CONGRUENCES INVOLVING CENTRAL TRINOMIAL COEFFICIENTS

CHEN WANG AND ZHI-WEI SUN

ABSTRACT. In this paper, we confirm some congruences conjectured by the second author. For example, we prove that for any prime p > 3

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{12^k} T_k \equiv \left(\frac{p}{3}\right) \frac{3^{p-1}+3}{4} \pmod{p^2}$$

and

$$\sum_{k=0}^{p-1} \frac{T_k H_k}{3^k} \equiv \frac{3 + \left(\frac{p}{3}\right)}{2} - p\left(1 + \left(\frac{p}{3}\right)\right) \pmod{p^2},$$

where T_k is the coefficient of x^k in the expansion of $(1 + x + x^2)^k$, (-) denotes the Legendre symbol and $H_k := \sum_{0 < j \le k} 1/j$ denotes the kth harmonic number.

1. INTRODUCTION

For $n \in \mathbb{N} = \{0, 1, 2, ...\}$, the *n*th central trinomial coefficient

$$T_n = [x^n](1 + x + x^2)^n$$

is the coefficient of x^n in the expansion of $(1 + x + x^2)^n$. Note that $[x^n](1 + x + x^2) = [x^0](1 + x + x^{-1})$. By the multi-nomial theorem we have

$$T_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!}{k!k!(n-2k)!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \binom{2k}{k} = \sum_{k=0}^n \binom{n}{k} \binom{n-k}{k}.$$
 (1.1)

 T_n has many combinatorial interpretations (cf. [11]). For example, T_n is the number of lattice paths running from (0,0) to (n,0) with steps (1,1), (1,-1) and (1,0). It is easy to see that T_n also has the following form

$$T_n = 3^n \sum_{k=0}^n \binom{n}{k} \binom{2k}{k} \left(-\frac{1}{3}\right)^k \tag{1.2}$$

which follows from [2, (3.136) and (3.137)]. The readers may refer to [11] for more identities involving T_n .

2010 Mathematics Subject Classification. Primary 11A07, 11B75; Secondary 05A10, 11B65.

Key words and phrases. Congruences, central trinomial coefficients, binomial coefficients, harmonic numbers. This work was supported by the National Natural Science Foundation of China (grant no. 11971222).

In [13, 14], Z.-W. Sun systematically investigated congruences involving the generalized central trinomial coefficients

$$T_n(b,c) := [x^n](x^2 + bx + c)^n, \quad b, c \in \mathbb{Z}$$

Clearly, $T_n = T_n(1, 1)$. In [13], Sun determined the general sums

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k} T_k(b,c)}{m^k}$$

modulo an odd prime p, where $b, c, m \in \mathbb{Z}$ and $p \nmid m$. In particular, letting m = 12 and b = c = 1 he obtained that

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k} T_k}{12^k} \equiv {\binom{6}{p}} \sum_{k=0}^{p-1} \frac{\binom{4k}{2k} \binom{2k}{k}}{64^k} \equiv {\binom{p}{3}} \pmod{p}, \tag{1.3}$$

where (-) denotes the Legendre symbol. In the same paper, as an extension of (1.3), Sun [13, Conjecture 2.1] conjectured the following congruence that we shall prove.

Theorem 1.1. Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{12^k} T_k \equiv \left(\frac{p}{3}\right) \frac{3^{p-1}+3}{4} \pmod{p^2}.$$
 (1.4)

Remark 1.1. For $p \neq 3$, by Fermat's little theorem (cf. [3]), we have $3^{p-1} \equiv 1 \pmod{p}$. Thus (1.4) implies (1.3).

Let n be a nonnegative integer. The nth harmonic number H_n is defined by

$$H_0 := 0$$
 and $H_n := \sum_{k=1}^n \frac{1}{k}$ $(n = 1, 2, 3, ...).$

In [14] Sun studied the sums involving $T_n(b,c)^2$ and products of $T_n(b,c)$ and other numbers (such as Motzkin numbers [10] and harmonic numbers). For example, he proved that

$$\sum_{k=0}^{n-1} (2k+1)T_k(b,c)^2(b^2-4c)^{n-1-k} \equiv 0 \pmod{n^2}$$

for all n = 1, 2, 3, ..., and and

$$\sum_{k=0}^{p-1} T_k^2 \equiv \left(\frac{-1}{p}\right) \pmod{p}$$

for any odd prime p. Our next theorem confirms a conjecture posed by Sun in [14, Conjecture 1.1 (ii)].

