Power Partitions and Semi-*m*-Fibonacci Partitions

Abdulaziz M. Alanazi¹, Augustine O. Munagi², Darlison Nyirenda³

¹Department of Mathematics, Faculty of Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia

^{2,3}School of Mathematics, University of the Witwatersrand, P.O. Wits 2050, Johannesburg, South Africa

¹am.alenezi@ut.edu.sa, ²augustine.munagi@wits.ac.za, ³darlison.nyirenda@wits.ac.za

Abstract

George Andrews recently proved a new identity between the cardinalities of the set of Semi-Fibonacci partitions and the set of partitions into powers of two with all parts appearing an odd number of times. This paper extends the identity to the set of Semi-m-Fibonacci partitions of n and the set of partitions of n into powers of m in which all parts appear with multiplicity not divisible by m. We also give a new characterization of Semi-m-Fibonacci partitions and some congruences satisfied by the associated number sequence.

KEYWORDS: partition, bijection, congruence.

2010 MATHEMATICS SUBJECT CLASSIFICATION: 11P83, 11P84, 051A15.

1 Introduction

A partition λ of an integer n > 0 is a finite nonincreasing integer sequence whose sum is n. The terms of the sequence are called *parts* of λ . Thus a partition with k parts will generally be expressed as

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k), \ \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k > 0, \tag{1}$$

or

$$\lambda = (\lambda_1^{v_1}, \lambda_2^{v_2}, \dots, \lambda_t^{v_t}), \ \lambda_1 > \lambda_2 > \dots > \lambda_t > 0, \ t \le k,$$

$$(2)$$

where $\lambda_i^{v_i}$ indicates that λ_i occurs with multiplicity v_i , for each *i*, and $v_1 + \cdots + v_t = k$ [2].

In a recent paper paper Andrews [1] describes the set SF(n) of semi-Fibonacci partitions as follows: $SF(1) = \{(1)\}, SF(2) = \{(2)\}$. If n > 2 and n is even then

 $SF(n) = \{\lambda \mid \lambda \text{ is a partition of } \frac{n}{2} \text{ with each part doubled}\}$. If n is odd, then a member of SF(n) is obtained by inserting 1 into each partition in SF(n-1) or by adding 2 to the single odd part in a partition in SF(n-2).

The cardinality sf(n) = |SF(n)| satisfies the following recurrence relation for all n > 0 (with sf(-1) = 0, sf(0) = 1);

$$sf(n) = \begin{cases} sf(n/2), & \text{if } n \text{ is even;} \\ sf(n-1) + sf(n-2), & \text{if } n \text{ is odd.} \end{cases}$$
(3)

The semi-Fibonacci sequence $\{sf(n)\}_{n>0}$ occurs as sequence number A030067 in Sloane's database [5]. George Beck [3] has previously considered the properties of a set of polynomials related to the semi-Fibonacci partitions.

Andrews stated the following relation between the number of semi-Fibonacci partitions of n and the number ob(n) of binary partitions of n in which every part occurs an odd number of times:

Theorem 1 ([1], Theorem 1). For each $n \ge 0$,

$$sf(n) = ob(n),\tag{4}$$

Andrews gave a generating function proof and asked for a bijective proof.

The proof turns out to be remarkable simple. It goes as follows. Each part t of $\lambda \in SF(n)$ can be expressed as $t = 2^i \cdot h$, $i \ge 0$, where h is odd. Now transform t as

$$t = 2^i \cdot h \longmapsto 2^i, 2^i, \dots, 2^i (h \text{ times})$$

This gives a partition of n into powers of 2 in which every part has odd multiplicity. Conversely, consider $\beta \in OB(n)$. Since every part (a power of 2) has odd multiplicity we simply write β in the exponent notation $\beta = (\beta_1^{u_1}, \dots, \beta_s^{u_s}), \beta_1 > \dots > \beta_s$ with the u_i odd and positive. Since each $\beta_i^{u_i}$ has the form $(2^{j_i})^{u_i}, j_i \ge 0$, we apply the transformation:

$$\beta_i^{u_i} = (2^{j_i})^{u_i} \longmapsto 2^{j_i} u_i.$$

This gives a unique partition in SF(n). Indeed the image may contain at most one odd part which occurs precisely when $j_i = 0$.

