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p-ADIC ANALOGUES OF HYPERGEOMETRIC IDENTITIES

AND THEIR APPLICATIONS

CHEN WANG AND ZHI-WEI SUN

Abstract. In this paper, we confirm several conjectures posed by Sun recently. For example,
we prove that for any odd prime p we have

p−1
∑

k=0

Ak ≡

{

4x2 − 2p (mod p2) if p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8),

where An :=
∑n

k=0

(

n+k

k

)2(n

k

)2
are the Apéry numbers.

1. Introduction

For n ∈ N = {0, 1, 2, . . .} the truncated hypergeometric series r+1Fr are defined by

r+1Fr

[

α0 α1 · · · αr

β1 · · · βr

∣

∣

∣

∣

z

]

n

:=
n

∑

k=0

(α0)k · · · (αr)k
(β1)k · · · (βr)k

·
zk

k!
,

where α0, . . . , αr, β1, . . . , βr, z ∈ C and

(α)k :=















k−1
∏

j=0

(α + j), if k ≥ 1,

1, if k = 0,

denotes the so-called Pochhammer’s symbol. Clearly, the truncated hypergeometric series is
the sum of the first finite terms of the corresponding hypergeometric series. In the past decades,
the arithmetic properties of the truncated hypergeometric series have been widely studied (cf.
[1, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 24, 26, 27, 28, 29]).

The well-known Apéry numbers given by

An :=
n

∑

k=0

(

n+ k

k

)2(
n

k

)2

=
n

∑

k=0

(

n + k

2k

)2(
2k

k

)2

(n ∈ N = {0, 1, . . .}),

were first introduced by Apéry to prove the irrationality of ζ(3) =
∑∞

n=1 1/n
3 (see [2, 19]).

In 2012, Sun [22] studied the sums involving Apéry numbers systematically and posed some
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conjectures; for example, he conjectured that for any odd prime p we have

p−1
∑

k=0

Ak ≡

{

4x2 − 2p (mod p2) if p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).
(1.1)

Note that the above conjecture was also collected in [25, Conjecture 55]. We now state our
first theorem.

Theorem 1.1. For any odd prime p, (1.1) holds.

Remark 1.1. In [22], Sun proved that (1.1) holds modulo p.

Recently, Sun [25, Conjectures 35 and 36] proposed a series of congruences involving the
following polynomial in x:

n−1
∑

k=0

εk(2k + 1)2l−1
k

∑

j=0

(

−x

j

)m(
x− 1

k − j

)m

,

where ε ∈ {±1} and n, l,m ∈ Z+ = {1, 2, 3, . . .}. He conjectured that the polynomial

1

n

n−1
∑

k=0

εk(2k + 1)2l−1

k
∑

j=0

(

−x

j

)m(
x− 1

k − j

)m

(1.2)

is integer-valued, here we say a polynomial P (x) ∈ Q[x] is integer-valued if P (m) ∈ Z for all
m ∈ Z. If ε = 1 and m = 2, he even conjectured that the polynomial

(2l − 1)!!

n2

n−1
∑

k=0

(2k + 1)2l−1
k

∑

j=0

(

−x

j

)2(
x− 1

k − j

)2

(1.3)

is integer-valued. Sun also posed some conjectures when n take prime value. Let us consider
the case that l = 1, m ≥ 3 and n = p is an odd prime. Exchanging the summation order and
replacing k − j with k we obtain

p−1
∑

k=0

εk(2k + 1)

k
∑

j=0

(

−x

j

)m(
x− 1

k − j

)m

=

p−1
∑

j=0

εj
(

−x

j

)m p−1−j
∑

k=0

εk(2k + 2j + 1)

(

x− 1

k

)m

.

Denote by 〈−x〉p the least nonnegative residue of −x modulo p. Clearly,
(

−x

j

)

≡ 0 (mod p) for j ∈ {〈−x〉p + 1, . . . , p− 1}

and
(

x− 1

k

)

≡ 0 (mod p) for k ∈ {p− 〈−x〉p, . . . , p− 1}.
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Therefore by noting that p− 1− j ≥ p− 1− 〈−x〉p for any j ∈ {0, . . . , a} we have

p−1
∑

k=0

εk(2k + 1)
k

∑

j=0

(

−x

j

)m(
x− 1

k − j

)m

≡

p−1
∑

j=0

εj
(

−x

j

)m p−1
∑

k=0

εk(2k + 2j + 1)

(

x− 1

k

)m

=(1− x)Σ1 + xΣ2 (mod pm),

(1.4)

where

Σ1 :=m+1Fm

[

1− x 1 + 1−x
2

1− x · · · 1− x
1−x
2

1 · · · 1

∣

∣

∣

∣

(−1)mε

]

p−1

× mFm−1

[

x x · · · x
1 · · · 1

∣

∣

∣

∣

(−1)mε

]

p−1

and

Σ2 :=m+1Fm

[

x 1 + x
2

x · · · x
x
2

1 · · · 1

∣

∣

∣

∣

(−1)mε

]

p−1

× mFm−1

[

1− x 1− x · · · 1− x
1 · · · 1

∣

∣

∣

∣

(−1)mε

]

p−1

.

In view of the above we only need to consider the congruences concerning the truncated m+1Fm

and mFm−1 hypergeometric series. This is the motivation of the remaining part of this paper.
Our results involve the Morita’s p-adic gamma function Γp (cf. [18]) which is the p-adic

analogue of the classic gamma function Γ. For n ∈ N define Γp(0) := 1 and for n ≥ 1

Γp(n) := (−1)n
∏

1≤k<n
p∤k

k.

As we all know, the definition of Γp can be extended to Zp since N is a dense subset of Zp with
respect to p-adic norm, where Zp denotes the ring of p-adic integers. It follows that

Γp(x+ 1)

Γp(x)
=

{

−x, if p ∤ x,

−1, if p | x.
(1.5)

For more properties of p-adic gamma functions, one may consult [13, 14, 17, 18].
We now state our second theorem.

