Power Partitions and Semi-m-Fibonacci Partitions

Abdulaziz M. Alanazi ${ }^{1}$, Augustine O. Munagi ${ }^{2}$, Darlison Nyirenda ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
${ }^{2,3}$ School of Mathematics, University of the Witwatersrand, P.O. Wits 2050, Johannesburg, South Africa
${ }^{1}$ am.alenezi@ut.edu.sa, ${ }^{2}$ augustine.munagi@wits.ac.za, ${ }^{3}$ darlison.nyirenda@wits.ac.za

Abstract

George Andrews recently proved a new identity between the cardinalities of the set of SemiFibonacci partitions and the set of partitions into powers of two with all parts appearing an odd number of times. This paper extends the identity to the set of Semi-m-Fibonacci partitions of n and the set of partitions of n into powers of m in which all parts appear with multiplicity not divisible by m. We also give a new characterization of Semi-m-Fibonacci partitions and some congruences satisfied by the associated number sequence.

Keywords: partition, bijection, congruence.
2010 Mathematics Subject Classification: 11P83, 11P84, 051A15.

1 Introduction

A partition λ of an integer $n>0$ is a finite nonincreasing integer sequence whose sum is n. The terms of the sequence are called parts of λ. Thus a partition with k parts will generally be expressed as

$$
\begin{equation*}
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda=\left(\lambda_{1}^{v_{1}}, \lambda_{2}^{v_{2}}, \ldots, \lambda_{t}^{v_{t}}\right), \lambda_{1}>\lambda_{2}>\cdots>\lambda_{t}>0, t \leq k, \tag{2}
\end{equation*}
$$

where $\lambda_{i}^{v_{i}}$ indicates that λ_{i} occurs with multiplicity v_{i}, for each i, and $v_{1}+\cdots+v_{t}=k$ 2].
In a recent paper paper Andrews 1 describes the set $S F(n)$ of semi-Fibonacci partitions as follows: $S F(1)=\{(1)\}, S F(2)=\{(2)\}$. If $n>2$ and n is even then
$S F(n)=\left\{\lambda \mid \lambda\right.$ is a partition of $\frac{n}{2}$ with each part doubled $\}$. If n is odd, then a member of $S F(n)$ is obtained by inserting 1 into each partition in $S F(n-1)$ or by adding 2 to the single odd part in a partition in $S F(n-2)$.

The cardinality $s f(n)=|S F(n)|$ satisfies the following recurrence relation for all $n>0$ (with $s f(-1)=0, s f(0)=1$;

$$
s f(n)= \begin{cases}s f(n / 2), & \text { if } n \text { is even } \tag{3}\\ s f(n-1)+s f(n-2), & \text { if } n \text { is odd }\end{cases}
$$

The semi-Fibonacci sequence $\{s f(n)\}_{n>0}$ occurs as sequence number A030067 in Sloane's database [5]. George Beck [3] has previously considered the properties of a set of polynomials related to the semi-Fibonacci partitions.

Andrews stated the following relation between the number of semi-Fibonacci partitions of n and the number $o b(n)$ of binary partitions of n in which every part occurs an odd number of times:

Theorem 1 (1 , Theorem 1). For each $n \geq 0$,

$$
\begin{equation*}
s f(n)=o b(n) \tag{4}
\end{equation*}
$$

Andrews gave a generating function proof and asked for a bijective proof.
The proof turns out to be remarkable simple. It goes as follows. Each part t of $\lambda \in S F(n)$ can be expressed as $t=2^{i} \cdot h, i \geq 0$, where h is odd. Now transform t as

$$
t=2^{i} \cdot h \longmapsto 2^{i}, 2^{i}, \ldots, 2^{i}(h \text { times }) .
$$

This gives a partition of n into powers of 2 in which every part has odd multiplicity. Conversely, consider $\beta \in O B(n)$. Since every part (a power of 2) has odd multiplicity we simply write β in the exponent notation $\beta=\left(\beta_{1}^{u_{1}}, \ldots, \beta_{s}^{u_{s}}\right), \beta_{1}>\cdots>\beta_{s}$ with the u_{i} odd and positive. Since each $\beta_{i}^{u_{i}}$ has the form $\left(2^{j_{i}}\right)^{u_{i}}, j_{i} \geq 0$, we apply the transformation:

$$
\beta_{i}^{u_{i}}=\left(2^{j_{i}}\right)^{u_{i}} \longmapsto 2^{j_{i}} u_{i} .
$$

This gives a unique partition in $S F(n)$. Indeed the image may contain at most one odd part which occurs precisely when $j_{i}=0$.

