
Small quantum networks in the
qudit stabilizer formalism

A thesis submitted in partial fulfillment of the requirements for the degree
of

Master of Science
Physics

by

Daniel Miller

at the

Institut für Theoretische Physik III
Quanteninformation

Heinrich-Heine-Universität Düsseldorf

supervised by Prof. Dr. Dagmar Bruß.

2019

ar
X

iv
:1

91
0.

09
55

1v
1 

 [
qu

an
t-

ph
] 

 2
1 

O
ct

 2
01

9



Abstract
How much noise can a given quantum state tolerate without losing its entanglement? For
qudits of arbitrary dimension, I investigate this question for two noise models: Global
white noise, where a depolarizing channel is applied to all qudits simultaneously, and
local white noise, where a single qudit depolarizing channel is applied to every qudit
individually. Using a unitary generalization of the Pauli group, I derive noise thresholds
for stabilizer states, with an emphasis on graph states, and compare different entanglement
criteria. The PPT and reduction criteria generally provide high noise thresholds, however,
it is difficult to apply them in the case of local white noise. Entanglement criteria based
on so-called sector lengths, on the other hand, provide coarse noise thresholds for both
noise models. The only thing one has to know about a state to compute this threshold
is the number of its full-weight stabilizers. In the special case of qubit graph states, I
relate this question to a graph-theoretical puzzle and solve it for four important families
of states. For Greenberger-Horne-Zeilinger states under local white noise, I obtain for the
first time a noise threshold below which so-called semiseparability is ruled out.

Master’s thesis statement of originality
I hereby confirm that I have written the accompanying thesis by myself, without contri-
butions from any other sources other than those cited in the text and acknowledgements.
This applies also to all graphics, drawings, maps and images included in the thesis. For
an in-depth clarification about originality of the proven lemmata, propositions, theorems,
and corollaries, see Section 9.

Düsseldorf, October 21, 2019.

Daniel Miller
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1 Introduction
The prospect of an eventual world-spanning quantum internet and, more generally, quan-
tum technologies has created great interest and motivates tremendous investments [1–3].
A quantum internet offers—among an increasing number of other applications [3–7]—
the possibility of quantum key distribution, a cryptographic procedure whose security is
not based on computational hardness assumptions but on the laws of quantum mechan-
ics [8–10]. The crucial feature of quantum mechanics which enables these applications is
called quantum entanglement [11–13]. As quantum entanglement is a phenomenon with
many facets, it is difficult to characterize and there are still many unanswered questions
it has raised. In particular, multipartite entanglement and entangled multi-level quantum
systems are not understood in full depth [13].

The stabilizer formalism, originally introduced by Gottesman to study quantum error-
correcting codes [14], provides an efficient description of a certain class of quantum states.
It has been used to introduce so-called graph states which are particularly suited for
quantum network applications [15]: If one interprets the vertices of a graph as nodes of
a quantum network, the edges of the graph correspond to optical links through which an
exchange of quantum information encoded into photons is possible. From an experimental
point of view, quantum networks are difficult to realize since losses of photons limit the
transmission distance of photons. Furthermore, operational errors deteriorate the overall
performance of any quantum communication protocol. This necessitates the investigation
of quantum networks in the presence of noise.

In my Bachelor’s thesis [16] and Refs. [17, 18], we have investigated the impact of
physical noise on the entangled state distributed by an error-corrected, one-way quantum
repeater based on higher-dimensional qudits. In this Master’s thesis, we consider noisy
quantum states that have already been distributed within a quantum network. For dif-
ferent noise models, we will apply several entanglement criteria to establish critical noise
thresholds from which one can gain information about the entanglement of a given noisy
state. For any implementer of a quantum network it is crucial to know how much noise a
given target state can tolerate without losing its entanglement. In particular, such noise
thresholds provide benchmarks to the performance of such quantum networks.

This thesis is structured as follows. In Sec. 2, we introduce the notion of quantum
entanglement and discuss several criteria (entropy, PPT, reduction, witnesses) for certi-
fying that a given state is entangled. In Sec. 3, we formally define qudit graph states and
introduce the so-called qudit stabilizer formalism which is very useful for studying these
states. In Sec. 4, we will apply some of the entanglement criteria (entropy, PPT, reduc-
tion) to general qudit graph states to establish noise thresholds. As this first approach is
only easily applicable for very simple noise models, we introduce the concept of so-called
sector lengths of a quantum state in Sec. 5. If such a sector length exceeds a certain
bound, one can infer certain information about the entanglement of a given state. One
of the main results of this thesis is a formula for how sector lengths of a pure stabilizer
state get diminished for two noise models of global and local white noise, respectively.
This leads to new noise thresholds which we numerically investigate and compare to other
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known thresholds in Sec. 6 for important examples of small qubit networks. In Sec. 7, we
conclude and give an outlook. The acknowledgements are in Sec. 8. In Sec. 9, we provide
a statement of originality where we clarify to which extend the results in this thesis were
already known before.

2 Entanglement
If a quantum system is composed of n ≥ 2 parties, the structure of its density operator
ρ can be used to classify correlations between the different parties [13]. Completely
uncorrelated systems are in a so-called product state, i.e., their density operator is of the
form ρ = ρ(1) ⊗ . . . ⊗ ρ(n). More generally, ρ is called fully separable if it can be written
as the convex combination of such product states, i.e.,

ρ =
N∑
j=1

pjρ
(1)
j ⊗ . . .⊗ ρ(n)

j , (1)

where {pj} is a probability distribution according to which the product states have been
mixed. Separable states constitute the broadest class of physical states whose correlations
of local measurement statistics can be explained without quantum mechanics. Any state
ρ which does not admit a decomposition as in Eq. (1) is called entangled.

Quantum entanglement manifests itself in the phenomenon that a multipartite state
can contain more information than the combination of its marginals [11, 12]. This is for-
malized by the von Neumann entropy S[ρ] := −Tr [ρ log2[ρ]]: Only an entangled quantum
states ρ can fulfill

S[ρ] < S[TrJ [ρ]], (2)

where the partial trace TrJ [ρ] yields the reduced state of the parties remaining after
discarding a suited subset of parties J ⊂ I := {1, . . . , n}. Formally, it is defined as

TrJ [ρ] :=
∑
j∈J

dim(Hj)∑
k=1

〈b(j)
k | ρ |b

(j)
k 〉 , (3)

where |b(j)
1 〉, . . . , |b(j)

dim(Hj)〉 ∈ Hj is a orthonormal basis of the Hilbert space associated to
party j.