Theorem 1.2. For any odd prime p and α ∈ Z×
p = {x ∈ Zp | p ∤ x}. Let s = (α + 〈−α〉p)/p

and

hp(α) =
Γp

(

1+α
2

)

Γp

(

1−3α
2

)

Γp(1 + α)Γp(1− α)Γp

(

1−α
2

)2 .
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Then the following congruence holds modulo p3,

4F3

[

α 1 + α
2

α α
α
2

1 1

∣

∣

∣

∣

1

]

p−1

≡



































2hp(α), if 〈−α〉p is odd and 〈−α〉p <
2p+1
3

,

(2− 3s)php(α), if 〈−α〉p is odd and 〈−α〉p ≥
2p+1
3

,

sphp(α), if 〈−α〉p is even and 〈−α〉p <
p+1
3
,

(s− 3s2)p2hp(α)

2
, if 〈−α〉p is even and 〈−α〉p ≥

p+1
3
.

Remark 1.2. In 2017, He [9] studied the congruences modulo p2 for primes p ≥ 5 and α =
1/2, 1/3, 1/4.

In [14], Mao and Pan obtained a number of congruences modulo p2 involving truncated
hypergeometric identities and p-adic gamma functions. For instance, as a corollary, they
proved that for any odd prime p and α, β ∈ Zp with 〈−α〉p ≤ 〈−β〉p ≤ (p+ 〈−α〉p − 1)/2 and
(α− β + 1)p−1 6≡ 0 (mod p2)

4F3

[

α 1 + α
2

α β
α
2

1 α− β + 1

∣

∣

∣

∣

− 1

]

p−1

≡ −(α + 〈−α〉p) ·
Γp(α− β + 1)

Γp(1 + α)Γp(1− β)
(mod p2).

Letting β = α in the above congruence we get that

4F3

[

α 1 + α
2

α α
α
2

1 1

∣

∣

∣

∣

− 1

]

p−1

≡
α + 〈−α〉p

Γp(1 + α)Γp(1− α)
(mod p2). (1.6)

Our next theorem says that (1.6) is also valid for modulo p3.

Theorem 1.3. Let p be an odd prime and α ∈ Z×
p . Then we have

4F3

[

α 1 + α
2

α α
α
2

1 1

∣

∣

∣

∣

− 1

]

p−1

≡
α + 〈−α〉p

Γp(1 + α)Γp(1− α)
(mod p3).

Remark 1.3. Note that the cases α = 1/d and p ≡ 1 (mod d) with d = 2, 3, 4 were first
conjectured by van Hamme [28] and confirmed by Swisher [26].

The proofs of Theorems 1.2 and 1.3 depend on the local-global theorem for p-adic super-
congruences established by Pan, Tauraso and Wang [17]. Here we illustrate the local-global
theorem briefly (the reader may refer to [17, Theorem 1.1] for details). For any prime p >

(

r+1
2

)

the local-global theorem says that if a congruence modulo pr holds over some r admissible hy-
perplanes of Zn

p , then it also holds over the whole Zn
p . In view of this, to show our theorems,

we only need to prove them ‘locally’.
The organization of this paper is as follows. In the next section, we shall prove Theorem

1.1. We will prove Theorems 1.2 and 1.3 in Section 3. In Section 4, we shall confirm some
conjectures of Sun in [25, Conjectures 35 and 36] as applications of Theorems 1.2 and 1.3. In
the last section, we will prove more conjectures of Z.-W. Sun by some known results.
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2. Proof of Theorem 1.1

In order to show Theorem 1.1 we need the following lemmas.

Lemma 2.1. [6, (2.5)] We have the following identity
(

k

i

)(

k + i

i

)(

k

j

)(

k + j

j

)

=

i+j
∑

s=max{i,j}

(

s

i

)(

s

j

)(

i+ j

s

)(

k

s

)(

k + s

s

)

.

The following identity can be verified by induction on j.

Lemma 2.2. For j ∈ N we have

2j
∑

s=j

(

s

j

)2(
2j

s

)

(−1)s

2s+ 1
=

(

2j
j

)2

(4j + 1)
(

4j
2j

) .

Lemma 2.3. [3, Theorem 3.5.5] If a+ b = 1 and e+ f = 2c+ 1, then we have

3F2

[

a b c
e f

∣

∣

∣

∣

1

]

=
πΓ(e)Γ(f)

22c−1Γ((a+ e)/2)Γ((a+ f)/2)Γ((b+ e)/2)Γ((b+ f)/2)
.

The classical gamma function has the following Gauss multiplication formula [18, Page 371].

Lemma 2.4. For z ∈ C and m ≥ 2 we have
∏

0≤j<m

Γ

(

z +
j

m

)

= (2π)(m−1)/2m(1−2mz)/2 · Γ(mz).

In fact, we prove the following result.

Theorem 2.1. For any odd prime p we have

p−1
∑

k=0

Ak ≡

{

−
(

−1
p

)

Γp

(

1
8

)2
Γp

(

3
8

)2
(mod p2) if p ≡ 1, 3 (mod 8),

0 (mod p2) if p ≡ 5, 7 (mod 8).

Remark 2.1. (a) Here we illustrate that Theorem 2.1 implies Theorem 1.1. By [16] and [23],
if p ≡ 1, 3 (mod 8) and p = x2 + 2y2 (x, y ∈ Z) we have

4F3

[

1
2

1
4

3
4

1 1

∣

∣

∣

∣

1

]

p−1

≡ 4x2 − 2p (mod p2).

From [17] we have for p ≡ 1, 3 (mod 8)

4F3

[

1
2

1
4

3
4

1 1

∣

∣

∣

∣

1

]

p−1

≡ −

(

−1

p

)

Γp

(

1

8

)2

Γp

(

3

8

)2

(mod p2).