Theorem 1.2. Let p be a prime. Then

$$\sum_{k=0}^{p-1} \frac{T_k H_k}{3^k} \equiv \frac{3 + \left(\frac{p}{3}\right)}{2} - p\left(1 + \left(\frac{p}{3}\right)\right) \pmod{p^2}.$$

In this paper we also prove the following result which was conjectured by Sun in a recent paper [15].

Theorem 1.3. [15, Conjecture 33] Let p be an odd prime and let $m \in \mathbb{Z}$ with $m \neq 1$ and $p \nmid m$. Then

$$\sum_{n=0}^{p-1} \frac{1}{m^n} \sum_{k=0}^n \binom{n}{k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k \equiv p + 2p \frac{1 - \binom{m}{p}}{m-1} \pmod{p^2}.$$
 (1.5)

Remark 1.2. One may easily prove (1.5) modulo p by exchanging the summation order and noting that $\binom{2k}{k} \equiv 0 \pmod{p}$ for $k = (p+1)/2, \ldots, p-1$. However, it seems to be difficult to prove (1.5) entirely in this way. Here we use the Maple Package APCI (see [1]) to reduce the double sum on the left-hand side of (1.5).

We will show Theorems 1.1–1.3 in Sections 2–4 respectively.

2. Proof of Theorem 1.1

In order to show Theorem 1.1, we need the following preliminary results.

Lemma 2.1. Let $n, j \in \mathbb{N}$. Then we have the following identity

$$\sum_{k=j}^{n} \frac{\binom{2k}{k}\binom{k}{j}}{4^{k}} = \frac{n+1}{2^{2n+1}(2j+1)} \cdot \binom{n}{j}\binom{2n+2}{n+1}.$$
(2.1)

Proof. This could be directly verified by induction on n.

Lemma 2.2. Let p > 3 be a prime. Then

$$\sum_{k=0}^{(p-3)/2} \frac{\binom{2k}{k}}{(2k+1)3^k} \equiv \frac{1}{p} \cdot \left(\frac{(-1)^{(p-1)/2}}{4 \cdot 3^{(p-1)/2}} + \frac{(-1)^{(p-1)/2} \cdot 3^{(p+1)/2}}{4} - \frac{(-1)^{(p-1)/2} \cdot 4^{p-1}}{3^{(p-1)/2}}\right) \pmod{p}.$$
(2.2)

Proof. In [8, Theorem 2], Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso obtained a general result involving

$$\sum_{k=0}^{(p-3)/2} \frac{\binom{2k}{k} t^k}{2k+1} \pmod{p^3},$$

where p is an odd prime and t is a p-adic integer with $p \nmid t$. Substituting t = 1/3 into their result, we immediately obtain (2.2).

Proof of Theorem 1.1. By (1.2) we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{12^k} T_k = \sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{4^k} \sum_{j=0}^k \left(-\frac{1}{3}\right)^j \binom{k}{j} \binom{2j}{j}$$
$$= \sum_{j=0}^{p-1} \left(-\frac{1}{3}\right)^j \binom{2j}{j} \sum_{k=j}^{p-1} \frac{\binom{2k}{k}}{4^k} \binom{k}{j}.$$

Replacing n with p-1 in Lemma 2.1 we arrive at

$$\sum_{k=j}^{p-1} \frac{\binom{2k}{k}}{4^k} \binom{k}{j} = \frac{p}{2^{2p-1}(2j+1)} \cdot \binom{p-1}{j} \binom{2p}{p}.$$

Noting that $\binom{2j}{j} \equiv 0 \pmod{p}$ and $p \nmid 2j + 1$ for $j \in \{(p+1)/2, \dots, p-1\}$, we obtain

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{12^k} T_k \equiv \frac{p\binom{2p}{p}}{2^{2p-1}} \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j}\binom{p-1}{j}}{(2j+1)(-3)^j} \pmod{p^2}$$

Clearly,

$$\binom{p-1}{j} = (-1)^j \prod_{k=1}^j \left(1 - \frac{p}{k}\right) \equiv (-1)^j (1 - pH_j) \pmod{p^2}.$$
(2.3)

