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Abstract. A vertex whose removal in a graph G increases the number of components
of G is called a cut vertex. For all n, c, we determine the maximum number of connected
induced subgraphs in a connected graph with order n and c cut vertices, and also charac-
terise those graphs attaining the bound. Moreover, we show that the cycle has the smallest
number of connected induced subgraphs among all cut vertex-free connected graphs. The
general case c > 0 remains an open task. We also characterise the extremal graph struc-
tures given both order and number of pendant vertices, and establish the corresponding
formulas for the number of connected induced subgraphs. The ‘minimal’ graph in this
case is a tree, thus coincides with the structure that was given by Li and Wang [Further
analysis on the total number of subtrees of trees. Electron. J. Comb. 19(4), #P48, 2012].

1. Introduction and Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E(G). The graph G is said
to be connected if for all u, v ∈ V (G), there is a u − v path in G. An induced subgraph
H of G is a graph such that ∅ 6= V (H) ⊆ V (G) and E(H) consists of all those edges of
G whose endvertices both belong to V (H). The order of G is the cardinality |V (G)|, i.e.
the number of vertices of G; the girth of G is the smallest order of a cycle (if any) in G; a
pendant vertex (or leaf) of G is a vertex of degree 1 in G.

A general question in extremal/structural graph theory [2, 25, 29] is to find the minimum
or maximum value of a prescribed graph parameter in a specified class of graphs. Turán’s
theorem [29] dating back to 1941, characterises the n-vertex graphs with greatest number
of edges that contain no complete graph as a subgraph; this is probably the most classical
result in extremal graph theory. This question has been studied quite thoroughly for several
other parameters including the popular invariant number of subtrees of a tree (a connected
graph with no cycle). Substantial work has been reported in the literature on the number
of subtrees, see for example [1, 11, 15, 16, 17, 18, 26, 27, 32]. In recent works [5, 6], our
main purpose was to extend some extremal results on the number of subtrees of a tree
to more general classes of graphs such as connected graphs or unicylic graphs (connected
graphs with only one cycle). In [5], order is prescribed for the class of all connected graphs
and the class of all unicyclic graphs. Specifically, paper [5] characterises those graphs
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(or unicyclic graphs) with n vertices that minimise or maximise the number of connected
induced subgraphs, thus extending some results of Székely and Wang [27]. In [6], further
classes of graphs are considered, namely the class of all unicyclic graphs of order n and
with girth g, and the class of all unicyclic graphs of girth g, with n vertices of which p
are pendant. For each of the aforementioned classes of graphs, the extreme numbers of
connected induced subgraphs were found in [6], and the extremal graph structures were
also characterised. Extremal results on the total number of connected subgraphs (not
necessary induced subgraphs) appeared recently in [20]. In general, there is no monotone
relationship between the number of connected subgraphs and the number of connected
induced subgraphs. In other words, if graph G has more connected subgraphs than graph
H, it is not necessary true that G also contains more connected induced subgraphs than
H.

In this note, we continue our systematic investigation on the number of connected in-
duced subgraphs by considering two further classes of connected graphs. A component of
G is a maximal (with respect to the number of vertices) connected induced subgraph of G.
By G − u, we mean the graph that results from deleting vertex u and all edges incident
with u in G. A cut vertex of G is a vertex u ∈ V(G) with the property that G−u has more
components than G. In the present paper, which complements [5, 6], we concentrate on
two new classes of connected graphs for which we determine the extreme values and char-
acterise the extremal graphs with respect to the number of connected induced subgraphs.
Section 2 deals with the class of all connected graphs of order n with c cut vertices, while
in Section 3 the focus is placed on the class of all connected graphs with n vertices of which
p are pendant.

The n-vertex path and the n-vertex star are denoted by Pn and Sn, respectively. By
T1(n, p), we mean the tree obtained from the vertex disjoint graphs S1+bp/2c and S1+dp/2e
by identifying their central vertices with the two leaves of Pn−p, respectively. Set m :=
b(n− 1)/pc, l := n− 1− p ·m and denote by T2(n, p) the rooted tree whose branches are
l copies of Pm+2 and p − l copies of Pm+1. The extremal tree structures that minimise or
maximise the number of subtrees of a tree with prescribed order and number of pendant
vertices were characterised by Li and Wang [18], and Andriantiana et al. [1], respectively.
Li and Wang’s result [18, Theorem 1] states that precisely the tree T1(n, p) has the smallest
number of subtrees, while Andriantiana et al.’s result [1, Corollary 4] states that the max-
imum number of subtrees is achieved by the tree T2(n, p). We shall prove (see Theorem 17
in Section 3) that T1(n, p) is the unique graph of order n and with p pendant vertices that
minimises the number of connected induced subgraphs.

The Wiener index of a connected graph G is defined as the sum of distances between
all unordered pairs of vertices of G. The first results on this distance-based invariant date
back to 1947 and are due to the chemist H. Wiener [31] who observed its strong correlation
to the boiling point of certain chemical compounds. Subsequently, several authors have
obtained sharp bounds on the Wiener index under various restrictions. A lower bound
on the Wiener index, in terms of order and size, was given by Entringer et al. [10]. An
upper bound, depending on order, also appeared in [10] by Entringer et al., and in [8]
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by Doyle and Graver. The maximum Wiener index among all cut vertex-free graphs was
obtained by Plesńık [22]. The Wiener index has been shown to correlate well with other
chemical indices in applications [28, 30]. The tree T1(n, p) was previously to Li and Wang’s
result [18, Theorem 1], shown by Shi [24] to have the maximum Wiener index among all
n-vertex trees with p pendant vertices, while Entringer [9], and Entringer and Burns [3]
proved that T2(n, p) is the tree of order n with p pendant vertices having the smallest
Wiener index. The same is observed in our current context: for each of the graph classes
in consideration, the graphs that are found to maximise the number of connected induced
subgraphs were also recently reported in [22, 21] to minimise the Wiener index, and vice
versa.

For a connected graph G, we denote by n(G), c(G), p(G) (or simply n, c, p if there is
no danger of confusion) the order, number of cut vertices, and number of pendant vertices
of G, respectively. It is well-known that if G is a non-trivial connected graph (i.e. a
graph of order at least two), then c(G) ≤ n(G) − 2 since a leaf of a spanning tree of G
cannot be a cut vertex of G. This bound is achieved by paths only (the cut vertices of
a path are its vertices of degree 2). From here onwards, we then assume that n(G) > 2
and c(G) < n(G) − 2. Clearly, if T is a tree, then every vertex of T is either a leaf or
a cut vertex. Therefore, the identity p(T ) + c(T ) = n(T ) holds. Hence, the problem of
finding the minimum (resp. maximum) number of connected induced subgraphs of an
n-vertex tree having c cut vertices is equivalent to the problem of finding the minimum
(resp. maximum) number of connected induced subgraphs of an n-vertex tree having n− c
pendant vertices. However, as mentioned earlier, the extremal trees for the latter problem
were already characterised by Li and Wang [18], and Andriantiana et al. [1]. This is a
motivation for us to consider more general classes of connected graphs.

The complete graph of order n and the cycle of order n are denoted by Kn and Cn,
respectively. By degG(u), we mean the degree of vertex u in the graph G. We denote
by N(G) the number of connected induced subgraphs of G. By N(G)u, we mean those
connected induced subgraphs of G that contain vertex u, and N(G)u,v stands for those
connected induced subgraphs of G that contain vertices u and v. We simply write G−u−v
instead of (G− u)− v.

We shall frequently employ the following three lemmas without further reference.

Lemma 1 ([27]). We have N(Pn) = n(n + 1)/2 for all n. Moreover, if u ∈ V (Pn), then
N(Pn)u ≥ n with equality holding if and only if u is a leaf.

Lemma 2 ([5]). We have N(Cn) = n2 − n+ 1 for all n. Moreover, if u ∈ V (Cn), then we
have N(Cn)u = 1 +

(
n
2

)
.

Lemma 3. We have N(Kn) = 2n − 1 for all n. Moreover, if u ∈ V (Kn), then N(Kn)u =
2n−1 for all n.

