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CONGRUENCES INVOLVING CENTRAL TRINOMIAL COEFFICIENTS

CHEN WANG AND ZHI-WEI SUN

Abstract. In this paper, we confirm some congruences conjectured by the second author.
For example, we prove that for any prime p > 3

p−1
∑

k=0

(

2k
k

)

12k
Tk ≡

(p

3

) 3p−1 + 3

4
(mod p2)

and
p−1
∑

k=0

TkHk

3k
≡

3 +
(

p

3

)

2
− p

(

1 +
(p

3

))

(mod p2),

where Tk is the coefficient of xk in the expansion of (1 + x + x2)k, (−) denotes the Legendre
symbol and Hk :=

∑

0<j≤k 1/j denotes the kth harmonic number.

1. Introduction

For n ∈ N = {0, 1, 2, . . .}, the nth central trinomial coefficient

Tn = [xn](1 + x+ x2)n

is the coefficient of xn in the expansion of (1 + x + x2)n. Note that [xn](1 + x + x2) =
[x0](1 + x+ x−1). By the multi-nomial theorem we have

Tn =

⌊n/2⌋
∑

k=0

n!

k!k!(n− 2k)!
=

⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)

=
n
∑

k=0

(

n

k

)(

n− k

k

)

. (1.1)

Tn has many combinatorial interpretations (cf. [11]). For example, Tn is the number of lattice
paths running from (0, 0) to (n, 0) with steps (1, 1), (1,−1) and (1, 0). It is easy to see that
Tn also has the following form

Tn = 3n
n
∑

k=0

(

n

k

)(

2k

k

)(

−
1

3

)k

(1.2)

which follows from [2, (3.136) and (3.137)]. The readers may refer to [11] for more identities
involving Tn.
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In [13, 14], Z.-W. Sun systematically investigated congruences involving the generalized
central trinomial coefficients

Tn(b, c) := [xn](x2 + bx+ c)n, b, c ∈ Z

Clearly, Tn = Tn(1, 1). In [13], Sun determined the general sums

p−1
∑

k=0

(

2k
k

)

Tk(b, c)

mk

modulo an odd prime p, where b, c,m ∈ Z and p ∤ m. In particular, letting m = 12 and
b = c = 1 he obtained that

p−1
∑

k=0

(

2k
k

)

Tk

12k
≡

(

6

p

) p−1
∑

k=0

(

4k
2k

)(

2k
k

)

64k
≡
(p

3

)

(mod p), (1.3)

where (−) denotes the Legendre symbol. In the same paper, as an extension of (1.3), Sun [13,
Conjecture 2.1] conjectured the following congruence that we shall prove.

Theorem 1.1. Let p > 3 be a prime. Then

p−1
∑

k=0

(

2k
k

)

12k
Tk ≡

(p

3

) 3p−1 + 3

4
(mod p2). (1.4)

Remark 1.1. For p 6= 3, by Fermat’s little theorem (cf. [3]), we have 3p−1 ≡ 1 (mod p). Thus
(1.4) implies (1.3).

Let n be a nonnegative integer. The nth harmonic number Hn is defined by

H0 := 0 and Hn :=
n
∑

k=1

1

k
(n = 1, 2, 3, . . .).

In [14] Sun studied the sums involving Tn(b, c)
2 and products of Tn(b, c) and other numbers

(such as Motzkin numbers [10] and harmonic numbers). For example, he proved that

n−1
∑

k=0

(2k + 1)Tk(b, c)
2(b2 − 4c)n−1−k ≡ 0 (mod n2)

for all n = 1, 2, 3, . . ., and and

p−1
∑

k=0

T 2
k ≡

(

−1

p

)

(mod p)

for any odd prime p. Our next theorem confirms a conjecture posed by Sun in [14, Conjecture
1.1 (ii)].
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Theorem 1.2. Let p be a prime. Then

p−1
∑

k=0

TkHk

3k
≡

3 +
(

p
3

)

2
− p

(

1 +
(p

3

))

(mod p2).

