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Abstract

George Andrews recently proved a new identity between the cardinalities of the set of Semi-

Fibonacci partitions and the set of partitions into powers of two with all parts appearing

an odd number of times. This paper extends the identity to the set of Semi-m-Fibonacci

partitions of n and the set of partitions of n into powers of m in which all parts appear with

multiplicity not divisible by m. We also give a new characterization of Semi-m-Fibonacci

partitions and some congruences satisfied by the associated number sequence.
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1 Introduction

A partition λ of an integer n > 0 is a finite nonincreasing integer sequence whose sum is n.
The terms of the sequence are called parts of λ. Thus a partition with k parts will generally be
expressed as

λ = (λ1, λ2, . . . , λk), λ1 ≥ λ2 ≥ · · · ≥ λk > 0, (1)

or
λ = (λv1

1 , λv2
2 , . . . , λvt

t ), λ1 > λ2 > · · · > λt > 0, t ≤ k, (2)

where λvi
i indicates that λi occurs with multiplicity vi, for each i, and v1 + · · ·+ vt = k [2].

In a recent paper paper Andrews [1] describes the set SF (n) of semi-Fibonacci partitions as
follows: SF (1) = {(1)}, SF (2) = {(2)}. If n > 2 and n is even then

SF (n) = {λ | λ is a partition of n
2 with each part doubled}. If n is odd, then a member of

SF (n) is obtained by inserting 1 into each partition in SF (n− 1) or by adding 2 to the single odd
part in a partition in SF (n− 2).

The cardinality sf(n) = |SF (n)| satisfies the following recurrence relation for all n > 0 (with
sf(−1) = 0, sf(0) = 1);

sf(n) =

{

sf(n/2), if n is even;

sf(n− 1) + sf(n− 2), if n is odd.
(3)

The semi-Fibonacci sequence {sf(n)}n>0 occurs as sequence number A030067 in Sloane’s
database [5]. George Beck [3] has previously considered the properties of a set of polynomials
related to the semi-Fibonacci partitions.

Andrews stated the following relation between the number of semi-Fibonacci partitions of n
and the number ob(n) of binary partitions of n in which every part occurs an odd number of times:
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Theorem 1 ([1], Theorem 1). For each n ≥ 0,

sf(n) = ob(n), (4)

Andrews gave a generating function proof and asked for a bijective proof.
The proof turns out to be remarkable simple. It goes as follows. Each part t of λ ∈ SF (n) can

be expressed as t = 2i · h, i ≥ 0, where h is odd. Now transform t as

t = 2i · h 7−→ 2i, 2i, . . . , 2i(h times).

This gives a partition of n into powers of 2 in which every part has odd multiplicity. Conversely,
consider β ∈ OB(n). Since every part (a power of 2) has odd multiplicity we simply write β in
the exponent notation β = (βu1

1 , . . . , βus
s ), β1 > · · · > βs with the ui odd and positive. Since each

βui

i has the form (2ji)ui , ji ≥ 0, we apply the transformation:

βui

i = (2ji)ui 7−→ 2jiui.

This gives a unique partition in SF (n). Indeed the image may contain at most one odd part which
occurs precisely when ji = 0.

SF (9) −→ OB(9)
(8,1) 7→ (8,1)
(4,3,2) 7→ (4,2,1,1,1)
(6,3) 7→ (2,2,2,1,1,1)
(5,4) 7→ (4,1,1,1,1,1)
(7,2) 7→ (2,1,1,1,1,1,1,1)
(9) 7→ (1,1,1,1,1,1,1,1,1)

Table 1: The map SF (n) → OB(n) for n = 9.

We also consider the following congruence which Andrews proved with generating functions.

Theorem 2 ([1], Theorem 2). For each n ≥ 0, sf(n) is even if 3|n and odd otherwise.

Proof. We give a combinatorial proof based on mathematical induction. The result holds for
n = 1, 2, 3 since sf(1) = 1 = sf(2) and sf(3) = |{(1, 2), (3)}| = 2. Now let n > 3 and assume that
the result holds for all integers less than n.