Consider, for example, the bipartite qubit Werner state [19]

ρW(p) := (1− p) |Φ+〉 〈Φ+|+ p
1

4
(4)

which is a mixture of the maximally entangled qubit Bell state |Φ+〉 = 1√
2
(|00〉 + |11〉)

and the maximally mixed state on two qubits, where 0 ≤ p ≤ 1. Regardless of p, both
one-party marginals of ρW(p) are maximally mixed, i.e., ρ(1) = Tr2[ρW(p)] = 1/2 and
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likewise for ρ(2). Therefore, also the von Neumann entropies S[ρ(1)] = S[ρ(2)] = 1 are
independent of p. The entropy of the total state, however, is given by

S[ρW(p)] = −3
(p

4

)
log2

(p
4

)
−
(

1− 3p

4

)
log2

(
1− 3p

4

)
(5)

as the eigenvalues of ρW(p) are just λ1 = λ2 = λ3 = p/4 and λ4 = 1 − 3p/4. Note that
the function p 7→ S[ρW(p)] is strictly monotonically increasing on the domain [0, 1] and
takes values S[ρW(0)] = 0, S[ρW(1)] = 2, and S[ρW(pEntr

crit )] = 1 for pEntr
crit ≈ 0.2524. Hence,

the Werner state ρW(p) contains more information than its marginals iff p < pEntr
crit . As

argued above, the Werner state is necessarily entangled in this case. Note that this noise
threshold is not tight.

In the subsequent subsections, we will dive into the theory of quantum entanglement.
First, in Sec. 2.1, further criteria for the verification of entanglement in the bipartite
setting are presented. Afterwards, in Sec. 2.2 and 2.3, we review in more detail how the
notions of separability and entanglement generalize to the multipartite setting.

2.1 Entanglement criteria based on positive maps

Positive maps can provide much stronger entanglement criteria than Inequality (2). Hereby,
a linear map Λ : B(HA)→ B(HA′), ρ 7→ Λ[ρ] is called positive if ρA ≥ 0 implies Λ[ρA] ≥ 0,
whereHA andHA′ are two Hilbert spaces and B(HA) denotes the Hilbert space of bounded
operators on HA and likewise for B(HA′). In words: Λ is positive if it maps every positive
semidefinite operator to a positive semidefinite operator.

As it has been shown in Ref. [21], a bipartite state ρAB acting on HA⊗HB is separable
iff for every positive map Λ : B(HA)→ B(HA′) the operator (Λ⊗1B)[ρAB] ∈ B(HA′ ⊗HB)
is positive semidefinite. If, for a given state ρAB, one finds a positive map Λ for which
(Λ ⊗ 1B)[ρAB] possesses at least one negative eigenvalue, one has proven that ρAB is
entangled. Obviously, a positive map Λ with the property that also Λ ⊗ idCn is positive
for all n ≥ 1 cannot provide a nontrivial entanglement criterion. Such maps are called
completely positive. In Secs. 2.1.1 and 2.1.2 we will discuss two positive but not completely
positive maps and their corresponding entanglement criteria.

2.1.1 Peres-Horodecki criterion

The first positive map that was recognized to be useful for the verification of quantum
entanglement is the transposition map Λtrans

A : B(HA)→ B(HA), ρA 7→ ρT
A [20,21]. In fact,

the eigenvalues of an operator are invariant under transposition, in particular, ρA ≥ 0 iff
ρT

A ≥ 0. However, when this map is extended to a second party (with dim(HB) ≥ 2), the
resulting map

Λtrans
A ⊗ idB : B(HA ⊗HB) −→ B(HA ⊗HB), ρAB 7−→ ρTA

AB, (6)
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called the partial transpose of A is not positive, where for a fixed product basis ρTA
AB is

given by

〈iA, jB| ρTA
AB, |kA, lB〉 = 〈kA, jB| ρAB |iA, lB〉 . (7)

The resulting entanglement criterion (which is independent of the choice above) is given
by

ρTA
AB ≥ 0⇐= ρAB is separable, (8)

or by its logically equivalent contrapositive,

ρTA
AB 6≥ 0 =⇒ ρAB is entangled. (9)

This is called the Peres-Horodecki criterion or PPT-criterion as, by Eq. (8), every sep-
arable state is PPT, i.e., it has a positive partial transpose. Entangled states for which
entanglement can be verified by means of Eq. (9) are called NPT for negative partial
transpose. For quantum systems of combined dimension dim(HA) dim(HB) ≤ 6 a state
is entangled iff it is NPT [21]. In general, however, there exist so-called bound entangled
states which are PPT but still entangled [12].

For the example of the Werner state ρW(p) from Eq. (4), however, the combined
dimension is small enough that the Peres-Horodecki criterion is sufficient to characterize
entanglement completely. Let us derive the corresponding (tight) critical noise threshold.
The partial transpose of the Werner state is given by the block diagonal matrix

ρW(p)TA =


2−p

4
0 0 0

0 p
4

1−p
2

0

0 1−p
2

p
4

0

0 0 0 2−p
4

 (10)

from which one can easily read off the eigenvalues. The eigenvalues of the 1 × 1-blocks,
(2 − p)/4, are positive for all p ∈ [0, 1], i.e., they cannot be used to apply the Peres-
Horodecki criterion. The eigenvalues of the 2 × 2-block are given by p/4 ± (1 − p)/2. 1

While the “+”-eigenvalue is also equal to (2 − p)/4, the “−”-eigenvalue, (3p − 2)/4, is
negative for all p < 2/3. That is, the critical noise threshold for the Werner state is given
by pPPT

crit = 2/3 [20].
Note that the reason why the entropic inequality (2) can only be used to detect

entanglement in Werner states for p < pEntr
crit ≈ 0.2524 is because the von Neumann

entropy incorporates both classical and quantum correlations. Only if the correlations
are so large that they cannot be explained classically, one can conclude that a given state
is entangled.

1Note that the eigenvalues of a 2× 2-matrix of the form
(
x y
y x

)
are simply given by x± y.
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2.1.2 Reduction criterion

Another, similarly constructed entanglement criterion is the reduction criterion [22,23]. It
is based on the positive map, Λred

A : B(HA)→ B(HA), ρA 7→ 1ATr[ρA]− ρA. Its extension
to a second quantum system B,

Λred
A ⊗ idB : B(HA ⊗HB) −→ B(HA ⊗HB), ρAB 7−→ 1A ⊗ TrA[ρAB] − ρAB, (11)

is not a positive map. Similarly to the partial transpose one obtains the reduction criterion

1A ⊗ TrA[ρAB] − ρAB 6≥ 0 =⇒ ρAB is entangled. (12)

In general, this criterion is not stronger than the Peres-Horodecki criterion in the sense
that 1A ⊗ TrA[ρAB] − ρAB 6≥ 0 implies ρTA

AB 6≥ 0, however, it is sometimes easier work
with Eq. (12) rather than Eq. (9). In fact, in Sec. 4, where we will establish tolerable
noise thresholds for graph states, it will turn out that both criteria lead to the same noise
threshold while the result is more readily established with the reduction criterion.