In this paper we also prove the following result which was conjectured by Sun in a recent
paper [15].

Theorem 1.3. [15, Conjecture 33] Let p be an odd prime and let m ∈ Z with m 6= 1 and

p ∤ m. Then

p−1
∑

n=0

1

mn

n
∑

k=0

(

n

k

)(

2k

k

)(

m− 1

4

)k

≡ p+ 2p
1− (m

p
)

m− 1
(mod p2). (1.5)

Remark 1.2. One may easily prove (1.5) modulo p by exchanging the summation order and
noting that

(

2k
k

)

≡ 0 (mod p) for k = (p+ 1)/2, . . . , p− 1. However, it seems to be difficult to
prove (1.5) entirely in this way. Here we use the Maple Package APCI (see [1]) to reduce the
double sum on the left-hand side of (1.5).

We will show Theorems 1.1–1.3 in Sections 2–4 respectively.

2. Proof of Theorem 1.1

In order to show Theorem 1.1, we need the following preliminary results.

Lemma 2.1. Let n, j ∈ N. Then we have the following identity

n
∑

k=j

(

2k
k

)(

k
j

)

4k
=

n + 1

22n+1(2j + 1)
·

(

n

j

)(

2n + 2

n+ 1

)

. (2.1)

Proof. This could be directly verified by induction on n. �

Lemma 2.2. Let p > 3 be a prime. Then

(p−3)/2
∑

k=0

(

2k
k

)

(2k + 1)3k
≡

1

p
·

(

(−1)(p−1)/2

4 · 3(p−1)/2
+

(−1)(p−1)/2 · 3(p+1)/2

4
−

(−1)(p−1)/2 · 4p−1

3(p−1)/2

)

(mod p).

(2.2)

Proof. In [8, Theorem 2], Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso
obtained a general result involving

(p−3)/2
∑

k=0

(

2k
k

)

tk

2k + 1
(mod p3),

where p is an odd prime and t is a p-adic integer with p ∤ t. Substituting t = 1/3 into their
result, we immediately obtain (2.2). �
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Proof of Theorem 1.1. By (1.2) we have

p−1
∑

k=0

(

2k
k

)

12k
Tk =

p−1
∑

k=0

(

2k
k

)

4k

k
∑

j=0

(

−
1

3

)j (
k

j

)(

2j

j

)

=

p−1
∑

j=0

(

−
1

3

)j (
2j

j

) p−1
∑

k=j

(

2k
k

)

4k

(

k

j

)

.

Replacing n with p− 1 in Lemma 2.1 we arrive at
p−1
∑

k=j

(

2k
k

)

4k

(

k

j

)

=
p

22p−1(2j + 1)
·

(

p− 1

j

)(

2p

p

)

.

Noting that
(

2j
j

)

≡ 0 (mod p) and p ∤ 2j + 1 for j ∈ {(p+ 1)/2, . . . , p− 1}, we obtain

p−1
∑

k=0

(

2k
k

)

12k
Tk ≡

p
(

2p
p

)

22p−1

(p−1)/2
∑

j=0

(

2j
j

)(

p−1
j

)

(2j + 1)(−3)j
(mod p2).

Clearly,
(

p− 1

j

)

= (−1)j
j
∏

k=1

(

1−
p

k

)

≡ (−1)j(1− pHj) (mod p2). (2.3)

Thus we have
p−1
∑

k=0

(

2k
k

)

12k
Tk ≡

(

2p
p

)(

p−1
(p−1)/2

)

(1− pH(p−1)/2)

3(p−1)/222p−1
+

p
(

2p
p

)

22p−1

(p−3)/2
∑

j=0

(

2j
j

)

(2j + 1)3j
(mod p2). (2.4)

In 1862, J. Wolstenholme [17] showed that for all primes p > 3
(

2p− 1

p− 1

)

≡ 1 (mod p3). (2.5)

From Morley’s congruence [5] we have for any prime p > 3
(

p− 1

(p− 1)/2

)

≡ (−1)(p−1)/24p−1 (mod p3). (2.6)

