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Abstract

George Andrews recently proved a new identity between the cardinalities of the set of Semi-
Fibonacci partitions and the set of partitions into powers of two with all parts appearing
an odd number of times. This paper extends the identity to the set of Semi-m-Fibonacci
partitions of n and the set of partitions of n into powers of m in which all parts appear with
multiplicity not divisible by m. We also give a new characterization of Semi-m-Fibonacci
partitions and some congruences satisfied by the associated number sequence.
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1 Introduction

A partition A of an integer n > 0 is a finite nonincreasing integer sequence whose sum is n.
The terms of the sequence are called parts of A\. Thus a partition with k parts will generally be

expressed as
/\:(Al,/\z,...,/\k), /\12>\2Z"'Z>\k>07 (1)

or
A=(ATNAZ M), > de > >N >0t < Ky (2)

where A}" indicates that \; occurs with multiplicity v;, for each ¢, and v1 +--- + v, = k [2].

In a recent paper paper Andrews [1] describes the set SF(n) of semi-Fibonacci partitions as
follows: SF(1) = {(1)}, SF(2) = {(2)}. If n > 2 and n is even then

SF(n) = {\ | A is a partition of § with each part doubled}. If n is odd, then a member of
SF(n) is obtained by inserting 1 into each partition in SF(n —1) or by adding 2 to the single odd
part in a partition in SF(n — 2).

The cardinality sf(n) = |SF(n)| satisfies the following recurrence relation for all n > 0 (with

sf(=1) = 0,sf(0) = 1);

) sf(n/2), if n is even;
Sf(n)_{sf(n—1)+sf(n—2), if n is odd. ®)

The semi-Fibonacci sequence {sf(n)},>o occurs as sequence number A030067 in Sloane’s
database [5]. George Beck [3] has previously considered the properties of a set of polynomials
related to the semi-Fibonacci partitions.

Andrews stated the following relation between the number of semi-Fibonacci partitions of n
and the number ob(n) of binary partitions of n in which every part occurs an odd number of times:
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Theorem 1 ([I], Theorem 1). For each n > 0,
sf(n) = ob(n), (4)

Andrews gave a generating function proof and asked for a bijective proof.
The proof turns out to be remarkable simple. It goes as follows. Each part ¢ of A € SF(n) can
be expressed as t = 2° - h, i > 0, where h is odd. Now transform ¢ as

t=2"h+— 22" .. 2°(h times).

This gives a partition of n into powers of 2 in which every part has odd multiplicity. Conversely,
consider 5 € OB(n). Since every part (a power of 2) has odd multiplicity we simply write § in
the exponent notation 8 = (51",...,8%), f1 > -+ > [s with the u; odd and positive. Since each
Bi" has the form (27:)%, j; > 0, we apply the transformation:

/B;ul _ (2ji)ui — 2jiui.

This gives a unique partition in SF'(n). Indeed the image may contain at most one odd part which
occurs precisely when 7; = 0.

SF(9) — OB(9)
B1) ~— (8,1)
(432) — (4,2,1,1,1)
(6,3) (2,2,2,1,1,1)
(54) (4,1,1,1,1,1)
(72)  —  (2,1,1,1,1,1,1,1)
9  —  (1,1,1,1,1,1,1,1,1)

Table 1: The map SF(n) — OB(n) for n =9.

We also consider the following congruence which Andrews proved with generating functions.
Theorem 2 ([I], Theorem 2). For each n >0, sf(n) is even if 3|n and odd otherwise.

Proof. We give a combinatorial proof based on mathematical induction. The result holds for
n=1,2,3since sf(1) =1=sf(2) and sf(3) = [{(1,2),(3)}| = 2. Now let n > 3 and assume that
the result holds for all integers less than n.

Ifn =1 (mod 3), then sf(n) is the sum of sf(n—1) and sf(n—2) which have opposite parities
since, by the inductive hypothesis, sf(n — 1) is even (since 3|(n — 1)) and sf(n — 2) is odd.
If n =2 (mod 3), then sf(n) is the sum of sf(n — 1) which is odd (since 31 (n—1)) and sf(n—2)
is even. Thus sf(n) is odd.
If 3|n and n is even, then sf(n) = sf(n/2). Since 3|3, it follows that sf(n/2) is even by the
inductive hypothesis. Lastly, if 3|n and n is odd, then sf(n) = sf(n—1) + s(n — 2) which is even
since 31 (n —1) and 3¢ (n — 2).

This completes the proof. [ |

The following result is easily deduced from the definition of sets counted by sf(n).