Proof. Every induced subgraph of Kn is a complete graph. Thus N(Kn) = 2n − 1. If
u ∈ V (Kn), then N(Kn)u = N(Kn)− N(Kn−1) = 2n−1. �
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Let G be a connected graph. A block of G is a maximal (with respect to the number
of vertices) cut vertex-free connected induced subgraph of G [12]. In particular, if G is
a non-trivial connected graph, then so are all blocks of G. Moreover, every block of G is
either P2 or a cyclic graph since every tree of order three or more contains at least one cut
vertex. As a first consequence of this definition, one deduces that the intersection of the
vertex sets of any two distinct blocks of G consists of at most one vertex [13].

The proof techniques in this work build on several graph transformations, some of which
are known to have a counterpart for the Wiener index. The rest of the paper is organised as
follows: Section 2 contains extremal results on the number of connected induced subgraphs
with c cut vertices. Define G(n1; . . . ;nq) to be the graph constructed as follows: we consider
q + 1 > 3 pairwise vertex disjoint graphs Kq, Pn1 , . . . , Pnq such that V (Kq) = {v1, . . . , vq};
for every j ∈ {1, . . . , q}, we let uj be a leaf of Pnj

and identify uj with vj. We prove (see
Theorem 11) that G(s; . . . ; s; s+ 1; . . . ; s+ 1) (n− c− t copies of s followed by t copies of
s+1) is the unique connected graph of order n and with c cut vertices that has the greatest
number of connected induced subgraphs. A formula in terms of n and c is also provided
for N(G(s; . . . ; s; s+ 1; . . . ; s+ 1)). We demonstrate in Theorem 13 that the cycle Cn has
the smallest number of connected induced subgraphs among all cut vertex-free connected
graphs of order n. The general case c > 0 seems to be hard and we leave this as an open
problem. Section 3 considers the class of all connected graphs with n vertices of which p are
pendant. The ‘maximal’ graph in this case is already known; see [7]. We summarise this
result in Theorem 14 and then prove its minimisation counterpart in Theorems 17 and 24.
Specifically, we show that for p 6= 1, the tree T1(n, p) remains the unique graph of order n
and with p pendant vertices that has the smallest number of connected induced subgraphs.
For p = 0 and n > 5, we prove that the minimum number of connected induced subgraphs
is realised by the so-called double tadpole graph, and that it is unique with this property.
By the n-vertex double tadpole graph, we mean the graph constructed from the path of
order n−4 and two vertex disjoint triangles by identifying bijectively the two leaves of the
path with two other vertices, one from each triangle.

Our approach sometimes follows [21], adapted to our current setting. Throughout this
note, all graphs are simply connected. We assume n ≥ 3 and p ≤ n − 2 since the case
p = n− 1 ≥ 2 corresponds to the n-vertex star, i.e. a vertex and n− 1 leaves attached to
it.

2. Connected graphs with c cut vertices

We define H(n, c) to be the set of all connected graphs with order n and c cut vertices.

2.1. The maximisation problem. In order to state the main result of this subsection,
we need to go through some preparation. It is obvious that the complete graph Kn uniquely
realises the maximum number of connected induced subgraphs among all graphs inH(n, 0).

Let G be a non-trivial connected graph. The following properties about G are elemen-
tary; see for instance [13, 14].

(i) Every cut vertex of G belongs to at least two distinct blocks of G;



CUT AND PENDANT VERTEICES VS. NUMBER OF CONNECTED INDUCED SUBGRAPHS 5

(ii) Every two distinct blocks of G have at most one vertex in common. Whenever they
have a vertex in common, it must be a cut vertex of G.

(iii) If G has at least one cut vertex, then G also has at least one block that contains
exactly one cut vertex of G.

We shall make frequent use of these properties without further reference. We begin with a
series of important lemmas. The next two lemmas are straightforward.

Lemma 4. If G′ is obtained from a non-trivial connected graph G by adding an edge
between two nonadjacent vertices of the same block of G, then

c(G′) = c(G).

Note that the above graph transformation (Lemma 4) increases the number of edges in
a block of G while preserving the number of cut vertices of G. Our next transformation
reduces the number of blocks of G by one while preserving its number of cut vertices.

Lemma 5. Let B1, B2, B3 be three distinct blocks of a non-trivial connected graph G such
that V (B1) ∩ V (B2) ∩ V (B3) = {w}. Assume that G′ is constructed from G by adding an
edge between a neighbour v1 of w in B1 and a neighbour v2 of w in B2. Then we have

c(G) = c(G′).

Proof. Clearly, every cut vertex of G′ is a cut vertex of G by construction. Let z be a cut
vertex of G. If z /∈ V (B1) ∪ V (B2) ∪ V (B3), then all vertices in V (B1) ∪ V (B2) ∪ V (B3)
are entirely contained in only one component of G − z. Thus z is a cut vertex of G′.
Otherwise, let j ∈ {1, 2, 3} such that z ∈ V (Bj). If z ∈ {v1, v2}, then G − z and G′ − z
are isomorphic graphs by definition of G′; otherwise z /∈ {v1, v2}. If z 6= w, then v1 and v2
belong to the same component of G − z. Thus z is a cut vertex of G′. Otherwise z = w
and so V (B1 − z), V (B2 − z), V (B3 − z) are all contained entirely in distinct components
of G− z. Since an edge is only added between v1 and v2 in G to obtain G′, we deduce that
the component of G′ − z that contains B3 − z as a subgraph remains isolated in G′ − z.
Hence, z is a cut vertex of G′. �

Consider q + 1 > 3 pairwise vertex disjoint graphs Kq, Pn1 , . . . , Pnq such that 1 ≤ n1 ≤
n2 − 1 and V (Kq) = {v1, . . . , vq}. For every j ∈ {1, . . . , q}, let uj be a leaf of Pnj

and
identify uj with vj. We denote by G(n1; . . . ;nq) the resulting graph.

Lemma 6. Let H be a connected graph of order greater than two, and u, v two distinct
vertices of H such that N(H)u,v > 1 and N(H − u)v ≤ N(H − v)u. Let H(n1;n2) be the
graph obtained from H by identifying u with a leaf of Pn1, and v with a leaf of Pn2 for some
1 ≤ n1 ≤ n2 − 1. We have

N(H(n1;n2)) ≤ N(H(n1 + 1;n2 − 1)) .

The inequality is strict if and only if N(H−u)v < N(H−v)u or n1 < n2−1. In particular,
we get

N(G(n1;n2; · · · ;nq)) ≤ N(G(n1 + 1;n2 − 1;n3; · · · ;nq))

if and only if |n1 − n2| ≥ 1. Equality holds if and only if |n1 − n2| = 1.
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Proof. We categorise subgraphs of H(n1;n2) according to whether they contain an element
of {u, v} or not. Removing vertices u and v from H(n1;n2) yields the graphs (possibly
empty) Pn1−1, Pn2−1 and H − u − v. Thus N(Pn1−1) + N(Pn2−1) + N(H − u − v) counts
the number of connected induced subgraphs of H(n1;n2) that contain none of the vertices
u, v. On the other hand, n1 ·N(H − v)u + n2 ·N(H − u)v counts the number of connected
induced subgraphs of H(n1;n2) that contain u or v but not both. The number of connected
induced subgraphs of H(n1;n2) that contain both u and v is given by n1 · n2 · N(H)u,v.
Hence, we get

N(H(n1;n2)) = n1 · n2 · N(H)u,v + n1 · N(H − v)u + n2 · N(H − u)v

+ N(Pn1−1) + N(Pn2−1) + N(H − u− v) .

This implies that

N(H(n1;n2))−N(H(n1 + 1;n2 − 1)) = (n1 · n2 − (n1 + 1)(n2 − 1)) N(H)u,v

+ (n1 − (n1 + 1)) N(H − v)u + (n2 − (n2 − 1)) N(H − u)v

+

(
n1

2

)
−
(
n1 + 1

2

)
+

(
n2

2

)
−
(
n2 − 1

2

)
= (n1 − n2 + 1)(N(H)u,v − 1) + N(H − u)v − N(H − v)u ≤ 0 .

