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Further Bijections to Pattern-Avoiding Valid Hook

Configurations

Maya Sankar

Abstract

Valid hook configurations are combinatorial objects used to understand West’s stack-sorting map.
We extend existing bijections corresponding valid hook configurations to intervals in partial orders
on Motzkin paths. To enumerate valid hook configurations on 312-avoiding permutations, we build
off of an existing bijection into a Motzkin poset and construct a bijection to certain well-studied
closed lattice walks in the first quadrant. We use existing results about these lattice paths to show
that valid hook configurations on 312-avoiding permutations are not counted by aD-finite generating
function, resolving a question of Defant’s, and additionally to compute asymptotics for the number of
such configurations. We also extend a bijection of Defant’s to a correspondence between valid hook
configurations on 132-avoiding permutations and intervals in the Motzkin-Tamari posets, providing
a more elegant proof of Defant’s enumeration thereof. To investigate this bijection, we present a
number of lemmas about valid hook configurations that are generally applicable and further study
the bijections of Defant’s.

1 Introduction

In 1990, West defined what we now call the stack-sorting map, which maps permutations to permutations
that are closer to the “sorted” increasing permutation [34]. It became well-studied because of its relation
to Knuth’s “stack-sorting algorithm” defined in The Art of Computer Programming over twenty years
prior, which had engendered significant progress in combinatorics and computer science [26]. A question
that has garnered a lot of interest is to determine the fertility of a given permutation π, or the number of
preimages π has under the stack-sorting map. West himself expended a lot of effort to compute fertilities
of a few specific classes of permutations, and ten years later Bousquet-Mélou provided an algorithm to
determine whether a permutation had nonzero fertility [6]. However, the task of explicitly determining
the fertility of any permutation remained open. See [2, 3, 5, 6, 13, 16, 20, 26, 34, 35] for more information
about the stack-sorting map

In 2017, Defant presented an approach to compute the fertility of an arbitrary permutation using
auxiliary structures on permutations called valid hook configurations (defined in Section 2) [14]. This
new approach further allowed Defant to generalize existing theorems about the stack-sorting map and
prove new results [10,12,14,15], providing a new framework for us to understand the stack-sorting map.
The relevance of valid hook configurations prompted mathematicians to study them as combinatorial
objects in their own right. In 2018, Defant, Engen, and Miller showed that valid hook configurations
of length-n permutations are in bijective correspondence with certain weighted set partitions [18] that
Josuat-Verget studied in the context of free probability theory [25]. In 2019, Defant undertook to
enumerate valid hook configurations of length-n permutations avoiding one or two patterns of length
3 [11]. It is with this question we primarily concern ourselves.

1.1 Posets on Motzkin Paths

Defant’s results primarily involved bijections to Motzkin intervals. A Motzkin path is a lattice path
consisting of steps going up by (1, 1), down by (−1, 1), or east by (1, 0) that starts and ends on the
x-axis and never dips below it. Let U , D, and E represent up, down, and east respectively. We will
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typically denote a Motzkin path P of length n as a sequence P1 · · ·Pn of elements in {U,D,E} such that
there is the same number of U ’s and D’s in the full sequence P1 · · ·Pn and every prefix P1 · · ·Pi has at
least as many U ’s as D’s.

Figure 1: The Motzkin path UDUEUDDE.

Let Mn be the set of Motzkin paths of length n. There is a natural partial order ≤S on Mn where
P ≤S Q if P lies below or is equal to Q everywhere. Alternatively, we say that P ≤S Q if the prefix
P1 · · ·Pi contains at least as many U ’s as the corresponding prefix Q1 · · ·Qi for each i ∈ [n]. Defant
denotes this poset as MS

n := (Mn,≤S) and calls it the nth Motzkin-Stanley lattice. This references the
Stanley lattice defined by Bernardi and Bonichon [1] which restricts MS

n to paths without east steps;
Ferrari and Pinzani proved that both partial orders are lattices [22]. Defant additionally defines two
successively stronger partial orders on Mn, which we denote as MC

n := (Mn,≤C) and MT
n := (Mn,≤T )

and will define in Section 3. The partial orderMT
n was introduced by Fang [21] as an analogue to classical

Tamari lattices, which have garnered much interest from researchers in combinatorics, group theory,
theoretical computer science, algebraic geometry, and algebraic topology [7,8,19,21,23,24,27,28,32,33].
Defant referred to MT

n as the nth Motzkin-Tamari poset, and we will call MC
n the nth Motzkin-Defant

poset analogously.

1.2 Main Results

In [11], Defant provides generating functions and asymptotics for the number of valid hook configurations
of length-n permutations avoiding most specified length-3 patterns. However, he was unable to compute
either in the 312-avoiding case. Defant constructed a bijection Λ̂Λn (pronounced “double lambda”) from
valid hook configurations of 312-avoiding permutations to intervals in the Motzkin-Defant poset MC

n−1

and conjectured that the numbers of these intervals could be enumerated by the binomial transform of
certain lattice paths in N2 studied in [4]. We prove Defant’s conjecture in Section 4 by defining a related
class of lattice paths with the desired cardinality and providing a bijection from intervals in the Motzkin-
Defant poset to this class of paths. Moreover, we use the results from [4] to compute asymptotics in
the 312-case and to show that Defant’s goal of producing an explicit generating function is untenable
in this case, as the generating function is not algebraic or even D-finite. Even if we ignore valid hook
configurations, this bijection connects intervals in posets of Motzkin paths and lattice paths in N2, which
are more classical objects.

Defant additionally shows in [11] that the number of valid hook configurations of 132-avoiding length-
n permutations and the number of intervals in the Motzkin-Tamari poset MT

n−1 are the same, by
comparing their generating functions. He asks for an explicit bijection between the two sets. In Sections
5 through 7 we construct such a bijection by providing an injection from valid hook configurations of
132-avoiding permutations to valid hook configurations of 312-avoiding permutations and composing the
injection with Defant’s bijection Λ̂Λn. In addition to solving Defant’s problem, this injection suggests a
more general result about inequalities among valid hook configurations avoiding different inequalities,
which we posit in Section 8. We construct the injection by generalizing a map swl introduced by
Defant [9]. In order to study our map, we build up a number of generally applicable results about swl
in Section 5. In addition, we present an equivalent but more intuitive and versatile definition of a valid
hook configuration in Section 2. This new theory of valid hook configurations is also generally applicable:
in addition to simplifying the analysis of our injection, it would have, for example, allowed Defant to
define Λ̂Λn more easily.
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2 Permutations and Valid Hook Configurations

Let Sn be the set of permutations π : [n] → [n]. We will treat a permutation π ∈ Sn as a word π1 · · ·πn

in which each term πi is a distinct element of [n]. For σ ∈ Sk and π ∈ Sn, we say that a length-k
subsequence πa1

· · ·πak
matches the pattern σ if the indices ai are increasing and πai > πaj if and only

if σi > σj . We say π avoids σ if no such subsequence of π matches σ and we denote the set of σ-avoiding
permutations π ∈ Sn by Avn(σ). The plot of π is defined to be the set of points {(i, πi) : i ∈ [n]}. A
descent occurs when πi > πi+1; we will call πi the descent top and πi+1 the descent bottom.

A hook on π is constructed by drawing a vertical line up from a point (i, πi) and then drawing a
horizontal line right to a point (j, πj). This requires both i < j and πi < πj . We call (i, πi) and (j, πj)
the southwest and northeast endpoints of the hook, respectively.

(1, 3)
(2, 4)

(3, 1)

(4, 5)

(5, 2)

Figure 2: The plot of π = 34152 with a hook from (1, 3) to (4, 5).