Thus we have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{12^k} T_k \equiv \frac{\binom{2p}{p}\binom{p-1}{(p-1)/2}(1-pH_{(p-1)/2})}{3^{(p-1)/2}2^{2p-1}} + \frac{p\binom{2p}{p}}{2^{2p-1}} \sum_{j=0}^{(p-3)/2} \frac{\binom{2j}{j}}{(2j+1)3^j} \pmod{p^2}.$$
(2.4)

In 1862, J. Wolstenholme [17] showed that for all primes p > 3

$$\binom{2p-1}{p-1} \equiv 1 \pmod{p^3}.$$
(2.5)

From Morley's congruence [5] we have for any prime p > 3

$$\binom{p-1}{(p-1)/2} \equiv (-1)^{(p-1)/2} 4^{p-1} \pmod{p^3}.$$
(2.6)

It is known [4] that

$$H_{(p-1)/2} \equiv -2q_p(2) \pmod{p},$$
 (2.7)

where $q_p(2) := (2^{p-1} - 1)/p$ denotes the Fermat quotient. Now substituting (2.5)–(2.7) into (2.4) we deduce that

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{12^k} T_k \equiv \frac{(-1)^{(p-1)/2}}{3^{(p-1)/2}} (1+2pq_p(2)) + \frac{(-1)^{(p-1)/2}}{4 \cdot 3^{(p-1)/2}} + \frac{3}{4} \cdot (-3)^{(p-1)/2} - \frac{(-1)^{(p-1)/2(1+pq_p(2))^2}}{3^{(p-1)/2}}$$
$$\equiv \frac{(-1)^{(p-1)/2}}{4 \cdot 3^{(p-1)/2}} + \frac{3}{4} \cdot (-3)^{(p-1)/2} \pmod{p^2}.$$

From [3, Page 51], we know that $a^{(p-1)/2} \equiv (\frac{a}{p}) \pmod{p}$. Thus we may write $3^{(p-1)/2}$ as $(\frac{3}{p})(1+pt)$, where t is a p-adic integer. In view of this,

$$B^{p-1} = (3^{(p-1)/2})^2 \equiv 1 + 2pt \pmod{p^2}.$$

By the above and with the help of the law of quadratic reciprocity (cf. [3]), we get

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}}{12^k} T_k \equiv \frac{1}{4} \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right) (1-pt) + \frac{3}{4} \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right) (1+pt)$$
$$= \left(\frac{p}{3}\right) \frac{4+2pt}{4} \equiv \left(\frac{p}{3}\right) \frac{3^{p-1}+3}{4} \pmod{p^2}$$

as desired.

The proof of Theorem 1.1 is now complete.

1

3. Proof of Theorem 1.2

The following identity can be verified by induction.

Lemma 3.1. Let n, j be nonnegative integers. Then we have

$$\sum_{k=j}^{n} \binom{k}{j} H_k = \binom{n+1}{j+1} \left(H_{n+1} - \frac{1}{j+1} \right).$$
(3.1)

Lemma 3.2. [12, Corollary 1.1] For any prime p > 3 we have

$$\sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{3^k(k+1)} \equiv 3^{p-1} - 1 + \frac{\binom{p}{3} - 1}{2} \pmod{p^2}.$$
 (3.2)

Lemma 3.3. For $n \in \mathbb{N}$ we have

$$\sum_{k=0}^{n} \frac{\binom{n}{k}H_{k}}{k+1} \left(-\frac{4}{3}\right)^{k} = \frac{\left(-3 + \left(-\frac{1}{3}\right)^{n}\right)H_{n}}{4(n+1)} - \frac{\sum_{k=1}^{n} \frac{(-3)^{k}}{k}}{4(-3)^{n}(n+1)} + \frac{3\sum_{k=1}^{n} \frac{1}{k(-3)^{k}}}{4(n+1)}$$
(3.3)

and

$$\sum_{k=0}^{n} \frac{\binom{n}{k}}{(k+1)^2} \left(-\frac{4}{3}\right)^k = \frac{1}{n+1} + \frac{3\sum_{k=1}^{n} \frac{1}{k+1}}{4(n+1)} + \frac{\sum_{k=1}^{n} \frac{1}{(k+1)(-3)^k}}{4(n+1)}.$$
(3.4)

Proof. These two identities were found by Sigma (a Mathematica package to find identities, cf. [9]). Here we give a manual proof.