It is known [4] that
H(p−1)/2 ≡ −2qp(2) (mod p), (2.7)

where qp(2) := (2p−1 − 1)/p denotes the Fermat quotient. Now substituting (2.5)–(2.7) into
(2.4) we deduce that

p−1
∑

k=0

(

2k
k

)

12k
Tk ≡

(−1)(p−1)/2

3(p−1)/2
(1 + 2pqp(2)) +

(−1)(p−1)/2

4 · 3(p−1)/2
+

3

4
· (−3)(p−1)/2 −

(−1)(p−1)/2(1+pqp(2))2

3(p−1)/2

≡
(−1)(p−1)/2

4 · 3(p−1)/2
+

3

4
· (−3)(p−1)/2 (mod p2).
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From [3, Page 51], we know that a(p−1)/2 ≡ (a
p
) (mod p). Thus we may write 3(p−1)/2 as

(3
p
)(1 + pt), where t is a p-adic integer. In view of this,

3p−1 = (3(p−1)/2)2 ≡ 1 + 2pt (mod p2).

By the above and with the help of the law of quadratic reciprocity (cf. [3]), we get

p−1
∑

k=0

(

2k
k

)

12k
Tk ≡

1

4

(

−1

p

)(

3

p

)

(1− pt) +
3

4

(

−1

p

)(

3

p

)

(1 + pt)

=
(p

3

) 4 + 2pt

4
≡
(p

3

) 3p−1 + 3

4
(mod p2)

as desired.
The proof of Theorem 1.1 is now complete. �

3. Proof of Theorem 1.2

The following identity can be verified by induction.

Lemma 3.1. Let n, j be nonnegative integers. Then we have
n
∑

k=j

(

k

j

)

Hk =

(

n + 1

j + 1

)(

Hn+1 −
1

j + 1

)

. (3.1)

Lemma 3.2. [12, Corollary 1.1] For any prime p > 3 we have

p−1
∑

k=1

(

2k
k

)

3k(k + 1)
≡ 3p−1 − 1 +

(

p
3

)

− 1

2
(mod p2). (3.2)

Lemma 3.3. For n ∈ N we have
n
∑

k=0

(

n
k

)

Hk

k + 1

(

−
4

3

)k

=
(−3 + (−1/3)n)Hn

4(n+ 1)
−

∑n
k=1

(−3)k

k

4(−3)n(n + 1)
+

3
∑n

k=1
1

k(−3)k

4(n+ 1)
(3.3)

and
n
∑

k=0

(

n
k

)

(k + 1)2

(

−
4

3

)k

=
1

n+ 1
+

3
∑n

k=1
1

k+1

4(n+ 1)
+

∑n
k=1

1
(k+1)(−3)k

4(n+ 1)
. (3.4)

Proof. These two identities were found by Sigma (a Mathematica package to find identities,
cf. [9]). Here we give a manual proof.

Denote the left-hand side of (3.3) by F (n) and the right-hand side by G(n). It is easy to
check that F (n) and G(n) all satisfy the following recurrence relation:

(n+1)(n+2)F (n)+(n+2)(5n+13)F (n+1)+3(n+3)(n+4)F (n+2)−9(n+3)(n+4)F (n+3) = 12.

Then (3.3) can be proved by noting that F (d) = G(d) for d = 0, 1, 2. We will not give the
proof of (3.4) since its proof is analogous. �
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Lemma 3.4. For any prime p > 3 we have

(p−1)/2
∑

k=1

(−3)k

k
≡ −2qp(2) (mod p). (3.5)

Proof. Clearly,

(p−1)/2
∑

k=1

(−3)k

k
=

(p−1)/2
∑

k=1

(1− 4)k

k
=

(p−1)/2
∑

k=1

1

k

k
∑

j=0

(

k

j

)

(−4)j

=

(p−1)/2
∑

j=1

(−4)j
(p−1)/2
∑

k=j

1

k

(

k

j

)

+H(p−1)/2.

By [2, (1.52)] we have

(p−1)/2
∑

k=j

1

k

(

k

j

)

=
1

j

(p−3)/2
∑

k=j−1

(

k

j − 1

)

=
1

j

(p−1
2

j

)

.