Definition 2.1. A valid hook configuration on a permutation π is a set of hooks such that

(i) The set of southwest hook endpoints is exactly the set of descent tops.

(ii) No point in the plot of π may lie above a hook.

(iii) Hooks cannot intersect each other except at their endpoints.

Examples of valid and invalid hook configurations are given in Figures 3 and 4.

Figure 3: A valid hook configuration on the permutation 3215647.

For S ⊂ Sn, we write VHC(S) for the set of valid hook configurations on permutations in S. The
following two propositions describe our new formulation of valid hook configurations and how to apply
it.

3
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Figure 4: Hook configurations on permutations failing conditions (ii) or (iii) of Definition 2.1.

Proposition 2.2. Let π be a permutation and V a set of points in the plot of π. Then there is at most
one valid hook configuration whose set of northeast endpoints is exactly V .

Proof. Let U be the set of descent tops of π. List the points of U ⊔ V := U ×{0} ∪ V × {1} from left to
right to get a sequence (P1, δ1), . . . , (P|U|+|V |, δ|U|+|V |) with (Pi, 1) listed before (Pi, 0) when Pi ∈ U ∩V .

We can turn this sequence into a sequence of open and close parentheses by (Pi, δi) 7→

{
‘(’ if δi = 0
‘)’ if δi = 1

.

Every valid hook configuration on π with V the set of northeast endpoints gives a different matching of
left and right parentheses. Furthermore, we show this parenthesis matching must be balanced, meaning
that a matched pair () encloses either both or neither parentheses from any other matched pair.

If the matching were not balanced, we would have two improperly matched pairs of parentheses,
as shown in Figure 5. If the southwest endpoint of hook H2 lies above hook H1 then condition (ii) of

H1

H2

(1 )1(2 )2

Figure 5: Hooks corresponding to two improperly matched pairs of parentheses.

Definition 2.1 is violated, and if it lies below H1 then condition (iii) is violated. Hence, this matching is
balanced.

However, it is well-known that any sequence of parentheses has at most one balanced matching, so
it follows that there can be at most one valid hook configuration on π with set of northeast endpoints
V .

We will typically refer to a valid hook configuration by the set of its northeast endpoints, and often
write (π, V ) for a valid hook configuration on π with V the set of northeast endpoints.

Proposition 2.3. Assume V is a set of points in the plot of a permutation π and there is a bijection φ
from descent tops in π to V such that if φ(i, πi) = (j, πj), then

(i) We have j > i and πj > πi.

(ii) There is no k with i < k < j and πk > πj.

Then V is a valid hook configuration on π.

Proof. We can think of φ as a set of hooks on π because of condition (i). Condition (ii) of the proposition
implies that there are no points above any of these hooks, so everything but condition (ii) of Definition

4
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2.1 is satisfied. We induct on the number of hook intersections in φ. When there are none, this set of
hooks is a valid hook configuration.

Now assume two hooks H1 and H2 of φ intersect. Let H1 = ABC and H2 = DEF as shown at left
in Figure 6. Let φ′ be the set of hooks achieved from φ by replacing H1 and H2 with H ′

1 = AGF and

φ =

A

H1

C

FH2

D

B

G E

I

φ′ =

D

I

H ′
2

C

A

G FH ′
1

I

Figure 6: Original hooks H1 and H2 at left and replacement hooks H ′
1 and H ′

2 at right.

H ′
2 = DIC, as shown at right in the same figure. Any point above H ′

1 or H ′
2 would also be a point

above H1 or H2, so there are no points above hooks in φ′. To apply the inductive hypothesis we must
show that the number of hook intersections in φ′ is strictly less than the number of hook intersections
in φ. Consider a hook H3 ∈ φ distinct from H1 and H2. If H3 intersects GE or GB then it must
intersect BI or EI respectively, or else there would be a hook endpoint in square GEIB above H1. It
follows that H3 intersects H1 and H2 at least as many times as it intersects H ′

1 and H ′
2. Furthermore,

the hook intersection between H1 and H2 has been removed in φ′. It follows that φ′ has strictly fewer
hook intersections than φ, and we can apply the inductive hypothesis to show that V is a valid hook
configuration on π.

3 Motzkin Intervals

We define the two posets MC
n and MT

n on Mn. Recall that the Motzkin-Stanley lattice has the relation
P ≤S Q if P is below or equal to Q.

Definition 3.1. If s is a step in a Motzkin path, let δ(s) be the y-displacement of that step. That is,
δ(U) = 1, δ(E) = 0, and δ(D) = −1.

Definition 3.2. The class of a path P ∈ Mn, denoted cl(P ), is the subsequence of P consisting of U ’s
and E’s.

Definition 3.3. Write P ∈ Mn as P = X1D
γ1 · · ·XℓD

γℓ with Xi ∈ {U,E}. For i ∈ [ℓ], we define
longi(P ) to be the length of the shortest consecutive substring of P starting at Xi that forms a Motzkin
sub-path.

As an example, if we take P = UDEUEUDD pictured in Figure 7 then cl(P ) = UEUEU and we
have long1(P ) = 2, long2(P ) = 1, long3(P ) = 5, long4(P ) = 1, and long5(P ) = 2. It is also worth

Figure 7: The Motzkin path P = UDEUEUDD.

noting that if Xi = E then longi(P ) = 1 and if Xi = U then longi(P ) ≥ 2. This definition is different
from the one provided in [11], but it is easier to work with and does not affect the definition of the
Motzkin-Tamari poset below.
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Definition 3.4. We say P ≤C Q if cl(P ) = cl(Q) and P ≤S Q. We write MC
n := (Mn,≤C) and call

this the nth Motzkin-Defant poset.

Definition 3.5. If cl(P ) = cl(Q) then we can write P = X1D
γ1 · · ·XℓD

γℓ and Q = X1D
γ′

1 · · ·XℓD
γ′

ℓ

as in Definition 3.3. We say P ≤T Q if cl(P ) = cl(Q) and longi(P ) ≤ longi(Q) for all i ∈ [ℓ]. We write
MT

n := (Mn,≤T ) and call this the nth Motzkin-Tamari poset.

Definition 3.6. An interval in a poset P is an ordered pair of elements (x1, x2) ∈ P2 for which x1 ≤P x2.
We write Int(P) for the set of intervals in P .

We can now notate the domain and range of Defant’s bijection Λ̂Λn, which we will describe in Section
7. It is a map VHC(Avn(312)) → Int(MC

n−1).

4 312-Avoiding Valid Hook Configurations

This section enumerates |VHC(Avn(312))| using the following lattice paths.

Definition 4.1. Let w(k) be the number of lattice paths of length k in the first quadrant with steps
in {(−1, 0), (−1, 1), (0,−1), (0, 1), (1,−1)} starting and ending at the origin, as in the OEIS sequence
A151347.

Bostan, Raschel, and Salvy studied w(k) in [4] and computed its asymptotic growth to be w(k) =

Θ
(

4.729032k

k4.514931

)
, where both decimals are truncated approximations. They additionally showed that

the generating function F (x) =
∑∞

k=0 w(k)xk is not D-finite, meaning that there is no linear de-
pendence among the generating functions F (x), F ′(x), F ′′(x), . . . with coefficients in R[x]. All alge-
braic functions are D-finite, as well as some “nice” transcendental functions like sin and cos. We will
prove a conjecture of Defant’s that |VHC(Avn(312))| =

∑n−1
k=0

(
n−1
k

)
w(k). We will further use the

results of [4] to analyze the asymptotics of |VHC(Avn(312))| and show that the generating function
G(x) =

∑
n≥1 |VHC(Avn(312))|x

n is not D-finite, explaining why Defant was unable to find an explicit
algebraic form for it.