$S F(9)$	\longrightarrow	$O B(9)$
$(8,1)$	\mapsto	$(8,1)$
$(4,3,2)$	\mapsto	$(4,2,1,1,1)$
$(6,3)$	\mapsto	$(2,2,2,1,1,1)$
$(5,4)$	\mapsto	$(4,1,1,1,1,1)$
$(7,2)$	\mapsto	$(2,1,1,1,1,1,1,1)$
(9)	\mapsto	$(1,1,1,1,1,1,1,1,1)$

Table 1: The map $S F(n) \rightarrow O B(n)$ for $n=9$.

We also consider the following congruence which Andrews proved with generating functions.
Theorem 2 (1], Theorem 2). For each $n \geq 0, s f(n)$ is even if $3 \mid n$ and odd otherwise.
Proof. We give a combinatorial proof based on mathematical induction. The result holds for $n=1,2,3$ since $s f(1)=1=s f(2)$ and $s f(3)=|\{(1,2),(3)\}|=2$. Now let $n>3$ and assume that the result holds for all integers less than n.

If $n \equiv 1(\bmod 3)$, then $s f(n)$ is the sum of $s f(n-1)$ and $s f(n-2)$ which have opposite parities since, by the inductive hypothesis, $s f(n-1)$ is even (since $3 \mid(n-1))$ and $s f(n-2)$ is odd.
If $n \equiv 2(\bmod 3)$, then $s f(n)$ is the sum of $s f(n-1)$ which is odd (since $3 \nmid(n-1))$ and $s f(n-2)$ is even. Thus $s f(n)$ is odd.
If $3 \mid n$ and n is even, then $s f(n)=s f(n / 2)$. Since $3 \left\lvert\, \frac{n}{2}\right.$, it follows that $s f(n / 2)$ is even by the inductive hypothesis. Lastly, if $3 \mid n$ and n is odd, then $s f(n)=s f(n-1)+s(n-2)$ which is even since $3 \nmid(n-1)$ and $3 \nmid(n-2)$.

This completes the proof.
The following result is easily deduced from the definition of sets counted by $s f(n)$.
Corollary 1. Given a nonnegative integer v,

$$
s f\left(2^{v}\right)=1
$$

In Section 2 we define the semi- m-Fibonacci partitions by extending the previous construction using a fixed integer modulus $m>1$. A generalized identity is then stated between the set of semi- m-Fibonacci partitions and the set of partitions into powers of m with multiplicities not divisible by m (Theorem 3). Then in Subsection 2.1 we give an independent characterization of the semi-m-Fibonacci partitions. Lastly, in Section 3 we discuss some arithmetic properties satisfied by the semi- m-Fibonacci sequence.

2 Generalization

We generalize the set of semi-Fibonacci Partitions to the set $S F(n, m)$ of semi-m-Fibonacci Partitions as follows:
$S F(n, m)=\{(n)\}, n=1,2, \ldots, m$
If $n>m$ and n is a multiple of m, then
$S F(n, m)=\left\{\lambda \mid \lambda\right.$ is a partition of $\frac{n}{m}$ with each part multiplied by $\left.m\right\}$.
If n is not a multiple of m, that is, $n \equiv r(\bmod m), 1 \leq r \leq m-1$, then $S F(n, m)$ arises from two sources: first, partitions obtained by inserting r into each partition in $S F(n-r, m)$, and second, partitions obtained by adding m to the single part of each partition $\lambda \in S F(n-m, m)$ which is congruent to $r(\bmod m)$ (since λ contains exactly one part which is congruent to r modulo m, see Lemma 1 below).

Lemma 1. Let $\lambda \in S F(n, m)$.
If $m \mid n$, then every part of λ is a multiple of m.
If $n \equiv r(\bmod m), 1 \leq r<m$, then λ contains exactly one part $\equiv r(\bmod m)$.
Proof. If $m \mid n$, the parts of a partition in $S F(n, n)$ are clearly divisible by m by construction.
For induction note that $S F(r, m)=\{(r)\}, r=1, \ldots, m-1$, so the assertion holds trivially. Assume that the assertion holds for the partitions of all integers $<n$ and consider $\lambda \in S F(n, m)$ with $1 \leq r<m$. Then λ may be obtained by inserting r into a partition $\alpha \in S F(n-r, m)$. Since α consists of multiples of $\mathrm{m}($ as $m \mid(n-r)), \lambda$ contains exactly one part $\equiv r(\bmod m)$. Alternatively λ is obtained by adding m to the single part of a partition $\beta \in S F(n-m, m)$ which is $\equiv r(\bmod m)$. Indeed β contains exactly one such part by the inductive hypothesis. Hence the assertion is proved.