Combining the above, for p ≡ 1, 3 (mod 8) we have

4x2 − 2p ≡ −

(

−1

p

)

Γp

(

1

8

)2

Γp

(

3

8

)2

(mod p2).
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Thus Theorem 1.1 holds.
(b) In [25, Conjecture 55], Sun also conjectured that if prime p > 3 and p ≡ 1, 3 (mod 8),

then
p−1
∑

k=0

Ak ≡ 3F2

[

1
2

1
4

3
4

1 1

∣

∣

∣

∣

1

]

p−1

(mod p3). (2.1)

Actually, Theorem 2.1 implies that (2.1) holds modulo p2.

Proof of Theorem 2.1. By Lemma 2.1 it is easy to see that

p−1
∑

k=0

Ak =

p−1
∑

k=0

k
∑

j=0

(

k + j

j

)2(
k

j

)2

=

p−1
∑

k=0

k
∑

j=0

2j
∑

s=j

(

s

j

)2(
2j

s

)(

k

s

)(

k + s

s

)

=

p−1
∑

j=0

2j
∑

s=j

(

s

j

)2(
2j

s

) p−1
∑

k=j

(

k + s

s

)(

k

s

)

=

p−1
∑

j=0

2j
∑

s=j

(

s

j

)2(
2j

s

)

p

2s+ 1

(

p+ s

s

)(

p− 1

s

)

,

where in the last step we use the following identity which could be checked by induction on n:

n−1
∑

k=s

(

k + s

s

)(

k

s

)

=
n

2s+ 1

(

n+ s

s

)(

n− 1

s

)

.

Note that for s ∈ {0, . . . , p− 1} we have ordp(2s+ 1) ≤ 1 and
(

p + s

s

)(

p− 1

s

)

≡ (−1)s (mod p2).

Therefore, by Lemma 2.2 we have

p−1
∑

k=0

Ak ≡p

p−1
∑

j=0

min{p−1,2j}
∑

s=j

(

s

j

)2(
2j

s

)

(−1)s

2s+ 1

=p

(p−1)/2
∑

j=0

2j
∑

s=j

(

s

j

)2(
2j

s

)

(−1)s

2s+ 1
+ p

p−1
∑

j=(p+1)/2

p−1
∑

s=j

(

s

j

)2(
2j

s

)

(−1)s

2s+ 1

=p

(p−1)/2
∑

j=0

(

2j
j

)2

(4j + 1)
(

4j
2j

) + p

p−1
∑

j=(p+1)/2

p−1
∑

s=j

(

s

j

)2(
2j

s

)

(−1)s

2s+ 1
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=p · 3F2

[

1
2

1
2

1
2

3
4

5
4

∣

∣

∣

∣

1

]

(p−1)/2

+ p

p−1
∑

j=(p+1)/2

p−1
∑

s=j

(

s

j

)2(
2j

s

)

(−1)s

2s+ 1
(mod p2).

It is easy to see that ordp(2s+ 1) = 0 and
(

2j

s

)(

s

j

)

=

(

2j

j

)(

j

s− j

)

≡ 0 (mod p)

provided that s, j ∈ {(p+ 1)/2, . . . , p− 1}. Hence we have

p−1
∑

k=0

Ak ≡ p · 3F2

[

1
2

1
2

1
2

3
4

5
4

∣

∣

∣

∣

1

]

(p−1)/2

(mod p2).

Clearly, at most one of 〈−3/4〉p and 〈−5/4〉p is smaller than (p− 1)/2. Thus for k ≤ (p− 1)/2
we have

p

(1)k
(

3
4

)

k

(

5
4

)

k

∈ Zp.

By Lemmas 2.3 and 2.4 and noting that ((1+p)/2)k((1−p)/2)k ≡ (1/2)2k (mod p2) we further
get that

p−1
∑

k=0

Ak ≡p · 3F2

[

1
2

1
2

1
2

3
4

5
4

∣

∣

∣

∣

1

]

p−1
2

≡p · 3F2

[

1−p
2

1+p
2

1
2

3
4

5
4

∣

∣

∣

∣

1

]

p−1
2

=
pΓ

(

3
4

)

Γ
(

5
4

)

Γ
(

1
2

)2

Γ
(

5−2p
8

)

Γ
(

7−2p
8

)

Γ
(

5+2p
8

)

Γ
(

7+2p
8

)

=
pΓ

(

3
8

)

Γ
(

5
8

)

Γ
(

7
8

)

Γ
(

9
8

)

Γ
(

5−2p
8

)

Γ
(

7−2p
8

)

Γ
(

5+2p
8

)

Γ
(

7+2p
8

) (mod p2).

If p ≡ 1 (mod 8). In this case, we have

Γ
(

3
8

)

Γ
(

5−2p
8

) =
Γp

(

3
8

)

Γp

(

5−2p
8

) · (−1)(p−1)/4,
Γ
(

5
8

)

Γ
(

7−2p
8

) =
Γp

(

5
8

)

Γp

(

7−2p
8

) · (−1)(p−1)/4,

Γ
(

7
8

)

Γ
(

5+2p
8

) =
Γp

(

7
8

)

Γp

(

5+2p
8

) · (−1)(p−1)/4,
Γ
(

9
8

)

Γ
(

7+2p
8

) =
Γp

(

9
8

)

p
8
· Γp

(

7+2p
8

) · (−1)(p−1)/4.

It follows that
p−1
∑

k=0

Ak ≡
8Γp

(

3
8

)

Γp

(

5
8

)

Γp

(

7
8

)

Γp

(

9
8

)

Γp

(

5−2p
8

)

Γp

(

7−2p
8

)

Γp

(

5+2p
8

)

Γp

(

7+2p
8

)

≡−
Γp

(

3
8

)

Γp

(

1
8

)

Γp

(

5
8

)

Γp

(

7
8

) (mod p2).
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It is known that

Γp(z)Γp(1− z) = (−1)p−〈−z〉p

for z ∈ Zp (cf. [18]). Thus

1

Γp

(

5
8

)

Γp

(

7
8

) = Γp

(

3

8

)

Γp

(

1

8

)

(−1)2p−(5p−5)/8−(7p−7)/8 = Γp

(

3

8

)

Γp

(

1

8

)

.