Corollary 1. Given a nonnegative integer v,
sf(2¥) =1.

In Section 2l we define the semi-m-Fibonacci partitions by extending the previous construction
using a fixed integer modulus m > 1. A generalized identity is then stated between the set of
semi-m-Fibonacci partitions and the set of partitions into powers of m with multiplicities not
divisible by m (Theorem Bl). Then in Subsection 2] we give an independent characterization
of the semi-m-Fibonacci partitions. Lastly, in Section B] we discuss some arithmetic properties
satisfied by the semi-m-Fibonacci sequence.



2 Generalization

We generalize the set of semi-Fibonacci Partitions to the set SF(n,m) of semi-m-Fibonacci Par-
titions as follows:

SF(n,m)={(n)}, n=1,2,....,m

If n > m and n is a multiple of m, then

SF(n,m) = {\| X is a partition of I with each part multiplied by m}.

If n is not a multiple of m, that is, n = r (mod m), 1 < r < m — 1, then SF(n,m) arises
from two sources: first, partitions obtained by inserting r into each partition in SF(n—r,m), and
second, partitions obtained by adding m to the single part of each partition A € SF(n — m,m)
which is congruent to r (mod m) (since A contains exactly one part which is congruent to r modulo
m, see Lemma [I] below).

Lemma 1. Let A € SF(n,m).
If m | n, then every part of A is a multiple of m.
If n=7r (mod m), 1 <r < m, then A contains exactly one part =r (mod m).

Proof. If m | n, the parts of a partition in SF(n,n) are clearly divisible by m by construction.
For induction note that SF(r,m) = {(r)}, r = 1,...,m — 1, so the assertion holds trivially.
Assume that the assertion holds for the partitions of all integers < n and consider A € SF(n,m)
with 1 < r < m. Then XA may be obtained by inserting r into a partition « € SF(n — r,m).
Since « consists of multiples of m (as m|(n — 7)), A contains exactly one part = r (mod m).
Alternatively A is obtained by adding m to the single part of a partition 8 € SF(n —m,m) which
is =7 (mod m). Indeed /8 contains exactly one such part by the inductive hypothesis. Hence the
assertion is proved. [ |

As an illustration we have the following sets for small n when m = 3:

SE(1,3) ={(L)},

}
0),(6,4),(7,3),(9,1)}.
Thus if we define sf(n,m) = |SF(n,m)|, we obtain that

sf(1,3) =sf(2,3) =5f(3,3) =1, sf(4,3) =2, sf(5,3) =2, sf(6,3) =1,

sf(7,3) =3, sf(8,3) =3, sf(9,3) =1, sf(10,3) = 4.
Therefore, for m > 1, we see that sf(n,m) =0if n < 0 and sf(0,m) =1, and for n > 0,

sf(n/m,m), ifn=0 (mod m);
sf(n—r,m)+sf(n—m,m), ifn=r (modm),0<r<m.

sf(n,m) = { (5)
The case m = 2 gives the function considered by Andrews: sf(n,2) = sf(n).

Power partitions are partitions into powers of a positive integer m, also known as m-power
partitions [4]. Let nd(n,m) be the number of m-power partitions of n in which the multiplicity
of each part is not divisible by m. Thus, for example, nd(10,3) = 4, the enumerated partitions
being (9,1),(3,3,1,1,1,1),(3,1,1,1,1,1,1,1),(1,1,1,1,1,1,1,1,1,1).

Theorem 3. For integers n > 0,m > 1,

sf(n,m) = nd(n,m), (6)



Proof. We give two proofs, one analytic one combinatorial.
First Proof. Let |¢| < 1 and define

Gmlg) = sf(n,m)q". (7)

n>0

Then we have

Gn(q) = Z sf(mn,m)g™" + Z sfimn+1,m)¢g™ ™ + .. + Z sf(mn+m —1,m)gm™+m=1

n>0 n>0 n>0
m—1
:Zsf(mn,m)qm"—i— Z Zsf(mn—i—r,m)qm"” (8)
n>0 r=1 n>0
m—1
= S s m)g™ + S S (s (min,m) + s (nn 47— m,m)g™™ e (by (@)
n>0 r=1 n>0
= Zsf(n,m)qm" mz Z sf(n,m)g™" " + Z Zsf mn+1r—m,m)qg""t".
n>0 r=1 n>0 r=1 n>0
1+Zq Zsfnm m”—l—ZZsf (n —1) +r,m)g™" "
n>0 r=1 n>0
qu—l— Z Zsf mn +r,m)gm" T
r=1 n>0
qu—l—qmz Zsf mn +r,m)gm" "
r=1n>0

m—1
(q™) Z ) +qm | D sfnm)gt =Y sfmn,m)g™ | (by @)

n>0 n>0

=Gn Zq + 4" (Gm(q) = Gm(d™))