SF(9)	\longrightarrow	OB(9)
(8,1)	\mapsto	(8,1)
(4,3,2)	\mapsto	(4, 2, 1, 1, 1)
(6,3)	\mapsto	(2, 2, 2, 1, 1, 1)
(5,4)	\mapsto	(4, 1, 1, 1, 1, 1)
(7,2)	\mapsto	(2, 1, 1, 1, 1, 1, 1, 1)
(9)	\mapsto	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Table 1: The map $SF(n) \to OB(n)$ for n = 9.

We also consider the following congruence which Andrews proved with generating functions.

Theorem 2 ([1], Theorem 2). For each $n \ge 0$, sf(n) is even if 3|n and odd otherwise.

Proof. We give a combinatorial proof based on mathematical induction. The result holds for n = 1, 2, 3 since sf(1) = 1 = sf(2) and $sf(3) = |\{(1, 2), (3)\}| = 2$. Now let n > 3 and assume that the result holds for all integers less than n.

If $n \equiv 1 \pmod{3}$, then sf(n) is the sum of sf(n-1) and sf(n-2) which have opposite parities since, by the inductive hypothesis, sf(n-1) is even (since 3|(n-1)) and sf(n-2) is odd. If $n \equiv 2 \pmod{3}$, then sf(n) is the sum of sf(n-1) which is odd (since $3 \nmid (n-1)$) and sf(n-2)is even. Thus sf(n) is odd.

If 3|n and n is even, then sf(n) = sf(n/2). Since $3|\frac{n}{2}$, it follows that sf(n/2) is even by the inductive hypothesis. Lastly, if 3|n and n is odd, then sf(n) = sf(n-1) + s(n-2) which is even since $3 \nmid (n-1)$ and $3 \nmid (n-2)$.

This completes the proof.

The following result is easily deduced from the definition of sets counted by sf(n).

Corollary 1. Given a nonnegative integer v,

$$sf(2^{v}) = 1.$$

In Section 2 we define the semi-*m*-Fibonacci partitions by extending the previous construction using a fixed integer modulus m > 1. A generalized identity is then stated between the set of semi-m-Fibonacci partitions and the set of partitions into powers of m with multiplicities not divisible by m (Theorem 3). Then in Subsection 2.1 we give an independent characterization of the semi-m-Fibonacci partitions. Lastly, in Section 3 we discuss some arithmetic properties satisfied by the semi-*m*-Fibonacci sequence.

2 Generalization

We generalize the set of semi-Fibonacci Partitions to the set SF(n,m) of semi-*m*-Fibonacci Partitions as follows:

 $SF(n,m) = \{(n)\}, n = 1, 2, \dots, m$

If n > m and n is a multiple of m, then

 $SF(n,m) = \{\lambda \mid \lambda \text{ is a partition of } \frac{n}{m} \text{ with each part multiplied by } m\}.$

If n is not a multiple of m, that is, $n \equiv r \pmod{m}$, $1 \leq r \leq m-1$, then SF(n,m) arises from two sources: first, partitions obtained by inserting r into each partition in SF(n-r,m), and second, partitions obtained by adding m to the single part of each partition $\lambda \in SF(n-m,m)$ which is congruent to $r \pmod{m}$ (since λ contains exactly one part which is congruent to r modulo m, see Lemma 1 below).

Lemma 1. Let $\lambda \in SF(n,m)$.

If $m \mid n$, then every part of λ is a multiple of m.

If $n \equiv r \pmod{m}$, $1 \leq r < m$, then λ contains exactly one part $\equiv r \pmod{m}$.

Proof. If $m \mid n$, the parts of a partition in SF(n, n) are clearly divisible by m by construction.

For induction note that $SF(r,m) = \{(r)\}, r = 1, ..., m-1$, so the assertion holds trivially. Assume that the assertion holds for the partitions of all integers < n and consider $\lambda \in SF(n,m)$ with $1 \leq r < m$. Then λ may be obtained by inserting r into a partition $\alpha \in SF(n-r,m)$. Since α consists of multiples of m (as $m|(n-r)\rangle$, λ contains exactly one part $\equiv r \pmod{m}$. Alternatively λ is obtained by adding m to the single part of a partition $\beta \in SF(n-m,m)$ which is $\equiv r \pmod{m}$. Indeed β contains exactly one such part by the inductive hypothesis. Hence the assertion is proved.