Definition 4.2. Let Nn be the set of pairs (X,Y ) of Motzkin paths of length n whose ith coordinates
(Xi, Yi) are forbidden from being (D,D), (U,U), or (U,E). That is,

Nn = {(X,Y ) ∈ M2
n : (Xi, Yi) ∈ {(D,E), (D,U), (E,D), (E,E), (E,U), (U,D)} for each i ∈ [n]}.

Proposition 4.3. We have |Nn| =
∑n

k=0

(
n
k

)
w(k).

Proof. Convert (X,Y ) ∈ Nn into a lattice path with ith step (δ(Xi), δ(Yi)). This is the same as a lattice
path of length n − k as in Definition 4.1, where k is the number of (0, 0) steps, together with a set of

indices in
(
[n]
k

)
identifying which steps are (0, 0).

We will show that |VHC(Avn+1(312))| = |Nn|. To construct a bijection between the two sets we

begin with the bijection Λ̂Λn+1 : VHC(Avn+1(312)) → Int(MC
n ) constructed by Defant in [11]. To

complete the bijection into Nn, we construct a bijection ϕn : Int(MC
n ) → Nn.

Definition 4.4. A Dyck prefix of length n is a sequence A = (A1, . . . , An) of u’s and d’s such that for
each i ≤ n, there are at least as many u’s as d’s in A1, . . . , Ai. If A and A′ are two Dyck prefixes of the
same length, we say A ≥ A′ if A1, . . . , Ai has at least as many u’s as A′

1, . . . , A
′
i for each i ≤ n.

We can also interpret Definition 4.4 visually. Letting u’s and d’s correspond to lattice steps of (1, 1)
and (1,−1) respectively, a Dyck prefix is a lattice path with these steps that starts on the x-axis and never
goes below it; or a sequence of u’s and d’s that is the prefix of some Dyck path. In this interpretation,
A ≥ A′ if the lattice path corresponding to A lies above the lattice path corresponding to A′.

6



Further Bijections to Pattern-Avoiding Valid Hook Configurations Maya Sankar

Definition 4.5. The support of a length-n Motzkin path P , written P , is a Dyck prefix of length n
with P i = u if Pi is U or E and P i = d if Pi is D.

It is clear that the support P of a Motzkin path is in fact a Dyck prefix because, as a lattice path
it must lie above P , which in turn lies above the x-axis. We also note that every Motzkin path can be
recovered from its class and support, although not every (class, support) pair represents a valid Motzkin
path.

Lemma 4.6. For a fixed Motzkin path P of length n, the Motzkin paths Q ≥C P are in bijection with
Dyck prefixes A ≥ P with the same numbers of u’s and d’s as P . The bijection takes Q to its support,
Q.

Proof. We begin by showing that if Q ≥C P then Q ≥ P . If Q ≥C P then each prefix P1 · · ·Pk must
have at least as many down steps as the corresponding prefix Q1 · · ·Qk, because P and Q have the same
class. It follows that P1 · · ·Pk also has at least as many d steps as Q1 · · ·Qk for each k, which is exactly
the condition for P ≤ Q.

The map Q 7→ Q is injective because all paths Q ≥C P share the same class, and a Motzkin path
is uniquely determined by its class and support. To see surjectivity, note that we can get every such
Dyck prefix A ≥ P from P by an appropriate sequence of flips that change the substring du to ud.
Applying the corresponding flips to P gives a Motzkin path Q ≥C P because both the flips DU → UD
and DE → ED preserve the class of the Motzkin path and make it higher, and it is clear that this path
Q has Q = A.

We now have enough information to construct our bijection from Int(MC
n ) to Nn.

Theorem 4.7. There is a bijection ϕn : Int(MC
n ) → Nn given by ϕ(P,Q) = (X,Y ) where

Xi =





U if Pi = d and Qi = u
D if Pi = u and Qi = d

E if Pi = Qi

and Y = P .

Proof. We begin by showing that this map is well-defined; that is, that its image is in fact in Nn. It is
impossible for (Xi, Yi) to be (U,U), (U,E), or (D,D) by the definition of ϕn. Moreover we note that
the height of X after i steps is the difference between the heights of Q and P after i steps, treating both
as lattice paths starting at the same height. Because P ≤ Q, it follows that X never goes below the
horizontal; similarly, X ends on the horizontal because P and Q must end at the same height, having
the same numbers of u’s and d’s. Hence X is a Motzkin path.

To show that ϕn is a bijection, we construct an inverse φn : Nn → Int(MC
n ) and prove that ϕn ◦ φn

and φn ◦ ϕn are both identities. Let φn(X,Y ) = (P,Q) where P = Y and Q is the Motzkin path with
Q ≥C P and support

Qi =





u if Xi = U
d if Xi = D

Yi if Xi = E
.

To show that φn is well-defined, we must show that Q ≥ P and that Q and P have the same numbers
of u’s and d’s, as required by Lemma 4.6. We can pair up the U ’s and D’s in X so that the D in each
pair occurs after the U — one way to do this is to convert U ’s and D’s into (’s and )’s and then take
a balanced parenthesis matching. We start with the Dyck prefix P = Y and for each of these pairs
(Xi, Xj) = (U,D), we change the ith term of the Dyck prefix to u and the jth term to d (note that these
terms were originally d and u, respectively, because (X,Y ) ∈ Nn). Every such operation gives a Dyck
prefix with the same numbers of u’s and d’s that is greater than the previous Dyck prefix, and after
all these operations are performed, we get the desired support Q. Hence the condition of Lemma 4.6 is
satisfied, and φn is well-defined.

7
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We now show that ϕn ◦ φn and φn ◦ ϕn are both identities, starting with ϕn ◦ φn. Fix (X,Y ) ∈ Nn

and let (Y,Q) = φn(X,Y ) and (X ′, Y ) = ϕn ◦φn(X,Y ). We show that X ′
i = Xi by casework. If Xi = U

then Qi = u and (X,Y ) ∈ Nn implies that (Xi, Yi) is not (U,U) or (U,E), so Yi = d. Hence X ′
i = U

if Xi = U . Similarly, if Xi = D then Qi = d and because (X,Y ) ∈ Nn, we have (Xi, Yi) 6= (D,D), so
Yi = u. It follows that X ′

i = D if Xi = D. In the case that Xi = E, we have Qi = Yi, so X ′
i = E.

Therefore, X ′ = X , and it follows that ϕ ◦ ϕ′ is the identity.
Lastly, we consider φn◦ϕn. Fix (P,Q) ∈ MC

n and let (X,P ) = ϕn(P,Q) and (P,Q′′) = φn◦ϕn(P,Q).
We claim that Q′ = Q, by casework on each step Xi. If Xi = U then Qi = u and Q′

i = u; similarly if

Xi = D then Qi = d and Q′
i = d. If Xi = E then Qi = Pi and Q′

i = Pi. Hence, Q = Q′. Because Q and
Q′ have the same support and both have the same class as P , it follows that Q = Q′. Hence φn ◦ ϕn is
the identity.

Combining ϕn−1 with Λ̂Λn completes the proof of Defant’s conjecture.

Corollary 4.8. We have |VHC(Avn(312))| =
∑n−1

k=0

(
n−1
k

)
w(k).

Proof. Composing the bijections Λ̂Λn : VHC(Avn(312)) → Int(MC
n−1) and ϕn−1 : Int(MC

n−1) → Nn−1

shows that |VHC(Avn(312))| = |Nn−1|. Proposition 4.3 completes the proof.