(—qm + 2 q’”) Gm(q™) +q"Gm(q) (9)
=0

Hence,

l4g+@+¢@+...+¢"—q™

Gomlq) = — T Gn(a™). (10)

Equation (I0) implies that

14g+@®+...+¢" =™\ [(1+q+ " +...+qm D — g Gon(g™)
1_qm 1_qm2 mq ’

Gl) = (

and continuing the iteration, we get

N n n n n+1
L+q™ + @™ 4. 4 gm=m" g N+
Gm(Q) = H < 1 _ qmn+1 Gm(q )




N+1

Taking the limit as N — oo, we have G,,,(¢"™ ) — G, (0) = 1 (since |g| < 1) so that

1+ q + q2m N q(mfl)mn _ qm"Jrl
Gm( ) = 1 _ ,mntl
n:O q
_ ﬁ (q @ g 4 _qm”“)
- mn+1
n=0 1- q
© 2m" (m—1)m"
ot
= H (1 + Rl 1 gmt 1 )
n=0 q
- m" m"™ m—1)m"™ — mn
ST (14 @ b gty 3 gt
n=0 7=0
Thus,
Gm(q _ H 14+ Z q "(jm+1) + Zq " (im+2) + Zq (jm+3) 4o+ qu"(jm-l-m—l)
n=0 =0
= Z nd(n,m)q". (11)
n>0

The assertion follows by comparing coefficients in (@) and (ITI).
Second Proof. Each part ¢t of A € SF(n,m) can be expressed as t = m® - h, i > 0, where m does
not divide h. Now transform ¢ as

t=m'-h+——m’m', ... m'(h times).

This gives a partition of n into powers of m in which every part has multiplicity not divisible by
m. Conversely, consider 5 € ND(n,m). Since every part (a power of m) has a non-multiple of m
as multiplicity we simply write /5 in the exponent notation 5 = (51, ..., 6%), B1 > -+ > s with
the u; # 0 (mod m). Since each 3;"* has the form (m7 )% we apply the transformation:

B = (m?)" s mItuy,

This gives a unique partition in SF(n,m). If m | n, this image contains only multiples of m. If
n =r (mod m), 1 <r < m, the image consists of multiples of m and exactly one part = r (mod

m) which occurs when j; = 0. |
SF(11,3) — ND(11,3)
(11) ~  (1,1,1,1,1,1,1,1,1,1,1)
(8.,3) = (3,L,11,1,1,1,1,1)
(6,5) — (3,3,1,1,1,1,1)
(9,2) — (9,1,1)

Table 2: The map SF(n,m) — ND(n,m) for n =11, m = 3.

2.1 A characterization of Semi-m-Fibonacci Partitions

Define the maz m-power of an integer N as the largest power of m that divides N (not just the
exponent of the power). Thus using the notation x,,(N), we find that N = u-m?*, s > 0, where
m{u and z,,(N) =m®. So x,,(N) > 0 for all N



For example, 22(50) = 2, x2(40) = 8, x3(216) = 27 and x5(216) = 1.

Note that if the parts of a partition A have distinct max m-powers, then the parts are distinct.
For if u-m® =X\, =\, =v-m! € X\ with m { u,v, and s > ¢, then u-m*' =v = mlv a
contradiction.

We define three (reversible) operations on a partition A = (A1,..., \;) with an integer m > 1:

(i) If the last part of A is less than m, delete it: 71 (A) = (A1,..., Ag—1);

(11) If mJ()\t >m, then 7'2(/\) = ()\1, ey /\t717)\t —m, /\t+17 Ce ,)\k).

(iii) If A\ consists of multiples of m, divide every part by m: 73(X) = (A1/m, ..., Ax/m).
These operations are consistent with the recursive construction of the set SF'(n, m), where 75 L T !
and 75 ! correspond, respectively, to the three quantities in the recurrence @.

Lemma 2. Let B(n,m) denote the set of partitions of n in which the parts have distinct max
m-powers and at most one non-multiple of m. Then if A\ € B(n,m) and 7;(\) # 0, then 7;(\) €
B(N,m), i = 1,2, 3, for some N.

