CONGRUENCES INVOLVING CENTRAL TRINOMIAL COEFFICIENTS

CHEN WANG AND ZHI-WEI SUN

Abstract. In this paper, we confirm some congruences conjectured by the second author. For example, we prove that for any prime $p>3$

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{12^{k}} T_{k} \equiv\left(\frac{p}{3}\right) \frac{3^{p-1}+3}{4} \quad\left(\bmod p^{2}\right)
$$

and

$$
\sum_{k=0}^{p-1} \frac{T_{k} H_{k}}{3^{k}} \equiv \frac{3+\left(\frac{p}{3}\right)}{2}-p\left(1+\left(\frac{p}{3}\right)\right) \quad\left(\bmod p^{2}\right),
$$

where T_{k} is the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}\right)^{k},(-)$ denotes the Legendre symbol and $H_{k}:=\sum_{0<j \leq k} 1 / j$ denotes the k th harmonic number.

1. Introduction

For $n \in \mathbb{N}=\{0,1,2, \ldots\}$, the nth central trinomial coefficient

$$
T_{n}=\left[x^{n}\right]\left(1+x+x^{2}\right)^{n}
$$

is the coefficient of x^{n} in the expansion of $\left(1+x+x^{2}\right)^{n}$. Note that $\left[x^{n}\right]\left(1+x+x^{2}\right)=$ $\left[x^{0}\right]\left(1+x+x^{-1}\right)$. By the multi-nomial theorem we have

$$
\begin{equation*}
T_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{n!}{k!k!(n-2 k)!}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k}\binom{2 k}{k}=\sum_{k=0}^{n}\binom{n}{k}\binom{n-k}{k} . \tag{1.1}
\end{equation*}
$$

T_{n} has many combinatorial interpretations (cf. [11]). For example, T_{n} is the number of lattice paths running from $(0,0)$ to $(n, 0)$ with steps $(1,1),(1,-1)$ and $(1,0)$. It is easy to see that T_{n} also has the following form

$$
\begin{equation*}
T_{n}=3^{n} \sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k}\left(-\frac{1}{3}\right)^{k} \tag{1.2}
\end{equation*}
$$

which follows from [2, (3.136) and (3.137)]. The readers may refer to [11] for more identities involving T_{n}.

[^0]In [13, 14], Z.-W. Sun systematically investigated congruences involving the generalized central trinomial coefficients

$$
T_{n}(b, c):=\left[x^{n}\right]\left(x^{2}+b x+c\right)^{n}, \quad b, c \in \mathbb{Z}
$$

Clearly, $T_{n}=T_{n}(1,1)$. In [13], Sun determined the general sums

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k} T_{k}(b, c)}{m^{k}}
$$

modulo an odd prime p, where $b, c, m \in \mathbb{Z}$ and $p \nmid m$. In particular, letting $m=12$ and $b=c=1$ he obtained that

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k} T_{k}}{12^{k}} \equiv\left(\frac{6}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{4 k}{2 k}\binom{2 k}{k}}{64^{k}} \equiv\left(\frac{p}{3}\right) \quad(\bmod p) \tag{1.3}
\end{equation*}
$$

where (-) denotes the Legendre symbol. In the same paper, as an extension of (1.3), Sun [13, Conjecture 2.1] conjectured the following congruence that we shall prove.

Theorem 1.1. Let $p>3$ be a prime. Then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{12^{k}} T_{k} \equiv\left(\frac{p}{3}\right) \frac{3^{p-1}+3}{4} \quad\left(\bmod p^{2}\right) \tag{1.4}
\end{equation*}
$$

Remark 1.1. For $p \neq 3$, by Fermat's little theorem (cf. [3]), we have $3^{p-1} \equiv 1(\bmod p)$. Thus (1.4) implies (1.3).