Let us also illustrate this criterion at the example of the Werner state. As we have
mentioned already, the reduced state TrA[ρW(p)] is maximally mixed, regardless of p.
Thus, the operator of interest has the matrix form

1A ⊗ TrA[ρW(p)] − ρW(p) =


1
2
− 2−p

4
0 0 −1−p

2

0 1
2
− p

4
0 0

0 0 1
2
− p

4
0

−1−p
2

0 0 1
2
− 2−p

4

 . (13)

Note that 1
2
− 2−p

4
= p

4
holds. By swapping rows and columns number 2 and 4, we obtain

the block-diagonal matrix 
p
4

−1−p
2

0 0

−1−p
2

p
4

0 0

0 0 1
2
− p

4
0

0 0 0 1
2
− p

4

 (14)

which has the same eigenvalues as 1A⊗TrA[ρW(p)] −ρW(p) because the determinant is an
alternating multilinear form. Up to a sign on the off-diagonal, this is the same 2×2-block
as in Eq. (10), i.e., its eigenvalues are again given by p/4 ∓ (1 − p)/2. Therefore, the
corresponding noise threshold is pRed

crit = 2/3 as well [22, 23].
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2.2 Multipartite entanglement

In the bipartite setting, one only distinguishes between states which are separable or en-
tangled. In the multipartite case, the notion of entanglement is much richer as one can
define separability with respect to one or more specific partitions. After introducing these
notions in Sec. 2.2.1, we discuss the abilities and limitations that bipartite entanglement
criteria face when they are applied in the multipartite case in Sec. 2.2.2. Finally, in
Sec. 2.2.3, we introduce entanglement witnesses which provide an experimentally accessi-
ble alternative to entanglement criteria based on positive maps.

2.2.1 Partial separability

A partition of the set of all parties, I = {1, . . . , n}, is a set of disjoint subsets I1, . . . , Ik ⊂ I
for which I =

⋃· ki=1 Ii holds. A quantum state is called separable with respect to this
partition if its density operator is of the form

ρ =
N∑
j=1

pjρ
I1
j ⊗ . . .⊗ ρIkj , (15)

where {pj} is a probability distribution and each ρIij is some quantum state on the systems
specified by Ii [12]. The most refined partition, I1 = {1}, . . . , In = {n}, corresponds to a
fully separable state as we have already defined in Eq. (1).

Consider k natural numbers n > n1 ≥ . . . ≥ nk > 0 which sum up to n. We call
a state (n1, . . . , nk)-separable if it is a convex combination of states which are separable
with respect to some partition {I1, . . . , Ik} with |Ii| = ni for all 1 ≤ i ≤ k. 2 States which
are (n− 1, 1)-separable are also called semiseparable [12].

More generally, a state is called k-separable if it is a convex combination of states
which are separable with respect to any partition of I into k subsets I1, . . . , Ik [13]. Since
k-separability implies (k − 1)-separability, the strongest form of entanglement is when a
state does not even allow for a biseparable (k = 2) decomposition. Such states are called
genuinely multipartite entangled (GME).

2.2.2 Positive maps in the multipartite setting

In general, it is not possible to investigate multipartite entanglement by means of bipartite
entanglement criteria with respect to all possible partitions of the parties. This is best
illustrated by the following example [24].

Let Φ+ = |Φ+〉 〈Φ+| and π0 = |0〉 〈0| denote the projectors onto a qubit Bell pair and
a computational basis state, respectively. The three qubit state

ρ =
1

3

(
Φ+

AB ⊗ π0
C + Φ+

AC ⊗ π0
B + Φ+

BC ⊗ π0
A

)
(16)

2The specific partition may be different for each state in the convex combination. Only the sizes of
the subsets are fixed.
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is obviously a convex combination of biseparable states, i.e., it is (2, 1)-separable. However,
it is readily verified that |001〉+ |010〉 −

√
2 |100〉 is an eigenvector of

ρTA =
1

6



3 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0


(17)

to the eigenvalue −1/
√

18. Since the state is symmetric under exchange of the parties,
−1/
√

18 is also an eigenvalue of ρTB and ρTC . That is, ρ is biseparable although it is NPT
with respect to every nontrivial partition.

This example shows that a straightforward application of the Peres-Horodecki criterion
cannot be used to determine whether a given state is GME or not (it can only rule out full
separability). Because of this, recently a more sophisticated criterion based on positive
maps has been developed [25]. There, the idea is to consider maps which are positive
when applied to biseparable states but can map to a non-positive operator if applied to a
GME state.

2.2.3 Entanglement witnesses

For the detection of (genuine multipartite) entanglement, so-called entanglement witnesses
provide an alternative to criteria based on positive maps [21, 24, 26]. If a state ρ is
entangled, it is always possible (since the set of fully separable states is closed and convex)
to find a Hermitian operator W which fulfills the following two conditions:

(i) Tr[Wρ] < 0.

(ii) Tr[Wσ] ≥ 0 for all fully separable states σ.

That is, one can experimentally verify that a given state is entangled by measuring the
observable W . Even if the exact form of ρ is not known, a negative expectation value
would verify entanglement. For that reason an operator W fulfilling (i) and (ii) was given
the name entanglement witness for ρ. If one changes “fully separable” into “biseparable”
in condition (ii), an experimental verification of Tr[Wρ] < 0 would imply that ρ is GME.
Note, however, that no single entanglement witness can certify (genuine multipartite)
entanglement for all entangled states simultaneously.

Once again, consider the example of the Werner state. It can be shown that the
Hermitian operator W := 1/2 − |Φ+〉 〈Φ+| is an entanglement witness [24]. To find the
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values of p for which the expectation value of W is negative, we insert Eq. (4) and obtain

Tr[WρW(p)] = Tr

[(
1

2
− |Φ+〉 〈Φ+|

)(
(1− p) |Φ+〉 〈Φ+|+ p

1

4

)]
(18)

=

(
1− p

2
− (1− p)− p

4

)
Tr
[
|Φ+〉 〈Φ+|

]
+
p

2
Tr

[
1

4

]
=

3p− 2

4
, (19)

where we have used the normalization of the Bell state and the completely mixed state.
Therefore, also entanglement witnesses can yield the tight noise threshold pWit

crit = 2/3.
For more examples of entanglement witnesses for given entangled (or GME) state see
e.g., Refs. [24, 27–29].