We can now use the results of Bostan, Raschel, and Salvy in [4] to analyze the generating function
and asymptotics of the sequence |VHC(Avn(312))|.

Proposition 4.9. The generating function G(x) =
∑∞

n=1 |VHC(Avn(312))|x
n is not D-finite.

Proof. Let F (x) be the generating function
∑∞

k=0 w(x)xk which Bostan, Rachel, and Salvy showed to

be non-D-finite. Because G(x)
x is the binomial transform of F (x), we can write G(x)

x = 1
1−xF

(
x

1−x

)
.

Setting y = x
1−x yields F (y) = 1

yG
(

y
1+y

)
. Theorem 6.4.10 of [30] states that the composition G ◦ h

of a D-finite function G and algebraic function h is also D-finite, and the product of D-finite functions

is also D-finite. Hence, if G were D-finite then F (y) = 1
yG

(
y

1+y

)
would also be D-finite, which is a

contradiction.

Theorem 4.10. Let α ≈ 4.515 and β ≈ 4.729 be the values for which w(k) = Θ
(

βk

kα

)
, as determined

in [4]. Then |VHC(Avn(312))| = Θ
(
(β+1)n

nα

)
≈ Θ

(
5.729n

n4.515

)
.

The proof of this theorem relies on the following lemma.

Lemma 4.11. Fix α ≥ 0 and β ≥ 1. As n → ∞, we have

n∑

k=0

(
n

k

)
βk

kα
∼ (β + 1)n

(
βn

β + 1

)−α

.

Proof. We show that almost all of the sum comes from values of k close to βn
β+1 . Let X =

∑n
i=1 Xi

be the sum of n independent Bernoulli variables, with Xi = 1 with probability β
β+1 for each i. Let

µ = E[X ] = βn
β+1 and let δ = n−1/3. A Chernoff bound says that

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

This expands to
∑

k<(1−δ)µ
or k>(1+δ)µ

(
n

k

)
βk

(β + 1)n
≤ 2 exp

(
−

βn1/3

3(β + 1)

)
.

8
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We can use this Chernoff bound to bound the original sum. The original sum splits as

n∑

k=0

(
n

k

)
βk

kα
=

∑

|k−µ|≤δµ

(
n

k

)
βk

kα
+

∑

k<(1−δ)µ
or k>(1+δ)µ

(
n

k

)
βk

kα

and we upper-bound the two terms separately. We have

∑

|k−µ|≤δµ

(
n

k

)
βk

kα
≤ ((1− δ)µ)−α

∑

|k−µ|≤δµ

(
n

k

)
βk ≤ ((1− δ)µ)−α

n∑

k=0

(
n

k

)
βk

= ((1− δ)µ)−α(β + 1)n ∼ µ−α(β + 1)n, and

∑

k<(1−δ)µ
or k>(1+δ)µ

(
n

k

)
βk

kα
≤

∑

k<(1−δ)µ
or k>(1+δ)µ

(
n

k

)
βk ≤ 2(β + 1)n exp

(
−

βn1/3

3(β + 1)

)
.

However, µ−α = e−Θ(lnn) ≫ e−Θ(n1/3), so the upper bound is dominated by the first term. Hence,

n∑

k=0

(
n

k

)
βk

kα
. (β + 1)nµ−α.

For the lower bound, we consider only the first term. Using the Chernoff bound again, we have

n∑

k=0

(
n

k

)
βk

kα
≥

∑

|k−µ|≤δµ

(
n

k

)
βk

kα
≥ ((1 + δ)µ)−α

∑

|k−µ|≤δµ

(
n

k

)
βk

≥ ((1 + δ)µ)−α

(
1− 2 exp

(
−

βn1/3

3(β + 1)

))
(β + 1)n ∼ (β + 1)nµ−α.

Therefore,
n∑

k=0

(
n

k

)
βk

kα
∼ (β + 1)nµ−α = (β + 1)n

(
βn

β + 1

)−α

,

completing the proof.

We can now compute the asymtotics of VHC(Avn(312)).

Proof of Theorem 4.10. Let c be the constant such that w(k) ∼ cβk

kα . Because w(k) goes to ∞ as k goes

to ∞, we have that
∑n−1

k=0

(
n−1
k

)
w(k) ∼ c

∑n−1
k=0

(
n−1
k

)
βk

kα as n goes to ∞. Combining this with Corollary

4.8 and Lemma 4.11 yields that |VHC(Avn(312))| ∼ c(β + 1)n−1
(

β(n−1)
β+1

)−α

= Θ
(

(β+1)n

nα

)
.

5 Sliding operators

The focus of the next two sections will be constructing an injection

Wn : VHC(Avn(132)) → VHC(Avn(312))

such that its composition with Defant’s bijection Λ̂Λn : VHC(Avn(312)) → Int(MC
n−1) is surjective onto

intervals of the subposet MT
n−1. To compute ϕ(π, V ), we will first define the image permutation as

swl(π) (defined below) and then use V to find an image VHC on swl(π).
We start by defining the sliding operators swl and swr. We define swli to take all points southwest

of the point with height i and slide them left of all points northwest of the point with height i — hence
the name “southwest left.”

9
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Figure 8: Action of swl5 on the permutation 368472519.

More formally, let π ∈ Sn and let (m,πm) be the point of height i. Let B and T be the subsequences of
π1 · · ·πm−1 that consist of points (j, πj) with πj < i or πj > i, respectively, and let π≥m = πmπm+1 · · ·πn.
Then swli(π) is the concatenation BTπ≥m. We define swri(π) similarly, except this time moving the
“southwest right.” That is, swri(π) is the concatenation TBπ≥m. Additionally, if β = (m,πm) is a point
of π, we define swlβ(π) = swrπm(π) and swrβ(π) = swrπm(π).

This allows us to define the sliding operators swl and swr.

Definition 5.1. Let π ∈ Sn. Then we define swl(π) = swl1 ◦ · · · ◦ swln(π) and swr(π) = swr1 ◦ · · · ◦
swrn(π).

Defant [9] showed that swl : Avn(132) → Avn(312) and swr : Avn(312) → Avn(132) are inverse
bijections. He additionally showed that swl gives an injection from uniquely sorted permutations (per-
mutations in Sn with a unique valid hook configuration and n−1

2 descents) avoiding 132 to uniquely

sorted permutations avoiding 312, and that the composition Λ̂Λn ◦ swl gives a bijection from uniquely
sorted permutations avoiding 132 to intervals in a subposet of MT

n−1. In the next section, we will
generalize swl to an injection Wn : VHC(Avn(132)) → VHC(Avn(312)). For convenience, we will only
consider swl and swr to be defined on permutations avoiding 132 or 312, respectively.

The remainder of this section builds up results about the sliding operators that will be useful when
studying Wn. If i < j are indices of a permutation, we say that πi and πj form an acclivity if πi < πj

and a declivity if πi > πj .
We describe when swr switches two points in the plot of π. In fact, swr changes every occurrence of

the pattern 132 in π into 312, and does no further transformations.

Lemma 5.2. Let π avoid 312 and let i < j be indices of π.

(i) If πi > πj then πi comes before πj in swr(π). That is, swr preserves declivities.

(ii) If πi < πj then πi comes after πj in swr(π) if and only if there is some k > j for which (πi, πj , πk)
matches the pattern 132.

Proof. (i) is clear because each swrh preserves declivities, so swr must also preserve declivities. As a
corollary, we note that it is impossible for πi and πj to be switched more than once by the sequence of
maps swr1 ◦ · · · ◦ swrn(π).