As an illustration we have the following sets for small n when m = 3:

$$\begin{split} SF(1,3) &= \{(1)\},\\ SF(2,3) &= \{(2)\},\\ SF(3,3) &= \{(3)\},\\ SF(4,3) &= \{(4), (3,1)\},\\ SF(5,3) &= \{(5), (3,2)\},\\ SF(6,3) &= \{(6)\},\\ SF(7,3) &= \{(7), (4,3), (6,1)\},\\ SF(8,3) &= \{(8), (5,3), (6,2)\},\\ SF(9,3) &= \{(9)\},\\ SF(10,3) &= \{(10), (6,4), (7,3), (9,1)\}. \end{split}$$

Thus if we define sf(n,m) = |SF(n,m)|, we obtain that

 $sf(1,3) = sf(2,3) = sf(3,3) = 1, \ sf(4,3) = 2, \ sf(5,3) = 2, \ sf(6,3) = 1,$

sf(7,3) = 3, sf(8,3) = 3, sf(9,3) = 1, sf(10,3) = 4.

Therefore, for m > 1, we see that sf(n,m) = 0 if n < 0 and sf(0,m) = 1, and for n > 0,

$$sf(n,m) = \begin{cases} sf(n/m,m), & \text{if } n \equiv 0 \pmod{m}; \\ sf(n-r,m) + sf(n-m,m), & \text{if } n \equiv r \pmod{m}, 0 < r < m. \end{cases}$$
(5)

The case m = 2 gives the function considered by Andrews: sf(n, 2) = sf(n).

Power partitions are partitions into powers of a positive integer m, also known as m-power partitions [4]. Let nd(n,m) be the number of m-power partitions of n in which the multiplicity of each part is not divisible by m. Thus, for example, nd(10,3) = 4, the enumerated partitions being (9,1), (3,3,1,1,1,1), (3,1,1,1,1,1,1,1), (1,1,1,1,1,1,1,1,1,1).

Theorem 3. For integers $n \ge 0, m > 1$,

$$sf(n,m) = nd(n,m),\tag{6}$$

 $\mathit{Proof.}\,$ We give two proofs, one analytic one combinatorial. First Proof. Let |q|<1 and define

$$G_m(q) = \sum_{n \ge 0} sf(n,m)q^n.$$
(7)

Then we have

$$\begin{aligned} G_{m}(q) &= \sum_{n\geq 0} sf(mn,m)q^{mn} + \sum_{n\geq 0} sf(mn+1,m)q^{mn+1} + \ldots + \sum_{n\geq 0} sf(mn+m-1,m)q^{mn+m-1} \\ &= \sum_{n\geq 0} sf(mn,m)q^{mn} + \sum_{r=1}^{m-1} \sum_{n\geq 0} sf(mn+r,m)q^{mn+r} \end{aligned} \tag{8} \\ &= \sum_{n\geq 0} sf(n,m)q^{mn} + \sum_{r=1}^{m-1} \sum_{n\geq 0} (sf(mn,m) + sf(mn+r-m,m))q^{mn+r} \ (by (5)) \\ &= \sum_{n\geq 0} sf(n,m)q^{mn} + \sum_{r=1}^{m-1} \sum_{n\geq 0} (sf(n,m)q^{mn+r} + \sum_{r=1}^{m-1} \sum_{n\geq 0} sf(mn+r-m,m)q^{mn+r} \ (by (5)) \\ &= (1 + \sum_{r=1}^{m-1} q^{r}) \sum_{n\geq 0} sf(n,m)q^{mn} + \sum_{r=1}^{m-1} \sum_{n\geq 0} sf(m(n-1) + r,m)q^{mn+r} \\ &= G_{m}(q^{m}) \sum_{r=0}^{m-1} q^{r} + \sum_{r=1}^{m-1} \sum_{n\geq 0} sf(mn+r,m)q^{mn+m+r} \\ &= G_{m}(q^{m}) \sum_{r=0}^{m-1} q^{r} + q^{m} \sum_{r=1}^{m-1} \sum_{n\geq 0} sf(mn+r,m)q^{mn+r} \\ &= G_{m}(q^{m}) \sum_{r=0}^{m-1} q^{r} + q^{m} \left(\sum_{n\geq 0} sf(mn+r,m)q^{mn+r} \right) \ (by (8)) \\ &= G_{m}(q^{m}) \sum_{r=0}^{m-1} q^{r} + q^{m} \left((mn+r) \sum_{n\geq 0} sf(mn,m)q^{mn} \right) \ (by (8)) \\ &= G_{m}(q^{m}) \sum_{r=0}^{m-1} q^{r} + q^{m} (G_{m}(q) - G_{m}(q^{m})) \\ &= \left(-q^{m} + \sum_{r=0}^{m-1} q^{r} \right) G_{m}(q^{m}) + q^{m} G_{m}(q). \end{aligned}$$