2.3 Pure, genuinely multipartite entangled quantum states

Let us assume that the parties have perfect control over their own quantum systems
and that they can exchange classical information among each other. This is the so-
called distant laboratory paradigm [12]. The protocols that can be performed with a
nonzero probability within this paradigm are commonly referred to as stochastic local
operations and classical communication (SLOCC). While the Bell pair plays the role of
a universal unit of bipartite entanglement as every bipartite state can be produced by
means of SLOCC from a sufficient amount of Bell pairs [12], the multipartite situation is
more complicated. For three qubits, there are exactly two inequivalent classes of genuine
tripartite entanglement [30]. They are represented by the Greenberger–Horne–Zeilinger
state [31] and the so-called W -state,

|GHZ〉 =
1√
2

(|000〉+ |111〉) and |W 〉 =
1√
3

(|100〉+ |010〉+ |001〉) . (20)

It was recently shown that for four or more qubits every set of GME states from which
every other state can be reached by means of SLOCC must have full measure, i.e., almost
all states must be contained in such a set [32–34]. In particular, there are infinitely many
inequivalent SLOCC-entanglement classes. This makes it difficult to achieve a complete
and operationally meaningful classification of multipartite entanglement.

Here, we will therefore concentrate on a special class of multipartite entangled states
called m-uniform states which we introduce in Sec. 2.3.1. In Sec. 2.3.2, we separately
treat the extremal case of m = bn/2c-uniform states which are also known as absolutely-
maximally-entangled states.

2.3.1 m-uniform states

Fix an integer m ≤ n. An n-partite pure quantum state |ψ〉 is called m-uniform if for
every subset J ⊂ I = {1, . . . , n} with |J | = m elements, the reduced m-partite state

ρ(J) = TrJC [|ψ〉 〈ψ|] (21)

11



is maximally mixed, i.e., ρ(J) = 1/Dm. Hereby, the quantum systems which are labeled
by JC := I\J , i.e., the complement of J , have been traced out. As pure states ρ = |ψ〉 〈ψ|
have a minimal von Neumann entropy of S[ρ] = 0 and maximally mixed states have
a maximal von Neumann entropy of S[1/Dm] = m log2(D), m-uniform states constitute
extremal cases of the entropic inequality (2). In particular,m-uniform states are entangled
if m ≥ 1. In fact, they are even not semiseparable. Note that every m-uniform state is
also (m− 1)-uniform [35].

While the W state is not even 1-uniform as tracing out two parties yields the reduced
state Tr2,3 [|W 〉 〈W |] = 2

3
|0〉 〈0| + 1

3
|1〉 〈1|, all generalized Greenberger–Horne–Zeilinger

states

|GHZnD〉 =
1√
D

D−1∑
j=0

|j〉⊗n (22)

are 1-uniform for all D,n ≥ 2 (but not m-uniform for m > 1). Note that, for qubits, any
state that is symmetric under exchange of parties is m-uniform for at most m = 1 [36].
We are not aware about an analogous statement about higher-dimensional states.

2.3.2 Absolutely-maximally-entangled states

As it can be shown using the Schmidt decomposition, any pure n-partite quantum state
can only be an m-uniform state if m ≤ n/2 [36]. The limit case m = bn/2c has received
particular attention. In Ref. [37], the term absolutely-maximally-entangled (AME) state
has been introduced for states which are bn/2c-uniform. Note that AME implies GME [13]
but not vice versa as the example of the W -state shows. Also note that AME states can
be used as a resource for multipartite quantum teleportation schemes and quantum secret
sharing [37].

Later, in Sec. 3.4, we will present a family of AME states for n = 4 parties and all
odd dimensions D ≥ 3. It is an open problem for which combinations of n ≥ 2 and
D ≥ 3 AME states do exist. For qubits, i.e., D = 2, however, the classification has been
completed recently: AME states do not exist for 4 parties [38], 7 parties [39] or more.
However, they do exist for 2, 3, 5 and 6 parties [36,37]. The four Bell states

|Φ±〉 =
1√
2

(|00〉 ± |11〉) and |Ψ±〉 =
1√
2

(|01〉 ± |10〉) (23)

are examples of bipartite AME states. As we have mentioned already, the state |GHZ3
2〉 is

a 3-partite, 1-uniform state, thus an AME state. The two logical states of the five qubit

12



code [40],

|0̄5〉 :=
1√
8

(
− |00000〉+ |01111〉 − |10011〉+ |11100〉 (24)

+ |00110〉+ |01001〉+ |10101〉+ |11010〉
)

and |1̄5〉 :=
1√
8

(
− |11111〉+ |10000〉+ |01100〉 − |00011〉 (25)

+ |11001〉+ |10110〉 − |01010〉 − |00101〉
)
,

and the states 1√
2

(|0〉 ⊗ |0̄5〉 ± |1〉 ⊗ |1̄5〉) and 1√
2

(|0〉 ⊗ |1̄5〉 ± |1〉 ⊗ |0̄5〉) are known ex-
amples of AME states for n = 5 and n = 6 parties, respectively [36].

3 Qudit stabilizer formalism
The essential idea of the stabilizer formalism [14] is to organize the exponentially fast
growing Hilbert space of a multipartite quantum system using algebraic methods. This is
done by labeling the basis states of a single quantum system by the elements of an algebraic
ring [41].3 The addition of the ring is employed to define generalized Pauli operators.
More specifically, if a, b are two elements of the ring, the action X(b) |a〉 = |a+ b〉 defines
a unitary operator X(b). All operators arising in this way commute with each other
because the addition in the ring is commutative. Therefore, there is a unitary operator F ,
called the quantum Fourier transform, which simultaneously diagonalizes all the Pauli X
operators [42]. The diagonalized operators play the role of generalized Pauli Z operators.

In this thesis, we restrict ourselves to the choice of the ring of integers modulo D
as this is the simplest case which includes all possible qudit dimensions. This choice
leads to a specific generalization of the Pauli group and Clifford group to qudits which
we cover in Sec. 3.1. In Sec. 3.2, we introduce stabilizer states and explain how they
can efficiently be described within the stabilizer formalism. The important subclass of
qudit graph states is introduced in Sec. 3.3. Finally, in Sec. 3.4 we apply the stabi-
lizer formalism to construct tetrapartite odd-dimensional qudit graph states which are
absolutely-maximally-entangled.

3.1 Pauli group and Clifford group for qudits

A qudit is a quantum system with a Hilbert space H of finite dimension D ≥ 2. One can
choose an orthonormal basis of H and label it using Z/DZ = {0, 1, . . . , D − 1}, the ring
of integers modulo D, i.e.,

H = spanC{ |k〉 | k ∈ Z/DZ}. (26)

3A ring R is a set closed under addition and multiplication, both of which are commutative. Fur-
thermore, any ring contains a zero element and a one element. If every nonzero element of R has a
multiplicative inverse, R is called a field.
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This basis is referred to as computational basis. Any pure state of an n-qudit system can
be written as

|ψ〉 =
∑

j∈(Z/DZ)n

zj |j〉 , (27)

where the probability amplitudes zj ∈ C are normalized to
∑

j |zj|2 = 1, and the multi-
qudit computational basis states |j〉 are labeled by vectors j = (j1, . . . , jn) in the free
module (Z/DZ)n.4 If |ψ〉 is measured in the computational basis, the result will be a
random vector j with probability |zj|2 ∈ [0, 1].