Therefore
p−1
∑

k=0

Ak ≡ −Γp

(

1

8

)2

Γp

(

3

8

)2

(mod p2).

If p ≡ 3 (mod 8). Similarly, we arrive at

Γ
(

3
8

)

Γ
(

5+2p
8

) =
Γp

(

3
8

)

p
8
· Γp

(

5+2p
8

) · (−1)(p+1)/4,
Γ
(

5
8

)

Γ
(

7+2p
8

) =
Γp

(

5
8

)

Γp

(

7+2p
8

) · (−1)(p+1)/4,

Γ
(

7
8

)

Γ
(

5−2p
8

) =
Γp

(

7
8

)

Γp

(

5−2p
8

) · (−1)(p+1)/4,
Γ
(

9
8

)

Γ
(

7−2p
8

) =
Γp

(

9
8

)

Γp

(

7−2p
8

) · (−1)(p+1)/4.

Thus we also obtain that
p−1
∑

k=0

Ak ≡ −
Γp

(

3
8

)

Γp

(

1
8

)

Γp

(

5
8

)

Γp

(

7
8

) (mod p2).

However, in this case we have

1

Γp

(

5
8

)

Γp

(

7
8

) = Γp

(

3

8

)

Γp

(

1

8

)

(−1)2p−(7p−5)/8−(5p−7)/8 = −Γp

(

3

8

)

Γp

(

1

8

)

.

It follows that
p−1
∑

k=0

Ak ≡ Γp

(

1

8

)2

Γp

(

3

8

)2

(mod p2).

The remaining cases can be proved similarly. The proof of Theorem 2.1 is now complete. �

3. Proofs of Theorems 1.2 and 1.3

Theorem 1.2 is actually a p-aidc analogue of the following 4F3 identity.

Lemma 3.1. [3, Page 182, 25(a)] For any α, β, γ ∈ C we have

4F3

[

α 1 + α
2

β γ
α
2

1 + α− β 1 + α− γ

∣

∣

∣

∣

1

]

=
Γ(1 + α− β)Γ(1 + α− γ)Γ

(

1+α
2

)

Γ
(

1+α
2

− β − γ
)

Γ(1 + α)Γ(1 + α− β − γ)Γ
(

1+α
2

− β
)

Γ(1+α
2

− γ)
. (3.1)

The following lemma gives the well-known Euler’s reflection formula and its p-adic analogue.



p-ADIC ANALOGUES OF HYPERGEOMETRIC IDENTITIES 9

Lemma 3.2. [18, Pages 369–371] For any z ∈ C,

Γ(z)Γ(1− z) =
π

sin πz
. (3.2)

The above formula has a p-adic analogue as follows

Γp(z)Γp(1− z) = (−1)p−〈−z〉p (3.3)

for z ∈ Zp.

Proof of Theorem 1.2. Here we just give the detailed proof of the first case where 〈−α〉p is odd
and 〈−α〉p <

2p+1
3

, since the proofs of other cases are similar.

Let a = 〈−α〉p. Now we assume that a is even and a < 2p+1
3

. Set

Ψ(x, y, z) :=4F3

[

−a + x 1 + −a+x
2

−a + y −a + z
−a+x

2
1 + x− y 1 + x− z

∣

∣

∣

∣

1

]

p−1

−
2Γp(1 + x− y)Γp(1 + x− z)Γp

(

1−a+x
2

)

Γp

(

1+3a+x−2y−2z
2

)

Γp(1− a+ x)Γp(1 + a + x− y − z)Γp

(

1+a+x−2y
2

)

Γp

(

1+a+x−2z
2

) .

It is easy to see that

4F3

[

α 1 + α
2

α α
α
2

1 1

∣

∣

∣

∣

1

]

p−1

≡ 2gp(α) (mod p3)

is equivalent to

Ψ(sp, sp, sp) ≡ 0 (mod p3), (3.4)

where s = (α+ a)/p. For p = 3, 5 we can verify (3.4) for any 1 ≤ α ≤ p3 numerically. Now we
assume that p ≥ 7. In view of the local-global theorem from [17], we only need to show that

Ψ(rp, sp, tp) ≡ 0 (mod p3) (3.5)

provided that r, s, t ∈ Zp and at least one of r, s, t is zero. We first show that

Ψ(0, sp, tp) = 0 (3.6)

for each s, t ∈ Zp. In fact, we may assume that sp, tp, (s + t)p ∈ Q \ Z (since any x ∈ Z ∩ Zp

can be approximated by a sequence of p-adic integers {xm}m≥0 in (Q \ Z) ∩ Zp). By (3.1) we
have

4F3

[

−a 1 + −a
2

−a + sp −a + tp
−a
2

1− sp 1− tp

∣

∣

∣

∣

1

]

p−1

= lim
z→0

4F3

[

−a + z 1 + −a+z
2

−a + sp −a + tp
−a+z

2
1 + z − sp 1 + z − tp

∣

∣

∣

∣

1

]

=
Γ(1− sp)

Γ
(

1+a−2sp
2

) ·
Γ(1− tp)

Γ
(

1+a−2tp
2

) ·
Γ
(

1+3a−2sp−2tp
2

)

Γ(1 + a− sp− tp)
· lim
z→0

Γ
(

1−a+z
2

)

Γ(1− a+ z)
.
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Since a is odd and a < (2p+ 1)/3, by (1.5) we have

Γ(1− sp)

Γ
(

1+a−2sp
2

) =

a−1
2
∏

j=1

1

j + sp
= (−1)

a−1
2 ·

Γp(1− sp)

Γp

(

1+a−2sp
2

) ,

Γ(1− tp)

Γ
(

1+a−2tp
2

) =

a−1
2
∏

j=1

1

j + tp
= (−1)

a−1
2 ·

Γp(1− tp)

Γp

(

1+a−2tp
2

) ,

Γ
(

1+3a−2sp−2tp
2

)

Γ(1 + a− sp− tp)
=

a−1
2
∏

j=1

(a+ j − sp− tp) = (−1)
a−1
2

Γp

(

1+3a−2sp−2tp
2

)

Γp(1 + a− sp− tp)
.