If n ≡ 1 (mod 3), then sf(n) is the sum of sf(n−1) and sf(n−2) which have opposite parities
since, by the inductive hypothesis, sf(n− 1) is even (since 3|(n− 1)) and sf(n− 2) is odd.
If n ≡ 2 (mod 3), then sf(n) is the sum of sf(n− 1) which is odd (since 3 ∤ (n− 1)) and sf(n− 2)
is even. Thus sf(n) is odd.
If 3|n and n is even, then sf(n) = sf(n/2). Since 3|n2 , it follows that sf(n/2) is even by the
inductive hypothesis. Lastly, if 3|n and n is odd, then sf(n) = sf(n− 1) + s(n− 2) which is even
since 3 ∤ (n− 1) and 3 ∤ (n− 2).

This completes the proof.

The following result is easily deduced from the definition of sets counted by sf(n).

Corollary 1. Given a nonnegative integer v,

sf(2v) = 1.

In Section 2 we define the semi-m-Fibonacci partitions by extending the previous construction
using a fixed integer modulus m > 1. A generalized identity is then stated between the set of
semi-m-Fibonacci partitions and the set of partitions into powers of m with multiplicities not
divisible by m (Theorem 3). Then in Subsection 2.1 we give an independent characterization
of the semi-m-Fibonacci partitions. Lastly, in Section 3 we discuss some arithmetic properties
satisfied by the semi-m-Fibonacci sequence.
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2 Generalization

We generalize the set of semi-Fibonacci Partitions to the set SF (n,m) of semi-m-Fibonacci Par-
titions as follows:

SF (n,m) = {(n)}, n = 1, 2, . . . ,m
If n > m and n is a multiple of m, then
SF (n,m) = {λ | λ is a partition of n

m
with each part multiplied by m}.

If n is not a multiple of m, that is, n ≡ r (mod m), 1 ≤ r ≤ m − 1, then SF (n,m) arises
from two sources: first, partitions obtained by inserting r into each partition in SF (n− r,m), and
second, partitions obtained by adding m to the single part of each partition λ ∈ SF (n − m,m)
which is congruent to r (mod m) (since λ contains exactly one part which is congruent to r modulo
m, see Lemma 1 below).

Lemma 1. Let λ ∈ SF (n,m).
If m | n, then every part of λ is a multiple of m.
If n ≡ r (mod m), 1 ≤ r < m, then λ contains exactly one part ≡ r (mod m).

Proof. If m | n, the parts of a partition in SF (n, n) are clearly divisible by m by construction.
For induction note that SF (r,m) = {(r)}, r = 1, . . . ,m − 1, so the assertion holds trivially.

Assume that the assertion holds for the partitions of all integers < n and consider λ ∈ SF (n,m)
with 1 ≤ r < m. Then λ may be obtained by inserting r into a partition α ∈ SF (n − r,m).
Since α consists of multiples of m (as m|(n − r)), λ contains exactly one part ≡ r (mod m).
Alternatively λ is obtained by adding m to the single part of a partition β ∈ SF (n−m,m) which
is ≡ r (mod m). Indeed β contains exactly one such part by the inductive hypothesis. Hence the
assertion is proved.

As an illustration we have the following sets for small n when m = 3:
SF (1, 3) = {(1)},
SF (2, 3) = {(2)},
SF (3, 3) = {(3)},
SF (4, 3) = {(4), (3, 1)},
SF (5, 3) = {(5), (3, 2)},
SF (6, 3) = {(6)},
SF (7, 3) = {(7), (4, 3), (6, 1)},
SF (8, 3) = {(8), (5, 3), (6, 2)},
SF (9, 3) = {(9)},
SF (10, 3) = {(10), (6, 4), (7, 3), (9, 1)}.

Thus if we define sf(n,m) = |SF (n,m)|, we obtain that
sf(1, 3) = sf(2, 3) = sf(3, 3) = 1, sf(4, 3) = 2, sf(5, 3) = 2, sf(6, 3) = 1,
sf(7, 3) = 3, sf(8, 3) = 3, sf(9, 3) = 1, sf(10, 3) = 4.

Therefore, for m > 1, we see that sf(n,m) = 0 if n < 0 and sf(0,m) = 1, and for n > 0,

sf(n,m) =

{

sf(n/m,m), if n ≡ 0 (mod m);

sf(n− r,m) + sf(n−m,m), if n ≡ r (mod m), 0 < r < m.
(5)

The case m = 2 gives the function considered by Andrews: sf(n, 2) = sf(n).
Power partitions are partitions into powers of a positive integer m, also known as m-power

partitions [4]. Let nd(n,m) be the number of m-power partitions of n in which the multiplicity
of each part is not divisible by m. Thus, for example, nd(10, 3) = 4, the enumerated partitions
being (9, 1), (3, 3, 1, 1, 1, 1), (3, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Theorem 3. For integers n ≥ 0,m > 1,

sf(n,m) = nd(n,m), (6)
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Proof. We give two proofs, one analytic one combinatorial.