For quantum information processing purposes, it is crucial to manipulate such quan-
tum states by means of unitary operations. In this subsection, we will describe two
important groups of unitary qudit operations; the qudit Pauli group and the qudit Clif-
ford group. We start with their abstract definitions in Sec. 3.1.1 and discuss a possible
physical implementation in Sec. 3.1.2.

3.1.1 Abstract definition of the Pauli group and Clifford group for qudits

Let ωD := e2πi/D be a primitive Dth complex root of unity. The operators

XD :=
∑

k∈Z/DZ

|k + 1〉 〈k| and ZD :=
∑

k∈Z/DZ

ωkD |k〉 〈k| (28)

are called qudit Pauli X and Z operator, respectively [43]. The product of two Pauli
operators is again a Pauli operator. For n qudits there are (up to a global phase) D2n

different Pauli operators, each of which can be written as

Xr
DZ

s
D :=

n⊗
i=1

Xri
DZ

si
D =

∑
k∈(Z/DZ)n

ωk·s
D |k + r〉 〈k| (29)

for unique vectors r, s ∈ (Z/DZ)n, where k · s =
∑n

i=1 kisi is the standard bilinear form,
and k + r = (k1 + r1, . . . , kn + rn) is the vector addition in (Z/DZ)n. From the fact that
two Pauli operators commute up to a phase, ωDXDZD = ZDXD, the Pauli group law,

(Xr
DZ

s
D)(Xr′

DZ
s′

D) = ωr′·s−r·s′
D (Xr′

DZ
s′

D)(Xr
DZ

s
D), (30)

is readily verified. Besides XD and ZD, it is important to include the phase
√
ωD = ω2D

as a generator into the definition of the single qudit Pauli group,

P1
D := 〈√ωD1D, XD, ZD〉 . (31)

This ensures that for all r, s ∈ Z/DZ, there is a Pauli operator which is proportional
to Xr

DZ
s
D and has 1 as an eigenvalue [16, Sec. 1.2.1]. This will turn out to be the

4Modules over a ring are defined analogously to vector spaces over a field. In general, a module over
a ring does not necessarily have a basis. A module which has a basis is called free module.
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crucial feature in the stabilizer state-stabilizer group correspondence which we will treat
in Sec. 3.2. The n-qudit Pauli group PnD is defined to contain all tensor products of single
qudit Pauli operators. Thus, any operator P ∈ PnD can be written as P =

√
ωD

qXr
DZ

s
D

for unique q ∈ Z/2DZ and r, s ∈ (Z/DZ)n.
As in the case of qubits [44], the n-qudit Clifford group is defined as the normalizer of

the Pauli group,

C̀ nD :=
{
U ∈ UnD

∣∣ ∀P ∈ PnD : UPU † ∈ PnD
}
, (32)

where UnD is the group of unitary Dn ×Dn-matrices. The elements of C̀ nD are called qudit
Clifford operators or qudit Clifford gates. An exemplary class of single-qudit Clifford
gates is that of multiplication-with-` gates

MD(`) :=
∑

k∈Z/DZ

|k`〉 〈k| , (33)

where ` ∈ Z/DZ has to be invertible. Note that a ring is a field iff every ` 6= 0 is
invertible. A direct computation shows that the inverse of the operator MD(`) is given
by MD(`)† = MD(`−1). Another important Clifford gate is the Fourier gate,

FD :=
1√
D

∑
j,k∈Z/DZ

ωjkD |j〉 〈k| , (34)

which satisfies FDXDF
†
D = ZD and FDZDF †D = X−1

D as well as F 4
D = 1D [43]. The Fourier

gate is the qudit generalization of the Hadamard gate F2 = H = (X2 + Z2)/
√

2. There
are also multi-qudit Clifford gates, for example

CXr
D :=

∑
k∈Z/DZ

|k〉 〈k| ⊗Xrk
D and CZs

D :=
∑

k∈Z/DZ

|k〉 〈k| ⊗ Zsk
D , (35)

where r, s ∈ Z/DZ [43].

3.1.2 Possible implementations of unitary qudit operations

A physical system associated to a quantum spin s ∈ {1
2
, 1, 3

2
, 2, . . .} has a D = 2s + 1

dimensional Hilbert space. If mz, the secondary spin quantum number [45], is used to
define the computational basis as |0〉 := |ms = s〉, |1〉 := |ms = s− 1〉, . . ., |D − 1〉 :=
|mz = −s〉, one can implement the Pauli Z gates by turning on the spin Hamiltonian
Sz = ~× diag(s, s− 1, . . . ,−(s− 1),−s) for a time t = π/D, i.e.,

ZD ∝ exp

[
iπ

D~
× Sz

]
. (36)

For Pauli X gates, as similar statement is only true for qubits, i.e., for D > 2 it holds
XD 6∝ exp

[
− iπ
D~ × Sx

]
, where Sx is the spin operator along the x-direction. However, one

can still implement the Pauli X gate as well as all qudit Clifford gates, if one has full
unitary control over the quantum spin system.
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3.2 Stabilizer state-stabilizer group correspondence

The stabilizer formalism provides an efficient way to describe a certain class of pure
quantum states. Instead of writing down Dn complex probability amplitudes into a huge
state vector, one can characterize a so-called stabilizer state as the unique joint eigenstate
to the eigenvalue 1 of a set of Pauli operators called its stabilizers. The easiest example
of a stabilizer state is the computational basis state |0〉. It is the unique eigenstate to the
eigenvalue 1 of a single operator, namely ZD (Z†D is also possible).

The fact that the product of two stabilizers is again a stabilizer implies that all stabi-
lizers of a given n-qudit stabilizer state |ψ〉 form a group

S|ψ〉 :=
{
S ∈ PnD

∣∣S |ψ〉 = |ψ〉
}
, (37)

called the stabilizer group of |ψ〉. Using this notion it is possible to characterize all
stabilizer states:

Theorem 1. [43, 46] For a subgroup S ⊂ PnD of the n-qudit Pauli group, the following
statements are equivalent:

(i) There is a unique n-qudit stabilizer state |ψ〉 that has S as its stabilizer group, i.e.,
S = S|ψ〉.

(ii) The group S is an Abelian group of cardinality |S| = Dn which does not contain a
nontrivial multiple of the identity, i.e., z1 ∈ S ⇒ z = 1.