Thus we obtain
(p−1)/2
∑

k=1

(−3)k

k
=

(p−1)/2
∑

k=1

(−4)j

j

(p−1
2

j

)

+H(p−1)/2

≡

(p−1)/2
∑

k=1

(

2j
j

)

j
+H(p−1)/2 (mod p).

In 2006, H. Pan and Sun [7] proved that for any prime p > 3

p−1
∑

k=1

(

2k
k

)

k
≡

(p−1)/2
∑

k=1

(

2k
k

)

k
≡ 0 (mod p).

Thus (3.5) follows from (2.7). �

Proof of Theorem 1.2. By (1.2) and Lemma 3.1 we have

p−1
∑

k=0

TkHk

3k
=

p−1
∑

j=0

(

2j
j

)

(−3)j

p−1
∑

k=j

(

k

j

)

Hk

=p

p−1
∑

j=0

(

2j
j

)

(−3)j(j + 1)

(

p− 1

j

)(

Hp−1 +
1

p
−

1

j + 1

)

≡p

p−1
∑

j=0

(

2j
j

)

(1− pHj)

3j(j + 1)

(

1

p
−

1

j + 1

)

(mod p2),



CONGRUENCES INVOLVING CENTRAL TRINOMIAL COEFFICIENTS 7

where the last step follows from (2.3) and the fact Hp−1 ≡ 0 (mod p2) (cf. [17]). Noting that
(

2j
j

)

≡ 0 (mod p) for j ∈ {(p+ 1)/2, . . . , p− 1} we arrive at

p−1
∑

k=0

TkHk

3k
≡ Σ1 − pΣ2 − pΣ3 (mod p2), (3.6)

where

Σ1 :=

p−2
∑

j=0

(

2j
j

)

3j(j + 1)
, Σ2 :=

(p−1)/2
∑

j=0

(

2j
j

)

Hj

3j(j + 1)
, Σ3 :=

(p−1)/2
∑

j=0

(

2j
j

)

Hj

3j(j + 1)
.

In view of (2.5),
(

2p− 2

p− 1

)

=
p

2p− 1

(

2p− 1

p− 1

)

≡ −p− 2p2 (mod p3).

Thus by Lemma 3.2 we get that

Σ1 ≡ 3p−1 +

(

p
3

)

− 1

2
−

(

2p−2
p−1

)

3p−1p
≡ 3p−1 +

(

p
3

)

− 1

2
+

2p+ 1

3p−1
(mod p2). (3.7)

Substituting n = (p− 1)/2 into (3.3) and in view of (2.7) and Lemma 3.4 we deduce that

(p−1)/2
∑

k=0

(

2k
k

)

Hk

(k + 1)3k
≡

(p−1)/2
∑

k=0

(

(p−1)/2
k

)

Hk

k + 1

(

−
4

3

)k

≡−

(

−3 +

(

−
1

3

)(p−1)/2
)

qp(2) + qp(2)

(

−
1

3

)(p−1)/2

+
3

2

(p−1)/2
∑

k=1

1

k(−3)k
(mod p).

(3.8)

Also, letting n = (p− 1)/2 in (3.4) we obtain that

(p−1)/2
∑

k=0

(

2k
k

)

(k + 1)23k
≡

(p−1)/2
∑

k=0

(

(p−1)/2
k

)

(k + 1)2

(

−
4

3

)k

≡3− 3qp(2)−
3

2

(p−1)/2
∑

k=1

1

k(−3)k
+

1

(−3)(p−1)/2
(mod p).