For (ii) we first assume there is such a k and show that πi and πj are switched by swr. Set τ =
swrπk+1 ◦ · · · ◦ swrn(π). No map in the sequence swrπk+1 ◦ · · · ◦ swrn will switch πj and πk because they
form a declivity. Consider the relative positions of πi and πj in τ . If πi comes after πj in τ then they
form a declivity that will be preserved under all subsequent maps in swr1 ◦ · · · ◦ swrπk

. Alternatively, if
πi comes before πj in τ then swrπk

will switch πi and πj and all subsequent maps in swr1 ◦ · · · ◦ swrπk−1

will again preserve the switch.

10
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To finish (ii), we use induction on πj − πi to show that if πi and πj are switched by swr then there
exists k as described. If πj − πi = 1 then πi and πj cannot be switched by any map in the composition
sequence swr1 ◦ · · · ◦ swrn. For larger πj − πi, assume that swrπh

switches πi and πj . It immediately
follows that πi < πk < πh. We cannot have h < i or else the declivity (πh, πi) would remain in
swrπk+1 ◦ · · · ◦ swrn(π). If h > j, we can take k = h. If i < h < j then πh must be moved to the right of
πj by some map in swrπh+1 ◦ · · · ◦ swrn. By the inductive hypothesis, there is k > j so that (πh, πj , πk)
matches 132, and thus (πi, πj , πk) will also match 132.

Corollary 5.3. Let π ∈ Sn avoid 312 and let i, j ∈ [n]. Then swr(π) switches πi and πj if and only if
swrk(π) switches πi and πj for some k ∈ [n].

Proof. Without loss of generality, let i < j. By Lemma 5.2, swr(π) switches πi and πj if and only if
there exists k > j for which (πi, πj , πk) matches the pattern 132. However, the latter condition occurs
by definition if and only if swrπk

switches πi and πj .

Using similar techniques, or by noting that swl and swr are inverses, we can show Corollary 5.3 for
swl on 132-avoiding permutations as well. This gives rise to the following depictions of swl and swr, first
given by Defant in [9].

Fact 5.4. Let τ avoid 132. Then we can write

τ =

A

B

C and swl(τ) =

swl(B)

swl(A)

C

where A and B are (potentially empty) regions of the plot of τ that are treated as plots of smaller
132-avoiding permutations, and where C is a single point. Similarly, if π avoids 312 then we can write

π =

B

A

C
and swr(π) =

swl(A)

swr(B)

C .

6 Extending swl to Valid Hook Configurations

To construct a bijection between 132-avoiding valid hook configurations and Motzkin-Tamari intervals,
we begin by constructing an injection Wn : VHC(Avn(132)) → VHC(Avn(312)), which is modeled

off of swl. In the next section, we will define Defant’s bijection Λ̂Λn : VHC(Avn(312)) → Int(MC
n−1)

and show that the composition Λ̂Λn ◦ Wn has image exactly the Motzkin-Tamari intervals, thereby
demonstrating a bijection from VHC(Avn(132)) to VHC(Avn(312)). This extends a bijection of Defant’s
in [9], which mapped certain 132-avoiding permutations with unique valid hook configurations to intervals

of a subposet of MT
n−1 by composing a variant of Λ̂Λn with swl.

Definition 6.1. A point P in the plot of π is a left-to-right maximum (resp. minimum) if there are no
points left of P in the plot of π that are strictly higher (resp. lower) than P .

We note that northeast endpoints of hooks can never be left-to-right minima. When π avoids 312, the
northeast endpoints of a valid hook configuration must in fact be left-to-right maxima. This motivates
the following map, which allows us to replace points with valid northeast endpoints in 312-avoiding
permutations.

11
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Definition 6.2. Let π ∈ Av(312). If (i, πi) is a point of π, we define nwr(i, πi) (which we pronounce
“northwest representative”) as the leftmost left-to-right maximum (j, πj) with j ≤ i and πj ≥ πi.

We need one more piece of terminology to define Wn. Let (π, V ) ∈ VHC(Avn(132)), where we recall
that V is the set of northeast endpoints of some valid hook configuration on π. We say that the image
of a point (i, πi) of π under swl is the point of height πi in the image swl(π) and write this as swl(i, πi),
and define swr(i, πi) analogously. It is natural to define image in this manner when discussing valid hook
configurations, because this allows us to say swl and swr preserve southwest hook endpoints as in the
following lemma.

Lemma 6.3. The maps swl and swr take descent tops to descent tops.

Proof. We show this for swl, using induction and Fact 5.4. Assume τ ∈ Sn avoids 132. If n = 0 or n = 1
then τ has no descent tops. For larger n, we split τ into regions A and B and point C as in Fact 5.4.
By the inductive hypothesis, all descent tops of τ in A or B with descent bottom in the same region are
taken to descent tops in swl(A) or swl(B). The only descent top of τ unaccounted for is the rightmost
element of A when A is nonempty, as that point has descent bottom C. However, we see from Fact 5.4
that the rightmost point of A remains the rightmost point in swl(A), and that point must be a descent
top in swl(τ) with descent bottom either the leftmost element of swr(B), or C if B is empty.

The proof for swr is analogous.

We now define Wn : VHC(Avn(132)) → VHC(Avn(312)) as

Wn(π, V ) = (swl(π), nwr(swl(V ))),

where nwr(swl(V )) = {nwr(swl(A)) : A ∈ V }. To show that Wn is well-defined and injective, we further
study the map nwr. We can define an equivalence relation on points of the plot of π based on their
northwest representatives. The corresponding equivalence classes form horizontal stripes, as we will see
in Proposition 6.6.

Definition 6.4. The nwr stripe of a point (i, πi) is the equivalence class {(j, πj) : nwr(i, πi) = nwr(j, πj)},
denoted by s(i, πi).

Proposition 6.5. Each nwr stripe of a (312-avoiding) permutation π is descending from left to right.

Proof. Fix a left-to-right maximum P of π and consider the stripe s(P ). Clearly P ∈ s(P ), and P is to
the left and above every other point of s(P ). If there were two points Q,R ∈ s(P ) with π ascending left
from Q to R then PQR would be an occurrence of the pattern 312 in π, which would be a contradiction.
Hence the nwr stripe s(P ) is descending.

Proposition 6.6. If P and Q are left-to-right maxima in a 312-avoiding permutation π and P is below
Q then every point of s(P ) is below every point of s(Q).

Proof. Every point of s(P ) is below P , so it suffices to show that P is below any point of s(Q). Every
point R ∈ s(Q) is to the right of Q and therefore to the right of P . If R were additionally below P then
P would be a left-to-right maximum above and to the right of R and left of Q, so nwr(R) would not be
Q. It follows that every such R must be above P and therefore above all of s(P ).

This allows us to define an ordering on the nwr stripes of a 312-avoiding permutation by height.

Theorem 6.7. Let τ be a 132-avoiding permutation and let π = swl(τ). The least nwr stripe of π consists
of only the images of left-to-right minima of τ . Each subsequent nwr stripe has only one element that is
not the image of a left-to-right minimum of τ , and that point is the rightmost point of the stripe.

12
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Proof. We use induction. This clearly holds for the unique element of S1. For larger permutations, we
recall that Fact 5.4 allows us to write

τ =

A

B

C and π = swl(τ) =

swl(B)

swl(A)

C

where C is a single point and A and B are (potentially empty) substrings of τ .
Note that the left-to-right minima of τ are the left-to-right minima of A and B, together with C if

B is empty. Furthermore, the nwr equivalence classes of π are the nwr equivalence classes of A and B,
with C added to the least nwr equivalence class of A (if A is empty, we treat it as having a single empty
equivalence class).