Let n be a nonnegative integer. The nth harmonic number H_{n} is defined by

$$
H_{0}:=0 \quad \text { and } \quad H_{n}:=\sum_{k=1}^{n} \frac{1}{k} \quad(n=1,2,3, \ldots)
$$

In [14] Sun studied the sums involving $T_{n}(b, c)^{2}$ and products of $T_{n}(b, c)$ and other numbers (such as Motzkin numbers [10] and harmonic numbers). For example, he proved that

$$
\sum_{k=0}^{n-1}(2 k+1) T_{k}(b, c)^{2}\left(b^{2}-4 c\right)^{n-1-k} \equiv 0 \quad\left(\bmod n^{2}\right)
$$

for all $n=1,2,3, \ldots$, and and

$$
\sum_{k=0}^{p-1} T_{k}^{2} \equiv\left(\frac{-1}{p}\right) \quad(\bmod p)
$$

for any odd prime p. Our next theorem confirms a conjecture posed by Sun in [14, Conjecture 1.1 (ii)].

Theorem 1.2. Let p be a prime. Then

$$
\sum_{k=0}^{p-1} \frac{T_{k} H_{k}}{3^{k}} \equiv \frac{3+\left(\frac{p}{3}\right)}{2}-p\left(1+\left(\frac{p}{3}\right)\right) \quad\left(\bmod p^{2}\right)
$$

In this paper we also prove the following result which was conjectured by Sun in a recent paper [15].

Theorem 1.3. [15, Conjecture 33] Let p be an odd prime and let $m \in \mathbb{Z}$ with $m \neq 1$ and $p \nmid m$. Then

$$
\begin{equation*}
\sum_{n=0}^{p-1} \frac{1}{m^{n}} \sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k} \equiv p+2 p \frac{1-\left(\frac{m}{p}\right)}{m-1} \quad\left(\bmod p^{2}\right) \tag{1.5}
\end{equation*}
$$

Remark 1.2. One may easily prove (1.5) modulo p by exchanging the summation order and noting that $\binom{2 k}{k} \equiv 0(\bmod p)$ for $k=(p+1) / 2, \ldots, p-1$. However, it seems to be difficult to prove (1.5) entirely in this way. Here we use the Maple Package APCI (see [1]) to reduce the double sum on the left-hand side of (1.5).

We will show Theorems 1.11 .3 in Sections 2-4 respectively.

2. Proof of Theorem 1.1

In order to show Theorem 1.1, we need the following preliminary results.
Lemma 2.1. Let $n, j \in \mathbb{N}$. Then we have the following identity

$$
\begin{equation*}
\sum_{k=j}^{n} \frac{\binom{2 k}{k}\binom{k}{j}}{4^{k}}=\frac{n+1}{2^{2 n+1}(2 j+1)} \cdot\binom{n}{j}\binom{2 n+2}{n+1} . \tag{2.1}
\end{equation*}
$$

Proof. This could be directly verified by induction on n.
Lemma 2.2. Let $p>3$ be a prime. Then

$$
\begin{equation*}
\sum_{k=0}^{(p-3) / 2} \frac{\binom{2 k}{k}}{(2 k+1) 3^{k}} \equiv \frac{1}{p} \cdot\left(\frac{(-1)^{(p-1) / 2}}{4 \cdot 3^{(p-1) / 2}}+\frac{(-1)^{(p-1) / 2} \cdot 3^{(p+1) / 2}}{4}-\frac{(-1)^{(p-1) / 2} \cdot 4^{p-1}}{3^{(p-1) / 2}}\right) \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

Proof. In [8, Theorem 2], Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso obtained a general result involving

$$
\sum_{k=0}^{(p-3) / 2} \frac{\binom{2 k}{k} t^{k}}{2 k+1} \quad\left(\bmod p^{3}\right)
$$

where p is an odd prime and t is a p-adic integer with $p \nmid t$. Substituting $t=1 / 3$ into their result, we immediately obtain (2.2).