Proof. (i)⇒(ii): We have to show that every stabilizer group S = S|ψ〉 fulfills property
(ii). Indeed, every z ∈ C with z1 ∈ S has to be equal to 1 because z |ψ〉 = |ψ〉 holds
and |ψ〉 is nonzero. To show that S is Abelian, let S, S ′ ∈ S. Like all Pauli operators,
S and S ′ commute up to a phase, i.e., SS ′ = zS ′S for some z ∈ C. Since S is closed
under inversion and multiplication, it contains S ′†SS ′S† = S ′†zS ′SS† = 1z, thus z = 1,
i.e., SS ′ = S ′S. We now prove that S contains exactly Dn elements by employing the
theory of group actions, see Chapter 5.1 of Ref. [41] for an introduction into this theory.
Consider the set of states X := {P |ψ〉 |P ∈ PnD} which is obtained by applying all Pauli
operators to the stabilizer state |ψ〉. This gives rise to a group action

PnD ×X −→ X , (P, |φ〉) 7−→ P |φ〉 . (38)

By construction, the stabilizer group of |ψ〉 with respect to this group action coincides with
the stabilizer group S with which we started in the beginning. Furthermore, each orbit is
of size |X | (because the group action is transitive). Hence, by the Bahnformel [41, 5.1/
Bem. 5], the length of the orbit of |ψ〉 is equal to the index of S in PnD, i.e., |X | = |PnD/S|,
or equivalently |S| = |PnD|/|X |. As the Pauli group contains |PnD| = 2D ×D2n elements,
it suffices to show that X contains exactly 2D ×Dn states. Indeed, after expanding the
stabilizer state as |ψ〉 =

∑
j∈(Z/DZ)n zj |j〉, we can rewrite the set of states as

X =

ωt2D
∑

j∈(Z/DZ)n

zj |j + k〉
∣∣∣∣ t ∈ Z/2DZ,k ∈ (Z/DZ)n

 (39)
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which thus contains |X | = 2D ×Dn elements in total.
(ii)⇒(i): Now, conversely, assume that S ⊂ PnD is an Abelian group of cardinality

Dn not containing any nontrivial multiple of the identity. We have to show the existence
and uniqueness of a joint eigenstate |ψ〉 to the eigenvalue 1 for all S ∈ S. This we do by
recycling the proof of Thrm. 1 in Ref. [46]: The operator Π := 1

Dn

∑
S∈S S fulfills

Π2 =
1

D2n

∑
S,S′∈S

SS ′ =
1

D2n

∑
S′′∈S

S ′′
∑
S∈S

1 =
1

Dn

∑
S′′∈S

S ′′ = Π, (40)

where we have used the substitution S ′ 7→ S ′′ := SS ′ which is bijective since S is a group.
Furthermore, Π is Hermitian, i.e., Π = Π†, because every S ∈ S has a unique inverse.
Thus, the operator Π is an orthogonal projector. We claim that Π is the projector onto the
joint eigenspace to the eigenvalue 1 of all S ∈ S. Indeed, let |ψ〉 be a state in this joint
eigenspace, i.e., S |ψ〉 = |ψ〉. By construction, we obtain Π |ψ〉 = 1

Dn

∑
S∈S |ψ〉 = |ψ〉.

Conversely, let |φ〉 be a state in the space onto which Π projects, i.e., |φ〉 = Π |φ〉.
Multiplying the latter equation with an arbitrary S ∈ S from the left yields

S |φ〉 = SΠ |φ〉 =
1

Dn

∑
S′∈S

SS ′ |φ〉 =
1

Dn

∑
S′′∈S

S ′′ |φ〉 = Π |φ〉 = |φ〉 , (41)

where again we substituted S ′′ := SS ′. Now that we know that Π is the projector onto the
joint eigenspace to the eigenvalue 1 of all operators S ∈ S, we can compute its dimension
which is equal to the trace of Π,

Tr[Π] =
1

Dn

∑
S∈S

Tr[S] =
1

Dn

(
Tr[1Dn ] +

∑
S 6=1

Tr[S]

)
= 1, (42)

where we have used that every Pauli-operator which is not a multiple of the identity has
trace zero. Therefore, there exists exactly one joint eigenstate |ψ〉 to the eigenvalue 1
for all S ∈ S which shows that |ψ〉 is an n-qudit stabilizer state with stabilizer group
S|ψ〉 = S, as claimed.

The theorem reveals a useful property of stabilizer groups. By the classification of
finite Abelian groups [41, 2.9/Kor. 9], condition (ii) implies the existence of numbers
D1, . . . , DN such that S is isomorphic to the group ΠN

i=1Z/DiZ, where ΠN
i=1Di = Dn.

Therefore, one can find operators S1, . . . , SN ∈ S generating the group S, where Di is the
order of Si. Such operators are referred to as stabilizer generators. Note that in Ref. [43],
the content of Theorem 1 is only discussed in the case where S ∼=

∏n
i=1 Z/DZ. In general,

however, various choices of N and D1, . . . , DN are possible. An example which shows
this difference is given by the two ququart states |0〉 and 1√

2
(|0〉 + |2〉) whose stabilizer

group is given by 〈Z4〉 ' Z/4Z and 〈X2
4 , Z

2
4〉 ' Z/2Z × Z/2Z, respectively. That is, if

one would only allow for the case D1 = . . . = DN = D, one would loose the possibility to
describe many states (such as 1√

2
(|0〉+ |2〉)) within the stabilizer formalism. However, we

also include the more general case where Di 6= D is possible.
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Since every Di is a divisor of D (because of SDi = 1), the stabilizer group S =
ΠN
i=1Z/DiZ carries the additional algebraic structure of a Z/DZ-module. To better

understand this structure, denote the exponent vectors of the stabilizer generators by
ri, si ∈ (Z/DZ)n, i.e., Si ∝ XriZsi for all i ∈ {1, . . . , N}. This yields an embedding of S
into the free module (Z/DZ)n × (Z/DZ)n via the Z/DZ-linear injection

S −→ (Z/DZ)n × (Z/DZ)n, Si 7−→ (ri, si). (43)

Note that, the vectors (ri, si) only form a basis of the image of S if D1 = . . . = DN = D.
Otherwise, this submodule does not have a basis, i.e., it is not a free module over Z/DZ.
Throughout this thesis, we will use the parametrization in Eq. (43) to explicitly work
with stabilizer groups.

The next lemma characterizes how the stabilizer generators of a given stabilizer state
change after the application of a Clifford operator.

Lemma 2. If |ψ〉 is a stabilizer state with stabilizer generators S1, . . . , SN ∈ PnD and
U ∈ C̀ nD is a Clifford gate, then |ψ′〉 := U |ψ〉 is also a stabilizer state and its stabilizer
group is generated by S ′i := USiU

†, where i ∈ {1, . . . , N}.