As an illustration we have the following sets for small n when $m=3$:

$$
\begin{aligned}
& S F(1,3)=\{(1)\}, \\
& S F(2,3)=\{(2)\} \\
& S F(3,3)=\{(3)\} \\
& S F(4,3)=\{(4),(3,1)\} \\
& S F(5,3)=\{(5),(3,2)\} \\
& S F(6,3)=\{(6)\} \\
& S F(7,3)=\{(7),(4,3),(6,1)\} \\
& S F(8,3)=\{(8),(5,3),(6,2)\} \\
& S F(9,3)=\{(9)\} \\
& S F(10,3)=\{(10),(6,4),(7,3),(9,1)\}
\end{aligned}
$$

Thus if we define $s f(n, m)=|S F(n, m)|$, we obtain that
$s f(1,3)=s f(2,3)=s f(3,3)=1, s f(4,3)=2, s f(5,3)=2, s f(6,3)=1$, $s f(7,3)=3, s f(8,3)=3, s f(9,3)=1, s f(10,3)=4$.
Therefore, for $m>1$, we see that $s f(n, m)=0$ if $n<0$ and $s f(0, m)=1$, and for $n>0$,

$$
s f(n, m)= \begin{cases}s f(n / m, m), & \text { if } n \equiv 0 \quad(\bmod m) \tag{5}\\ s f(n-r, m)+s f(n-m, m), & \text { if } n \equiv r \quad(\bmod m), 0<r<m\end{cases}
$$

The case $m=2$ gives the function considered by Andrews: $s f(n, 2)=s f(n)$.
Power partitions are partitions into powers of a positive integer m, also known as m-power partitions [4]. Let $n d(n, m)$ be the number of m-power partitions of n in which the multiplicity of each part is not divisible by m. Thus, for example, $n d(10,3)=4$, the enumerated partitions being $(9,1),(3,3,1,1,1,1),(3,1,1,1,1,1,1,1),(1,1,1,1,1,1,1,1,1,1)$.

Theorem 3. For integers $n \geq 0, m>1$,

$$
\begin{equation*}
s f(n, m)=n d(n, m) \tag{6}
\end{equation*}
$$

Proof. We give two proofs, one analytic one combinatorial.
First Proof. Let $|q|<1$ and define

$$
\begin{equation*}
G_{m}(q)=\sum_{n \geq 0} s f(n, m) q^{n} \tag{7}
\end{equation*}
$$

Then we have

$$
\begin{align*}
G_{m}(q) & =\sum_{n \geq 0} s f(m n, m) q^{m n}+\sum_{n \geq 0} s f(m n+1, m) q^{m n+1}+\ldots+\sum_{n \geq 0} s f(m n+m-1, m) q^{m n+m-1} \\
& =\sum_{n \geq 0} s f(m n, m) q^{m n}+\sum_{r=1}^{m-1} \sum_{n \geq 0} s f(m n+r, m) q^{m n+r} \tag{8}\\
& =\sum_{n \geq 0} s f(n, m) q^{m n}+\sum_{r=1}^{m-1} \sum_{n \geq 0}(s f(m n, m)+s f(m n+r-m, m)) q^{m n+r} \\
& =\sum_{n \geq 0} s f(n, m) q^{m n}+\sum_{r=1}^{m-1} \sum_{n \geq 0}\left(s f(n, m) q^{m n+r}+\sum_{r=1}^{m-1} \sum_{n \geq 0} s f(m n+r-m, m) q^{m n+r} .\right. \\
& =\left(1+\sum_{r=1}^{m-1} q^{r}\right) \sum_{n \geq 0} s f(n, m) q^{m n}+\sum_{r=1}^{m-1} \sum_{n \geq 0} s f(m(n-1)+r, m) q^{m n+r} \\
& =G_{m}\left(q^{m}\right) \sum_{r=0}^{m-1} q^{r}+\sum_{r=1}^{m-1} \sum_{n \geq 0} s f(m n+r, m) q^{m n+m+r} \\
& =G_{m}\left(q^{m}\right) \sum_{r=0}^{m-1} q^{r}+q^{m} \sum_{r=1}^{m-1} \sum_{n \geq 0} s f(m n+r, m) q^{m n+r} \\
& \left.\left.=G_{m}\left(q^{m}\right) \sum_{r=0}^{m-1} q^{r}\right)+q^{m}\left(\sum_{n \geq 0} s f(n, m) q^{n}-\sum_{n \geq 0} s f(m n, m) q^{m n}\right) \quad \text { (by (8) }\right) \\
& =G_{m}\left(q^{m}\right) \sum_{r=0}^{m-1} q^{r}+q^{m}\left(G_{m}(q)-G_{m}\left(q^{m}\right)\right) \\
& =\left(-q^{m}+\sum_{r=0}^{m-1} q^{r}\right) G_{m}\left(q^{m}\right)+q^{m} G_{m}(q) . \tag{9}
\end{align*}
$$