Hence,

$$G_m(q) = \frac{1+q+q^2+q^3+\ldots+q^{m-1}-q^m}{1-q^m}G_m(q^m).$$
 (10)

Equation (10) implies that

$$G_m(q) = \left(\frac{1+q+q^2+\ldots+q^{m-1}-q^m}{1-q^m}\right) \left(\frac{1+q+q^{2m}+\ldots+q^{(m-1)m}-q^{m^2}}{1-q^{m^2}}\right) G_m(q^{m^2}),$$

and continuing the iteration, we get

$$G_m(q) = \prod_{n=0}^N \left(\frac{1 + q^{m^n} + q^{2m^n} + \ldots + q^{(m-1)m^n} - q^{m^{n+1}}}{1 - q^{m^{n+1}}} \right) G_m(q^{m^{N+1}}).$$

Taking the limit as $N \to \infty$, we have $G_m(q^{m^{N+1}}) \to G_m(0) = 1$ (since |q| < 1) so that

$$G_m(q) = \prod_{n=0}^{\infty} \left(\frac{1+q^{m^n}+q^{2m^n}+\ldots+q^{(m-1)m^n}-q^{m^{n+1}}}{1-q^{m^{n+1}}} \right)$$
$$= \prod_{n=0}^{\infty} \left(\frac{q^{m^n}+q^{2m^n}+\ldots+q^{(m-1)m^n}+1-q^{m^{n+1}}}{1-q^{m^{n+1}}} \right)$$
$$= \prod_{n=0}^{\infty} \left(1+\frac{q^{m^n}+q^{2m^n}+\ldots+q^{(m-1)m^n}}{1-q^{m^{n+1}}} \right)$$
$$= \prod_{n=0}^{\infty} \left(1+(q^{m^n}+q^{2m^n}+\ldots+q^{(m-1)m^n})\sum_{j=0}^{\infty} q^{j(m^{n+1})} \right)$$

Thus,

$$G_m(q) = \prod_{n=0}^{\infty} \left(1 + \sum_{j=0}^{\infty} q^{m^n(jm+1)} + \sum_{j=0}^{\infty} q^{m^n(jm+2)} + \sum_{j=0}^{\infty} q^{m^n(jm+3)} + \dots + \sum_{j=0}^{\infty} q^{m^n(jm+m-1)} \right)$$
$$= \sum_{n\geq 0} nd(n,m)q^n.$$
(11)

The assertion follows by comparing coefficients in (7) and (11).

Second Proof. Each part t of $\lambda \in SF(n,m)$ can be expressed as $t = m^i \cdot h, i \ge 0$, where m does not divide h. Now transform t as

$$t = m^i \cdot h \longmapsto m^i, m^i, \dots, m^i(h \text{ times}).$$

This gives a partition of n into powers of m in which every part has multiplicity not divisible by m. Conversely, consider $\beta \in ND(n, m)$. Since every part (a power of m) has a non-multiple of m as multiplicity we simply write β in the exponent notation $\beta = (\beta_1^{u_1}, \ldots, \beta_s^{u_s}), \beta_1 > \cdots > \beta_s$ with the $u_i \not\equiv 0 \pmod{m}$. Since each $\beta_i^{u_i}$ has the form $(m^{j_i})^{u_i}$, we apply the transformation:

$$\beta_i^{u_i} = (m^{j_i})^{u_i} \longmapsto m^{j_i} u_i.$$

This gives a unique partition in SF(n,m). If $m \mid n$, this image contains only multiples of m. If $n \equiv r \pmod{m}$, $1 \leq r < m$, the image consists of multiples of m and exactly one part $\equiv r \pmod{m}$ which occurs when $j_i = 0$.