(3.9)

Now combining (3.6)–(3.9) we arrive at

p−1
∑

k=0

TkHk

3k
≡ 3p−1 +

(

p
3

)

− 1

2
+

2p

3p−1
+

1

3p−1
− 3p−

p

(−3)(p−1)/2
(mod p2).
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As in the proof or Theorem 1.1, we write 3(p−1)/2 as (3
p
)(1 + pt). By Fermat’s little theorem

and the law of quadratic reciprocity we finally obtain

p−1
∑

k=0

TkHk

3k
≡(1 + 2pt) +

(

p
3

)

− 1

2
+ 2p+ 1− 2pt− 3p− p

(p

3

)

≡

(

p
3

)

+ 3

2
− p

(

1 +
(p

3

))

(mod p2)

as desired. We are done. �

4. Proof of Theorem 1.3

To show Theorem 1.3 we need a telescoping method for double summations developed by
W.Y.C. Chen, Q.-H. Hou and Y.-P. Mu [1]. To learn how to use the telescoping method one
may refer to [6, 16].

Lemma 4.1. For any nonnegative integer n and t 6= 0 we have

n
∑

k=0

(

n
k

)

tk+1

k + 1
=

(1 + t)n+1 − 1

n + 1
.

Proof. It is easy to see that

(n+ 1)
n
∑

k=0

(

n
k

)

tk+1

k + 1
=

n
∑

k=0

(

n + 1

k + 1

)

tk+1 =
n+1
∑

k=1

(

n+ 1

k

)

tk = (1 + t)n+1 − 1.

This proves Lemma 4.1. �

Proof of Theorem 1.3. Set

F (n, k) =
1

mn

(

n

k

)(

2k

k

)(

m− 1

4

)k

.

Via APCI we find

G1(n, k) =
2kn + k + n

mn(k + 1)

(

n

k

)(

2k

k

)(

m− 1

4

)k

and

G2(n, k) =
2k

mn+1

(

n + 1

k

)(

2k

k

)(

m− 1

4

)k

so that
F (n, k) = (G1(n+ 1, k)−G1(n, k)) + (G2(n, k + 1)−G2(n, k)).

Therefore
p−1
∑

n=0

1

mn

n
∑

k=0

(

n

k

)(

2k

k

)(

m− 1

4

)k

=

p−1
∑

n=0

n
∑

k=0

F (n, k)
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=

p−1
∑

k=0

(G1(p, k)−G1(k, k)) +

p−1
∑

n=0

(G2(n, n+ 1)−G2(n, 0)) = Σ1 − Σ2 + Σ3,

where

Σ1 :=

p−1
∑

k=0

G1(p, k), Σ2 :=

p−1
∑

k=0

G1(k, k), Σ3 :=

p−1
∑

n=0

G2(n, n+ 1).

If m− 1 6≡ 0 (mod p), by (2.5) and Lemma 4.1 we have

Σ1 =

p−1
∑

k=0

2pk + k + p

mp(k + 1)

(

p

k

)(

2k

k

)(

m− 1

4

)k

≡

p−2
∑

k=1

2pk + k + p

mp(k + 1)
·
p

k
·

(

p− 1

k − 1

)(

2k

k

)(

m− 1

4

)k

+
2p

m

≡

p−2
∑

k=1

p(−1)k−1

k + 1

(

2k

k

)(

m− 1

4

)k

+
2p

m

≡−
p

m

(p−1)/2
∑

k=0

(

(p−1)/2
k

)

k + 1
(m− 1)k +

3p

m

≡
p

m
+ 2p

1− (m
p
)

m− 1
(mod p2).

Also,

Σ3 − Σ2 =

p
∑

k=1

2k

mk

(

2k

k

)(

m− 1

4

)k

−

p−1
∑

k=0

2k

mk

(

2k

k

)(

m− 1

4

)k

=
2p

m

(

2p

p

)(

m− 1

4

)p

≡ p−
p

m
(mod p2).

Combining the above we obtain (1.5) immediately.
If m− 1 ≡ 0 (mod p), by Lemma 4.1 it is easy to check that

Σ1 ≡ p (mod p) and Σ3 − Σ2 ≡ 0 (mod p).

Thus (1.5) holds again. We are done. �
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mials and Apéry-like formulae, Int. J. Number Theory, 8 (2012), 1789–1811.
[9] C. Schneider, Symbolic summation assists combinatorics, Séminaire Lotharingien de Combinatoire 56
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