In light of (3.2) we obtain

Γ

(

1− a+ z

2

)

Γ

(

1 + a− z

2

)

=
π

sin π 1−a+z
2

,

Γ(1− a + z)Γ(a− z) =
π

sin π(1− a+ z)
.

Furthermore,

lim
z→0

Γ
(

1−a+z
2

)

Γ(1− a+ z)
= lim

z→0

Γ(a− z)

Γ(1+a−z
2

)
·
sin π(1− a + z)

sin π 1−a+z
2

=2(−1)
a−1
2

Γp(a)

Γp(
1+a
2
)
·
cosπ(a− 1)

cosπ a−1
2

=
2Γp(a)

Γp(
1+a
2
)
.

Noting (3.3) we have

2Γp(a)

Γp(
1+a
2
)
= (−1)

a−1
2
2Γp

(

1−a
2

)

Γp(1− a)
.

By the above we arrive at

4F3

[

−a 1 + −a
2

−a + sp −a+ tp
−a
2

1− sp 1− tp

∣

∣

∣

∣

1

]

p−1

=
Γp(1− sp)

Γp

(

1+a−2sp
2

) ·
Γp(1− tp)

Γp

(

1+a−2tp
2

) ·
Γp

(

1+3a−2sp−2tp
2

)

Γp(1 + a− sp− tp)
·
2Γp

(

1−a
2

)

Γp(1− a)
.

Thus (3.6) is concluded.
Now we turn to show

Ψ(rp, 0, tp) = 0 (3.7)

for any r, t ∈ Zp. Also, we may assume that rp, tp, rp− tp ∈ Q \ Z. By (3.1) we have

4F3

[

−a + rp 1 + −a+rp
2

−a −a + tp
−a+rp

2
1 + rp 1 + rp− tp

]

p−1
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=4F3

[

−a + rp 1 + −a+rp
2

−a −a + tp
−a+rp

2
1 + rp 1 + rp− tp

]

=
Γ(1 + rp)

Γ(1− a+ rp)
·

Γ(1 + rp− tp)

Γ(1 + a+ rp− tp)
·
Γ
(

1−a+rp
2

)

Γ
(

1+a+rp
2

) ·
Γ
(

1+3a+rp
2

− tp
)

Γ
(

1+a+rp
2

− tp
)

=
rp · Γp(1 + rp)

Γp(1− a+ rp)
·

Γp(1 + rp− tp)

Γp(1 + a+ rp− tp)
·

Γp

(

1−a+rp
2

)

1
2
rp · Γp

(

1+a+rp
2

) ·
Γp

(

1+3a+rp
2

− tp
)

Γp

(

1+a+rp
2

− tp
) .

Thus (3.7) holds. Symmetrically, we also have Ψ(rp, sp, 0) = 0 for any r, s ∈ Zp. The proof of
the first case is now complete. �

Remark 3.1. Set

Φ(x, y, z) :=4F3

[

−a + x 1 + −a+x
2

−a + y −a + z
−a+x

2
1 + x− y 1 + x− z

∣

∣

∣

∣

1

]

p−1

− f(x, y, z) ·
Γp(1 + x− y)Γp(1 + x− z)Γp

(

1−a+x
2

)

Γp

(

1+3a+x−2y−2z
2

)

Γp(1− a+ x)Γp(1 + a+ x− y − z)Γp

(

1+a+x−2y
2

)

Γp

(

1+a+x−2z
2

) ,

where

f(x, y, z) =



















2p+ x− 2y − 2z, a is odd and a ≥ 2p+1
3

,

x, a is even and a < p+1
3
,

x ·
p+ x− 2y − 2z

2
, a is even and a ≥ p+1

3
.

To obtain the remaining cases we only need to show the following result whose proof is left to
the reader as an excercise:

Φ(rp, sp, tp) = 0

provided r, s, t ∈ Zp and at least one of r, s, t is zero.

We now consider the p-adic analogue of the following identity due to Whipple.

Lemma 3.3. [30, (5.1)] For any α, β, γ ∈ C we have

4F3

[

α 1 + α
2

β γ
α
2

1 + α− β 1 + α− γ

∣

∣

∣

∣

− 1

]

=
Γ(1 + α− β)Γ(1 + α− γ)

Γ(1 + α)Γ(1 + α− β − γ)
.

Proof of Theorem 1.3. Let a = 〈−α〉p. Set

Ω(x, y, z) :=4F3

[

−a + x 1 + −a+x
2

−a + y −a + z
−a+x

2
1 + x− y 1 + x− z

∣

∣

∣

∣

− 1

]

p−1

− x ·
Γp(1 + x− y)Γp(1 + x− z)

Γp(1− a+ x)Γp(1 + a+ x− y − z)
.

Similarly as in the proof of Theorem 1.2, it suffices to show that

Ω(rp, sp, tp) ≡ 0 (mod p3) (3.8)
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provided r, s, t ∈ Zp and at least one of r, s, t is zero. Again, we may assume p ≥ 7.
We first consider the case r = 0. Also, assume that sp, tp, (s+ t)p ∈ Q \ Z. By Lemma 3.3,

we find that

4F3

[

−a 1 + −a
2

−a + sp −a+ tp
−a
2

1− sp 1− tp

∣

∣

∣

∣

− 1

]

p−1

= 4F3

[

−a 1 + −a
2

−a+ sp −a + tp
−a
2

1− sp 1− tp

∣

∣

∣

∣

− 1

]

=
Γ(1− sp)Γ(1− tp)

Γ(1− a)Γ(1 + a− sp− tp)
.