First Proof. Let |q| < 1 and define

Gm(q) =
∑

n≥0

sf(n,m)qn. (7)

Then we have

Gm(q) =
∑

n≥0

sf(mn,m)qmn +
∑

n≥0

sf(mn+ 1,m)qmn+1 + . . .+
∑

n≥0

sf(mn+m− 1,m)qmn+m−1

=
∑

n≥0

sf(mn,m)qmn +

m−1
∑

r=1

∑

n≥0

sf(mn+ r,m)qmn+r (8)

=
∑

n≥0

sf(n,m)qmn +
m−1
∑

r=1

∑

n≥0

(sf(mn,m) + sf(mn+ r −m,m))qmn+r (by (5))

=
∑

n≥0

sf(n,m)qmn +

m−1
∑

r=1

∑

n≥0

(sf(n,m)qmn+r +

m−1
∑

r=1

∑

n≥0

sf(mn+ r −m,m)qmn+r.

= (1 +

m−1
∑

r=1

qr)
∑

n≥0

sf(n,m)qmn +

m−1
∑

r=1

∑

n≥0

sf(m(n− 1) + r,m)qmn+r

= Gm(qm)

m−1
∑

r=0

qr +

m−1
∑

r=1

∑

n≥0

sf(mn+ r,m)qmn+m+r

= Gm(qm)

m−1
∑

r=0

qr + qm
m−1
∑

r=1

∑

n≥0

sf(mn+ r,m)qmn+r

= Gm(qm)

m−1
∑

r=0

qr) + qm





∑

n≥0

sf(n,m)qn −
∑

n≥0

sf(mn,m)qmn



 (by (8))

= Gm(qm)

m−1
∑

r=0

qr + qm(Gm(q)−Gm(qm))

=

(

−qm +

m−1
∑

r=0

qr

)

Gm(qm) + qmGm(q). (9)

Hence,

Gm(q) =
1 + q + q2 + q3 + . . .+ qm−1 − qm

1− qm
Gm(qm). (10)

Equation (10) implies that

Gm(q) =

(

1 + q + q2 + . . .+ qm−1 − qm

1− qm

)

(

1 + q + q2m + . . .+ q(m−1)m − qm
2

1− qm2

)

Gm(qm
2

),

and continuing the iteration, we get

Gm(q) =

N
∏

n=0

(

1 + qm
n

+ q2m
n

+ . . .+ q(m−1)mn

− qm
n+1

1− qmn+1

)

Gm(qm
N+1

).
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Taking the limit as N → ∞, we have Gm(qm
N+1

) → Gm(0) = 1 (since |q| < 1) so that

Gm(q) =

∞
∏

n=0

(

1 + qm
n

+ q2m
n

+ . . .+ q(m−1)mn

− qm
n+1

1− qmn+1

)

=

∞
∏

n=0

(

qm
n

+ q2m
n

+ . . .+ q(m−1)mn

+ 1− qm
n+1

1− qmn+1

)

=

∞
∏

n=0

(

1 +
qm

n

+ q2m
n

+ . . .+ q(m−1)mn

1− qmn+1

)

=

∞
∏

n=0



1 + (qm
n

+ q2m
n

+ . . .+ q(m−1)mn

)

∞
∑

j=0

qj(m
n+1)



 .

Thus,

Gm(q) =
∞
∏

n=0



1 +
∞
∑

j=0

qm
n(jm+1) +

∞
∑

j=0

qm
n(jm+2) +

∞
∑

j=0

qm
n(jm+3) + . . .+

∞
∑

j=0

qm
n(jm+m−1)





=
∑

n≥0

nd(n,m)qn. (11)

The assertion follows by comparing coefficients in (7) and (11).

Second Proof. Each part t of λ ∈ SF (n,m) can be expressed as t = mi · h, i ≥ 0, where m does
not divide h. Now transform t as

t = mi · h 7−→ mi,mi, . . . ,mi(h times).

This gives a partition of n into powers of m in which every part has multiplicity not divisible by
m. Conversely, consider β ∈ ND(n,m). Since every part (a power of m) has a non-multiple of m
as multiplicity we simply write β in the exponent notation β = (βu1

1 , . . . , βus
s ), β1 > · · · > βs with

the ui 6≡ 0 (mod m). Since each βui

i has the form (mji)ui , we apply the transformation:

βui

i = (mji)ui 7−→ mjiui.