SF(11, 3)	\longrightarrow	ND(11, 3)
(11)	\mapsto	(1,1,1,1,1,1,1,1,1,1,1,1)
(8,3)	\mapsto	(3,1,1,1,1,1,1,1,1)
(6,5)	\mapsto	$(3,\!3,\!1,\!1,\!1,\!1,\!1)$
(9,2)	\mapsto	(9,1,1)

Table 2: The map $SF(n,m) \rightarrow ND(n,m)$ for n = 11, m = 3.

2.1 A characterization of Semi-*m*-Fibonacci Partitions

Define the max m-power of an integer N as the largest power of m that divides N (not just the exponent of the power). Thus using the notation $x_m(N)$, we find that $N = u \cdot m^s$, $s \ge 0$, where $m \nmid u$ and $x_m(N) = m^s$. So $x_m(N) > 0$ for all N.

For example, $x_2(50) = 2$, $x_2(40) = 8$, $x_3(216) = 27$ and $x_5(216) = 1$.

Note that if the parts of a partition λ have distinct max *m*-powers, then the parts are distinct. For if $u \cdot m^s = \lambda_i = \lambda_j = v \cdot m^t \in \lambda$ with $m \nmid u, v$, and s > t, then $u \cdot m^{s-t} = v \implies m | v$ a contradiction.

We define three (reversible) operations on a partition $\lambda = (\lambda_1, \dots, \lambda_k)$ with an integer m > 1: (i) If the last part of λ is less than m, delete it: $\tau_1(\lambda) = (\lambda_1, \dots, \lambda_{k-1})$;

(ii) If $m \nmid \lambda_t > m$, then $\tau_2(\lambda) = (\lambda_1, \dots, \lambda_{t-1}, \lambda_t - m, \lambda_{t+1}, \dots, \lambda_k)$.

(iii) If λ consists of multiples of m, divide every part by m: $\tau_3(\lambda) = (\lambda_1/m, \ldots, \lambda_k/m)$. These operations are consistent with the recursive construction of the set SF(n,m), where τ_3^{-1}, τ_1^{-1} and τ_2^{-1} correspond, respectively, to the three quantities in the recurrence (5).

Lemma 2. Let B(n,m) denote the set of partitions of n in which the parts have distinct max m-powers and at most one non-multiple of m. Then if $\lambda \in B(n,m)$ and $\tau_i(\lambda) \neq \emptyset$, then $\tau_i(\lambda) \in B(N,m)$, i = 1, 2, 3, for some N.

Proof. Let $\lambda = (\lambda_1, \ldots, \lambda_k) \in B(n, m)$. If λ contains one part less than m, the part is λ_k . So $\tau_1(\lambda) \in B(n - \lambda_k, m)$ since the max m-powers remain distinct. It is obvious that the parity of λ is inherited by $\tau_2(\lambda) = (\lambda_1, \ldots, \lambda_{t-1}, \lambda_t - m, \lambda_{t+1}, \ldots, \lambda_k) \in B(n - m, m)$. Lastly, since the parts of λ have distinct max m-powers $\tau_3(\lambda) = (\lambda_1/m, \ldots, \lambda_k/m)$ may contain at most one non-multiple of m as a part. Hence $\tau_3(\lambda) \in B(n/m, m)$.

We state an independent characterization of the Semi-m-Fibonacci Partitions.

Theorem 4. A partition of n is a semi-m-Fibonacci partition if and only if the parts have distinct max m-powers and at most one non-multiple of m.