Since α ∈ Z×
p we have a − 1 ∈ {1, . . . , p − 2}. By (3.2) we know that for any nonnegative

integer n, 1/Γ(−n)=0. Thus we obtain Ω(0, sp, tp) = 0.
Below we consider the case s = 0. Assume that rp, (r − t)p ∈ Q \ Z. With the help of

Lemma 3.3 we arrive at

4F3

[

−a+ rp 1 + −a+rp
2

−a −a + tp
−a+rp

2
1 + rp 1 + rp− tp

∣

∣

∣

∣

− 1

]

p−1

=4F3

[

−a+ rp 1 + −a+rp
2

−a −a + tp
−a
2

1 + rp 1 + rp− tp

∣

∣

∣

∣

− 1

]

=
Γ(1 + rp)Γ(1 + rp− tp)

Γ(1− a + rp)Γ(1 + a + rp− tp)
.

By (1.5) we have

Γ(1 + rp)

Γ(1− a+ rp)
= (−1)arp ·

Γp(1 + rp)

Γp(1− a+ rp)

and
Γ(1 + rp− tp)

Γ(1 + a+ rp− tp)
= (−1)a ·

Γp(1 + rp− tp)

Γp(1 + a+ rp− tp)
.

Thus we obtain Ω(rp, 0, tp) = 0. Symmetrically, we have Ω(rp, sp, 0) = 0. Combining the
above we get (3.8). The proof of Theorem 1.3 is now complete. �

4. Applications of Theorems 1.2 and 1.3

In [25, Conjecture 35], Sun posed many interesting conjectures, such as (1.2) and (1.3).
These two congruences look very challenging and cannot be solved by the method in this
paper. Fortunately, our method can be used to solve several other conjectures. Here we list
the conjectures that we shall prove in this section.

Conjecture 4.1. [25, Conjecture 35] (i) Let p > 3 be a prime. For any x ∈ Zp with 3x 6≡ 1, 2
(mod p) we have

p−1
∑

k=0

(−1)k(2k + 1)

k
∑

j=0

(

−x

j

)3(
x− 1

k − j

)3

≡ 0 (mod p2). (4.1)
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For any x ∈ Zp with x ≡ 1/3 (mod p), we have

p−1
∑

k=0

(−1)k(2k + 1)
k

∑

j=0

(

−x

j

)3(
x− 1

k − j

)3

≡ x+
p
(

p
3

)

− 1

3
(mod p2). (4.2)

(ii) Let p be an odd prime. If p 6≡ 5 (mod 8), then

p−1
∑

k=0

(−1)k(2k + 1)

k
∑

j=0

(

−1/4

j

)3(
−3/4

k − j

)3

≡ p2 (mod p3). (4.3)

If p ≡ 5, 7 (mod 8), then

p−1
∑

k=0

(2k + 1)
k

∑

j=0

(

−1/2

j

)3(
−1/2

k − j

)3

≡ 0 (mod p3). (4.4)

Theorem 4.1. Conjecture 4.1 is true.

Remark 4.1. (a) In fact, we could evaluate the sums in (4.1) and (4.2) modulo p3, however,
we shall not list them here since the mod p3 results are very complicated.
(b) Sun also conjectured that for any odd prime p ≡ 2 (mod 3),

p−1
∑

k=0

(2k + 1)
k

∑

j=0

(

−1/3

j

)3(
−2/3

k − j

)3

≡ 0 (mod p3).

Via a similar discussion as the one in the proof of Theorem 4.1, one may find that it suffices
to evaluate

p−1
∑

k=0

(

−1/3

k

)3

and

p−1
∑

k=0

(

−2/3

k

)3

modulo p2.

To show Theorem 4.1 we need the following known results.

Lemma 4.1. [17, Theorem 5.1] Suppose that p is an odd prime and α ∈ Z×
p . Let s =

(α + 〈−α〉p)/p, and

gp(α) =
Γp(1 +

1
2
α)Γp(1−

3
2
α)

Γp(1 + α)Γp(1− α)Γp(1−
1
2
α)2

.

Then the following congruence holds modulo p3,

3F2

[

α α α
1 1

∣

∣

∣

∣

1

]

p−1

≡



































2gp(α) if 〈−α〉p is even and 〈−α〉p < 2p/3,

p(2− 3s)gp(α) if 〈−α〉p is even and 〈−α〉p ≥ 2p/3,

psgp(α) if 〈−α〉p is odd and 〈−α〉p < p/3,

p2s(1− 3s)gp(α)

2
if 〈−α〉p is odd and 〈−α〉p ≥ p/3.
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Lemma 4.2. [17, Corollary 8.1] Let p be an odd prime. If p ≡ 1, 3 (mod 8), then

3F2

[

1
2

1
2

1
2

1 1

∣

∣

∣

∣

− 1

]

p−1

≡ −Γp

(

1

8

)2

Γp

(

3

8

)2

(mod p3).

If prime p ≡ 5, 7 (mod 8), then

3F2

[

1
2

1
2

1
2

1 1

∣

∣

∣

∣

− 1

]

p−1

≡
3p2

64
· Γp

(

1

8

)2

Γp

(

3

8

)2

(mod p3).