Moreover, this inequality becomes an equality if and only if N(H − u)v = N(H − v)u and
n1 = n2 − 1. This proves the lemma. �

Lemma 7. Let H(n; l) be the graph constructed from the two vertex disjoint complete
graphs Kl and Kn+1−l by identifying u ∈ V (Kl) with v ∈ V (Kn+1−l) for some n ≥ 3 and
2 ≤ l ≤ (n+ 1)/2. Then we have

N(H(n; 2)) > N(H(n; 3)) > · · · > N(H(n; b(n+ 1)/2c)) .

Proof. We have

N(H(n; l)) = N(H(n; l))u + N(H(n; l)− u)

= N(Kl)u · N(Kn+1−l)v + N(Kl−1) + N(Kn−l) = 2n−1 + 2l−1 + 2n−l − 2

which implies that

N(H(n; l))− N(H(n; l + 1)) = 2n−l−1 − 2l−1 > 0

for all 2 ≤ l ≤ (n− 1)/2. The statement of the lemma follows. �

Lemma 8. Let l ≥ 3, r ≥ 2 be two positive integers and Kl, Kr two vertex disjoint complete
graphs such that V (Kr) = {w1, . . . , wr}. Consider r − 1 vertex disjoint connected graphs
R2, . . . , Rr such that vj ∈ V (Rj) for every j ∈ {2, . . . , r} and |V (R2)| > 1. Identify w1

with a fixed vertex u ∈ V (Kl). Further, identify wj with vj for all j > 1. Call the resulting
graph G1. Fix v 6= u ∈ V (Kl) and let G2 be constructed from G1 by deleting the edges
joining v to a neighbour, except u, of v in Kl. Finally, let G3 be constructed from G2 by
making the graph induced by V (Kl−u−v)∪V (Kr−w1) in G2 a complete graph. We have

N(G3) > N(G1) and c(G1) = c(G3) .
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Proof. Denote by H the graph induced by V (G1)− V (Kl − u) in G1. We have

N(G1) = N(G1)u + N(G1 − u) = N(Kl)u · N(H)w1 + N(Kl−1) + N(H − w1)

N(G2) = N(G2)u + N(G2 − u) = 2 N(H)w1 · N(Kl − v)u + 1 + N(Kl−2) + N(H − w1) .

In particular, we get N(G1) − N(G2) = 2l−2 − 1. Clearly, G2 is a subgraph of G3 by
construction. Let S1 ⊆ V (Kl − u − v) and S2 ⊆ V (Kr − w1) be two nonempty subsets
of vertices of V (G2) = V (G3). These choices of S1 and S2 are possible since l ≥ 3 and
r ≥ 2. The graph induced by S1 ∪ S2 in G2 is disconnected while the graph induced by
S1 ∪ S2 in G3 is connected. The total number of these connected induced subgraphs in G3

is given by (2l−2 − 1)(2r−1 − 1). Let z be a vertex adjacent to v2 in R2. Vertex z exists
since |V (R2)| > 1. The graph induced by S1 ∪ {v2, z} in G3 is connected and different
from all the subgraphs induced by S1 ∪S2 as z /∈ S1 ∪S2. Moreover, S1 ∪{v2, z} induces a
disconnected graph in G2. The total number of such connected induced subgraphs in G3

is 2l−2 − 1. Therefore, we deduce that

N(G3)− N(G2) ≥ (2l−2 − 1)2r−1 ≥ 2(2l−2 − 1) .

It follows that N(G3)− N(G1) ≥ 2l−2 − 1 > 0.
Now since v is a leaf of G3 and u is adjacent to v in G3, we conclude that u remains a

cut-vertex of G3 while v remains a non cut-vertex of G3. Moreover, all other vertices of G1

preserve their status (cut vertex or not) in G3. This proves that c(G1) = c(G3), completing
the proof. �

Next, we describe another graph transformation that will also be useful for our analysis.
It is a result that is similar in nature to but different from Lemma 8. It does, however,
complement Lemma 8.

Lemma 9. Let Kl, Kr be two complete graphs with (disjoint) vertex sets

V (Kl) = {u1, . . . , ul}, V (Kr) = {w1, . . . , wr}

for some l, r ≥ 3. Consider l+r−1 vertex disjoint connected graphs M,L2, . . . , Ll, R2, . . . , Rr

such that xj ∈ V (Lj) and zj ∈ V (Rj) for all j 6= 1. Let v1, v2 be two distinct vertices of
M . Identify u1 with v1, and w1 with v2. Further, identify uj with xj, and wj with zj for
all j 6= 1. Denote by G1 the resulting graph. Let G2 be obtained from G1 by removing the
edges joining u1 to a neighbour, except u2, of u1 in Kl; see Figure 1. Let w′ be a fixed
neighbour of v1 in M such that w′ lies on a shortest v1− v2 path P in G2. A new graph G3

is constructed from G2 by adding an edge between w′ and all vertices u3, . . . , ul. We have

c(G1) = c(G3) .

Furthermore, let L be the graph induced by {u1} ∪ V (L2)∪ · · · ∪ V (Ll) in G1, and R the
graph induced by {w1}∪V (R2)∪ · · · ∪V (Rr) in G1. Assume that N(R)w1 ≥ N(L)u1. Then
we have

N(G3) > N(G1) .
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M Kru1 v1 v2 w1

L2

L3

Ll

R2
R3

Rr

u2

u3

ul

w2
w3

wr

G2

Kl−1

Kl M Kr
u1 v1 v2 w1

L2
L3

Ll

R2
R3

Rr
u2u3

ul

w2
w3

wr

G1

Figure 1. The graphs G1 and G2 constructed in Lemma 9.

Proof. It is clear by construction that u1 ∈ V (G1) remains a cut vertex of G2. This is
because u1 is adjacent to u2, and u2 is adjacent to no vertex of G2 outside V (L2)∪{u1} in
G2. Thus, all cut (resp. non cut) vertices of G1 remain cut (resp. non cut) vertices of G2.
Therefore, we have c(G1) = c(G2). On the other hand, since edges are only added between
w′ and the vertices u3, . . . , ul in G2 to obtain G3, it is clear that the following hold:

• All non cut vertices of G2 remain non cut vertices of G3;
• All cut vertices of G2 that do not belong to V (M)−{v1, v2} remain cut vertices of
G3.

Let θ be a cut vertex of G2 such that θ ∈ V (M) − {v1, v2}. We show that θ is also a cut
vertex of G3. If θ = w′, then G3 − θ and G2 − θ are isomorphic graphs. So assume that
θ 6= w′. Then w′ must belong to the component, say C of G2 − θ that contains v1, since
otherwise, every v1 − w′ path must pass through θ. In particular, we get θ ∈ {v1, w′} as
v1w

′ is an edge of G2: this is a contradiction to the choice of θ. Hence, w′ ∈ V (C).
Note that C also contains all of u3, . . . , ul since θ ∈ V (M)−{v1, v2} and C is a component

of G2−θ that contains u1(= v1). Since w′ ∈ V (C), we then deduce that all other (different
from C) components of G2− θ remain components of G3− θ. This proves that θ is indeed
a cut vertex of G3. In particular, we get c(G3) = c(G2) = c(G1).

Let x1 ∈ {u1, v1} and denote by L1 the graph induced by V (M)∪V (R) in G1. Then the
vertex set of G1 can be partitioned into V (L1), . . . , V (Ll). Thus, for a subset S ⊆ V (G1)
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containing a vertex of V (Li) and a vertex of V (Lj), where i 6= j to induce a connected
graph in G1, it is necessary to have xi, xj ∈ S. Therefore, we get

N(G1) =
l∑

j=1

N(Lj − xj) +
l∏

j=1

(1 + N(Lj)xj
)− 1

as a formula for the number of connected induced subgraphs of G1. Likewise, denote by
L′ the graph induced by V (L1)∪ V (L2) in G2. The set V (G2) can also be partitioned into
V (L′), V (L3), . . . , V (Ll). Thus, we get

N(G2) = N(L′ − x1) +
l∑

j=3

N(Lj − xj) + (1 + N(L′)x1)
l∏

j=3

(1 + N(Lj)xj
)− 1

in the same way as for G1. On the other hand, we have

N(L′ − x1) = N(L2) + N(L1 − x1) and N(L′)x1 = N(L1)x1(1 + N(L2)x2) .