This gives a unique partition in SF (n,m). If m | n, this image contains only multiples of m. If
n ≡ r (mod m), 1 ≤ r < m, the image consists of multiples of m and exactly one part ≡ r (mod
m) which occurs when ji = 0.

SF (11, 3) −→ ND(11, 3)
(11) 7→ (1,1,1,1,1,1,1,1,1,1,1)
(8,3) 7→ (3,1,1,1,1,1,1,1,1)
(6,5) 7→ (3,3,1,1,1,1,1)
(9,2) 7→ (9,1,1)

Table 2: The map SF (n,m) → ND(n,m) for n = 11, m = 3.

2.1 A characterization of Semi-m-Fibonacci Partitions

Define the max m-power of an integer N as the largest power of m that divides N (not just the
exponent of the power). Thus using the notation xm(N), we find that N = u ·ms, s ≥ 0, where
m ∤ u and xm(N) = ms. So xm(N) > 0 for all N .
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For example, x2(50) = 2, x2(40) = 8, x3(216) = 27 and x5(216) = 1.
Note that if the parts of a partition λ have distinct max m-powers, then the parts are distinct.

For if u · ms = λi = λj = v · mt ∈ λ with m ∤ u, v, and s > t, then u · ms−t = v =⇒ m|v a
contradiction.

We define three (reversible) operations on a partition λ = (λ1, . . . , λk) with an integer m > 1:
(i) If the last part of λ is less than m, delete it: τ1(λ) = (λ1, . . . , λk−1);
(ii) If m ∤ λt > m, then τ2(λ) = (λ1, . . . , λt−1, λt −m,λt+1, . . . , λk).
(iii) If λ consists of multiples of m, divide every part by m: τ3(λ) = (λ1/m, . . . , λk/m).

These operations are consistent with the recursive construction of the set SF (n,m), where τ−1
3 , τ−1

1

and τ−1
2 correspond, respectively, to the three quantities in the recurrence (5).

Lemma 2. Let B(n,m) denote the set of partitions of n in which the parts have distinct max
m-powers and at most one non-multiple of m. Then if λ ∈ B(n,m) and τi(λ) 6= ∅, then τi(λ) ∈
B(N,m), i = 1, 2, 3, for some N .

Proof. Let λ = (λ1, . . . , λk) ∈ B(n,m). If λ contains one part less than m, the part is λk. So
τ1(λ) ∈ B(n−λk,m) since the max m-powers remain distinct. It is obvious that the parity of λ is
inherited by τ2(λ) = (λ1, . . . , λt−1, λt −m,λt+1, . . . , λk) ∈ B(n−m,m). Lastly, since the parts of
λ have distinct max m-powers τ3(λ) = (λ1/m, . . . , λk/m) may contain at most one non-multiple
of m as a part. Hence τ3(λ) ∈ B(n/m,m).

We state an independent characterization of the Semi-m-Fibonacci Partitions.

Theorem 4. A partition of n is a semi-m-Fibonacci partition if and only if the parts have distinct

max m-powers and at most one non-multiple of m.

Proof. We show that SF (n,m) = B(n,m). Let λ = (λ1, . . . , λk) ∈ SF (n,m) such that λ /∈
B(n,m). Assume that there are λi > λj satisfying xm(λi) = xm(λj) and let λi = uim

s, λj = ujm
s

with m ∤ ui, uj . Observe that τ1 deletes a part less than m if it exists. So we can use repeated
applications of τ2 to reduce a non-multiple modulo m, followed by τ1. This is tantamount to
simply deleting the non-multiple of m, say λt, to obtain a member of B(n− λt,m) from Lemma
2. By thus successively deleting non-multiples, and applying τc3 , c > 0, we obtain a partition
β = (β1, β2, . . .) with βi = vim

w > βj = vjm
w, where m ∤ vi, vj and w ≤ s. Then apply τw3 to

obtain a partition γ with two non-multiples of m. Then by Lemma 1, γ /∈ SF (n,m). Therefore
λ ∈ SF (n,m) =⇒ λ ∈ B(n,m).