Hence,

$$
\begin{equation*}
G_{m}(q)=\frac{1+q+q^{2}+q^{3}+\ldots+q^{m-1}-q^{m}}{1-q^{m}} G_{m}\left(q^{m}\right) \tag{10}
\end{equation*}
$$

Equation (10) implies that

$$
G_{m}(q)=\left(\frac{1+q+q^{2}+\ldots+q^{m-1}-q^{m}}{1-q^{m}}\right)\left(\frac{1+q+q^{2 m}+\ldots+q^{(m-1) m}-q^{m^{2}}}{1-q^{m^{2}}}\right) G_{m}\left(q^{m^{2}}\right)
$$

and continuing the iteration, we get

$$
G_{m}(q)=\prod_{n=0}^{N}\left(\frac{1+q^{m^{n}}+q^{2 m^{n}}+\ldots+q^{(m-1) m^{n}}-q^{m^{n+1}}}{1-q^{m^{n+1}}}\right) G_{m}\left(q^{m^{N+1}}\right)
$$

Taking the limit as $N \rightarrow \infty$, we have $G_{m}\left(q^{m^{N+1}}\right) \rightarrow G_{m}(0)=1$ (since $\left.|q|<1\right)$ so that

$$
\begin{aligned}
G_{m}(q) & =\prod_{n=0}^{\infty}\left(\frac{1+q^{m^{n}}+q^{2 m^{n}}+\ldots+q^{(m-1) m^{n}}-q^{m^{n+1}}}{1-q^{m^{n+1}}}\right) \\
& =\prod_{n=0}^{\infty}\left(\frac{q^{m^{n}}+q^{2 m^{n}}+\ldots+q^{(m-1) m^{n}}+1-q^{m^{n+1}}}{1-q^{m^{n+1}}}\right) \\
& =\prod_{n=0}^{\infty}\left(1+\frac{q^{m^{n}}+q^{2 m^{n}}+\ldots+q^{(m-1) m^{n}}}{1-q^{m^{n+1}}}\right) \\
& =\prod_{n=0}^{\infty}\left(1+\left(q^{m^{n}}+q^{2 m^{n}}+\ldots+q^{(m-1) m^{n}}\right) \sum_{j=0}^{\infty} q^{j\left(m^{n+1}\right)}\right)
\end{aligned}
$$

Thus,

$$
\begin{align*}
G_{m}(q) & =\prod_{n=0}^{\infty}\left(1+\sum_{j=0}^{\infty} q^{m^{n}(j m+1)}+\sum_{j=0}^{\infty} q^{m^{n}(j m+2)}+\sum_{j=0}^{\infty} q^{m^{n}(j m+3)}+\ldots+\sum_{j=0}^{\infty} q^{m^{n}(j m+m-1)}\right) \\
& =\sum_{n \geq 0} n d(n, m) q^{n} \tag{11}
\end{align*}
$$

The assertion follows by comparing coefficients in (71) and (11).
Second Proof. Each part t of $\lambda \in S F(n, m)$ can be expressed as $t=m^{i} \cdot h, i \geq 0$, where m does not divide h. Now transform t as

$$
t=m^{i} \cdot h \longmapsto m^{i}, m^{i}, \ldots, m^{i}(h \text { times }) .
$$

This gives a partition of n into powers of m in which every part has multiplicity not divisible by m. Conversely, consider $\beta \in N D(n, m)$. Since every part (a power of m) has a non-multiple of m as multiplicity we simply write β in the exponent notation $\beta=\left(\beta_{1}^{u_{1}}, \ldots, \beta_{s}^{u_{s}}\right), \beta_{1}>\cdots>\beta_{s}$ with the $u_{i} \not \equiv 0(\bmod m)$. Since each $\beta_{i}^{u_{i}}$ has the form $\left(m^{j_{i}}\right)^{u_{i}}$, we apply the transformation:

$$
\beta_{i}^{u_{i}}=\left(m^{j_{i}}\right)^{u_{i}} \longmapsto m^{j_{i}} u_{i} .
$$

This gives a unique partition in $S F(n, m)$. If $m \mid n$, this image contains only multiples of m. If $n \equiv r(\bmod m), 1 \leq r<m$, the image consists of multiples of m and exactly one part $\equiv r(\bmod$ m) which occurs when $j_{i}=0$.