Proof. We show that SF(n,m) = B(n,m). Let $\lambda = (\lambda_1, \ldots, \lambda_k) \in SF(n,m)$ such that $\lambda \notin B(n,m)$. Assume that there are $\lambda_i > \lambda_j$ satisfying $x_m(\lambda_i) = x_m(\lambda_j)$ and let $\lambda_i = u_i m^s$, $\lambda_j = u_j m^s$ with $m \nmid u_i, u_j$. Observe that τ_1 deletes a part less than m if it exists. So we can use repeated applications of τ_2 to reduce a non-multiple modulo m, followed by τ_1 . This is tantamount to simply deleting the non-multiple of m, say λ_t , to obtain a member of $B(n - \lambda_t, m)$ from Lemma 2. By thus successively deleting non-multiples, and applying $\tau_3^c, c > 0$, we obtain a partition $\beta = (\beta_1, \beta_2, \ldots)$ with $\beta_i = v_i m^w > \beta_j = v_j m^w$, where $m \nmid v_i, v_j$ and $w \leq s$. Then apply τ_3^w to obtain a partition γ with two non-multiples of m. Then by Lemma 1, $\gamma \notin SF(n,m)$. Therefore $\lambda \in SF(n,m) \Longrightarrow \lambda \in B(n,m)$.

Conversely let $\lambda = (\lambda_1, \ldots, \lambda_k) \in B(n, m)$. If $\lambda = (t), 1 \leq t \leq m$, then $\lambda \in SF(t, m)$. If $m | \lambda_i$ for all *i*, then $\tau_3(\lambda) = (\lambda_1/m, \ldots, \lambda_k/m) \in B(n/m, m)$ contains at most one part $\neq 0$ (mod *m*), so $\lambda \in SF(n, m)$. Lastly assume that $n \equiv r \neq 0$ (mod *m*). Then $r \in \lambda$ or $\lambda_t \equiv r$ (mod *m*) for exactly one index *t*. Thus $\tau_1(\lambda) = (\lambda_1, \ldots, \lambda_{k-1})$ consists of multiples of *m* while $\tau_2(\lambda) = (\lambda_1, \ldots, \lambda_{t-1}, \lambda_t - m, \lambda_{t+1}, \ldots, \lambda_k)$ still contains one part $\neq 0$ (mod *m*). In either case $\lambda \in SF(n, m)$. Hence $B(n, m) \subseteq SF(n, m)$. The the two sets are identical.

Remark. Notice that Theorem 4 certifies the second (bijective) proof of Theorem 3. If $\lambda = (\lambda_1, \ldots, \lambda_k) \in SF(n, m)$ but $\lambda \notin B(n, m)$ on account of having two parts λ_i, λ_j such that $\lambda_i = u_i m^s > \lambda_j = u_j m^s$ with $m \nmid u_i, u_j$, then it cannot have an inverse image. Assume that λ maps to $\beta \in ND(n, m)$ which then includes the parts $m^{u_i+u_j}$ $(u_i + u_j \text{ copies of } m)$. Then $u_i + u_j$ may be a multiple of m (for example, when $u_i = 1, u_j = m - 1$) which implies that $\beta \notin ND(n, m)$, a contradiction. Alternatively the pre-image of β would include the part $m(u_i + u_j)$ and so cannot be λ .

3 Arithmetic Properties

We prove several congruence properties of the numbers sf(n, m).

Theorem 5. Let n, m be integers with $n \ge 0, m > 1$. Then

$$sf(nm+1,m) = sf(nm+2,m) = \dots = sf(nm+m-1,m) = \sum_{j=0}^{n} sf(j,m).$$

Proof. Let $J_{r,m}(q) = \sum_{n \ge 0} sf(nm+r,m)q^n$ where $r = 1, 2, 3, \dots m - 1$. Then

$$J_{r,m}(q) = \sum_{n \ge 0} sf(nm,m)q^n + \sum_{n \ge 0} sf(mn+r-m,m)q^n \text{ (by (5))}$$

= $\sum_{n \ge 0} sf(n,m)q^n + \sum_{n \ge 0} sf(mn+r,m)q^{n+1}$
= $G_m(q) + q \sum_{n \ge 0} sf(mn+r,m)q^n$
= $G_m(q) + q J_{r,m}(q)$

so that

$$J_{r,m}(q) = \frac{G_m(q)}{1-q}.$$
 (12)