If B is empty, then the least equivalence class of τ is the least nwr equivalence class of A, with C
added in; furthermore because B is empty, C is a left-to-right minimum of τ . Any higher nwr equivalence
classes satisfy the desired property by the inductive hypothesis on A.

If B is nonempty then every nwr equivalence class of τ but the least class of A, which is also the class
containing C, automatically satisfies the hypothesis by the inductive hypothesis on A and B. The least
element of this class is C, which is not the image of a left-to-right minimum in τ because B is nonempty;
all other elements of this class are images of left-to-right minima in τ by the inductive hypothesis on
A.

We can use Theorem 6.7 to show that Wn is well-defined and injective.

Proposition 6.8. The map Wn is well-defined. That is, its image is always a valid hook configuration
on the image permutation.

Proof. Let (τ, V ) ∈ VHC(Avn(132)) and let (π,W ) = Wn(τ, V ). We will show that every hook in the
valid hook configuration on τ maps to a hook with distinct endpoints and no points above it in (π,W ),
which will show that (π,W ) is a valid hook configuration by Proposition 2.3.

Assume that there is a hook in (τ, V ) with southwest and northeast endpoints P and Q respectively.
By Lemma 6.3, swl(P ) is a descent top in π. Using reasoning analogous to the proof of Lemma 5.2 we
can show that swl preserves acclivities, so swl(Q) is above and to the right of swl(P ). Furthermore,
nwr(swl(Q)) must be strictly above and to the right of swl(P ) because it must be above swl(Q), which
is strictly above swl(P ), and if it were to the left of swl(P ), then (nwr(swl(Q)), swl(P ), swl(Q)) would
match the pattern 312 in swl(τ). Hence, the pair of points swl(P ) and nwr(swl(Q)) form a hook in
(π,W ). There is no point in π above this hook because nwr(swl(Q)) is a left-to-right maximum of π.

To complete the proof, we show that the correspondence from descent tops in π to points of W is
bijective, or that the northeast endpoints Q ∈ V are mapped to distinct points nwr(swl(Q)) ∈ W . Note
that if Q is the northeast endpoint of a hook in τ then it cannot be a left-to-right minimum of τ . By
Theorem 6.7, each point Q ∈ V is taken to a different nwr stripe of π under swl, and therefore maps
to a different left-to-right maximum of π under nwr ◦ swl. It follows that the hooks in the valid hook
configuration (τ, V ) map to hooks in (π,W ) that satisfy the conditions of Proposition 2.3, and therefore
that (π,W ) is a valid hook configuration.

Proposition 6.9. The map Wn is injective.

Proof. Given the image (swl(τ), nwr(swl(V ))) of a valid hook configuration (τ, V ), we can recover τ by
applying swr. We can recover V by computing, for each point of nwr(swl(V )), the unique preimage that
is not a left-to-right minimum in τ .

In fact, if (π,W ) ∈ VHC(Avn(312)) we can always compute a preimage (τ, V ) under Wn where V
is a set of points in the plot of τ that don’t necessarily form a valid hook configuration. For a left-to-
right maximum A in the plot of π, define nwr−1(A) to be the rightmost element of s(A). Then we can
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define W
−1
n (π,W ) = (swr(π), swr(nwr−1(W ))). It is clear that W

−1
n is a left inverse of Wn; that is,

W
−1
n ◦Wn = idVHC(Avn(132)).

7 The Image of Wn

Having defined Wn, we show that its composition with Defant’s bijection Λ̂Λn : VHC(Avn(312)) →

Int(MC
n−1) is surjective onto intervals of the subposet MT

n−1. To study the image of Λ̂Λn ◦Wn, we begin

by defining the map Λ̂Λn.
Let (π, V ) ∈ VHC(Avn(312)). We describe how to construct the Motzkin interval (P,Q) = Λ̂Λn(π, V )

with P ≤C Q. Let R0, . . . ,Rℓ be the left-to-right maxima of π listed from right to left. That is,
Rℓ = (1, π1); moreover, because π has a valid hook configuration, we have πn = n and R0 = (n, n). For
convenience let Rℓ+1 = (0, 0). For i ∈ [ℓ], let Γi be the set of points strictly right of Ri and strictly left
of Ri−1, and let Γ′

i be the set of points strictly above Ri+1 and strictly below Ri. For each i ∈ [ℓ], set

γi = |Γi| and γ′
i = |Γ′

i|, and let Xi be U if Ri−1 ∈ V and E otherwise. The definition of Λ̂Λn in [11]

states that Λ̂Λn(π, V ) = (P,Q) where P = X1D
γ1 · · ·XℓD

γℓ and Q = X1D
γ′

1 · · ·XℓD
γ′

ℓ . We provide an
example of this construction in Figure 9 below.

π = 324156

=⇒

R0

R1

R2

R3

R4 = (0, 0)

Γ1Γ2Γ3

Γ′
1

Γ′
2

Γ′
3

=⇒
(γ1, γ2, γ3) = (0, 1, 1)
(γ′

1, γ
′
2, γ

′
3) = (0, 0, 2)

=
⇒

P = UEDUD
Q = UEUDD

Figure 9: Constructing Λ̂Λn for the valid hook configuration on π = 324156 shown at left.

Set (τ,W ) = W
−1
n (π, V ) = (swr(π), swr(nwr−1(V ))). We will show that if P �T Q then W is an

invalid hook configuration in τ , and that if P ≤T Q then the preimage of each hook in the valid hook
configuration (π, V ) under Wn is a distinct hook on τ satisfying the conditions of Proposition 2.3.

Proposition 7.1. As before, denote our Motzkin paths P ≤C Q by P = X1D
γ1 · · ·XℓD

γℓ and Q =
X1D

γ′

1 · · ·XℓD
γ′

ℓ . Assume P �T Q and fix an index i ∈ [ℓ] for which longi(P ) > longi(Q). Then there
is k ≥ 0 such that

(i) γi + · · ·+ γi+k < γ′
i + · · ·+ γ′

i+k, and

(ii) For all j with 0 ≤ j ≤ k, we have γi + · · ·+ γi+j < δ(Xi) + · · ·+ δ(Xi+j),

where δ(s) represents the y-displacement of a step s of a Motzkin path as in Definition 3.1.

Proof. Let the subpath ofQ of length longi(Q) starting atXi beQ
(i) = XiD

γ′

iXi+1D
γ′

i+1 · · ·Xi+kD
γ′

i+k−η

for appropriate k, η ≥ 0, and let α = δ(Xi) + · · ·+ δ(Xi+k) be the number of U ’s in Q(i). Because Q(i)

is Motzkin, α is also the number of D’s in Q(i), so α = γ′
i + · · ·+ γ′

i+k − η ≤ γ′
i + · · ·+ γ′

i+k. Moreover,

|Q(i)| = k + 1 + α because k + 1 is the number of U or E steps in Q(i).
Now, choose j with 0 ≤ j ≤ k and set β = δ(Xi) + · · · + δ(Xi+j). If γi + · · · + γi+j ≥ β then

the subpath P ′ = XiD
γi · · ·Xi+jD

γi+j would end at or below the horizontal and therefore would have
a Motzkin prefix P (i). The number of D’s in P ′ would be at most β, which is the number of D’s in
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P , so |P (i)| ≤ |P ′| ≤ j + 1 + β. However, j ≤ k and β ≤ α, so |P (i)| ≤ |Q(i)|, which would imply
the contradiction longi(P ) ≤ longi(Q). Therefore, γi + · · · + γi+j < β = δ(Xi) + · · · + δ(Xi+j) for all
0 ≤ j ≤ k, proving (ii).