Therefore, we obtain

N(G1)− N(G2) = N(L2)x2

( l∏
j=3

(1 + N(Lj)xj
)− 1

)
after simplification. By construction, G3 contains G2 as a subgraph. We now find a lower
bound on N(G3)−N(G2) by solely counting certain subsets of V (G3) = V (G2) that induce
a connected graph in G3 and a disconnected graph in G2. Let S1 6= ∅ be a subset of
V (L3) ∪ · · · ∪ V (Ll) such that S1 contains xj whenever S1 contains an element of V (Lj).
Recall that P is a fixed shortest v1 − v2 path in G2 that contains w′. Denote by R′ the
graph induced by V (R)∪ V (P − v1) in G2. Let S2 6= ∅ a subset of V (R′) that contains w′.
Since w′ 6= v1 is adjacent to all of x3, . . . , xl in G3, we deduce that S1∪S2 always induces a
connected graph in G3. However, the graph induced by S1∪S2 in G2 is always disconnected
as there is no edge from an element of S1 to an element of S2 in G2. Therefore, we obtain
a total of

N(R′)w′

( l∏
j=3

(1 + N(Lj)xj
)− 1

)
such sets S1 ∪ S2 inducing a connected graph in G3 and a disconnected graph in G2.
Since N(L)u1 > 1 + N(L2)u2 , we use the trivial inequality N(R′)w′ ≥ N(R)w1 alongside the
assumption N(R)w1 ≥ N(L)u1 to derive that

N(G3)− N(G2) ≥ N(R)w1

( l∏
j=3

(1 + N(Lj)xj
)− 1

)
> (1 + N(L2)u2)

( l∏
j=3

(1 + N(Lj)xj
)− 1

)
.

This implies that

N(G3)− N(G1) >
l∏

j=3

(1 + N(Lj)xj
)− 1 ≥ N(L3)x3 > 0 ,
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completing the proof. �

It is required in Lemma 9 that |V (M)| > 1. Lemma 10 below covers the special case
where |V (M)| = 1.

Lemma 10. Let Kl, Kr be two complete graphs with (disjoint) vertex sets

V (Kl) = {u1, . . . , ul}, V (Kr) = {w1, . . . , wr}

for some l, r ≥ 3. Consider l+ r−2 vertex disjoint connected graphs L2, . . . , Ll, R2, . . . , Rr

such that xj ∈ V (Lj) and zj ∈ V (Rj) for all j ∈ {2, . . . , r}. Identify u1 with w1, uj with
xj, and wj with zj for all j 6= 1. Denote by G1 the resulting graph. Let G2 be obtained
from G1 by removing the edges joining u1 to a neighbour, except u2, of u1 in Kl. Let G3 be
constructed from G2 by making the graph induced by the set V (Kl− u1− u2)∪V (Kr−w1)
a complete graph. We have c(G1) = c(G3). Furthermore, assume that N(R2)z2 ≥ N(L2)x2.
Then we have

N(G3) > N(G1) .

Proof. The proof is done in analogy to Lemma 9 with the following simple modification.
Let R be the graph induced by {w1}∪V (R2)∪ · · · ∪V (Rr) in G1. Denote by R′ the graph
induced by V (R) ∪ V (L2) in G2. We have

N(G1) = N(R− w1) +
l∑

j=2

N(Lj − xj) + (1 + N(R)w1)
l∏

j=2

(1 + N(Lj)xj
)− 1 ,

N(G2) = N(R′ − w1) +
l∑

j=3

N(Lj − xj) + (1 + N(R′)w1)
l∏

j=3

(1 + N(Lj)xj
)− 1 ,

and

N(R′ − w1) = N(L2) + N(R− w1), N(R′)w1 = N(R)w1(1 + N(L2)x2) .

It follows that

N(G1)− N(G2) = N(L2)x2

( l∏
j=3

(1 + N(Lj)xj
)− 1

)
.

Clearly, every subgraph of G2 is also a subgraph of G3. Let S1 6= ∅ be a subset of
V (L3) ∪ · · · ∪ V (Ll) such that S1 contains xj whenever S1 contains an element of V (Lj).
Likewise, let S2 6= ∅ be a subset of V (R−w1) such that S2 contains zj whenever S2 contains
an element of V (Rj). The set S1 ∪ S2 always induces a disconnected graph in G2, and a
connected graph in G3. Therefore, we get

N(G3)− N(G2) ≥
( r∏

j=2

(1 + N(Rj)zj)− 1
)( l∏

j=3

(1 + N(Lj)xj
)− 1

)
.



CUT AND PENDANT VERTEICES VS. NUMBER OF CONNECTED INDUCED SUBGRAPHS 11

On the other hand, we have
r∏

j=2

(1 + N(Rj)zj)− 1 ≥ (1 + N(R2)z2)(1 + N(R3)z3)− 1 ≥ 1 + 2 N(R2)z2 .

Hence, using the assumption N(R2)z2 ≥ N(L2)x2 , we deduce that

N(G3)− N(G2) ≥ (1 + 2 N(L2)x2)
( l∏

j=3

(1 + N(Lj)xj
)− 1

)
,

which implies that N(G3)− N(G1) > 0. This completes the proof of the lemma. �

We are now ready to formulate a characterisation of all graphs maximising the number
of connected induced subgraphs in the set H(n, c). At this point, it can be recalled that
G(n1; . . . ;nq) is the graph constructed as follows: we consider q + 1 > 3 pairwise vertex
disjoint graphs Kq, Pn1 , . . . , Pnq such that n1 ≤ n2, n2 > 1 and V (Kq) = {v1, . . . , vq}. For
every j ∈ {1, . . . , q}, we let uj be a leaf of Pnj

and identify uj with vj.

Theorem 11. Let n > 1 and 0 ≤ c ≤ n − 2. Denote by t the residue of n modulo n − c,
and set s = bn/(n− c)c. We have

N(H) ≤ (n− c− t)
(
s

2

)
+ t

(
s+ 1

2

)
+ (s+ 1)n−c−t(s+ 2)t − 1

for all H ∈ H(n, c). Equality holds if and only if H is isomorphic to the graph G(s; . . . ; s; s+
1; . . . ; s+ 1) (n− c− t copies of s followed by t copies of s+ 1).

Proof. First off, note that if B is a block of a non-trivial connected graph G, then B is
necessarily ‘surrounded’ by |V (B)| (possibly trivial) connected induced subgraphs of G
whose vertex sets are pairwise disjoint. In other words, the removal of all edges of B in G
must leave |V (B)| connected graphs.

Let H ∈ H(n, c) be a graph with order n and c cut vertices that maximises the number of
connected induced subgraphs. We know, by repeatedly applying Lemma 4, that all blocks
of H are non-trivial complete graphs. We are going to prove that all blocks of H, except
possibly only one, are in fact of order 2. The statement is obvious for c = 0 since H = Kn

in this case. So we assume that c ≥ 1. By repeatedly invoking Lemma 5, we can further
assume that every cut vertex of G belongs to precisely two distinct blocks of H. If c = 1,
then H has precisely two blocks, say Kl and Kn+1−l for some 2 ≤ l ≤ (n + 1)/2. Thus,
in this case, the statement holds true by Lemma 7. So we assume that c ≥ 2. Consider a
block Kl of H such that l ≥ 3. We consider two separate cases depending on whether Kl

contains one or more cut vertices of H.
Assume that Kl contains precisely one cut vertex, say w1 of H. Let w2 6= w1 be another

cut vertex of H such that both w1 and w2 belong the the same block Kr of H. Thus w2 also
belongs to a further block B of H different from Kr. This kind of description for H yields
exactly the graph G1 constructed in Lemma 8, where the graph R2 in Lemma 8 contains B
as a subgraph and w2 ∈ V (R2). Note that the graph transformation described in Lemma 8
preserves the number of cut vertices when passing from G1 to G3 but creates a new block
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of order 2 in G3. It is shown in Lemma 8 that N(G3) > N(G1) = N(H). However, this is
impossible from the choice of H. Hence, we must have l = 2.