$S F(11,3)$	\longrightarrow	$N D(11,3)$
(11)	\mapsto	$(1,1,1,1,1,1,1,1,1,1,1)$
$(8,3)$	\mapsto	$(3,1,1,1,1,1,1,1,1)$
$(6,5)$	\mapsto	$(3,3,1,1,1,1,1)$
$(9,2)$	\mapsto	$(9,1,1)$

Table 2: The map $S F(n, m) \rightarrow N D(n, m)$ for $n=11, m=3$.

2.1 A characterization of Semi-m-Fibonacci Partitions

Define the max m-power of an integer N as the largest power of m that divides N (not just the exponent of the power). Thus using the notation $x_{m}(N)$, we find that $N=u \cdot m^{s}, s \geq 0$, where $m \nmid u$ and $x_{m}(N)=m^{s}$. So $x_{m}(N)>0$ for all N.

For example, $x_{2}(50)=2, x_{2}(40)=8, x_{3}(216)=27$ and $x_{5}(216)=1$.
Note that if the parts of a partition λ have distinct max m-powers, then the parts are distinct. For if $u \cdot m^{s}=\lambda_{i}=\lambda_{j}=v \cdot m^{t} \in \lambda$ with $m \nmid u, v$, and $s>t$, then $u \cdot m^{s-t}=v \Longrightarrow m \mid v$ a contradiction.

We define three (reversible) operations on a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with an integer $m>1$:
(i) If the last part of λ is less than m, delete it: $\tau_{1}(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{k-1}\right)$;
(ii) If $m \nmid \lambda_{t}>m$, then $\tau_{2}(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{t-1}, \lambda_{t}-m, \lambda_{t+1}, \ldots, \lambda_{k}\right)$.
(iii) If λ consists of multiples of m, divide every part by $m: \tau_{3}(\lambda)=\left(\lambda_{1} / m, \ldots, \lambda_{k} / m\right)$.

These operations are consistent with the recursive construction of the set $S F(n, m)$, where $\tau_{3}^{-1}, \tau_{1}^{-1}$ and τ_{2}^{-1} correspond, respectively, to the three quantities in the recurrence (5).

Lemma 2. Let $B(n, m)$ denote the set of partitions of n in which the parts have distinct max m-powers and at most one non-multiple of m. Then if $\lambda \in B(n, m)$ and $\tau_{i}(\lambda) \neq \emptyset$, then $\tau_{i}(\lambda) \in$ $B(N, m), i=1,2,3$, for some N.

Proof. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in B(n, m)$. If λ contains one part less than m, the part is λ_{k}. So $\tau_{1}(\lambda) \in B\left(n-\lambda_{k}, m\right)$ since the max m-powers remain distinct. It is obvious that the parity of λ is inherited by $\tau_{2}(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{t-1}, \lambda_{t}-m, \lambda_{t+1}, \ldots, \lambda_{k}\right) \in B(n-m, m)$. Lastly, since the parts of λ have distinct max m-powers $\tau_{3}(\lambda)=\left(\lambda_{1} / m, \ldots, \lambda_{k} / m\right)$ may contain at most one non-multiple of m as a part. Hence $\tau_{3}(\lambda) \in B(n / m, m)$.

We state an independent characterization of the Semi-m-Fibonacci Partitions.
Theorem 4. A partition of n is a semi-m-Fibonacci partition if and only if the parts have distinct max m-powers and at most one non-multiple of m.