Proof of Theorem 4.1. Recall that in Section 1, we obtained that

p−1
∑

k=0

εk(2k + 1)

k
∑

j=0

(

−x

j

)3(
x− 1

k − j

)3

≡ (1− x)Σ1 + xΣ2 (mod p3), (4.5)

where

Σ1 := 3F2

[

x x x
1 1

∣

∣

∣

∣

− ε

]

p−1

· 4F3

[

1− x 1 + 1−x
2

1− x 1− x
1−x
2

1 1

∣

∣

∣

∣

− ε

]

p−1

and

Σ2 := 3F2

[

1− x 1− x 1− x
1 1

∣

∣

∣

∣

− ε

]

p−1

· 4F3

[

x 1 + x
2

x x
x
2

1 1

∣

∣

∣

∣

− ε

]

p−1

(i) Denote 〈−x〉p by a. We first consider (4.1). Here we only prove the case that a is even
since the other case can be confirmed similarly. If a is even, then 〈x− 1〉p = p− 1− a is even.
Obviously, (4.1) holds if p | a. So we assume that 3x 6≡ 0, 1, 2 (mod p). Below we divide this
case into three subcases.

Case 1. (p+ 1)/3 ≤ a < 2p/3.
In this case, p/3 − 1 < 〈x − 1〉p ≤ (2p − 4)/3. Since 3x 6≡ 1, 2 (mod p) and p > 3, we know
that 〈x− 1〉p 6= (p− 2)/3, (p− 1)/3, p/3. Thus (p+ 1)/3 ≤ 〈x− 1〉p ≤ (2p− 4)/3. Then (4.1)
follows from Theorem 1.2 and Lemma 4.1.

Case 2. a < (p+ 1)/3.
Now 〈x − 1〉p > (2p − 4)/3. Since 3x 6≡ 0, 1, 2 (mod p) we have 〈x − 1〉p 6= (2p − 3)/3, (2p−
2)/3, (2p− 1)/3, and then 〈x− 1〉p ≥ 2p/3. Then (4.1) follows again.

Case 3. a ≥ 2p/3.
Clearly, 〈x−1〉p ≤ p/3−1. Then (4.1) follows from Theorem 1.2 and Lemma 4.1 immediately.

Now we turn to (4.2). We first assume that p ≡ 1 (mod 6). In this case a = (p − 1)/3 is
even and 〈x− 1〉p = p− 1− a = (2p− 2)/3. Thus by Theorem 1.2 and Lemma 4.1 we have

(1− x)Σ1 ≡ 0 (mod p2)

and

xΣ2 ≡2x(x+ a) ·
Γp

(

1 + 1−x
2

)

Γp

(

1− 3(1−x)
2

)

Γp

(

1+x
2

)

Γp

(

1−3x
2

)

Γp(2− x)Γp(x)Γp

(

1− 1−x
2

)2
Γp(1 + x)Γp(1− x)Γp

(

1−x
2

)2
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=(x+ a)Γp

(

1− x

2

)

Γp

(

1 + x

2

)

Γp

(

3x− 1

2

)

Γp

(

3− 3x

2

)

=(x+ a)(−1)
2(p−1)

3 = x+ a = x+
p− 1

3
.

Thus (4.2) follows from the fact that
(

p
3

)

= 1 for p ≡ 1 (mod 6).
Below we suppose that p ≡ 5 (mod 6). Now a = (2p−1)/3 is odd and 〈x−1〉p = p−1−a =

(p− 2)/3. Also, by Theorem 1.2 and Lemma 4.1 we obtain

(1− x)Σ1 ≡ 0 (mod p2)

and

xΣ2 ≡2x(1− x+ 〈x− 1〉p) ·
Γp

(

1 + 1−x
2

)

Γp

(

1− 3(1−x)
2

)

Γp

(

1+x
2

)

Γp

(

1−3x
2

)

Γp(2− x)Γp(x)Γp

(

1− 1−x
2

)2
Γp(1 + x)Γp(1− x)Γp

(

1−x
2

)2

=(p− a− x)Γp

(

1− x

2

)

Γp

(

1 + x

2

)

Γp

(

3x− 1

2

)

Γp

(

3− 3x

2

)

=(p− a− x)(−1)
p−2
3 = x+

−p− 1

3
.

Noting that
(

p
3

)

= −1 provided p ≡ 5 (mod 6), (4.2) is concluded.

(ii) We now consider (4.3). We just prove the case p ≡ 1 (mod 8) since the remaining cases
are very similar. In this case, by Theorem 1.2 and Lemma 4.1 we obtain that

3F2

[

1
4

1
4

1
4

1 1

∣

∣

∣

∣

1

]

p−1

≡
2Γp

(

9
8

)

Γp

(

5
8

)

Γp

(

5
4

)

Γp

(

3
4

)

Γp

(

7
8

)2 , 3F2

[

3
4

3
4

3
4

1 1

∣

∣

∣

∣

1

]

p−1

≡
−p

4
· Γp

(

11
8

)

Γp

(

−1
8

)

Γp

(

7
4

)

Γp

(

1
4

)

Γp

(

5
8

)2 ,

4F3

[

1
4

9
8

1
4

1
4

1
8

1 1

∣

∣

∣

∣

1

]

p−1

≡
p

4
·

Γp

(

5
8

)

Γp

(

1
8

)

Γp

(

5
4

)

Γp

(

3
4

)

Γp

(

3
8

)2 ,

4F3

[

3
4

11
8

3
4

3
4

3
8

1 1

∣

∣

∣

∣

1

]

p−1

≡ −
15p2

16
·

Γp

(

7
8

)

Γp

(

−5
8

)

Γp

(

7
4

)

Γp

(

1
4

)

Γp

(

1
8

)2 .

Then by (3.3) and (4.5) we deduce that

p−1
∑

k=0

(−1)k(2k + 1)
k

∑

j=0

(

−1/4

j

)3(
−3/4

k − j

)3

≡
3

4
· p2 +

1

4
· p2 = p2 (mod p3).

This proves (4.3).
Below we turn to show (4.4). By (4.5) we have

p−1
∑

k=0

(2k + 1)

k
∑

j=0

(

−1/2

j

)3(
−1/2

k − j

)3
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≡3F2

[

1
2

1
2

1
2

1 1

∣

∣

∣

∣

− 1

]

p−1

· 4F3

[

1
2

5
4

1
2

1
2

1
4

1 1

∣

∣

∣

∣

− 1

]

p−1

(mod p3).