Proof of Theorem 1.1. By (1.2) we have

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{12^{k}} T_{k} & =\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{4^{k}} \sum_{j=0}^{k}\left(-\frac{1}{3}\right)^{j}\binom{k}{j}\binom{2 j}{j} \\
& =\sum_{j=0}^{p-1}\left(-\frac{1}{3}\right)^{j}\binom{2 j}{j} \sum_{k=j}^{p-1} \frac{\binom{2 k}{k}}{4^{k}}\binom{k}{j} .
\end{aligned}
$$

Replacing n with $p-1$ in Lemma 2.1] we arrive at

$$
\sum_{k=j}^{p-1} \frac{\binom{2 k}{k}}{4^{k}}\binom{k}{j}=\frac{p}{2^{2 p-1}(2 j+1)} \cdot\binom{p-1}{j}\binom{2 p}{p} .
$$

Noting that $\binom{2 j}{j} \equiv 0(\bmod p)$ and $p \nmid 2 j+1$ for $j \in\{(p+1) / 2, \ldots, p-1\}$, we obtain

$$
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{12^{k}} T_{k} \equiv \frac{p\binom{2 p}{p}}{2^{2 p-1}} \sum_{j=0}^{(p-1) / 2} \frac{\binom{2 j}{j}\binom{p-1}{j}}{(2 j+1)(-3)^{j}} \quad\left(\bmod p^{2}\right)
$$

Clearly,

$$
\begin{equation*}
\binom{p-1}{j}=(-1)^{j} \prod_{k=1}^{j}\left(1-\frac{p}{k}\right) \equiv(-1)^{j}\left(1-p H_{j}\right) \quad\left(\bmod p^{2}\right) \tag{2.3}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{12^{k}} T_{k} \equiv \frac{\binom{2 p}{p}\binom{p-1}{(p-1) / 2}\left(1-p H_{(p-1) / 2}\right)}{3^{(p-1) / 2} 2^{2 p-1}}+\frac{p\binom{2 p}{p}}{2^{2 p-1}} \sum_{j=0}^{(p-3) / 2} \frac{\binom{2 j}{j}}{(2 j+1) 3^{j}} \quad\left(\bmod p^{2}\right) \tag{2.4}
\end{equation*}
$$

In 1862, J. Wolstenholme [17] showed that for all primes $p>3$

$$
\begin{equation*}
\binom{2 p-1}{p-1} \equiv 1 \quad\left(\bmod p^{3}\right) \tag{2.5}
\end{equation*}
$$

From Morley's congruence [5] we have for any prime $p>3$

$$
\begin{equation*}
\binom{p-1}{(p-1) / 2} \equiv(-1)^{(p-1) / 2} 4^{p-1} \quad\left(\bmod p^{3}\right) \tag{2.6}
\end{equation*}
$$

It is known [4] that

$$
\begin{equation*}
H_{(p-1) / 2} \equiv-2 q_{p}(2) \quad(\bmod p), \tag{2.7}
\end{equation*}
$$

where $q_{p}(2):=\left(2^{p-1}-1\right) / p$ denotes the Fermat quotient. Now substituting (2.5)-(2.7) into (2.4) we deduce that

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{12^{k}} T_{k} & \equiv \frac{(-1)^{(p-1) / 2}}{3^{(p-1) / 2}}\left(1+2 p q_{p}(2)\right)+\frac{(-1)^{(p-1) / 2}}{4 \cdot 3^{(p-1) / 2}}+\frac{3}{4} \cdot(-3)^{(p-1) / 2}-\frac{(-1)^{(p-1) / 2\left(1+p q_{p}(2)\right)^{2}}}{3^{(p-1) / 2}} \\
& \equiv \frac{(-1)^{(p-1) / 2}}{4 \cdot 3^{(p-1) / 2}}+\frac{3}{4} \cdot(-3)^{(p-1) / 2} \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

From [3, Page 51], we know that $a^{(p-1) / 2} \equiv\left(\frac{a}{p}\right)(\bmod p)$. Thus we may write $3^{(p-1) / 2}$ as $\left(\frac{3}{p}\right)(1+p t)$, where t is a p-adic integer. In view of this,

$$
3^{p-1}=\left(3^{(p-1) / 2}\right)^{2} \equiv 1+2 p t \quad\left(\bmod p^{2}\right)
$$

By the above and with the help of the law of quadratic reciprocity (cf. [3]), we get

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{\binom{2 k}{k}}{12^{k}} T_{k} & \equiv \frac{1}{4}\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)(1-p t)+\frac{3}{4}\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)(1+p t) \\
& =\left(\frac{p}{3}\right) \frac{4+2 p t}{4} \equiv\left(\frac{p}{3}\right) \frac{3^{p-1}+3}{4}\left(\bmod p^{2}\right)
\end{aligned}
$$

as desired.
The proof of Theorem 1.1 is now complete.