In the special case j = k, this yields γi + · · ·+ γi+k < α ≤ γ′
i + · · ·+ γ′

i+k, proving (i).

Theorem 7.2. Let (P,Q) = Λ̂Λn(π, V ) as before. If P �T Q then W
−1
n (π, V ) = (τ,W ) is not a valid

hook configuration.

Proof. We can choose i and k to satisfy Proposition 7.1. For S ⊂ [ℓ], let ΓS =
⋃

m∈S Γm and Γ′
S =⋃

m∈S Γ′
m. Define regions A, B, and C by setting C = Γ[i,i+k] ∩ Γ′

[i,i+k] and letting A = Γ[i,i+k] \C and

B = Γ′
[i,i+k] \ C, as depicted in Figure 10. Regions marked in red are those where no point can lie.

C B

A

ΓiΓi+1· · ·Γi+j+1· · ·Γi+kΓi+k+1

Γ′
i−1

Γ′
i

...

Γ′
i+j

...

Γ′
i+k−1

Γ′
i+k

Ri−1

Ri

Ri+1

Ri+j

Ri+j+1

Ri+k−1

Ri+k

Ri+k+1

β

Figure 10: The plot of π.

We have |A|+|C| = γi+· · ·+γi+k < γ′
i+· · ·+γ′

i+k = |B|+|C| by Proposition 7.1, so B must contain at
least one point, β. Choose j so that β ∈ Γ′

i+j , as pictured in Figure 10. Let S = V ∩{Ri−1, . . . ,Ri+j−1}
be the set of northeast hook endpoints among those left-to-right maxima and choose any hook endpoint
R ∈ S. If nwr−1(R) 6= R then nwr−1(R) must still be to the left of β or else (R, β, nwr−1(R)) would form
a 312 in π. Let T be the set of descent tops that lie above β and strictly left of Ri−1. Because nwr

−1(R)
is above and to the left of β, we have that swrβ(π) shifts nwr−1(R) to the left of all descent tops in π
except for some of the descent tops in T . Furthermore, every descent top in T has corresponding descent
bottom in Γ[i,i+j], so |T | ≤ γi + · · ·+ γi+j .

We will show that W is not a valid hook configuration on τ by showing that there are fewer than |S|
descent tops of τ that are southwest of any northeast hook endpoint in swr(nwr−1(S)) ⊆ W . Let R ∈ S.
If R′ is a descent top in π southwest of nwr−1(R) and swrβ(R

′) is southeast of swrβ(nwr
−1(R)), then
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by Corollary 5.3, swr(R′) will be southeast of swr(nwr−1(R)). Furthermore, swr preserves declivities, so
if R′ is a descent top in π southeast of nwr−1(R) then swr(R′) will be southeast of swr(nwr−1(R)). It
follows that the only descent tops of τ southwest of any point in swr(nwr−1(S)) are elements of swr(T ).
However, by Proposition 7.1, we have |T | ≤ γi + · · ·+ γi+j < δ(Xi) + · · ·+ δ(Xi+j) = |S|. Hence, there
are fewer than |S| descent tops of τ southwest of any point in swr(nwr−1(S)), and W ⊇ S is an invalid
hook configuration on τ .

To prove the opposite direction, we start with the valid hook configuration on (π, V ) and use it to
prove that (τ,W ) represents a valid hook configuration as well.

Proposition 7.3. Assume that the valid hook configuration on (π, V ) contains a hook with southwest
endpoint A and northeast endpoint B = Ri−1. Then longi(P ) is equal to the horizontal distance between

A and B in the plot of π, where P is the first component of Λ̂Λn(π, V ).

Proof. We can construct P by listing the points of π from right to left, and mapping northeast hook
endpoints to U , descent bottoms to D, and all other points to E. In this representation, B = Ri−1 is the
point corresponding toXi. Let C be the descent bottom corresponding to A. For every other hook, either
both or neither of its northeast hook endpoint and descent bottom lie between C and B horizontally. It
follows that, listing the points of π from right to left starting at B and ending at some point before C,
there will be more northeast hook endpoints listed than descent bottoms, so the corresponding substring
of P is not Motzkin. However, if we list the points of π from right to left starting at B and ending at
C, we will have listed exactly the same number of northeast hook endpoints and descent bottoms, so
the corresponding substring of P is a Motzkin subpath. It follows that longi(P ) is the number of points
lying horizontally between B and C, inclusive, which is exactly the horizontal distance between A and
B in the plot of π.

Our end goal is to show that a hook in the valid hook configuration (π, V ) maps to a hook in the
preimage (τ,W ), which then allows us to apply Proposition 2.3. To do this, we study the region of
points which swap the preimages of A and B in τ .

Definition 7.4. Let H be a hook in the plot of a permutation π with southwest and northeast endpoints
A and B, respectively. A pivot point of H is a point ρ in the plot of π such (A, nwr−1(B), ρ) matches
the pattern 132.

It is clear from Definition 7.4 that the existence of no pivot point of H is equivalent to the preimage
of H being a hook in τ , by Corollary 5.3.

Proposition 7.5. Let (P,Q) = Λ̂Λn(π, V ) and assume P ≤T Q. Let H be a hook in the valid hook
configuration on (π, V ) with southwest endpoint A, northeast endpoint B, and descent bottom C. Then
π contains no pivot points that lie between B and C vertically and to the right of nwr−1(B).

Proof. Assume that some hooks of the valid hook configuration had pivot points as described. Let ρ be
the highest such pivot point. We say hook H1 shelters hook H2 if both endpoints of H2 lie under H1. If
two hooks both have ρ as a pivot point, it is clear that one hook must shelter the other, and we can pick
H to be the most sheltered hook for which ρ is a pivot point. Let A, B, and C be the hook endpoints
and descent bottom of H as described. Choose indices i, j, k ∈ [ℓ] such that B = Ri−1, A ∈ {Rj} ∪ Γ′

j ,
and ρ ∈ Γ′

k, as shown in Figure 11. Note that k ≥ i because there are no points in Γ′
i−1 to the right of

nwr−1(B) by definition of nwr−1. Furthermore, k < j because if ρ ∈ Γ′
j were above A then (Rj , A, ρ)

would match the pattern 312.
We can construct Q in a manner similar to the construction of P in Proposition 7.3. Instead of listing

the points of π from right to left as with P , we list them in an almost-descending order: R0, points of
Γ′
1 from highest to lowest, R1, points of Γ′

2 from highest to lowest, R2, and so on. Then, we convert
this sequence of points into the Motzkin path Q by mapping northeast hook endpoints to U , descent
bottoms to D, and all other points to E as before. Consider the subsequence of Q that begins with the
U corresponding to B and ends with the D corresponding to ρ. Because ρ is the highest pivot point
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Γi+1· · ·Γk+1· · ·Γj

Γ′
i−1

...
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k

...

Γ′
j−1

Γ′
j A

C

B

Ri

Rk

Rk+1

Rj−1

Rj

ρ

Figure 11: A hook in the plot of π with a pivot point.

of H, all points in the almost-descending order between B and ρ are sheltered by H. Furthermore, we
claim that a hook H′ has northeast endpoint B′ between B and ρ in this order if and only if its descent
bottom C′ also lies between B and ρ. Clearly if C′ were between B and ρ then B′ would be a left-to-right
maximum Ra with a > k, and because H shelters C′, H and H′ would intersect if a ≥ i− 1. Conversely,
if B′ were a left-to-right maximum strictly between Rk and Ri−1 then the southwest endpoint A′ of H′

would also be above ρ, or else H′ would be a hook more sheltered than H for which ρ was a pivot point.
Then C′ must also be above ρ, or else (A′, C′, ρ) would match the pattern 312.