Since the right hand side of (12) is independent of r, we must have $J_{1,m}(q) = J_{2,m}(q) = \ldots = J_{m-1,m}(q)$ so that $sf(nm+1,m) = sf(nm+2,m) = \cdots = sf(nm+m-1,m)$. Furthermore, from (12), we observe that

$$\sum_{n\geq 0} sf(mn+r,m)q^n = \sum_{n\geq 0} q^n \sum_{n\geq 0} sf(n,m)q^n$$
$$= \sum_{n\geq 0} \sum_{j=0}^n sf(j,m)q^n$$

which implies that $sf(mn + r, m) = \sum_{j=0}^{n} sf(j, m)$.

Corollary 2. Given integers $m \ge 2$, then for any $j \ge 0$ and a fixed $v \in \{0, 1, \dots, m\}$,

$$sf(m^{j}(mv+r),m) = v+1, \ 1 \le r \le m-1$$

Proof. By applying (5) several times (the case when $m \mid n$), it is clear that for any $j \geq 0$, $sf(m^{j}(mv+r),m) = sf(m^{j-1}(mv+r),m) = sf(m^{j-2}(mv+r),m) = \ldots = sf(mv+r,m)$. By the last equality in Theorem 5, we have

$$sf(mv + r, m) = \sum_{i=0}^{v} sf(i, m) = 1 + \sum_{i=1}^{v} sf(i, m), v \ge 0, 1 \le r < m$$

If $1 \le v < m$, then $\sum_{i=1}^{v} sf(i,m) = \sum_{i=1}^{v} (sf(i-i,m) + sf(i-m,m))$ (by (5)). Since $0 < i \le v < m$, we have $sf(mv + r,m) = 1 + \sum_{i=1}^{v} (1+0) = 1 + v$. If v = m, then $\sum_{i=1}^{v} sf(i,m) = \sum_{i=1}^{m-1} sf(i,m) + sf(m,m) = m - 1 + sf(1,m) = m - 1 + 1 = m$; thus sf(mv + r) = v + 1 is true in this case. Finally, if v = 0, it is not difficult to see that sf(r,m) = 1.

We note a few interesting special cases of Corollary 2 below.

Corollary 3. We have the following for any integer $m \ge 2$:

(i) $sf(m^i, m) = 1, i \ge 0.$

- (ii) $sf(m^ih, m) = 1, \ 1 \le h \le m 1, \ i \ge 0.$
- (iii) Given an integer $n \ge 0$, then for each $n \in \{0, 1, \dots, m\}$,

$$sf(nm+1,m) = sf(nm+2,m) = \dots = sf((n+1)m-1,m) = v+1.$$

Proof. Part (i) is the case h = 1 of part (ii). Parts (ii) and (iii) are obtained by setting v = 0 and j = 0, respectively, in Corollary 2.

Note that part (i) of Corollary 3 implies Corollary 1. Also when m = 2, part (iii) gives just the three values sf(1) = 1, sf(3) = 2 and sf(5) = 3, the parities of which are consistent with Theorem 2. Part (iii) is a stronger version of Theorem 5 since the restriction of n to the set $\{0, 1, \ldots, m\}$ specifies a common value.

Theorem 6. For any $j \ge 0$,

$$\sum_{r=0}^{2j+1} sf(r,3) \equiv 0 \pmod{2}.$$

Consequently,

$$sf(3j+4,3) = sf(3j+5,3) \equiv 0 \pmod{2}$$
 where $j \equiv 0 \pmod{2}$, (13)

$$sf(3^r j + 4, 3) = sf(3^r j + 5, 3) \equiv 0 \pmod{2}$$
 for all $j \ge 0, r \ge 2$. (14)

Proof. Note the following identity

$$\frac{1}{1-q} = \prod_{n=0}^{\infty} (1+q^{3^n}+q^{2\cdot 3^n}).$$
(15)