Assume that Kl contains two or more cut vertices, say u1, u2 of H. If there is no
other block that contains two or more cut vertices of H, then we are done immediately
by Lemma 8. This is because Lemma 8 states that in a ‘maximal’ graph, all blocks that
contain only one cut vertex must be of order 2.

Otherwise, let Kr 6= Kl be another block containing two or more cut vertices, say w1, w2

of H. We can assume that r ≥ 3 since otherwise, there is nothing more to prove. We
observe two possible situations:

Case 1: V (Kl) ∩ V (Kr) = ∅. In this case, there exists a non-trivial connected graph M
that contains both u1, w1 and no other vertex of V (Kl) ∪ V (Kr). In particular,
H can be described in the same way as the graph G1 defined in Lemma 9 (see
Figure 1), where L and R are the two components of H − V (M − u1 − w1) that
contain u1 and w1, respectively. Without loss of generality, say N(R)w1 ≥ N(L)u1 .
Then Lemma 9 shows the existence of another graph G3 with order n and c cut
vertices satisfying N(G3) > N(G1) = N(H), which is indeed a contradiction.

Case 2: V (Kl) ∩ V (Kr) 6= ∅. Since Kl and Kr are both blocks of H, they can only have
one common vertex, which is therefore a cut vertex of H. Thus, without loss of
generality, say V (Kl) ∩ V (Kr) = {u1 = w1}. The graph H can then be given the
same description as the graph G1 defined in Lemma 10, where x2 = u2 ∈ V (L2)
and z2 = w2 ∈ V (R2). Without loss of generality, say N(R2)z2 ≥ N(L2)x2 . Then
Lemma 10 applied to H = G1, which contradicts the choice of H.

Summing up, we have proved that all blocks of H, except possibly only one, are of order
2. Moreover, every cut vertex of H belongs to precisely two distinct blocks of H. This
then makes it simple to derive the full structure of H. It is easy to see that all blocks of H
are of order 2 if and only if c = n − 2 (H is a path in this case). Assume that c ≤ n − 3
and let Kq be the unique block of H such that q > 2. One immediately deduces that H
consists of Kq to which q paths (possibly trivial) Pn1 , . . . , Pnq are attached to the vertices
u1, . . . , uq of Kq, respectively, by identifying uj with a leaf of Pnj

for all j. Therefore, we
have (n1 − 1) + · · · + (nq − 1) = c and n1 + · · · + nq = n, i.e. q = n− c. To complete the
proof of the theorem, we need to find the values of all nj. Lemma 6 yields that n1, . . . , nq

must all be as equal as possible, i.e.

n1 = · · · = nn−c−t = bn/(n− c)c = s and nn−c−t+1 = · · · = nn−c = s+ 1 ,

where t is the residue of n modulo n− c. Hence, we get

N(H) = (n− c− t)
(
s

2

)
+ t

(
s+ 1

2

)
+ (s+ 1)n−c−t(s+ 2)t − 1

as a special case in the proof of Lemma 6. This completes the proof of the theorem. �

2.2. The minimisation problem. In this subsection, we consider the special case c = 0
of the problem of finding those graphs that minimise the number of connected induced
subgraphs among all graphs in the set H(n, c).
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Let n ≥ 4 and G be a graph consisting of the cycle Cn−1 together with a vertex z /∈
V (Cn−1) which is adjacent to precisely two vertices x, v ∈ V (Cn−1). In the sequel, we shall
refer to every such graph as special.

Lemma 12. If G is a special graph of order n, then we have N(G) > n2− n+ 1 = N(Cn).

Proof. Let G be a special graph of order n. A simple lower bound on N(G) can be obtained
as follows: a z-containing connected induced subgraph of G is either the single vertex z,
or consists of z and at least a neighbour of z in G. Thus, we get

N(G)z = 1 + N(G− v)x,z + N(G− x)v,z + N(G)x,v,z .

Since G− z is a cycle and G− v − z as well as G− x− z are paths, we deduce that

N(G)z ≥ 1 + (n− 2) + (n− 2) + 2 = 2n− 1

from which the inequality

N(G) = N(G− z) + N(G)z ≥ (n− 1)(n− 2) + 1 + 2n− 1 > n2 − n+ 1

follows. �

A cut vertex-free connected graph with at least three vertices is also referred to as a
2-connected graph.

Theorem 13. For all n ≥ 3, the cycle Cn has the smallest number of connected induced
subgraphs among all graphs in the set H(n, 0).

Proof. Throughout the proof, it is assumed that n ≥ 3. Let G ∈ H(n, 0) be a graph of order
n that minimises the number of connected induced subgraphs. Then G must necessary be
minimally 2-connected. In other words, G must have the property that removing an edge
in G destroys 2-connectivity. Moreover, in view of Lemma 12, G cannot be a special graph.
Suppose that G is not a cycle. Clearly, we have n ≥ 5. Let us prove that we can always
identify n2 + n+ 1 > n2 − n+ 1 = N(Cn) connected induced subgraphs in G.

Let u, v be two non-adjacent vertices of G. By the vertex version of Menger’s theo-
rem [19], there must exist two internally vertex disjoint paths between u and v. Among
all such u− v paths, we choose two of them that are of smallest lengths. The vertex sets
of these chosen paths must necessarily induce paths in G since otherwise, the property of
these paths being shortest is violated. Let m denote the number of edges of G. Then the
number of unordered pairs of non-adjacent vertices of G is

(
n
2

)
−m, and therefore G has

at least

2
((n

2

)
−m

)
= n2 − n− 2m

connected induced subgraphs, each of them is a path of order three or more.
Let x, y be two adjacent vertices of G. We claim that the graph G− x− y is connected

and moreover it is not a path. For the claim, suppose that G − x − y is not connected
and let G1, G2 be two (connected) components of G − x − y. Both x and y must have a
neighbour in G1 and G2 because neither x nor y is a cut vertex of G. This implies that G
contains a cycle that passes through x, y and never uses the edge xy. This cycle can be
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obtained as follows: let x1 (resp. x2) be a neighbour of x in G1 (resp. G2), and y1 (resp.
y2) be a neighbour of y in G1 (resp. G2). Then this cycle is made of xx1, a shortest x1−y1
path in G1, y1y, yy2, a shortest y2 − x2 path in G2, and x2x, in this order. However, by
a result of Dirac [4, Theorem 3], this cannot happen in a minimally 2-connected graph.
Hence, G− x− y is connected. It remains to show that G− x− y is not a path. Suppose
to the contrary that G − x − y is a path and let u1, u2 be the endvertices of G − x − y.
Since G is cut vertex-free, both u1 and u2 must have x or y as a neighbour. In a minimally
2-connected graph, this gives rise to essentially two possibilities (up to exchanging the role
of x and y, or u1 and u2) for G: either G itself is Cn, or G consists of a cycle Cn−1 together
with a vertex z /∈ V (Cn−1) which is adjacent to precisely two vertices of Cn−1. The former
situation is avoided by assumption while the latter defines G as a special graph. Hence,
G− x− y is not a path.

Let x ∈ V (G). We further claim that the connected graph G− x is not a path. To see
this, note that if G− x was a path, then its two endvertices would both be adjacent to x
since G is 2-connected. In particular G would be a cycle since G is minimally 2-connected.
Hence, G− x is not a path.

Now we note that the following are all distinct connected induced subgraphs of G and
none of them is a path of order at least three:

• all single vertices of G;
• all 2-vertex connected subgraphs of G;
• all subgraphs obtained by removing two adjacent vertices of G;
• all subgraphs obtained by removing one vertex of G;
• the whole graph G.

By combining all the above cases, we obtain n+m+m+ n+ 1 = 2n+ 2m+ 1 additional
connected induced subgraphs of G that are not paths of order three or more. Together
with the induced paths enumerated earlier, we conclude that

N(G) ≥ n2 − n− 2m+ 2n+ 2m+ 1 = n2 + n+ 1 > n2 − n+ 1 = N(Cn) .

This completes the proof of the theorem. �

We observe that all blocks of a graph that minimises the number of connected induced
subgraphs in the set H(n, c) must be minimally 2-connected. However, there are usually
many minimally 2-connected graphs having the same order n. For n ≥ 3, the sequence
starts

1, 1, 2, 3, 6, 12, 28, 68, 184, 526, 1602, 5075, 16711, 56428, 195003, 685649, . . . ,

see A003317 in [23]. It is then natural to formulate this intriguing problem for further
investigation:

Problem 1. Find a constructive characterisation of those graphs with order n and c > 0
cut vertices that have the smallest number of connected induced subgraphs.

