-2-
sortable, yet satisfy the two conditions listed above. An example is given by 11 2 10 1 4 9 3 6 7 5 8;
notice, in particular, that it contains three occurrences of 52314 and each of them can be
extended to one of the above barred patterns (more specifically, two of the occurrences can be
extended to 8̄2̄71̄4536, whereas the remaining one can be extended to 72̄1̄4536).

In fact, starting from the permutation 52314, it is possible to construct a sequence of per-
mutations of increasing lengths whose sortability depends on the parity of the length. To be
more precise, for m ≥ 1, define the permutation γm ∈ S3m+2 as follows:

γm = 3m+2, 2, 3m+ 1, 1,
︸ ︷︷ ︸

P1

4, 3m, 3,
︸ ︷︷ ︸

P2

. . . , 2m− 2, 2m+ 3, 2m− 3,
︸ ︷︷ ︸

Pm−1

2m, 2m+ 1, 2m− 1,
︸ ︷︷ ︸

Pm

2m+2.

In other words, starting from γ1 = 52314, γm is obtained by inserting a new occurrence P1 =
2, 3m+ 1, 1 of the pattern 231 between the first and the second element of γm−1, then suitably
rescaling the remaining elements. We have the following result:

Proposition 4.4. 1. γi is a pattern of γi+1, for each i ≥ 1.

2. γi ∈ Sort
(qlg)
2 if and only if i is even.

Proof. (sketch) The first statement follows directly from the definition of γm. To prove
the second one, we analyze how the quasi left-greedy algorithm manages the occurrences Pk of
the pattern 231 in γm. The crucial remark is that, when k is even, the elements of Pk can be
pushed into the decreasing stacks without extracting other elements, whereas this cannot be
done when k is odd. Set Pk = Pk(2)Pk(3)Pk(1), for k = 1, . . . ,m. The behavior of the algorithm
in both cases is represented in Figure 2, Figure 3 and Figure 4.

13

output input

D1D2I

3m+ 2

2, 3m+ 1, 1

=⇒
output input

D1D2I

3m+ 2
3m + 1

2 1

Figure 2: The initial stages of the quasi left-greedy algorithm with input γm, when P1 is
processed.

output input

D1D2I

3m+ 2
P1(3)
..
.
Pk−1(3)

P1(2)
P2(2)
..
.
Pk−1(2)

P1(1)
P2(1)
..
.
Pk−1(1)

Pk(2), Pk(3), Pk(1), ...

⇓

output input

D1D2I

3m+ 2
P1(3)
..
.
Pk−1(3)

P1(2)
P2(2)
..
.
Pk−1(2)
Pk(2)
Pk(3)

P1(1)
P2(1)
..
.
Pk−1(1)
Pk(1)

...

Figure 3: The behavior of the algorithm on Pk, when k is even. Here the algorithm pushes Pk

into D1 and D2 without extracting other elements.

As a consequence, it is easy to check that, if m is even, then the last 4 elements of γm can
be pushed into the decreasing stacks, so the permutation is eventually sorted. On the other
hand, if m is odd, then the second-to-last element 2m− 1 forces 2m+ 1 to be pushed into the
increasing stack immediately above 2m+ 3, and the final element 2m+ 2 will be output in the
wrong position. Therefore the algorithm does not sort γm. �

The existence of an infinite chain of permutations which are alternately sortable and non-

sortable suggests that it should be quite difficult to obtain a simple characterization of Sort
(qlg)
2 ;

it is also conceivable that it should be possible to adapt the above proposition to larger values
of k, thus obtaining similar (negative) results.

5 Final remarks

In the present work we started the analysis of a sorting device consisting of k decreasing
stacks followed by an increasing one, generalizing the case k = 1 addressed in [10]. In general, the
problem of characterizing sortable permutations in terms of forbidden patterns seems quite hard,
due to the fact that the basis is infinite, as shown in Theorem 2.4. We have however been able
to describe an optimal algorithm in the case k = 2 which can sort every sortable permutation.
Such an algorithm employs a strategy which is surely nontrivial. Thus we have also briefly
discussed some simpler algorithms, which are not able to sort all sortable permutations but are
certainly simpler to describe.

14

output input

D1D2I

3m+ 2
P1(3)
..
.
Pk−2(3)

P1(2)
P2(2)
..
.
Pk−1(2)
Pk−1(3)

P1(1)
P2(1)
..
.
Pk−1(1)

Pk(2), Pk(3), Pk(1), ...

⇓

output input

D1D2I

3m+ 2
P1(3)
..
.
Pk−2(3)
Pk−1(3)
Pk(3)

P1(2)
P2(2)
..
.
Pk−1(2)
Pk(2)

P1(1)
P2(1)
..
.
Pk−1(1)
Pk(1)

...

Figure 4: The behavior of the algorithm on Pk, when k is odd. Here Pk−1(3) and Pk(3) are
pushed into the increasing stack.

There are of course several items that remain to be investigated. Some of them are the
following:

• determine the complexity of the optimal algorithm for the D
2
I machine;

• enumerate sortable permutations, both in the general case and in the restricted (left-
greedy and quasi left-greedy) cases;

• study the machine consisting of two passes through the DI machine described in [10]: are
there analogies with West 2-stack-sortable permutations?

References

[1] M. Albert, PermLab: Software for Permutation Patterns, at
http://www.cs.otago.ac.nz/staffpriv/malbert/permlab.php.

[2] M. Bona, A survey of stack sorting disciplines, Electron. J. Combin., 9(2) (2002-
2003) #A1.

[3] M. Bona, Combinatorics of Permutations, Discrete Mathematics and Its Applica-
tions, CRC Press, 2004.

[4] G. Cerbai, A. Claesson, L. Ferrari, Stack sorting with restricted stacks, available at
https://arxiv.org/abs/1907.08142.

[5] S. Kitaev, Patterns in permutations and words, Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg, 2011.

[6] D. E. Knuth, The art of computer programming, vol. 1, Fundamental Algorithms,
Addison-Wesley, Reading, Massachusetts, 1973.

[7] D. Kremer, Permutations with forbidden subsequences and a generalized Schröder
number, Discrete Math., 218 (2000) 121–130.

15

http://www.cs.otago.ac.nz/staffpriv/malbert/permlab.php

[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, at oeis.org.

[9] R. Smith, Comparing algorithms for sorting with t stacks in series, Ann. Comb.,
8 (2004) 113–121.

[10] R. Smith, Two stacks in series: a decreasing stack followed by an increasing stack,
Ann. Comb., 18 (2014) 359-363.

[11] R. E. Tarjan, Sorting using networks of queues and stacks, Journal of the ACM,
19 (1972) 341–346.

[12] J. West, Permutations with forbidden subsequences and stack-sortable permutations,
PhD thesis, Massachusetts Institute of Technology, 1990.

[13] J. West, Sorting twice through a stack, Theoret. Comput. Sci., 117 (1993) 303–
313.

16

	1 Introduction
	2 Many decreasing stacks followed by an increasing one.
	3 An optimal algorithm for the D2 I-machine
	4 Some further algorithms
	4.1 A left-greedy algorithm
	4.2 A quasi left-greedy algorithm.

	5 Final remarks