Recall that

$$\sum_{n\geq 0} sf(n,3)q^n = \prod_{n=0}^{\infty} \left(\frac{1+q^{3^n}+q^{2\cdot 3^n}-q^{3\cdot 3^n}}{1-q^{3\cdot 3^n}} \right)$$
$$\equiv \prod_{n=0}^{\infty} \left(\frac{1+q^{3^n}+q^{2\cdot 3^n}+q^{3\cdot 3^n}}{1+q^{3\cdot 3^n}} \right) \pmod{2}$$
$$= \prod_{n=0}^{\infty} \frac{(1+q^{3^n})(1+q^{2\cdot 3^n})}{1+q^{3\cdot 3^n}}$$
$$= \prod_{n=0}^{\infty} \left(\frac{1+q^{2\cdot 3^n}}{1+q^{3^n}+q^{2\cdot 3^n}} \right)$$
$$= (1-q) \prod_{n=0}^{\infty} (1+q^{2\cdot 3^n}) \pmod{15}.$$

Thus

$$\frac{1}{1-q} \sum_{n \ge 0} sf(n,3)q^n \equiv \prod_{n=0}^{\infty} (1+q^{2 \cdot 3^n}) \pmod{2},$$

i.e.

$$\sum_{n\geq 0}\sum_{r=0}^n sf(r,3)q^n\equiv \prod_{n=0}^\infty (1+q^{2\cdot 3^n}) \pmod{2}$$

Since the series expansion of the right-hand side of the preceeding equation has even exponents, the result follows.

To prove (13), we have

$$sf(3j + 4, 3) = sf(3(j + 1) + 1, 3)$$

= $sf(3(j + 1) + 2, 3)$ (by Theorem 5)
= $\sum_{r=0}^{j+1} sf(r, 3)$ (by Theorem 5)
= 0 (mod 2) (since $j + 1$ is odd).

Furthermore, for (14), observe that

$$3^{r-1}j + 1 \equiv \begin{cases} 0, & \text{if } j \equiv 1 \pmod{2}; \\ 1, & \text{otherwise.} \end{cases}$$

Now, if j is odd, then

$$\begin{split} sf(3^r j + 4, 3) &= sf(3(3^{r-1} j + 1) + 1, 3) \\ &= sf(3(3^{r-1} j + 1) + 2, 3) \\ &= \sum_{r=0}^{3^{r-1} j + 1} sf(r, 3) \text{ (by Theorem 5)} \\ &= sf(3^{r-1} j + 1, 3) + \sum_{r=0}^{3^{r-1} j} sf(r, 3) \\ &\equiv sf(3^{r-1} j + 1, 3) \pmod{2} \text{ (since } 3^{r-1} j \text{ is odd)} \\ &= \sum_{r=0}^{3^{r-2} j} sf(r, 3) \\ &\equiv 0 \pmod{2} \text{ (since } 3^{r-2} j \text{ is odd)}. \end{split}$$

On the other hand, if j is even, use (13).

Theorem 7. Let $k \equiv m + r \pmod{2m}$ and $k \leq m^2 + r$ for $1 \leq r \leq m - 1$. If $n \geq 0$, $m \geq 2$ and $n = m^i k$ for $i \geq 0$, then sf(n,m) is even.

Proof. $k \equiv m + r \pmod{2m}$ and $k \leq m^2 + r$ for $1 \leq r \leq m - 1$ imply that $k = m(2t + 1) + r \leq m^2 + r \Rightarrow 2t + 1 \leq m$, for some positive integer t. Then from Corollary 2, we have

$$sf(m^{i}k,m) = sf(m^{i}(m(2t+1)+r),m)$$

= $sf(m(2t+1)+r,m)$ (by (5))
= $2t + 1 + 1$ (by Corollary 2 and since $2t + 1 \le m$)
= $2t + 2$.

Remark. When m = 3, Theorem 7 reduces to Theorem 6 without the restriction $k \le m^2 + r$.

References

 G. E. Andrews, Binary and semi-Fibonacci partitions, http://www.personal.psu.edu/gea1/, preprint.

- [2] G. E. Andrews, *The Theory of Partitions*, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998.
- [3] George Beck, "Semi-Fibonacci Partitions", http://demonstrations.wolfram.com/SemiFibonacciPartitions/, Wolfram Demonstrations Project, 2015.
- [4] A. Gafni, Power partitions, J. Number Theory 163 (2016), 19–42.
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2015.