Proof. For each 1 ≤ i ≤ N , the operator S ′i = USiU
† is a Pauli operator by the definition

of the Clifford group, and because Si is assumed to be an element of the n-qudit Pauli
group. By setting S = 〈S1, . . . , SN〉 and S ′ = 〈S ′1, . . . , S ′N〉, we obtain an isomorphism

S '−→ S ′, P 7−→ UPU †. (44)

In particular, both Pauli subgroups have the same number of elements, i.e., |S ′| = |S| =
Dn. Thus, Theorem 1 yields that S ′ is the stabilizer group of a unique stabilizer state. As
claimed, this unique state is |ψ′〉 because of S ′i |ψ′〉 = USiU

†U |ψ〉 = USi |ψ〉 = U |ψ〉 =
|ψ′〉, i.e., the state |ψ′〉 indeed is a common eigenstate of S ′1, . . . S ′N to the eigenvalue 1.

An immediate consequence of Lemma 2 is that it is only possible to find a Clifford
operator that maps a stabilizer state |ψ〉 to a different stabilizer state |ψ′〉 if their stabilizer
groups are isomorphic, i.e., if |ψ′〉 = U |ψ〉 for an Clifford gate U , then S|ψ〉 ∼= S|ψ′〉. For
example, the aforementioned ququart states |0〉 and 1√

2
(|0〉+ |2〉) cannot be mapped onto

each other using Clifford gates only. Physically, this implies that for higher-dimensional
qudits, the set of stabilizer states is richer in the sense that not every stabilizer state can
be reached by applying a sequence of Clifford gates to a single initial state such as |0〉⊗n.
If one wants to produce arbitrary stabilizer states using Clifford gates only, one must be
able to initialize the qudits into more than one initial state. Alternatively, one could start
with a single initial state and change the isomorphic class of the stabilizer group either
via application of non-Clifford gates or via suited projective Pauli measurements [47].
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Figure 1: Example of a tetrapartite family of qudit graph states. Pic-
torial depiction (left) and adjacency matrix (right) of a Z/DZ-weighted
directed graph (V,E) with vertex set V = {A,B,C,D} and edge set
E = {({A,B}, 1), ({B,C}, 1), ({C,D}, 1), ({A,D},−1)}.

3.3 Qudit graph states

Graph states are specific stabilizer states with a pictorial description related to graphs [15,
48–52]. We consider graphs whose edges are weighted by elements in the ring Z/DZ.
Formally, such a graph is given by a finite set of vertices V and a set of weighted edges E.
Each vertex corresponds to one of n qudits; so we use the notation V = {1, 2, . . . , n} (and
sometimes V = {A,B,C, . . .}). The edges e ∈ E are denoted by e = ({i, j}, γi,j), where
γi,j ∈ Z/DZ is the weight of the edge between party i and j. The whole information
about a graph (V,E) is summarized into its adjacency matrix Γ = (γi,j)i,j∈V where the
entry γi,j is the weight of the edge ({i, j}, γi,j) ∈ E. If there is no such edge for two given
qudits i, j ∈ V , the corresponding weight is γi,j = 0. As we do not consider graphs with
loops, we additionally require that the diagonal elements γi,i of the adjacency matrix are
equal to zero. See Fig. 1 for an example of a tetrapartite graph and its adjacency matrix.

Given such a graph, we define its corresponding graph state as the state obtained from
n copies of the plus state

|+D〉 =
1√
D

∑
j∈Z/DZ

|j〉 (45)

by applying a γi,j-fold controlled-phase gate with control qudit i and target qudit j. That
is, the corresponding graph state is given by |Γ〉 := UΓ |+D〉⊗n, where

UΓ :=
n∏
i=1

n∏
j=i+1

Ci,jZ
γi,j
D . (46)

Using Definition (35) and (45), we find the alternative, useful expression

|Γ〉 =
1√
Dn

∑
r∈(Z/DZ)n

ω

n∑
i=1

n∑
j=i+1

γi,jrirj

D |r〉 . (47)
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As we now show, for every adjacency matrix Γ ∈ Z/DZn×n, the corresponding graph
state |Γ〉 is a stabilizer state [53]. The n-qudit state |+D〉⊗n is a stabilizer state with
stabilizer group S|+〉⊗n = 〈X(1)

D , . . . , X
(n)
D 〉, where P (k) ∈ PnD denotes a single qudit Pauli

operator P ∈ P1
D acting on qudit k. Since the state |Γ〉 is obtained by applying the

n-qudit Clifford gate UΓ to the state |+D〉⊗n, Lemma 2 yields that |Γ〉 is a stabilizer state
with stabilizer generators formally given by

Sk := UΓX
(k)
D U †Γ, (48)

where k ∈ V . The key to make this expression more explicit is the relation

CZγ
D(1D ⊗XD)(CZγ

D)† = Zγ
D ⊗XD, (49)

where γ ∈ Z/DZ [46]. Thereby, it does not matter which qudit is the target as the
controlled-Z gate is symmetric. Note that Ci,jZ

γi,j
D X

(k)
D (Ci,jZ

γi,j
D )† = X

(k)
D if neither i

nor j are equal to k because the operators have different support qudits so that the
controlled-Z gates cancel each other. That is, only neighbors of k contribute to the
product in Eq. (48). Since every neighbor appears exactly once in the definition of UΓ in
Eq. (46), the stabilizer generators of |Γ〉 follow as

Sk = X
(k)
D

n∏
j=1

(Z
(j)
D )γj,k (50)

where k ∈ V .

3.4 Absolutely-maximally-entangled states on four qudits

In this subsection, we further investigate the tetrapartite qudit graph state |Γ4
D〉 which is

defined by the adjacency matrix in Fig. 1. By Eq. (47), it can be written as

|Γ4
D〉 =

1

D2

∑
k1,...,k4∈Z/DZ

ωk1k2+k2k3+k3k4−k1k4
D |k1, k2, k3, k4〉 . (51)

We will show that |Γ4
D〉 is an AME state whenever D is odd. Note that this result is

already known [53]. As a preparation, in Sec. 3.4.1 we establish a lemma with which one
can prove that the marginals of a given state are maximally mixed. In Sec. 3.4.2, we apply
this lemma to |Γ4

D〉 in the odd-dimensional case. Finally, in Sec. 3.4.3, we show how this
procedure fails in the even-dimensional case.

3.4.1 Lemma for the verification of m-uniformness

The following lemma relates the qudit stabilizer formalism to maximally mixed states. It
will be key to show that |Γ4

D〉 is an AME state in the odd-dimensional case.
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Lemma 3. For an m-qudit state ρ, the following statements are equivalent:

(i) The state is maximally mixed, i.e., ρ = 1/Dm.

(ii) The state is stabilized by XD and ZD on every qudit.

(iii) The state is stabilized by all Pauli operators P ∈ PmD , i.e., PρP † = ρ.

Proof. (i)⇒(ii): Since the maximally mixed state commutes with every other operator, it
holds X(i)

D ρX
†(i)
D = ρ and Z(i)

D ρZ
†(i)
D = ρ for all 1 ≤ i ≤ m.