3. Proof of Theorem 1.2

The following identity can be verified by induction.
Lemma 3.1. Let n, j be nonnegative integers. Then we have

$$
\begin{equation*}
\sum_{k=j}^{n}\binom{k}{j} H_{k}=\binom{n+1}{j+1}\left(H_{n+1}-\frac{1}{j+1}\right) . \tag{3.1}
\end{equation*}
$$

Lemma 3.2. [12, Corollary 1.1] For any prime $p>3$ we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{\binom{2 k}{k}}{3^{k}(k+1)} \equiv 3^{p-1}-1+\frac{\left(\frac{p}{3}\right)-1}{2} \quad\left(\bmod p^{2}\right) \tag{3.2}
\end{equation*}
$$

Lemma 3.3. For $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\binom{n}{k} H_{k}}{k+1}\left(-\frac{4}{3}\right)^{k}=\frac{\left(-3+(-1 / 3)^{n}\right) H_{n}}{4(n+1)}-\frac{\sum_{k=1}^{n} \frac{(-3)^{k}}{k}}{4(-3)^{n}(n+1)}+\frac{3 \sum_{k=1}^{n} \frac{1}{k(-3)^{k}}}{4(n+1)} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{\binom{n}{k}}{(k+1)^{2}}\left(-\frac{4}{3}\right)^{k}=\frac{1}{n+1}+\frac{3 \sum_{k=1}^{n} \frac{1}{k+1}}{4(n+1)}+\frac{\sum_{k=1}^{n} \frac{1}{(k+1)(-3)^{k}}}{4(n+1)} \tag{3.4}
\end{equation*}
$$

Proof. These two identities were found by Sigma (a Mathematica package to find identities, cf. [9]). Here we give a manual proof.

Denote the left-hand side of (3.3) by $F(n)$ and the right-hand side by $G(n)$. It is easy to check that $F(n)$ and $G(n)$ all satisfy the following recurrence relation:
$(n+1)(n+2) F(n)+(n+2)(5 n+13) F(n+1)+3(n+3)(n+4) F(n+2)-9(n+3)(n+4) F(n+3)=12$.
Then (3.3) can be proved by noting that $F(d)=G(d)$ for $d=0,1,2$. We will not give the proof of (3.4) since its proof is analogous.

Lemma 3.4. For any prime $p>3$ we have

$$
\begin{equation*}
\sum_{k=1}^{(p-1) / 2} \frac{(-3)^{k}}{k} \equiv-2 q_{p}(2) \quad(\bmod p) \tag{3.5}
\end{equation*}
$$

Proof. Clearly,

$$
\begin{aligned}
\sum_{k=1}^{(p-1) / 2} \frac{(-3)^{k}}{k} & =\sum_{k=1}^{(p-1) / 2} \frac{(1-4)^{k}}{k}=\sum_{k=1}^{(p-1) / 2} \frac{1}{k} \sum_{j=0}^{k}\binom{k}{j}(-4)^{j} \\
& =\sum_{j=1}^{(p-1) / 2}(-4)^{j} \sum_{k=j}^{(p-1) / 2} \frac{1}{k}\binom{k}{j}+H_{(p-1) / 2}
\end{aligned}
$$

By [2, (1.52)] we have

$$
\sum_{k=j}^{(p-1) / 2} \frac{1}{k}\binom{k}{j}=\frac{1}{j} \sum_{k=j-1}^{(p-3) / 2}\binom{k}{j-1}=\frac{1}{j}\binom{\frac{p-1}{2}}{j} .
$$

Thus we obtain

$$
\begin{aligned}
\sum_{k=1}^{(p-1) / 2} \frac{(-3)^{k}}{k} & =\sum_{k=1}^{(p-1) / 2} \frac{(-4)^{j}}{j}\binom{\frac{p-1}{2}}{j}+H_{(p-1) / 2} \\
& \equiv \sum_{k=1}^{(p-1) / 2} \frac{\binom{2 j}{j}}{j}+H_{(p-1) / 2} \quad(\bmod p)
\end{aligned}
$$