It follows that the subsequence of Q corresponding to the points from B to ρ in almost-descending
order contains as many U ’s as D’s: one U and one D for each hook sheltered by H above ρ and one
U from B and one D from ρ. However, every point of this subsequence except ρ is also horizontally
between B and C, inclusive, and by Proposition 7.3 also contributes to longi(P ). Moreover, the points
C and Rj−1 both contribute to longi(P ) but not to longi(Q). It follows that longi(Q)−1 ≤ longi(P )−2,
which contradicts the assumption that P ≤T Q. Hence, our initial assumption that there was a pivot
point is false.

Corollary 7.6. The composition Λ̂Λn ◦Wn is surjective onto the Tamari intervals Int(MT
n−1).

Proof. The contrapositive of Theorem 7.2 shows that the composition does in fact take every element
of VHC(Avn(132)) to a Motzkin-Tamari interval. To show that any Motzkin-Tamari interval (P,Q) ∈
Int(MT

n−1) has a preimage under the composition, we let (π, V ) ∈ VHC(Avn(312)) be the preimage of

(P,Q) under Λ̂Λn and take (τ,W ) = W
−1
n (π, V ). By Proposition 7.5 and Corollary 5.3, any hook H as in

Proposition 7.5 is mapped to a hook in (τ,W ), as swr will preserve the relative orders of A and swr(B).
We can then apply Proposition 2.3 to show that (τ,W ) is a valid hook configuration.
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8 Future Work

8.1 Reduced Valid Hook Configurations

During initial attempts to prove Defant’s conjecture about valid hook configurations on 312-avoiding
permutations (Corollary 4.8), the author was led to consider the enumeration of valid hook configurations
according to the number of hooks. This has already been studied to some extent in the papers [9, 18,
29], which investigate uniquely sorted permutations. Indeed, uniquely sorted permutations in Sn are
essentially the same as valid hook configurations on permutations in Sn that have exactly n−1

2 hooks.
We wish to extend the exploration of uniquely sorted permutations with what we call “reduced” valid
hook configurations.

Definition 8.1. A valid hook configuration is reduced if every point in the plot of the permutation is
either a hook endpoint (both southwest and northeast endpoints count) or a descent bottom. Given
S ⊆ Sn, we write VHCk(S) for the set of valid hook configurations on permutations in S with exactly
k hooks. Let RedVHC(S) be the set of reduced valid hook configurations on permutations in S, and let
RedVHCk(S) = RedVHC(S) ∩ VHCk(S).

Suppose (π, V ) ∈ VHC(Avn(312)), and let S be the set of indices i ∈ [n] such that (i, πi) is a hook
endpoint or descent bottom of (π, V ). Let (π, V )

∣∣
S
be the valid hook configuration obtained by removing

the points of the plot of π of the form (j, πj) with j ∈ [n] \ S and then “normalizing” the remaining
points and hooks to get a valid hook configuration on a permutation in S|S|. One can show that the
map

VHC(Avn(312)) →
n⋃

r=0

RedVHC(Avr(312))×

(
[n]

r

)
(1)

given by
(π, V ) 7→ ((π, V )

∣∣
S
, S)

is a bijection. It follows that

|VHC(Avn(312))| =
n∑

r=0

(
n

r

)
|RedVHC(Avr(312))|.

Combining this with Corollary 4.8, one can show that

|RedVHC(Avn(312))| =
n∑

i=0

(−1)iw(n− i− 1), (2)

where we make the convention w(−1) = 1.
For fixed k ≥ 1, we can refine the map in (1) to see that the sequence of numbers |VHCk(Avn(312))|

can be written as a nonnegative integer linear combination of
(

n
2k+1

)
, . . . ,

(
n
3k

)
. Indeed, one can show

that RedVHCk(Avn(312)) is only nonempty when 2k + 1 ≤ n ≤ 3k and that

|VHCk(Avn(312))| =
k∑

i=1

(
n

2k + i

)
|RedVHCk(Av2k+i(312))|.

This motivates us to consider the numbers |RedVHCk(Av2k+i(312))| for 1 ≤ i ≤ k. We can arrange
these coefficients in a triangle as follows, where the kth row lists the coefficients of |VHCk(Av2k+i(312))|
as they range over i.

1
3 5
14 51 42
84 485 849 462

594 4743 13004 14819 6006
4719 48309 182311 322789 271452 87516

40898 511607 2472322 5999489 7794646 5182011 1385670
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Invoking Corollary 5.1 from [9], one can show that the first column of this table is the sequence of
numbers CkCk+2 − C2

k+1 (OEIS sequence A005700), where Cm = 1
m+1

(
2m
m

)
denotes the mth Catalan

number. Note that the row sums of this table are given by (2). The data in this table suggests some
other remarkable patterns, which we state as conjectures.

Conjecture 8.2. For every k ≥ 1, we have

|RedVHCk(Av3k(312))| = 2
(3k)!

k!(k + 1)!(k + 2)!
.

The numbers on the right-hand side of the equation in Conjecture 8.2 are known as “3-dimensional
Catalan numbers.” They are given in the OEIS sequence A005789.

Conjecture 8.3. For every k ≥ 1, we have

k∑

i=1

(−1)k−i|RedVHCk(Av2k+i(312))| = Ck.

Conjecture 8.4. For every k ≥ 1, the polynomial

k∑

i=1

|RedVHCk(Av2k+i(312))|x
k−i

has only real roots.

Note that Conjecture 8.4 implies the weaker statement that each row of the above table is log-concave.
This in turn implies the even weaker statement that these rows are unimodal. Even if Conjecture 8.4
is out of reach, it would still be very interesting to prove the weaker statement that these rows are
unimodal.

8.2 Relative Cardinalities of VHC(Av
n
(τ))

Combining Theorem 4.10 with results from [11], we see that we have fairly precise asymptotic informa-
tion about the sequence |VHC(Avn(τ))| whenever τ ∈ S3 \ {321}. However, the pattern 321 remains
mysterious in this context. As Defant remarks in [11], it would be interesting to prove anything non-
trivial about the sets VHC(Avn(321)). We can compute the sizes of these sets for n ≤ 13 and see that
they ostensibly grow much more quickly than |VHC(Avn(τ))| for other length-3 patterns τ .

This leads us to speculate the following conjecture, which we know to be true for n ≤ r. Recall that
the weak Bruhat order on Sr is the partial order ≤B on Sr generated by saying that σ ≤B τ if there
exists i ∈ [r− 1] such that σi < σi+1 and such that τ is obtained from σ by swapping the entries σi and
σi+1.

Conjecture 8.5. Choose σ, τ ∈ Sr such that σ ≤B τ . Then |VHC(Avn(σ))| ≤ |VHC(Avn(τ))| for all
n ≥ 1.

Moreover, by Corollary 5.3 the map Wn effectively changes every occurrence of the pattern 132 in a
permutation to an occurrence of 312 and updates the valid hook configuration accordingly. This leads us
to wonder if we could generalize Wn to an injection Wn,σ,τ : VHC(Avn(σ)) → VHC(Avn(τ)) whenever
σ and τ differ by a single transposition. It is impossible for Wn,σ,τ to always preserve the number of
hooks like Wn does; a simple counterexample is that VHC2(Av5(312)) > VHC2(Av5(321)). However, it
would be interesting to ask if there is in general such a Wn,σ,τ where Wn,σ,τ (π, V ) always has at most
as many hooks as (π, V ). In the r = 3 case, the existence of such a map is supported numerically. This
question is also natural in that replacing occurrences of τ with occurrences of σ in π intuitively should
not increase the number of descents.
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