Conversely let λ = (λ1, . . . , λk) ∈ B(n,m). If λ = (t), 1 ≤ t ≤ m, then λ ∈ SF (t,m).
If m|λi for all i, then τ3(λ) = (λ1/m, . . . , λk/m) ∈ B(n/m,m) contains at most one part 6≡ 0
(mod m), so λ ∈ SF (n,m). Lastly assume that n ≡ r 6≡ 0 (mod m). Then r ∈ λ or λt ≡ r
(mod m) for exactly one index t. Thus τ1(λ) = (λ1, . . . , λk−1) consists of multiples of m while
τ2(λ) = (λ1, . . . , λt−1, λt − m,λt+1, . . . , λk) still contains one part 6≡ 0 (mod m). In either case
λ ∈ SF (n,m). Hence B(n,m) ⊆ SF (n,m). The the two sets are identical.

Remark. Notice that Theorem 4 certifies the second (bijective) proof of Theorem 3. If λ =
(λ1, . . . , λk) ∈ SF (n,m) but λ /∈ B(n,m) on account of having two parts λi, λj such that λi =
uim

s > λj = ujm
s with m ∤ ui, uj , then it cannot have an inverse image. Assume that λ maps

to β ∈ ND(n,m) which then includes the parts mui+uj (ui + uj copies of m). Then ui + uj may
be a multiple of m (for example, when ui = 1, uj = m − 1) which implies that β /∈ ND(n,m), a
contradiction. Alternatively the pre-image of β would include the part m(ui + uj) and so cannot
be λ.

3 Arithmetic Properties

We prove several congruence properties of the numbers sf(n,m).
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Theorem 5. Let n,m be integers with n ≥ 0, m > 1. Then

sf(nm+ 1,m) = sf(nm+ 2,m) = · · · = sf(nm+m− 1,m) =

n
∑

j=0

sf(j,m).

Proof. Let Jr,m(q) =
∑

n≥0

sf(nm+ r,m)qn where r = 1, 2, 3, . . .m− 1. Then

Jr,m(q) =
∑

n≥0

sf(nm,m)qn +
∑

n≥0

sf(mn+ r −m,m)qn (by (5))

=
∑

n≥0

sf(n,m)qn +
∑

n≥0

sf(mn+ r,m)qn+1

= Gm(q) + q
∑

n≥0

sf(mn+ r,m)qn

= Gm(q) + qJr,m(q)

so that

Jr,m(q) =
Gm(q)

1− q
. (12)

Since the right hand side of (12) is independent of r, we must have J1,m(q) = J2,m(q) = . . . =
Jm−1,m(q) so that sf(nm + 1,m) = sf(nm + 2,m) = · · · = sf(nm + m − 1,m). Furthermore,
from (12), we observe that

∑

n≥0

sf(mn+ r,m)qn =
∑

n≥0

qn
∑

n≥0

sf(n,m)qn

=
∑

n≥0

n
∑

j=0

sf(j,m)qn

which implies that sf(mn+ r,m) =
n
∑

j=0

sf(j,m).

Corollary 2. Given integers m ≥ 2, then for any j ≥ 0 and a fixed v ∈ {0, 1, . . . ,m},

sf(mj(mv + r),m) = v + 1, 1 ≤ r ≤ m− 1.

Proof. By applying (5) several times (the case when m | n), it is clear that for any j ≥ 0,
sf(mj(mv + r),m) = sf(mj−1(mv + r),m) = sf(mj−2(mv + r),m) = . . . = sf(mv + r,m). By
the last equality in Theorem 5, we have

sf(mv + r,m) =

v
∑

i=0

sf(i,m) = 1 +

v
∑

i=1

sf(i,m), v ≥ 0, 1 ≤ r < m.

If 1 ≤ v < m, then
v
∑

i=1

sf(i,m) =
v
∑

i=1

(sf(i− i,m) + sf(i−m,m)) (by (5)). Since 0 < i ≤ v < m,

we have sf(mv + r,m) = 1 +
v
∑

i=1

(1 + 0) = 1 + v.

If v = m, then
v
∑

i=1

sf(i,m) =
m−1
∑

i=1

sf(i,m) + sf(m,m) = m− 1 + sf(1,m) = m− 1 + 1 = m; thus

sf(mv+ r) = v+1 is true in this case. Finally, if v = 0, it is not difficult to see that sf(r,m) = 1.