A003317
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3. Connected graphs with p pendant vertices

We define G(n, p) to be the set of all connected graphs with n vertices of which p are
pendant. In [7] Andriantiana and the author of the present paper investigated inequalities
which relate the number of connected induced subgraphs of a graph to that of its comple-
ment. They also arrived at the following result which settles the extremal graph structure
for the maximum number of connected induced subgraphs among all graphs in G(n, p).

Theorem 14 ([7]). Let G ∈ G(n, p) with n ≥ 5 and 0 ≤ p ≤ n− 2.

• If p < n− 2, then we have

N(G) ≤ 2n−1 + 2n−p−1 + p− 1 .

Equality happens if and only if G can be obtained by identifying one vertex of Kn−p
with the central vertex of Sp+1.
• If p = n− 2, then we have

N(G) ≤ n+ 3 · 2n−3 .

Equality happens if and only if G can be obtained by inserting one vertex into an
edge of Sn−1.

In order to obtain the minimisation counterpart of Theorem 14, we need to state two
intermediate results.

3.1. The case p 6= 0. Sharp bounds on the number of connected induced subgraphs in
terms of order were obtained in [5]. One of the results in [5] will be needed for our purpose.

Theorem 15 ([5]–Theorem 9). If G is a unicylic graph of order n, then

N(G) ≥ (n2 + 3n− 4)/2.

The bound is attained if and only if G can be obtained by identifying a vertex of K3 with a
leaf of Pn−2.

At this stage, recall that T1(n, p) is the tree obtained from the vertex disjoint graphs
S1+bp/2c and S1+dp/2e by identifying their central vertices with the two leaves of Pn−p,
respectively. We recall Li and Wang’s result as stated in the introduction.

Theorem 16 ([18]–Theorem 1). If n ≥ 4 and 2 ≤ p ≤ n − 2, then T1(n, p) is the unique
tree with order n and p leaves that attains the minimum number of subtrees.

Our next theorem, which is essentially extracted from Theorem 16, reads as follows:

Theorem 17. Let G ∈ G(n, p) with n ≥ 4 and 1 ≤ p ≤ n− 2.

• If p = 1, then we have

N(G) ≥ (n2 + 3n− 4)/2 .

Equality happens if and only if G can be obtained by identifying a vertex of K3 with
a leaf of Pn−2.
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• If p 6= 1, then we have

N(G) ≥ 2p + (n− p− 1)(2bp/2c + 2dp/2e) + p+ (n− p− 1)(n− p− 2)/2 .

Equality happens if and only if G is isomorphic to T1(n, p).

Proof. Suppose that p = 1. Then G is not a tree. One can then remove edges (possibly
none) from G to get a new connected graph G′ of order n that contains exactly one cycle.
It follows from Theorem 15 that N(G) ≥ N(G′) ≥ (n2 + 3n− 4)/2. Moreover, the unique
graph attaining this bound also has exactly one pendant vertex as it can be obtained by
identifying a vertex of K3 with a leaf of Pn−2. Thus the result follows in this case.

Now suppose that p 6= 1. Let us first derive a formula for N(T1(n, p)). Denote by u and v
the two vertices of T1(n, p) such that degT1(n,p)(u) = 1+bp/2c and degT1(n,p)(v) = 1+dp/2e.
We have

N(T1(n, p)) = N(T1(n, p))u,v + N(T1(n, p)− v)u + N(T1(n, p)− u)v + N(T1(n, p)− u− v)

= 2bp/2c+dp/2e + (n− p− 1)2bp/2c + (n− p− 1)2dp/2e

+
(
bp/2c+ (n− p− 1)(n− p− 2)/2 + dp/2e

)
.

We claim that N(T1(n, p)) is an increasing function in p. Indeed, we have

N(T1(n, p)) = 2p + (n− p− 1)(2p/2 + 2p/2) + p+

(
n− p− 1

2

)
,

N(T1(n, p+ 1)) = 2p+1 + (n− p− 2)(2p/2 + 2p/2+1) + p+ 1 +

(
n− p− 2

2

)
if p is even, and

N(T1(n, p)) = 2p + (n− p− 1)(2(p−1)/2 + 2(p+1)/2) + p+

(
n− p− 1

2

)
,

N(T1(n, p+ 1)) = 2p+1 + (n− p− 2)(2(p+1)/2 + 2(p+1)/2) + p+ 1 +

(
n− p− 2

2

)
if p is odd. In particular, we get

N(T1(n, p+ 1))− N(T1(n, p)) = 2p − 1 + (n− p− 4)(2p/2 − 1) ≥ 1 + 2p − 2p/2+1 > 0

if p is even, and

N(T1(n, p+ 1))− N(T1(n, p)) = 2p − 2 + (n− p− 5)(2(p−1)/2 − 1)

≥ 1 + 2p − 2(p−1)/2 − 2(p+1)/2 > 0

if p is odd. Let T be a spanning tree of G and note that T has at least p leaves. Since
N(T1(n, p)) is an increasing function in p, we deduce from Theorem 16 that

N(G) ≥ N(T ) ≥ N(T1(n, p(T ))) > N(T1(n, p))

if p(T ) 6= p. If p(T ) = p, then we have

N(G) ≥ N(T ) ≥ N(T1(n, p)) ,
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and the inequality becomes an equality if and only if G is isomorphic to the tree T1(n, p).
This completes the proof of the theorem. �

3.2. The case p = 0. Let l, n, r be three positive integers such that l, r ≥ 3 and n ≥ l+ r.
We define the double tadpole graphDn(l; r) as the graph constructed from the three pairwise
vertex disjoint graphs Cl, Cr, Pn+2−l−r by taking u ∈ V (Cl), v ∈ V (Cr) and identifying u
with one leaf of Pn+2−l−r and v with the other leaf of Pn+2−l−r.

For n > 5, we shall prove that the double tadpole graph Dn(3; 3) has the smallest number
of connected induced subgraphs among all graphs in the set G(n, 0), and that Dn(3; 3) is
unique with this property.

We first give some important preliminaries, then formally state and prove our result.
From here onwards, we shall simply write Dn instead of Dn(3; 3).

Proposition 18. For the double tadpole graph Dn(l; r), we have

N(Dn(3; 3)) = N(Dn) =
(n− 1)(n+ 6)

2
.

Furthermore, if (l, r) 6= (3, 3), then we have

N(Dn(l; r)) > N(Dn) .

Proof. Let u, v ∈ V (Dn(l; r)) be the two vertices of Dn(l; r) whose degree is 3. We use our
standard decomposition with respect to u, v:

N(Dn(l; r)) = N(Dn(l; r))u,v + N(Dn(l; r)− v)u + N(Dn(l; r)− u)v + N(Dn(l; r)− u− v)

= N(Cl)u · N(Cr)v + (n+ 1− l − r)(N(Cl)u + N(Cr)v)

+ N(Pl−1) + N(Pn−l−r) + N(Pr−1)

=
(
1 +

(
l

2

))
N(Cr)v + (n+ 1− l − r)

(
1 +

(
l

2

)
+ N(Cr)v

)
+

(
l

2

)
+

(
n+ 1− l − r

2

)
+ N(Pr−1) .