Proof. Let A = (M\1,...,A\x) € B(n,m). If X contains one part less than m, the part is Az. So
T1(A) € B(n — Ak, m) since the max m-powers remain distinct. It is obvious that the parity of X is
inherited by 72(A) = (A1, ..., Ae—1, At — My A1, - .., Ag) € B(n—m,m). Lastly, since the parts of
A have distinct max m-powers 73(\) = (A1/m, ..., \z/m) may contain at most one non-multiple
of m as a part. Hence 73(\) € B(n/m,m). |

We state an independent characterization of the Semi-m-Fibonacci Partitions.

Theorem 4. A partition of n is a semi-m-Fibonacci partition if and only if the parts have distinct
max m-powers and at most one non-multiple of m.

Proof. We show that SF(n,m) = B(n,m). Let A = (A,...,A\x) € SF(n,m) such that A ¢
B(n,m). Assume that there are \; > A; satisfying @, (\;) = z(A;) and let \; = w;m®, Aj = u;m?®
with m t u;, u;. Observe that 7 deletes a part less than m if it exists. So we can use repeated
applications of 7 to reduce a non-multiple modulo m, followed by 7. This is tantamount to
simply deleting the non-multiple of m, say A, to obtain a member of B(n — A\;,m) from Lemma
By thus successively deleting non-multiples, and applying 75, ¢ > 0, we obtain a partition
B = (b1, P2,...) with 8; = v;m"™ > B; = v;m", where m { v;,v; and w < s. Then apply 73’ to
obtain a partition v with two non-multiples of m. Then by LemmalIl, v ¢ SF(n,m). Therefore
A€ SF(n,m) = X\ € B(n,m).

Conversely let A = (Aq,...,\;) € B(n,m). If A = (¢),1 < ¢t < m, then A € SF(t,m).
If m|A; for all 4, then 73(\) = (A/m,...,\x/m) € B(n/m,m) contains at most one part #Z 0
(mod m), so A € SF(n,m). Lastly assume that n = r # 0 (mod m). Then r € A or \y = r

(mod m) for exactly one index ¢. Thus 71(\) = (A1,..., Ag—1) consists of multiples of m while
To(A) = (A1, o5 Me—1, Ae — My, A1, - - -, M) still contains one part Z 0 (mod m). In either case
A € SF(n,m). Hence B(n,m) C SF(n,m). The the two sets are identical. |

Remark. Notice that Theorem [ certifies the second (bijective) proof of Theorem If A=
(M,..o, A) € SF(n,m) but A ¢ B(n,m) on account of having two parts A;, A\; such that \; =
wym® > A\j = u;m® with m { u;, u;, then it cannot have an inverse image. Assume that A\ maps
to B € ND(n,m) which then includes the parts m"“i*% (u; + u; copies of m). Then u; + u; may
be a multiple of m (for example, when w; = 1,u; = m — 1) which implies that 8 ¢ ND(n,m), a
contradiction. Alternatively the pre-image of 8 would include the part m(u; + u;) and so cannot
be A.

3 Arithmetic Properties

We prove several congruence properties of the numbers sf(n, m).



Theorem 5. Let n,m be integers with n > 0, m > 1. Then

sf(nm4+1,m)=sf(nm+2,m)= ---zsf(nm—i-m—l,m):isf(j,m).
=0

Proof. Let Jrm(q) = > sf(nm +r,m)q"™ where r =1,2,3,...m — 1. Then
n>0

Jrml@) = " sfm,m)q" + 3 sf(mn +r —m,m)q" (by @)

n>0 n>0

= Z sf(n,m)q" + Z sf(mn +r,m)g" ™!

n>0 n>0
=Gm(q) +q Z sf(mn +r,m)q"
n>0
= Gm(q) + qJrm(q)

so that G (0)
m\q
Jrm(q) = . 12
mla) =520 (12)
Since the right hand side of ([[2)) is independent of r, we must have Jy ,,(q) = Joam(q) = ... =
Im—1,m(q) so that sf(nm + 1,m) = sf(nm +2,m) = --- = sf(nm + m — 1,m). Furthermore,
from (2], we observe that
S sf(mn+rmg® = 3¢ 3 55 (n, m)g”
n>0 n>0 n>0
=22 sfGm)"
n>0 j=0
which implies that sf(mn +r,m) = > sf(j,m). |
=0

Corollary 2. Given integers m > 2, then for any j > 0 and a fixed v € {0,1,...,m},
sfm?(mv+7r),m)=v+1, 1 <r<m-—1.