Proof. We show that $S F(n, m)=B(n, m)$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in S F(n, m)$ such that $\lambda \notin$ $B(n, m)$. Assume that there are $\lambda_{i}>\lambda_{j}$ satisfying $x_{m}\left(\lambda_{i}\right)=x_{m}\left(\lambda_{j}\right)$ and let $\lambda_{i}=u_{i} m^{s}, \lambda_{j}=u_{j} m^{s}$ with $m \nmid u_{i}, u_{j}$. Observe that τ_{1} deletes a part less than m if it exists. So we can use repeated applications of τ_{2} to reduce a non-multiple modulo m, followed by τ_{1}. This is tantamount to simply deleting the non-multiple of m, say λ_{t}, to obtain a member of $B\left(n-\lambda_{t}, m\right)$ from Lemma 2. By thus successively deleting non-multiples, and applying $\tau_{3}^{c}, c>0$, we obtain a partition $\beta=\left(\beta_{1}, \beta_{2}, \ldots\right)$ with $\beta_{i}=v_{i} m^{w}>\beta_{j}=v_{j} m^{w}$, where $m \nmid v_{i}, v_{j}$ and $w \leq s$. Then apply τ_{3}^{w} to obtain a partition γ with two non-multiples of m. Then by Lemma $\gamma \notin S F(n, m)$. Therefore $\lambda \in S F(n, m) \Longrightarrow \lambda \in B(n, m)$.

Conversely let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in B(n, m)$. If $\lambda=(t), 1 \leq t \leq m$, then $\lambda \in S F(t, m)$. If $m \mid \lambda_{i}$ for all i, then $\tau_{3}(\lambda)=\left(\lambda_{1} / m, \ldots, \lambda_{k} / m\right) \in B(n / m, m)$ contains at most one part $\not \equiv 0$ $(\bmod m)$, so $\lambda \in S F(n, m)$. Lastly assume that $n \equiv r \not \equiv 0(\bmod m)$. Then $r \in \lambda$ or $\lambda_{t} \equiv r$ $(\bmod m)$ for exactly one index t. Thus $\tau_{1}(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{k-1}\right)$ consists of multiples of m while $\tau_{2}(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{t-1}, \lambda_{t}-m, \lambda_{t+1}, \ldots, \lambda_{k}\right)$ still contains one part $\not \equiv 0(\bmod m)$. In either case $\lambda \in S F(n, m)$. Hence $B(n, m) \subseteq S F(n, m)$. The the two sets are identical.

Remark. Notice that Theorem 4 certifies the second (bijective) proof of Theorem 3, If $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in S F(n, m)$ but $\lambda \notin B(n, m)$ on account of having two parts λ_{i}, λ_{j} such that $\lambda_{i}=$ $u_{i} m^{s}>\lambda_{j}=u_{j} m^{s}$ with $m \nmid u_{i}, u_{j}$, then it cannot have an inverse image. Assume that λ maps to $\beta \in N D(n, m)$ which then includes the parts $m^{u_{i}+u_{j}}\left(u_{i}+u_{j}\right.$ copies of $\left.m\right)$. Then $u_{i}+u_{j}$ may be a multiple of m (for example, when $u_{i}=1, u_{j}=m-1$) which implies that $\beta \notin N D(n, m)$, a contradiction. Alternatively the pre-image of β would include the part $m\left(u_{i}+u_{j}\right)$ and so cannot be λ.

3 Arithmetic Properties

We prove several congruence properties of the numbers $s f(n, m)$.

Theorem 5. Let n, m be integers with $n \geq 0, m>1$. Then

$$
s f(n m+1, m)=s f(n m+2, m)=\cdots=s f(n m+m-1, m)=\sum_{j=0}^{n} s f(j, m)
$$

Proof. Let $J_{r, m}(q)=\sum_{n \geq 0} s f(n m+r, m) q^{n}$ where $r=1,2,3, \ldots m-1$. Then

$$
\begin{aligned}
J_{r, m}(q) & =\sum_{n \geq 0} s f(n m, m) q^{n}+\sum_{n \geq 0} s f(m n+r-m, m) q^{n} \\
& =\sum_{n \geq 0} s f(n, m) q^{n}+\sum_{n \geq 0} s f(m n+r, m) q^{n+1} \\
& =G_{m}(q)+q \sum_{n \geq 0} s f(m n+r, m) q^{n} \\
& =G_{m}(q)+q J_{r, m}(q)
\end{aligned}
$$

so that

$$
\begin{equation*}
J_{r, m}(q)=\frac{G_{m}(q)}{1-q} \tag{12}
\end{equation*}
$$