We note a few interesting special cases of Corollary 2 below.
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Corollary 3. We have the following for any integer m ≥ 2:
(i) sf(mi,m) = 1, i ≥ 0.
(ii) sf(mih,m) = 1, 1 ≤ h ≤ m− 1, i ≥ 0.
(iii) Given an integer n ≥ 0, then for each n ∈ {0, 1, . . . ,m},

sf(nm+ 1,m) = sf(nm+ 2,m) = · · · = sf((n+ 1)m− 1,m) = v + 1.

Proof. Part (i) is the case h = 1 of part (ii). Parts (ii) and (iii) are obtained by setting v = 0 and
j = 0,respectively, in Corollary 2.

Note that part (i) of Corollary 3 implies Corollary 1. Also when m = 2, part (iii) gives just the
three values sf(1) = 1, sf(3) = 2 and sf(5) = 3, the parities of which are consistent with Theorem
2. Part (iii) is a stronger version of Theorem 5 since the restriction of n to the set {0, 1, . . . ,m}
specifies a common value.

Theorem 6. For any j ≥ 0,
2j+1
∑

r=0

sf(r, 3) ≡ 0 (mod 2).

Consequently,

sf(3j + 4, 3) = sf(3j + 5, 3) ≡ 0 (mod 2) where j ≡ 0 (mod 2), (13)

sf(3rj + 4, 3) = sf(3rj + 5, 3) ≡ 0 (mod 2) for all j ≥ 0, r ≥ 2. (14)

Proof. Note the following identity

1

1− q
=

∞
∏

n=0

(1 + q3
n

+ q2·3
n

). (15)

Recall that

∑

n≥0

sf(n, 3)qn =
∞
∏

n=0

(

1 + q3
n

+ q2·3
n

− q3·3
n

1− q3·3n

)

≡
∞
∏

n=0

(

1 + q3
n

+ q2·3
n

+ q3·3
n

1 + q3·3n

)

(mod 2)

=

∞
∏

n=0

(1 + q3
n

)(1 + q2·3
n

)

1 + q3·3n

=
∞
∏

n=0

(

1 + q2·3
n

1 + q3n + q2·3n

)

= (1− q)

∞
∏

n=0

(1 + q2·3
n

) (by (15)).

Thus
1

1− q

∑

n≥0

sf(n, 3)qn ≡
∞
∏

n=0

(1 + q2·3
n

) (mod 2),

i.e.
∑

n≥0

n
∑

r=0

sf(r, 3)qn ≡
∞
∏

n=0

(1 + q2·3
n

) (mod 2).

Since the series expansion of the right-hand side of the preceeding equation has even exponents,
the result follows.
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To prove (13), we have

sf(3j + 4, 3) = sf(3(j + 1) + 1, 3)

= sf(3(j + 1) + 2, 3) (by Theorem 5)

=

j+1
∑

r=0

sf(r, 3) (by Theorem 5)

≡ 0 (mod 2) (since j + 1 is odd).

Furthermore, for (14), observe that

3r−1j + 1 ≡

{

0, if j ≡ 1 (mod 2);

1, otherwise.

Now, if j is odd, then

sf(3rj + 4, 3) = sf(3(3r−1j + 1) + 1, 3)

= sf(3(3r−1j + 1) + 2, 3)

=

3r−1j+1
∑

r=0

sf(r, 3) (by Theorem 5)

= sf(3r−1j + 1, 3) +

3r−1j
∑

r=0

sf(r, 3)

≡ sf(3r−1j + 1, 3) (mod 2) (since 3r−1j is odd)

=

3r−2j
∑

r=0

sf(r, 3)

≡ 0 (mod 2) (since 3r−2j is odd).

On the other hand, if j is even, use (13).

Theorem 7. Let k ≡ m+ r (mod 2m) and k ≤ m2 + r for 1 ≤ r ≤ m− 1. If n ≥ 0, m ≥ 2 and

n = mik for i ≥ 0, then sf(n,m) is even.

Proof. k ≡ m + r (mod 2m) and k ≤ m2 + r for 1 ≤ r ≤ m − 1 imply that k = m(2t+ 1) + r ≤
m2 + r ⇒ 2t+ 1 ≤ m, for some positive integer t. Then from Corollary 2, we have

sf(mik,m) = sf(mi(m(2t+ 1) + r),m)

= sf(m(2t+ 1) + r,m) (by (5))

= 2t+ 1 + 1 (by Corollary 2 and since 2t+ 1 ≤ m)

= 2t+ 2.

Remark. When m = 3, Theorem 7 reduces to Theorem 6 without the restriction k ≤ m2 + r.
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