In 2006, H. Pan and Sun [7] proved that for any prime $p>3$

$$
\sum_{k=1}^{p-1} \frac{\binom{2 k}{k}}{k} \equiv \sum_{k=1}^{(p-1) / 2} \frac{\binom{2 k}{k}}{k} \equiv 0 \quad(\bmod p)
$$

Thus (3.5) follows from (2.7).
Proof of Theorem 1.2. By (1.2) and Lemma 3.1 we have

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{T_{k} H_{k}}{3^{k}} & =\sum_{j=0}^{p-1} \frac{\binom{2 j}{j}}{(-3)^{j}} \sum_{k=j}^{p-1}\binom{k}{j} H_{k} \\
& =p \sum_{j=0}^{p-1} \frac{\binom{2 j}{j}}{(-3)^{j}(j+1)}\binom{p-1}{j}\left(H_{p-1}+\frac{1}{p}-\frac{1}{j+1}\right) \\
& \equiv p \sum_{j=0}^{p-1} \frac{\binom{2 j}{j}\left(1-p H_{j}\right)}{3^{j}(j+1)}\left(\frac{1}{p}-\frac{1}{j+1}\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

where the last step follows from (2.3) and the fact $H_{p-1} \equiv 0\left(\bmod p^{2}\right)(c f .[17])$. Noting that $\binom{2 j}{j} \equiv 0(\bmod p)$ for $j \in\{(p+1) / 2, \ldots, p-1\}$ we arrive at

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{T_{k} H_{k}}{3^{k}} \equiv \Sigma_{1}-p \Sigma_{2}-p \Sigma_{3} \quad\left(\bmod p^{2}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\Sigma_{1}:=\sum_{j=0}^{p-2} \frac{\binom{2 j}{j}}{3^{j}(j+1)}, \quad \Sigma_{2}:=\sum_{j=0}^{(p-1) / 2} \frac{\binom{2 j}{j} H_{j}}{3^{j}(j+1)}, \quad \Sigma_{3}:=\sum_{j=0}^{(p-1) / 2} \frac{\binom{2 j}{j} H_{j}}{3^{j}(j+1)}
$$

In view of (2.5),

$$
\binom{2 p-2}{p-1}=\frac{p}{2 p-1}\binom{2 p-1}{p-1} \equiv-p-2 p^{2} \quad\left(\bmod p^{3}\right)
$$

Thus by Lemma 3.2 we get that

$$
\begin{equation*}
\Sigma_{1} \equiv 3^{p-1}+\frac{\left(\frac{p}{3}\right)-1}{2}-\frac{\binom{2 p-2}{p-1}}{3^{p-1} p} \equiv 3^{p-1}+\frac{\left(\frac{p}{3}\right)-1}{2}+\frac{2 p+1}{3^{p-1}} \quad\left(\bmod p^{2}\right) \tag{3.7}
\end{equation*}
$$

Substituting $n=(p-1) / 2$ into (3.3) and in view of (2.7) and Lemma 3.4 we deduce that

$$
\begin{align*}
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k} H_{k}}{(k+1) 3^{k}} \equiv & \sum_{k=0}^{(p-1) / 2} \frac{\binom{(p-1) / 2}{k} H_{k}}{k+1}\left(-\frac{4}{3}\right)^{k} \\
\equiv & -\left(-3+\left(-\frac{1}{3}\right)^{(p-1) / 2}\right) q_{p}(2)+q_{p}(2)\left(-\frac{1}{3}\right)^{(p-1) / 2} \tag{3.8}\\
& +\frac{3}{2} \sum_{k=1}^{(p-1) / 2} \frac{1}{k(-3)^{k}} \quad(\bmod p) .
\end{align*}
$$

Also, letting $n=(p-1) / 2$ in (3.4) we obtain that

$$
\begin{align*}
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}}{(k+1)^{2} 3^{k}} & \equiv \sum_{k=0}^{(p-1) / 2} \frac{\binom{(p-1) / 2}{k}}{(k+1)^{2}}\left(-\frac{4}{3}\right)^{k} \\
& \equiv 3-3 q_{p}(2)-\frac{3}{2} \sum_{k=1}^{(p-1) / 2} \frac{1}{k(-3)^{k}}+\frac{1}{(-3)^{(p-1) / 2}} \quad(\bmod p) \tag{3.9}
\end{align*}
$$