Since the right hand side of (12) is independent of r, we must have $J_{1, m}(q)=J_{2, m}(q)=\ldots=$ $J_{m-1, m}(q)$ so that $s f(n m+1, m)=s f(n m+2, m)=\cdots=s f(n m+m-1, m)$. Furthermore, from (12), we observe that

$$
\begin{aligned}
\sum_{n \geq 0} s f(m n+r, m) q^{n} & =\sum_{n \geq 0} q^{n} \sum_{n \geq 0} s f(n, m) q^{n} \\
& =\sum_{n \geq 0} \sum_{j=0}^{n} s f(j, m) q^{n}
\end{aligned}
$$

which implies that $s f(m n+r, m)=\sum_{j=0}^{n} s f(j, m)$.
Corollary 2. Given integers $m \geq 2$, then for any $j \geq 0$ and a fixed $v \in\{0,1, \ldots, m\}$,

$$
s f\left(m^{j}(m v+r), m\right)=v+1,1 \leq r \leq m-1
$$

Proof. By applying (5) several times (the case when $m \mid n$), it is clear that for any $j \geq 0$, $s f\left(m^{j}(m v+r), m\right)=s f\left(m^{j-1}(m v+r), m\right)=s f\left(m^{j-2}(m v+r), m\right)=\ldots=s f(m v+r, m)$. Ву the last equality in Theorem 5. we have

$$
s f(m v+r, m)=\sum_{i=0}^{v} s f(i, m)=1+\sum_{i=1}^{v} s f(i, m), v \geq 0,1 \leq r<m
$$

If $1 \leq v<m$, then $\sum_{i=1}^{v} s f(i, m)=\sum_{i=1}^{v}(s f(i-i, m)+s f(i-m, m)$) (by (5)). Since $0<i \leq v<m$, we have $s f(m v+r, m)=1+\sum_{i=1}^{v}(1+0)=1+v$.
If $v=m$, then $\sum_{i=1}^{v} s f(i, m)=\sum_{i=1}^{m-1} s f(i, m)+s f(m, m)=m-1+s f(1, m)=m-1+1=m$; thus $s f(m v+r)=v+1$ is true in this case. Finally, if $v=0$, it is not difficult to see that $s f(r, m)=1$.

We note a few interesting special cases of Corollary 2 below.

Corollary 3. We have the following for any integer $m \geq 2$:
(i) $s f\left(m^{i}, m\right)=1, i \geq 0$.
(ii) $s f\left(m^{i} h, m\right)=1,1 \leq h \leq m-1, i \geq 0$.
(iii) Given an integer $n \geq 0$, then for each $n \in\{0,1, \ldots, m\}$,

$$
s f(n m+1, m)=s f(n m+2, m)=\cdots=s f((n+1) m-1, m)=v+1
$$

Proof. Part (i) is the case $h=1$ of part (ii). Parts (ii) and (iii) are obtained by setting $v=0$ and $j=0$, respectively, in Corollary 2 .

Note that part (i) of Corollary 3 implies Corollary 1. Also when $m=2$, part (iii) gives just the three values $s f(1)=1, s f(3)=2$ and $s f(5)=3$, the parities of which are consistent with Theorem 2. Part (iii) is a stronger version of Theorem 5 since the restriction of n to the set $\{0,1, \ldots, m\}$ specifies a common value.

Theorem 6. For any $j \geq 0$,

$$
\sum_{r=0}^{2 j+1} s f(r, 3) \equiv 0 \quad(\bmod 2)
$$

Consequently,

$$
\begin{align*}
& s f(3 j+4,3)=s f(3 j+5,3) \equiv 0 \quad(\bmod 2) \text { where } j \equiv 0 \quad(\bmod 2) \tag{13}\\
& s f\left(3^{r} j+4,3\right)=s f\left(3^{r} j+5,3\right) \equiv 0 \quad(\bmod 2) \text { for all } j \geq 0, r \geq 2 \tag{14}
\end{align*}
$$

Proof. Note the following identity

$$
\begin{equation*}
\frac{1}{1-q}=\prod_{n=0}^{\infty}\left(1+q^{3^{n}}+q^{2 \cdot 3^{n}}\right) \tag{15}
\end{equation*}
$$