By Theorem 1.3 we know that

4F3

[

1
2

5
4

1
2

1
2

1
4

1 1

∣

∣

∣

∣

− 1

]

p−1

≡ 0 (mod p).

In view of Lemma 4.2, for p ≡ 5, 7 (mod 8) we have

3F2

[

1
2

1
2

1
2

1 1

∣

∣

∣

∣

− 1

]

p−1

≡ 0 (mod p2).

Combining the above, (4.4) follows immediately.
The proof of Theorem 4.1 is now complete. �

5. Some more solvable conjectures

In the previous two sections, we established p-adic analogues of two hypergeometric identities
and used them to solve some congruences conjectured by Sun. In fact, in [25], there are some
more conjectures can be solved by some known results. Here we give a collection of them.

Conjecture 5.1. [25, Conjecture 36] (i) For each prime p > 3, we have

p−1
∑

k=0

(2k + 1)

k
∑

j=0

(

−1/6

j

)4(
−5/6

k − j

)4

≡ 0 (mod p2). (5.1)

(ii) Let p be an odd prime. If p ≡ 3 (mod 4), then

p−1
∑

k=0

(2k + 1)
k

∑

j=0

(

−1/4

j

)4(
−3/4

k − j

)4

≡ 0 (mod p2), (5.2)

and
p−1
∑

k=0

(2k + 1)
k

∑

j=0

(

−1/2

j

)5(
−1/2

k − j

)5

≡ 0 (mod p3). (5.3)

If p ≡ 5 (mod 6), then

p−1
∑

k=0

(2k + 1)
k

∑

j=0

(

−1/6

j

)6(
−5/6

k − j

)6

≡ 0 (mod p2). (5.4)

Theorem 5.1. Conjecture 5.1 is true.

Proof. We first illustrate that (5.3) holds. By (1.4), we know that

p−1
∑

k=0

(2k + 1)

k
∑

j=0

(

−1/2

j

)5(
−1/2

k − j

)5
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≡6F5

[

1
2

5
4

1
2

1
2

1
2

1
2

1
4

1 1 1 1

∣

∣

∣

∣

− 1

]

p−1

· 5F4

[

1
2

1
2

1
2

1
2

1
2

1 1 1 1

∣

∣

∣

∣

− 1

]

p−1

(mod p5).

In [28], van Hamme ever conjectured that for any odd prime p ≡ 3 (mod 4)

6F5

[

1
2

5
4

1
2

1
2

1
2

1
2

1
4

1 1 1 1

∣

∣

∣

∣

− 1

]

p−1

≡ 0 (mod p3).

This was confirmed by Liu in [11] by establishing its generalization: For p ≥ 5 with p ≡ 3
(mod 4)

6F5

[

1
2

5
4

1
2

1
2

1
2

1
2

1
4

1 1 1 1

∣

∣

∣

∣

− 1

]

p−1

≡ −
p3

16
Γp

(

1

4

)

(mod p4).

Note that Liu conjectured that the above congruence also holds modulo p5 which has been
confirmed by Wang [29]. In view of these, (5.3) holds evidently.

Now we prove (5.1). Assume p ≡ 1 (mod 6). It follows that 〈−1/6〉p = (p− 1)/6 < p/2 and
〈−5/6〉p = (5p− 5)/6 > p/2. Now by [14, Theorem 2.22], we obtain that

5F4

[

1
6

13
12

1
6

1
6

1
6

1
12

1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p) and 5F4

[

5
6

17
12

5
6

5
6

5
6

5
12

1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p2).

By (1.4), it suffices to show that

4F3

[

5
6

5
6

5
6

5
6

1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p).

We need the well-known Karlsson-Minton summation formula (cf. [5, Page 18]):

r+1Fr

[

a b1 +m1 · · · br +mr

b1 · · · br

∣

∣

∣

∣

1

]

= 0, (5.5)

provided that m1, m2, . . . , mr are nonnegative integers and ℜ(−a) > m1 + · · ·+mr. By (5.5),
we have

4F3

[

5
6

5
6

5
6

5
6

1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 4F3

[

5−5p
6

5+p
6

5+p
6

5+p
6

1 1 1

∣

∣

∣

∣

1

]

= 0 (mod p)

since (p− 1)/2 < (5p− 5)/6.
If p ≡ 5 (mod 6), then we have 〈−1/6〉p = (5p−1)/6 > p/2 and 〈−5/6〉p = (p−5)/6 < p/2.

Thus by [14, Theorem 2.22] we arrive at

5F4

[

1
6

13
12

1
6

1
6

1
6

1
12

1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p2) and 5F4

[

5
6

17
12

5
6

5
6

5
6

5
12

1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p).

Furthermore, by (5.5) we have

4F3

[

1
6

1
6

1
6

1
6

1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 4F3

[

1−5p
6

1+p
6

1+p
6

1+p
6

1 1 1

∣

∣

∣

∣

1

]

= 0 (mod p)

since (p− 5)/2 < (5p− 1)/6. Combining the above (5.1) holds.
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(5.2) can be verified in a similar way as the one in the proof of (5.1). We now consider (5.4).
Since p ≡ 5 (mod 6), we have 〈−1/6〉p = (5p− 1)/5 > 2p/3 and 〈−5/6〉p = (p− 5)/6 < p/3.
Then by [14, Theorems 2.17 and 2.20], we obtain

7F6

[

1
6

13
12

1
6

1
6

1
6

1
6

1
6

1
12

1 1 1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p2)

and

7F6

[

5
6

17
12

5
6

5
6

5
6

5
6

5
6

5
12

1 1 1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p).

Similarly to the above, by (5.5) we may easily obtain that

6F5

[

1
6

1
6

1
6

1
6

1
6

1
6

1 1 1 1 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p).

By (1.4) we immediately obtain (5.4).
Now the proof of Theorem 5.1 is complete. �
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