Denote the left-hand side of (3.3) by F(n) and the right-hand side by G(n). It is easy to check that F(n) and G(n) all satisfy the following recurrence relation:

$$(n+1)(n+2)F(n) + (n+2)(5n+13)F(n+1) + 3(n+3)(n+4)F(n+2) - 9(n+3)(n+4)F(n+3) = 12.$$

Then (3.3) can be proved by noting that F(d) = G(d) for d = 0, 1, 2. We will not give the proof of (3.4) since its proof is analogous.

Lemma 3.4. For any prime p > 3 we have

$$\sum_{k=1}^{(p-1)/2} \frac{(-3)^k}{k} \equiv -2q_p(2) \pmod{p}.$$
(3.5)

Proof. Clearly,

$$\sum_{k=1}^{(p-1)/2} \frac{(-3)^k}{k} = \sum_{k=1}^{(p-1)/2} \frac{(1-4)^k}{k} = \sum_{k=1}^{(p-1)/2} \frac{1}{k} \sum_{j=0}^k \binom{k}{j} (-4)^j$$
$$= \sum_{j=1}^{(p-1)/2} (-4)^j \sum_{k=j}^{(p-1)/2} \frac{1}{k} \binom{k}{j} + H_{(p-1)/2}.$$

By [2, (1.52)] we have

$$\sum_{k=j}^{(p-1)/2} \frac{1}{k} \binom{k}{j} = \frac{1}{j} \sum_{k=j-1}^{(p-3)/2} \binom{k}{j-1} = \frac{1}{j} \binom{\frac{p-1}{2}}{j}.$$

Thus we obtain

$$\sum_{k=1}^{(p-1)/2} \frac{(-3)^k}{k} = \sum_{k=1}^{(p-1)/2} \frac{(-4)^j}{j} {\binom{p-1}{2}} + H_{(p-1)/2}$$
$$\equiv \sum_{k=1}^{(p-1)/2} \frac{\binom{2j}{j}}{j} + H_{(p-1)/2} \pmod{p}.$$

In 2006, H. Pan and Sun [7] proved that for any prime p > 3

$$\sum_{k=1}^{p-1} \frac{\binom{2k}{k}}{k} \equiv \sum_{k=1}^{(p-1)/2} \frac{\binom{2k}{k}}{k} \equiv 0 \pmod{p}.$$

Thus (3.5) follows from (2.7).

Proof of Theorem 1.2. By (1.2) and Lemma 3.1 we have

$$\sum_{k=0}^{p-1} \frac{T_k H_k}{3^k} = \sum_{j=0}^{p-1} \frac{\binom{2j}{j}}{(-3)^j} \sum_{k=j}^{p-1} \binom{k}{j} H_k$$
$$= p \sum_{j=0}^{p-1} \frac{\binom{2j}{j}}{(-3)^j (j+1)} \binom{p-1}{j} \left(H_{p-1} + \frac{1}{p} - \frac{1}{j+1} \right)$$
$$\equiv p \sum_{j=0}^{p-1} \frac{\binom{2j}{j} (1-pH_j)}{3^j (j+1)} \left(\frac{1}{p} - \frac{1}{j+1} \right) \pmod{p^2},$$

where the last step follows from (2.3) and the fact $H_{p-1} \equiv 0 \pmod{p^2}$ (cf. [17]). Noting that $\binom{2j}{j} \equiv 0 \pmod{p}$ for $j \in \{(p+1)/2, \ldots, p-1\}$ we arrive at

$$\sum_{k=0}^{p-1} \frac{T_k H_k}{3^k} \equiv \Sigma_1 - p\Sigma_2 - p\Sigma_3 \pmod{p^2},$$
(3.6)

where

$$\Sigma_1 := \sum_{j=0}^{p-2} \frac{\binom{2j}{j}}{3^j(j+1)}, \quad \Sigma_2 := \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j}H_j}{3^j(j+1)}, \quad \Sigma_3 := \sum_{j=0}^{(p-1)/2} \frac{\binom{2j}{j}H_j}{3^j(j+1)}.$$

In view of (2.5),

$$\binom{2p-2}{p-1} = \frac{p}{2p-1} \binom{2p-1}{p-1} \equiv -p - 2p^2 \pmod{p^3}.$$

Thus by Lemma 3.2 we get that

$$\Sigma_1 \equiv 3^{p-1} + \frac{\left(\frac{p}{3}\right) - 1}{2} - \frac{\binom{2p-2}{p-1}}{3^{p-1}p} \equiv 3^{p-1} + \frac{\left(\frac{p}{3}\right) - 1}{2} + \frac{2p+1}{3^{p-1}} \pmod{p^2}.$$
 (3.7)