Proof. By applying (B]) several times (the case when m | n), it is clear that for any j > 0,
sf(m/(mv +r),m) = sf(m?~Y(mv +r),m) = sf(m?~2(mv +r),m) = ... = sf(mv +r,m). By
the last equality in Theorem [B we have

v

sf(mv—l—r,m):Zsf(i,m):1—|—Zsf(i,m), v>0,1<r<m.

1=0 i=1

If 1 <wv < m,then Y sf(i,m)=

i=1 i

we have sf(mv+rm)=14+ 5> (14+0)=1+w.

(sf(i—1i,m)+sf(i—m,m)) (by @)). Since 0 <i<wv < m,
1

U v

If v =m, then Y sf(i,m)= >, sf(i,m)+sf(m,m)=m—1+sf(l,m)=m—1+1=m; thus
i=1 i=1

sf(mv+r)=wv+1is true in this case. Finally, if v = 0, it is not difficult to see that sf(r,m) = 1.

|

We note a few interesting special cases of Corollary 2l below.



Corollary 3. We have the following for any integer m > 2:
(i) sf(mi,m)=1, i > 0.
(ii) sf(m‘h,m) =1, 1<h<m—1,i>0.
(iii) Given an integer n > 0, then for each n € {0,1,...,m},

sf(nm+1,m)=sf(nm+2,m)=---=sf((n+1)m—-1,m)=v+ 1.

Proof. Part (i) is the case h = 1 of part (ii). Parts (ii) and (iii) are obtained by setting v = 0 and
j = 0,respectively, in Corollary 2 [ ]

Note that part (i) of Corollary Bl implies Corollary[Il Also when m = 2, part (iii) gives just the
three values sf(1) = 1, sf(3) = 2 and sf(5) = 3, the parities of which are consistent with Theorem
Part (iii) is a stronger version of Theorem [l since the restriction of n to the set {0,1,...,m}
specifies a common value.

Theorem 6. For any j > 0,

241
> sf(r,3)=0 (mod 2).
r=0
Consequently,
sf(37+4,3)=sf(3j+5,3)=0 (mod 2) where j =0 (mod 2), (13)
sf(374+4,3)=sf(3"7+5,3)=0 (mod 2) for all j >0,r > 2. (14)
Proof. Note the following identity
1 - n :
— =]+ 230, 15
= o d ) (15)

Recall that

1—g?3"

7
~
B
W
S

I
)

3
Vv
=]
3
Il
o

1+ q3n +q2~3n + q3-3"
1 +q3.3n

i
)

> (mod 2)

3
Il
=]

(1+¢")(1+¢*)
L+ g33"

I
)

n=0

B 1"—"[ 1+¢*%"

o0

=(1-q JJa+¢**) by @)

n=0
Thus
1 - 4
ﬁZsf(n,?))q EH(1+q23 ) (mod 2),
n>0 n=0

ie.
oo

ST sfr )" = [J(1+¢*")  (mod 2).

n>0r=0 n=0

Since the series expansion of the right-hand side of the preceeding equation has even exponents,
the result follows.



To prove ([I3]), we have

sf(3j+4,3)=sf(3(j+1)+1,3)
=sf(3(j +1)+2,3) (by Theorem/[0])
J+1

= Z sf(r,3) (by Theorem [
r=0
=0 (mod 2) (since j+ 1 is odd).

Furthermore, for ([4]), observe that

g1y 1= 0 Hi=1 (mod2)
1, otherwise.

Now, if j is odd, then

sf(3"+4,3)=sf(3(3" Y +1)+1,3)
=sf(3(3" 1 +1)+2,3)

371
= Z sf(r,3) (by Theorem [Hl)
r=0
3r—1;
=sfBTH1,3)+ > sf(r3)
r=0
=sf(3""'5+1,3) (mod 2) (since 3" !5 is odd)
3r—2;
= > sf(r,3)
r=0

=0 (mod 2) (since 3"%j is odd).

On the other hand, if j is even, use ([I3)).

Theorem 7. Let k =m +17 (mod 2m) and k <m? +r for 1 <r<m-—1. Ifn >0, m > 2 and
n =m'k fori >0, then sf(n,m) is even.

Proof. k=m +r (mod 2m) and k < m? +r for 1 <r <m — 1 imply that k = m(2t + 1) +r <
m? 4+ r = 2t + 1 < m, for some positive integer t. Then from Corollary [ we have
sf(m'k,m) = sf(m*(m(2t + 1) 4+ 1), m)
=sf(m2t+1)+r,m) (by @)
=2t+ 141 (by Corollary 2 and since 2t +1 < m)
=2t+2.

Remark. When m = 3, Theorem [0 reduces to Theorem [ without the restriction k < m? 4 r.
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