Assume that r ≥ l ≥ 4. Taking the difference N(Dn(l; r))− N(Dn(l − 1; r)), we get

N(Dn(l; r))− N(Dn(l − 1; r)) = (l − 1) N(Cr)v + (l − 1)(n+ 1− l − r)

−
(
1 +

(
l − 1

2

)
+ N(Cr)v

)
+ (l − 1)− (n+ 1− l − r)

= (l − 2) N(Cr)v − N(Cl)u + (l − 2)(n+ 1− l − r) + 2(l − 1) > 0

since N(Cr)v ≥ N(Cl)u and n ≥ l + r. It follows from this inequality that the minimum of
N(Dn(l; r)), given r, is attained when l = 3. We have

N(Dn(3; 3)) = N(Dn) = 22 + 8(n− 5) +

(
n− 5

2

)
=

(n− 1)(n+ 6)

2
.
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Assume that l = 3 and r ≥ 4. Taking the difference N(Dn(3; r))− N(Dn), we get

N(Dn(3; r))− N(Dn) = 4 · N(Cr)v + (n− r − 2)
(
4 + N(Cr)v

)
+ 3 +

(
n− r − 2

2

)
+

(
r

2

)
− (n− 1)(n+ 6)

2

=
(r − 3)(−r2 + (n+ 2)r − 2)

2
> 0

after a simple manipulation (recall that n ≥ 3 + r). It follows from this inequality that the
minimum of N(Dn(3; r)) is attained when r = 3. �

Lemma 19. If G is a graph constructed from two vertex disjoint cycles Cl and Cn−l+1 by
identifying u ∈ V (Cl) with v ∈ V (Cn−l+1), then we have

N(G) > N(Cn) > N(Dn)

for all n > 5.

Proof. Simply note that

N(G) = N(Cl)u · N(Cn−l+1)v + N(Pl−1) + N(Pn−l) ,

and that the difference N(G)− N(Cn) is given by

N(G)− N(Cn) =
(
1 +

(
l

2

))(
1 +

(
n− l + 1

2

))
+

(
l

2

)
+

(
n− l + 1

2

)
− (n2 − n+ 1)

=
(l − 1)(l − n)(l2 − (n+ 1)l + 8)

4
> 0

as 3 ≤ l ≤ n− 2. Likewise, the difference N(Cn)− N(Dn) is given by

N(Cn)− N(Dn) = (n2 − n+ 1)− (n− 1)(n+ 6)

2

=
n2 − 7n+ 8

2
> 0 .

�

Lemma 20. Let L,R be two fixed non-trivial vertex disjoint connected graphs such that
u ∈ V (L) and v ∈ V (R). Consider two vertex disjoint paths Pk, Pq for some q ≥ 2. Identify
u with both a leaf of Pk as well as a leaf of Pq; further, identify v with the other leaf of Pq.
Denote by H(k; q) the resulting graph. If k > 1, then we have

N(H(k; q)) > N(H(1; q + k − 1)) .

Proof. We use our standard decomposition again:

N(H(k; q)) = N(H(k; q))u,v + N(H(k; q)− v)u + N(H(k; q)− u)v + N(H(k; q)− u− v)

= k · N(L)u · N(R)v + (q − 1)(k · N(L)u + N(R)v)

+ N(L− u) +

(
k

2

)
+

(
q − 1

2

)
+ N(R− v) ,
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and

N(H(1; q + k − 1)) = N(L)u · N(R)v + (q + k − 2)(N(L)u + N(R)v)

+ N(L− u) +

(
q + k − 2

2

)
+ N(R− v) .

It follows that

N(H(k; q))− N(H(1; q + k − 1)) = (k − 1)(N(L)u − 1) N(R)v

+ (k − 1)(q − 2) N(L)u +

(
k

2

)
+

(
q − 1

2

)
−
(
q + k − 2

2

)
.

On the other hand, we have

2(k − 1)(q − 2) +

(
k

2

)
+

(
q − 1

2

)
−
(
q + k − 2

2

)
= (k − 1)(q − 2) ≥ 0 .

Therefore, using the assumption that N(L)u ≥ 2, we derive that

N(H(k; q))− N(H(1; q + k − 1)) ≥ (k − 1)(N(L)u − 1) N(R)v + (k − 1)(q − 2) > 0

provided that k 6= 1. This completes the proof. �

Our next lemma captures the special case q = 1 that is missing in Lemma 20.

Lemma 21. Let L,R be two fixed non-trivial vertex disjoint connected graphs such that
u ∈ V (L) and v ∈ V (R). Consider the path Pk, k ≥ 2 and let w be a leaf of Pk. Identify w
with both u and v. Denote by H(k; 1) the resulting graph. Then we have

N(H(k; 1)) > N(H(1; k)) ,

where H(1; k) is the graph described in Lemma 20.

Proof. Simply note that

N(H(k; 1)) = k · N(L)u · N(R)v + N(L− u) +

(
k

2

)
+ N(R− v) ,

and that

N(H(1; k)) = N(L)u · N(R)v + (k − 1)(N(L)u + N(R)v)

+ N(L− u) +

(
k − 1

2

)
+ N(R− v) .

In particular, we get

N(H(k; 1))− N(H(1; k)) = (k − 1)(N(L)u − 1)(N(R)v − 1) > 0 .

�

The following lemma is a variant of the combination of Lemmas 20 and 21.

Lemma 22. Let L,R be two fixed non-trivial vertex disjoint connected graphs such that
u,w ∈ V (L), u 6= w and v ∈ V (R). Consider three vertex disjoint paths Pk, Pq, Pq+k−1 for
some k > 1. Let G1, G2 be the two graphs constructed as follows:
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• If q > 1, then identify w with a leaf of Pk, u with a leaf of Pq, and v with the other
leaf of Pq to obtain G1. If q = 1, then identify w with a leaf of Pk, and u with v to
obtain G1.
• Identify u with a leaf of Pq+k−1, and v with the other leaf of Pq+k−1 to obtain G2.

We have

|V (G1)| = |V (G2)| and N(G1) > N(G2) .

Proof. Denote by J the subgraph of G1 that consists of L and a leaf of Pk attached to L
at vertex w. Assume that q > 1. Then we have

N(G1) = N(G1)u,v + N(G1 − v)u + N(G1 − u)v + N(G1 − u− v)

= N(J)u · N(R)v + (q − 1)(N(J)u + N(R)v)

+ N(J − u) +

(
q − 1

2

)
+ N(R− v) ,

and

N(G2) = N(L)u · N(R)v + (q + k − 2)(N(L)u + N(R)v)

+ N(L− u) +

(
q + k − 2

2

)
+ N(R− v) .

In particular, we get

N(G1)− N(G2) = N(R)v(N(J)u − N(L)u + 1− k) + (q − 1) N(J)u − (q + k − 2) N(L)u

+ N(J − u)− N(L− u) +

(
q − 1

2

)
−
(
q + k − 2

2

)
.

On the other hand, we have

N(J)u ≥ N(L)u + k · N(L)u,w ≥ N(L)u + k

and

N(J − u) ≥ N(L− u) +

(
k

2

)
+ k · N(L− u)w ≥ N(L− u) +

(
k

2

)
+ k .

This implies that

N(G1)− N(G2) ≥ N(R)v + (q − 1)(k + N(L)u)− (q + k − 2) N(L)u + k

+

(
q − 1

2

)
+

(
k

2

)
−
(
q + k − 2

2

)
= N(R)v + k · q + (k − 1)(q − 2) N(L)u

+

(
q − 1

2

)
+

(
k

2

)
−
(
q + k − 2

2

)
.
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It follows from the identity

2(k − 1)(q − 2) +

(
k

2

)
+

(
q − 1

2

)
−
(
q + k − 2

2

)
= (k − 1)(q − 2)

that

N(G1)− N(G2) ≥ N(R)v + k · q + (k − 1)(q − 2) > 0 .

Assume that q = 1. Then we have

N(G1) = N(G1)u + N(G1 − u) = N(J)u · N(R)v + N(J − u) + N(R− v)

≥ N(R)v(N(L)u + k) + N(L− u) +

(
k

2

)
+ k + N(R− v) ,

and

N(G2) = N(L)u · N(R)v + (k − 1)(N(L)u + N(R)v) + N(L− u) +

(
k − 1

2

)
+ N(R− v)

≥ N(L)u · N(R)v + (k − 1)(2 + N(R)v) + N(L− u) +

(
k − 1

2

)
+ N(R− v) .

In particular, we get

N(G1)− N(G2) ≥ N(R)v +

(
k

2

)
−
(
k − 1

2

)
+ k − 2(k − 1) = 1 + N(R)v > 0 .

This completes the proof of the lemma. �

We finish our preliminaries with the following lemma, which is similar in nature but
different to Lemma 6 (see Section 2).