Substituting n = (p-1)/2 into (3.3) and in view of (2.7) and Lemma 3.4 we deduce that

$$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}H_k}{(k+1)3^k} \equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{(p-1)/2}{k}H_k}{k+1} \left(-\frac{4}{3}\right)^k$$
$$\equiv -\left(-3 + \left(-\frac{1}{3}\right)^{(p-1)/2}\right)q_p(2) + q_p(2)\left(-\frac{1}{3}\right)^{(p-1)/2} \qquad (3.8)$$
$$+ \frac{3}{2}\sum_{k=1}^{(p-1)/2} \frac{1}{k(-3)^k} \pmod{p}.$$

Also, letting n = (p-1)/2 in (3.4) we obtain that

$$\sum_{k=0}^{(p-1)/2} \frac{\binom{2k}{k}}{(k+1)^2 3^k} \equiv \sum_{k=0}^{(p-1)/2} \frac{\binom{(p-1)/2}{k}}{(k+1)^2} \left(-\frac{4}{3}\right)^k$$

$$\equiv 3 - 3q_p(2) - \frac{3}{2} \sum_{k=1}^{(p-1)/2} \frac{1}{k(-3)^k} + \frac{1}{(-3)^{(p-1)/2}} \pmod{p}.$$
(3.9)

Now combining (3.6)–(3.9) we arrive at

$$\sum_{k=0}^{p-1} \frac{T_k H_k}{3^k} \equiv 3^{p-1} + \frac{\left(\frac{p}{3}\right) - 1}{2} + \frac{2p}{3^{p-1}} + \frac{1}{3^{p-1}} - 3p - \frac{p}{(-3)^{(p-1)/2}} \pmod{p^2}.$$

As in the proof or Theorem 1.1, we write $3^{(p-1)/2}$ as $(\frac{3}{p})(1+pt)$. By Fermat's little theorem and the law of quadratic reciprocity we finally obtain

$$\sum_{k=0}^{p-1} \frac{T_k H_k}{3^k} \equiv (1+2pt) + \frac{\left(\frac{p}{3}\right) - 1}{2} + 2p + 1 - 2pt - 3p - p\left(\frac{p}{3}\right)$$
$$\equiv \frac{\left(\frac{p}{3}\right) + 3}{2} - p\left(1 + \left(\frac{p}{3}\right)\right) \pmod{p^2}$$

as desired. We are done.

4. Proof of Theorem 1.3

To show Theorem 1.3 we need a telescoping method for double summations developed by W.Y.C. Chen, Q.-H. Hou and Y.-P. Mu [1]. To learn how to use the telescoping method one may refer to [6, 16].

Lemma 4.1. For any nonnegative integer n and $t \neq 0$ we have

$$\sum_{k=0}^{n} \frac{\binom{n}{k} t^{k+1}}{k+1} = \frac{(1+t)^{n+1} - 1}{n+1}.$$

Proof. It is easy to see that

$$(n+1)\sum_{k=0}^{n}\frac{\binom{n}{k}t^{k+1}}{k+1} = \sum_{k=0}^{n}\binom{n+1}{k+1}t^{k+1} = \sum_{k=1}^{n+1}\binom{n+1}{k}t^{k} = (1+t)^{n+1} - 1.$$

This proves Lemma 4.1.

Proof of Theorem 1.3. Set

$$F(n,k) = \frac{1}{m^n} \binom{n}{k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k.$$

Via APCI we find

$$G_1(n,k) = \frac{2kn+k+n}{m^n(k+1)} \binom{n}{k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k$$

and

$$G_2(n,k) = \frac{2k}{m^{n+1}} \binom{n+1}{k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k$$

so that

$$F(n,k) = (G_1(n+1,k) - G_1(n,k)) + (G_2(n,k+1) - G_2(n,k)).$$

Therefore

$$\sum_{n=0}^{p-1} \frac{1}{m^n} \sum_{k=0}^n \binom{n}{k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k = \sum_{n=0}^{p-1} \sum_{k=0}^n F(n,k)$$

$$=\sum_{k=0}^{p-1} (G_1(p,k) - G_1(k,k)) + \sum_{n=0}^{p-1} (G_2(n,n+1) - G_2(n,0)) = \Sigma_1 - \Sigma_2 + \Sigma_3,$$

where

$$\Sigma_1 := \sum_{k=0}^{p-1} G_1(p,k), \quad \Sigma_2 := \sum_{k=0}^{p-1} G_1(k,k), \quad \Sigma_3 := \sum_{n=0}^{p-1} G_2(n,n+1).$$