Recall that

$$
\begin{aligned}
\sum_{n \geq 0} s f(n, 3) q^{n} & =\prod_{n=0}^{\infty}\left(\frac{1+q^{3^{n}}+q^{2 \cdot 3^{n}}-q^{3 \cdot 3^{n}}}{1-q^{3 \cdot 3^{n}}}\right) \\
& \equiv \prod_{n=0}^{\infty}\left(\frac{1+q^{3^{n}}+q^{2 \cdot 3^{n}}+q^{3 \cdot 3^{n}}}{1+q^{3 \cdot 3^{n}}}\right) \quad(\bmod 2) \\
& =\prod_{n=0}^{\infty} \frac{\left(1+q^{3^{n}}\right)\left(1+q^{2 \cdot 3^{n}}\right)}{1+q^{3 \cdot 3^{n}}} \\
& =\prod_{n=0}^{\infty}\left(\frac{1+q^{2 \cdot 3^{n}}}{1+q^{3^{n}}+q^{2 \cdot 3^{n}}}\right) \\
& =(1-q) \prod_{n=0}^{\infty}\left(1+q^{2 \cdot 3^{n}}\right)(\text { by }
\end{aligned}
$$

Thus

$$
\frac{1}{1-q} \sum_{n \geq 0} s f(n, 3) q^{n} \equiv \prod_{n=0}^{\infty}\left(1+q^{2 \cdot 3^{n}}\right) \quad(\bmod 2)
$$

i.e.

$$
\sum_{n \geq 0} \sum_{r=0}^{n} s f(r, 3) q^{n} \equiv \prod_{n=0}^{\infty}\left(1+q^{2 \cdot 3^{n}}\right) \quad(\bmod 2)
$$

Since the series expansion of the right-hand side of the preceeding equation has even exponents, the result follows.

To prove (13), we have

$$
\begin{aligned}
s f(3 j+4,3) & =s f(3(j+1)+1,3) \\
& =s f(3(j+1)+2,3) \quad \text { (by Theorem (5) } \\
& =\sum_{r=0}^{j+1} s f(r, 3) \quad(\text { by Theorem 5) } \\
& \equiv 0 \quad(\bmod 2) \quad(\text { since } j+1 \text { is odd }) .
\end{aligned}
$$

Furthermore, for (14), observe that

$$
3^{r-1} j+1 \equiv \begin{cases}0, & \text { if } j \equiv 1 \quad(\bmod 2) \\ 1, & \text { otherwise }\end{cases}
$$

Now, if j is odd, then

$$
\begin{aligned}
s f\left(3^{r} j+4,3\right) & =s f\left(3\left(3^{r-1} j+1\right)+1,3\right) \\
& =s f\left(3\left(3^{r-1} j+1\right)+2,3\right) \\
& =\sum_{r=0}^{3^{r-1} j+1} s f(r, 3) \quad(\text { by Theorem 5) } \\
& =s f\left(3^{r-1} j+1,3\right)+\sum_{r=0}^{3^{r-1} j} s f(r, 3) \\
& \equiv s f\left(3^{r-1} j+1,3\right) \quad(\bmod 2)\left(\text { since } 3^{r-1} j \text { is odd }\right) \\
& =\sum_{r=0}^{3^{r-2} j} s f(r, 3) \\
& \equiv 0 \quad(\bmod 2)\left(\text { since } 3^{r-2} j \text { is odd }\right) .
\end{aligned}
$$

On the other hand, if j is even, use (13).
Theorem 7. Let $k \equiv m+r(\bmod 2 m)$ and $k \leq m^{2}+r$ for $1 \leq r \leq m-1$. If $n \geq 0, m \geq 2$ and $n=m^{i} k$ for $i \geq 0$, then $s f(n, m)$ is even.

Proof. $k \equiv m+r(\bmod 2 m)$ and $k \leq m^{2}+r$ for $1 \leq r \leq m-1$ imply that $k=m(2 t+1)+r \leq$ $m^{2}+r \Rightarrow 2 t+1 \leq m$, for some positive integer t. Then from Corollary 2, we have

$$
\begin{aligned}
s f\left(m^{i} k, m\right) & =s f\left(m^{i}(m(2 t+1)+r), m\right) \\
& =s f(m(2 t+1)+r, m) \quad(\text { by (5) }) \\
& =2 t+1+1 \quad(\text { by Corollary } 2 \text { and since } 2 t+1 \leq m) \\
& =2 t+2 .
\end{aligned}
$$

Remark. When $m=3$, Theorem 7 reduces to Theorem 6 without the restriction $k \leq m^{2}+r$.

References

[1] G. E. Andrews, Binary and semi-Fibonacci partitions, http://www.personal.psu.edu/gea1/. preprint.
[2] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998.
[3] George Beck, "Semi-Fibonacci Partitions", http://demonstrations.wolfram.com/SemiFibonacciPartitions/, Wolfram Demonstrations Project, 2015.
[4] A. Gafni, Power partitions, J. Number Theory 163 (2016), 19-42.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org 2015.