Lemma 23. Let H be a connected graph of order greater than two, and u, v two distinct
vertices of H such that N(H)u,v > 1 and N(H − v)u ≤ N(H − u)v. Let H(n1;n2) be the
graph obtained from H by identifying u with a leaf of Pn1, and v with a leaf of Pn2 for some
n1, n2 ≥ 1. We have

N(H(n1;n2)) ≥ N(H(n1 + n2 − 1; 1)) .

Moreover, the inequality is strict if n1, n2 > 1.

Proof. By the proof of Lemma 6, we have

N(H(n1;n2)) = n1 · n2 · N(H)u,v + n1 · N(H − v)u + n2 · N(H − u)v

+ N(Pn1−1) + N(Pn2−1) + N(H − u− v) .

In particular, we get

N(H(n1 + n2 − 1; 1)) = (n1 + n2 − 1) N(H)u,v + (n1 + n2 − 1) N(H − v)u + N(H − u)v

+ N(Pn1+n2−2) + N(H − u− v) ,
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which implies that

N(H(n1+n2 − 1; 1))− N(H(n1;n2)) = (n1 + n2 − 1− n1 · n2) N(H)u,v

+ (n2 − 1) N(H − v)u + (1− n2) N(H − u)v

+

(
n1 + n2 − 1

2

)
−
(
n1

2

)
−
(
n2

2

)
= (n2 − 1)(N(H − v)u − N(H − u)v)− (n1 − 1)(n2 − 1)(N(H)u,v − 1) ≤ 0 .

Moreover, we have N(H(n1 + n2 − 1; 1)) < N(H(n1;n2)) if n1 > 1 and n2 > 1. The
statement of the lemma follows. �

By rooted path, we mean a path rooted at one of its leaves. Our main result reads as
follows:

Theorem 24. Let n > 5 be a positive integer. For every graph G ∈ G(n, 0), we have

N(G) ≥ N(Dn) =
(n− 1)(n+ 6)

2
,

and Dn ∈ G(n, 0) is the only graph with this property.

Proof. Let G ∈ G(n, 0) be a connected graph with order n and no pendant vertex that
minimises the number of connected induced subgraphs. We are going to show that G can
be obtained from certain graphs H1 ∈ G(n, 0) through a series of graph transformations
that preserve the number of vertices.

First off, note that G must have at least one cut vertex, since otherwise N(G) ≥ N(Cn)
by virtue of Theorem 13, while Lemma 19 implies that N(Cn) > N(Dn). Fix H1 ∈ G(n, 0)
such that H1 has at least one cut vertex. If we remove edges from a graph, the number
of connected induced subgraphs decreases. Starting from H1, we can thus remove certain
edges until we reach a connected graph with only two distinct cyclic blocks, say B1, B2.
More precisely, all blocks, except only two of H1 are replaced with any generic of their
spanning trees. This yields a new graph H2 which may contain a pendant vertex. Moreover,
we have N(H1) ≥ N(H2).

In the graph H2, we can remove edges from the blocks B1, B2 in such a way that the
two cyclic blocks of the resulting graph, say H3 are all cycles, say Cl and Cr. Hence, H3

consists of two distinct cycles Cl, Cr ‘separated’ by a (possibly trivial) path P , together
with some trees attached to all vertices of V (Cl)∪ V (Cr)∪ V (P ) in H3; see Figure 2 for a
picture. Moreover, we have N(H2) ≥ N(H3).

In the graph H3, replace all components C of H3−(E(Cl)∪E(Cr)∪E(P )) with a rooted
path of order |V (C)| rooted at the unique vertex of C that belongs to V (Cl)∪V (Cr)∪V (P ).
This gives us a new graph H4. We claim that N(H3) ≥ N(H4) with equality if and only
if H3 and H4 are isomorphic. Indeed, construct from H3 a new graph H ′3 by replacing
(without loss of generality) M1 with the rooted path P|V (M1)| whose root is v1. Thus,
H3 − V (M1 − v1) and H ′3 − V (M1 − v1) are isomorphic graphs. On the other hand, if A
denotes the number of connected induced subgraphs of H3−V (M1−v1) = H ′3−V (M1−v1)
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Cl Crv1 vs

L2

Ll

R2

Rr

M1 Ms

P

Figure 2. The graph H3 in the proof of Theorem 24: P is a path starting
at v1 and ending at vs; L2, . . . , Ll,M1, . . . ,Ms, R2, . . . , Rr are all trees.

that contain v1, then

N(M1 − v1) + A · N(M1)v1 (resp. N(P|V (M1)|−1) + A · N(P|V (M1)|)v1)

counts precisely the number of connected induced subgraphs of H3 (resp. H ′3) that contain
a vertex of M1 − v1. Since the path Pm (rooted at a leaf) minimises both the total
number of subtrees and the number of subtrees containing a specific vertex u among all
m-vertex trees (see Székely and Wang [27]), we deduce that N(P|V (M1)|−1) ≤ N(M1 − v1)
and N(P|V (M1)|)v1 ≤ N(M1)v1 . This implies that

N(H ′3)− N(H3) = N(P|V (M1)|−1)− N(M1 − v1) + A(N(P|V (M1)|)v1 − N(M1)v1) ≤ 0 .

Hence, we have N(H ′3) ≤ N(H3). Equality holds if and only if M1 is a rooted path (see
Székely and Wang [27]), i.e. H3 and H ′3 are isomorphic graphs. Since H4 can be obtained
from H3 by a repetitive application of this process of moving from H3 to H ′3, we derive
that N(H4) ≤ N(H3) with equality if and only if H3 and H4 are isomorphic.

In the graph H4, fix two distinct vertices u, v ∈ V (Cl)∪ V (Cr)∪ V (P ), and consider H4

as the graph H(n1;n2) described in Lemma 23 where n1 (resp. n2) is the order of the path
attached at u (resp. v) in H4. Lemma 23 states that whenever n1 > 1 or n2 > 1, two new
graphs H(n1 + n2 − 1; 1) and H(1;n1 + n2 − 1) can always be constructed from H(n1;n2)
such that at least one of the inequalities

N(H(n1;n2)) > N(H(n1 + n2 − 1; 1)) and N(H(n1;n2)) > N(H(1;n1 + n2 − 1))

holds. In other words, this shows that a graph H5 with order n and the property that
N(H4) ≥ N(H5), can be obtained from H4 by making all components (paths), except
possibly only one of H4− (E(Cl)∪E(Cr)∪E(P )) trivial. This leaves H5 with two possible
shapes if H5− (E(Cl)∪E(Cr)∪E(P )) has a non trivial component (rooted path), say Pk:

• Vertex v1 or vs is the root of Pk. In this case, we invoke Lemma 21 or Lemma 20
on H5 depending on whether the path P ‘separating’ the cycles Cl and Cr in H5 is
trivial or not;
• Neither v1 nor vs is the root of Pk. In this case, we apply Lemma 22.

In either case, the combination of Lemmas 20, 21, and 22 shows the existence of another
graph H6 ∈ G(n, 0) with the property that N(H5) ≥ N(H6) with equality if and only
if H5 and H6 are isomorphic. Moreover, by construction H6 is either a double tadpole
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graph, or a graph constructed from two vertex disjoint cycles Cl and Cn−l+1 by identifying
u ∈ V (Cl) with v ∈ V (Cn−l+1). The latter situation corresponds to the graph described
in Lemma 19. Consequently, H6 can only be a double tadpole graph if N(H6) is to be the
minimum number of connected induced subgraphs that a connected graph with order n
and no pendant vertices can have.

Finally, we invoke Proposition 18 on H6 to obtain the double tadpole graph Dn which
satisfies N(H6) > N(Dn) provided that H6 6= Dn. Summing up, we have proved that G is
indeed the double tadpole graph Dn. �
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[22] J. Plesńık. On the sum of all distances in a graph or digraph. J. Graph Theory, 8(1):1–21, 1984.
[23] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences. Published electronically at http:

//oeis.org, 2019.
[24] R. Shi. The average distance of trees. Systems Science and Mathematical Sciences, 6(1):18–24, 1993.
[25] M. Simonovits. Extremal graph theory, Selected topics in graph theory, II. Academic Press, London,

New York, San Francisco, 161–200, 1983.
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