If $m - 1 \not\equiv 0 \pmod{p}$, by (2.5) and Lemma 4.1 we have

$$\begin{split} \Sigma_1 &= \sum_{k=0}^{p-1} \frac{2pk+k+p}{m^p(k+1)} \binom{p}{k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k \\ &\equiv \sum_{k=1}^{p-2} \frac{2pk+k+p}{m^p(k+1)} \cdot \frac{p}{k} \cdot \binom{p-1}{k-1} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k + \frac{2p}{m} \\ &\equiv \sum_{k=1}^{p-2} \frac{p(-1)^{k-1}}{k+1} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k + \frac{2p}{m} \\ &\equiv -\frac{p}{m} \sum_{k=0}^{(p-1)/2} \frac{\binom{(p-1)/2}{k}}{k+1} (m-1)^k + \frac{3p}{m} \\ &\equiv \frac{p}{m} + 2p \frac{1-\binom{m}{p}}{m-1} \pmod{p^2}. \end{split}$$

Also,

$$\Sigma_3 - \Sigma_2 = \sum_{k=1}^p \frac{2k}{m^k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k - \sum_{k=0}^{p-1} \frac{2k}{m^k} \binom{2k}{k} \left(\frac{m-1}{4}\right)^k$$
$$= \frac{2p}{m} \binom{2p}{p} \left(\frac{m-1}{4}\right)^p \equiv p - \frac{p}{m} \pmod{p^2}.$$

Combining the above we obtain (1.5) immediately.

If $m - 1 \equiv 0 \pmod{p}$, by Lemma 4.1 it is easy to check that

$$\Sigma_1 \equiv p \pmod{p}$$
 and $\Sigma_3 - \Sigma_2 \equiv 0 \pmod{p}$.

Thus (1.5) holds again. We are done.

References

- W.Y.C. Chen, Q.-H. Hou, and Y.-P. Mu, A telescoping method for double summations, J. Comput. Appl. Math. 196 (2006) 553–566.
- [2] H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., West Virginia, 1972.
- [3] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Grad. Texts in Math. 84, Springer, New York, 1990.
- [4] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350–360.

CHEN WANG AND ZHI-WEI SUN

- [5] F. Morley, Note on the congruence $2^{4n} \equiv (-1)^n (2n)! / (n!)^2$, where 2n + 1 is a prime, Ann. Math. 9 (1895), 168–170.
- [6] Y.-P. Mu and Z.-W. Sun, Telescoping method and congruences for double sums, Int. J. Number Theory 14 (2018), 143–165.
- [7] H. Pan and Z.-W. Sun, A combinatorial identity with application to Catalan numbers, Discrete Math. 306 (2006), 1921–1940.
- [8] Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso, Congruences concerning Jacobi polynomials and Apéry-like formulae, Int. J. Number Theory, 8 (2012), 1789–1811.
- [9] C. Schneider, Symbolic summation assists combinatorics, Séminaire Lotharingien de Combinatoire 56 (2007), Article B56b.
- [10] N.J.A. Sloane, Sequence A001006 in OEIS, http://oeis.org/A001006.
- [11] N.J.A. Sloane, Sequence A002426 in OEIS, http://oeis.org/A002426.
- [12] Z.-W. Sun, Binomial coefficients, Catalan numbers and Lucas Quotients, Sci. China. Math. 53 (2010), no. 9, 2473–2488.
- [13] Z.-W. Sun, On sums related to central binomial and trinomial coefficients, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory: CANT 2011 and 2012, Springer Proc. in Math. & Stat., Vol. 101, Springer, New York, 2014, pp. 257–312.
- [14] Z.-W. Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57 (2014), no. 7, 1375–1400.
- [15] Z.-W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36 (2019), no. 1, 1–99.
- [16] C. Wang and Z.-W. Sun, Divisibility results on Franel numbers and related polynomials, Int. J. Number Theory 15 (2019), no.2, 433–444.
- [17] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35–39.

(Chen Wang) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: cwang@smail.nju.edu.cn

(Zhi-Wei Sun) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: zwsun@nju.edu.cn