Now combining (3.6)-(3.9) we arrive at

$$
\sum_{k=0}^{p-1} \frac{T_{k} H_{k}}{3^{k}} \equiv 3^{p-1}+\frac{\left(\frac{p}{3}\right)-1}{2}+\frac{2 p}{3^{p-1}}+\frac{1}{3^{p-1}}-3 p-\frac{p}{(-3)^{(p-1) / 2}} \quad\left(\bmod p^{2}\right)
$$

As in the proof or Theorem 1.1, we write $3^{(p-1) / 2}$ as $\left(\frac{3}{p}\right)(1+p t)$. By Fermat's little theorem and the law of quadratic reciprocity we finally obtain

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{T_{k} H_{k}}{3^{k}} & \equiv(1+2 p t)+\frac{\left(\frac{p}{3}\right)-1}{2}+2 p+1-2 p t-3 p-p\left(\frac{p}{3}\right) \\
& \equiv \frac{\left(\frac{p}{3}\right)+3}{2}-p\left(1+\left(\frac{p}{3}\right)\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

as desired. We are done.

4. Proof of Theorem 1.3

To show Theorem 1.3 we need a telescoping method for double summations developed by W.Y.C. Chen, Q.-H. Hou and Y.-P. Mu [1]. To learn how to use the telescoping method one may refer to [6, 16].
Lemma 4.1. For any nonnegative integer n and $t \neq 0$ we have

$$
\sum_{k=0}^{n} \frac{\binom{n}{k} t^{k+1}}{k+1}=\frac{(1+t)^{n+1}-1}{n+1}
$$

Proof. It is easy to see that

$$
(n+1) \sum_{k=0}^{n} \frac{\binom{n}{k} t^{k+1}}{k+1}=\sum_{k=0}^{n}\binom{n+1}{k+1} t^{k+1}=\sum_{k=1}^{n+1}\binom{n+1}{k} t^{k}=(1+t)^{n+1}-1 .
$$

This proves Lemma 4.1.
Proof of Theorem 1.3. Set

$$
F(n, k)=\frac{1}{m^{n}}\binom{n}{k}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k} .
$$

Via APCI we find

$$
G_{1}(n, k)=\frac{2 k n+k+n}{m^{n}(k+1)}\binom{n}{k}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k}
$$

and

$$
G_{2}(n, k)=\frac{2 k}{m^{n+1}}\binom{n+1}{k}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k}
$$

so that

$$
F(n, k)=\left(G_{1}(n+1, k)-G_{1}(n, k)\right)+\left(G_{2}(n, k+1)-G_{2}(n, k)\right) .
$$

Therefore

$$
\sum_{n=0}^{p-1} \frac{1}{m^{n}} \sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k}=\sum_{n=0}^{p-1} \sum_{k=0}^{n} F(n, k)
$$

$$
=\sum_{k=0}^{p-1}\left(G_{1}(p, k)-G_{1}(k, k)\right)+\sum_{n=0}^{p-1}\left(G_{2}(n, n+1)-G_{2}(n, 0)\right)=\Sigma_{1}-\Sigma_{2}+\Sigma_{3}
$$

where

$$
\Sigma_{1}:=\sum_{k=0}^{p-1} G_{1}(p, k), \quad \Sigma_{2}:=\sum_{k=0}^{p-1} G_{1}(k, k), \quad \Sigma_{3}:=\sum_{n=0}^{p-1} G_{2}(n, n+1)
$$

If $m-1 \not \equiv 0(\bmod p)$, by (2.5) and Lemma 4.1 we have

$$
\begin{aligned}
\Sigma_{1} & =\sum_{k=0}^{p-1} \frac{2 p k+k+p}{m^{p}(k+1)}\binom{p}{k}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k} \\
& \equiv \sum_{k=1}^{p-2} \frac{2 p k+k+p}{m^{p}(k+1)} \cdot \frac{p}{k} \cdot\binom{p-1}{k-1}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k}+\frac{2 p}{m} \\
& \equiv \sum_{k=1}^{p-2} \frac{p(-1)^{k-1}}{k+1}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k}+\frac{2 p}{m} \\
& \equiv-\frac{p}{m} \sum_{k=0}^{(p-1) / 2} \frac{\binom{(p-1) / 2}{k}}{k+1}(m-1)^{k}+\frac{3 p}{m} \\
& \equiv \frac{p}{m}+2 p \frac{1-\left(\frac{m}{p}\right)}{m-1}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\Sigma_{3}-\Sigma_{2} & =\sum_{k=1}^{p} \frac{2 k}{m^{k}}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k}-\sum_{k=0}^{p-1} \frac{2 k}{m^{k}}\binom{2 k}{k}\left(\frac{m-1}{4}\right)^{k} \\
& =\frac{2 p}{m}\binom{2 p}{p}\left(\frac{m-1}{4}\right)^{p} \equiv p-\frac{p}{m}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Combining the above we obtain (1.5) immediately.
If $m-1 \equiv 0(\bmod p)$, by Lemma 4.1 it is easy to check that

$$
\Sigma_{1} \equiv p \quad(\bmod p) \quad \text { and } \quad \Sigma_{3}-\Sigma_{2} \equiv 0 \quad(\bmod p)
$$

Thus (1.5) holds again. We are done.

References

[1] W.Y.C. Chen, Q.-H. Hou, and Y.-P. Mu, A telescoping method for double summations, J. Comput. Appl. Math. 196 (2006) 553-566.
[2] H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., West Virginia, 1972.
[3] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd Edition, Grad. Texts in Math. 84, Springer, New York, 1990.
[4] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. 39 (1938), 350-360.
[5] F. Morley, Note on the congruence $2^{4 n} \equiv(-1)^{n}(2 n)!/(n!)^{2}$, where $2 n+1$ is a prime, Ann. Math. 9 (1895), 168-170.
[6] Y.-P. Mu and Z.-W. Sun, Telescoping method and congruences for double sums, Int. J. Number Theory 14 (2018), 143-165.
[7] H. Pan and Z.-W. Sun, A combinatorial identity with application to Catalan numbers, Discrete Math. 306 (2006), 1921-1940.
[8] Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso, Congruences concerning Jacobi polynomials and Apéry-like formulae, Int. J. Number Theory, 8 (2012), 1789-1811.
[9] C. Schneider, Symbolic summation assists combinatorics, Séminaire Lotharingien de Combinatoire 56 (2007), Article B56b.
[10] N.J.A. Sloane, Sequence A001006 in OEIS, http://oeis.org/A001006.
[11] N.J.A. Sloane, Sequence A002426 in OEIS, http://oeis.org/A002426.
[12] Z.-W. Sun, Binomial coefficients, Catalan numbers and Lucas Quotients, Sci. China. Math. 53 (2010), no. 9, 2473-2488.
[13] Z.-W. Sun, On sums related to central binomial and trinomial coefficents, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory: CANT 2011 and 2012, Springer Proc. in Math. \& Stat., Vol. 101, Springer, New York, 2014, pp. 257-312.
[14] Z.-W. Sun, Congruences involving generalized central trinomial coefficients, Sci. China Math. 57 (2014), no. 7, 1375-1400.
[15] Z.-W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36 (2019), no. 1, 1-99.
[16] C. Wang and Z.-W. Sun, Divisibility results on Franel numbers and related polynomials, Int. J. Number Theory 15 (2019), no.2, 433-444.
[17] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-39.
(Chen Wang) Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

E-mail address: cwang@smail.nju.edu.cn
(Zhi-Wei Sun) Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

E-mail address: zwsun@nju.edu.cn

[^0]: 2010 Mathematics Subject Classification. Primary 11A07, 11B75; Secondary 05A10, 11B65.
 Key words and phrases. Congruences, central trinomial coefficients, binomial coefficients, harmonic numbers. This work was supported by the National Natural Science Foundation of China (grant no. 11971222).