(ii)⇒(iii): Follows directly from PmD = 〈ω2D, X
(i)
D , Z

(i)
D |1 ≤ i ≤ m〉.

(iii)⇒(i): To prove that every state ρ which is stabilized by all Pauli operators is
necessarily maximally mixed, we expand the state as

ρ =
∑

r,s∈(Z/DZ)m

zr,s |r〉 〈s| . (52)

We start by showing that ρ is diagonal. Let r, s ∈ (Z/DZ)m with r 6= s. We have to
show zr,s = 0. Because of r 6= s, these two vectors have to differ in at least one entry
i ∈ {1, . . . , k}, i.e., ri 6= si. By our assumption, PρP † = ρ for all P ∈ Pk, we have

zr,s = 〈r| ρ |s〉 = 〈r| (Z(i)
D )† ρZ

(i)
D |s〉 = 〈r|ω−riD ρωsiD |s〉 = ωsi−riD 〈r| ρ |s〉 = ωsi−riD zr,s (53)

where P (i) denotes a single qudit operator P acting on qudit i. This equation is equivalent
to

(1− ωsi−riD )zr,s = 0. (54)

The first factor, (1−ωsi−riD ), is nonzero because ri 6= si implies ωsi−riD 6= 1. Thus zr,s must
be zero, i.e., the state ρ is diagonal. Abbreviating the diagonal entries as zr := zr,r, we
can denote any two of them as zr, zs for some r, s ∈ (Z/DZ)m. By assumption, we have

zr = 〈r| ρ |r〉 = 〈r| (Xs−r
D )† ρXs−r

D |r〉 = 〈s| ρ |s〉 = zs, (55)

i.e., all diagonal elements coincide and the normalization condition Tr[ρ] = 1 finishes the
proof.

This lemma can be used to construct stabilizer states which are m-uniform in the
following way. If S = S1 ⊗ . . . ⊗ Sn stabilizes an n-qudit state |ψ〉 and I is a subset of
{1, . . . , n}, then

S(I) := TrIC [S] =
⊗
i∈I

Si (56)

stabilizes the marginal state ρI = TrIC [|ψ〉 〈ψ|]. That is, every n-qudit stabilizer state |ψ〉
with the property {S(I)|S ∈ S|ψ〉} = PmD for all subsets I ⊂ {1, . . . , n} with exactly m
elements is an m-uniform state by Lemma 3.
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3.4.2 Proof in odd dimensions

Now, we can show that, for every odd qudit dimension D, the tetrapartite graph state
|Γ4
D〉 from Eq. (51) is an example of a 2-uniform state, thus, an AME state. Recall

that the associated graph is given by the set of vertices V = {A,B,C,D} and the set
of edges E = {({A,B}, 1), ({B,C}, 1), ({C,D}, 1), ({A,D},−1)}. Hence, by Eq. (50), the
stabilizers of |Γ4

D〉 are given by

SA = XD ⊗ ZD ⊗ 1⊗ Z−1
D , SB = ZD ⊗XD ⊗ ZD ⊗ 1, (57)

SC = 1⊗ ZD ⊗XD ⊗ ZD and SD = Z−1
D ⊗ 1⊗ ZD ⊗XD. (58)

It is more convenient to consider the corresponding vectors (rk, sk) ∈ (Z/DZ)4×(Z/DZ)4

defining these stabilizers via Sk = Xrk
D Z

sk
D for all k ∈ V . These are given by

(rA, sA) = ((1, 0, 0, 0), ( 0, 1, 0, −1)),
(rB, sB) = ((0, 1, 0, 0), ( 1, 0, 1, 0)),
(rC, sC) = ((0, 0, 1, 0), ( 0, 1, 0, 1)),

and (rD, sD) = ((0, 0, 0, 1), (−1, 0, 1, 0)).

(59)

Products of stabilizer generators correspond to linear combinations of such vectors with
coefficients in Z/DZ. Likewise, marginals of ρ = |Γ4

D〉 〈Γ4
D| are stabilized by Pauli op-

erators defined by vectors where the columns which correspond to the traced-out sys-
tems have been removed. For instance, the bipartite reduced state ρ{A,B} has stabilizers
with exponent vectors v1 := ((1, 0), (0, 1)),v2 := ((0, 1), (1, 0)),v3 := ((0, 0), (0, 1)), and
v4 := ((0, 0), (−1, 0)). The linear combinations v1 − v3, v2 + v4, −v4, and v3 are the
standard basis vectors. Thus, ρ{A,B} is stabilized by XD ⊗ 1, 1 ⊗ XD, ZD ⊗ 1, and
1 ⊗ ZD and Lemma 3 yields ρ{A,B} = 1/D2. By analogous arguments, one can show
1/D2 = ρ{A,C} = ρ{A,D} = ρ{B,C} = ρ{B,D} = ρ{C,D}, i.e., |Γ4

D〉 is indeed a 2-uniform state,
thus AME.

3.4.3 Obstruction in even dimensions

Here, we show that we cannot apply Lemma 3 in the even-dimensional case to construct
a tetrapartite ring-graph state which is also AME. Let |Γ〉 denote a potential candidate
where the weights a, b, c, d ∈ Z/DZ have not been fixed yet. We will show that there is
no choice of a, b, c and d such that |Γ〉 is AME. Analogous to Eqs. (57) and (58), |Γ〉 has
stabilizer generators

SA = XD ⊗ Za
D ⊗ 1⊗ Zd

D, SB = Za
D ⊗XD ⊗ Zb

D ⊗ 1, (60)
SC = 1⊗ Zb

D ⊗XD ⊗ Zc
D and SD = Zd

D ⊗ 1⊗ Zc
D ⊗XD. (61)

This time, the exponent vectors are given by

(rA, sA) = ((1, 0, 0, 0), (0, a, 0, d)),
(rB, sB) = ((0, 1, 0, 0), (a, 0, b, 0)),
(rC, sC) = ((0, 0, 1, 0), (0, b, 0, c)),

and (rD, sD) = ((0, 0, 0, 1), (d, 0, c, 0)).

(62)
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After tracing out party C and D, one obtains reduced stabilizer exponents ((1, 0), (0, a)),
((0, 1), (a, 0)), ((0, 0), (b, 0)), and ((0, 0), (0, d)). Thus, ρ{A,B} is stabilized by XA

D, XB
D,

ZA
D, and ZB

D, iff it is possible to turn the matrix
1 0 0 a
0 1 a 0
0 0 0 b
0 0 d 0

 ∈ (Z/DZ)4×4 (63)

into the unit matrix using the Gaussian algorithm. This, in turn, is possible iff b and d are
invertible in Z/DZ. The same argument with D instead of B shows that also a and c have
to be invertible in Z/DZ. Since D is even, a, b, c, and d have to be odd integers (modulo
D). Finally, to ensure that also ρ{A,C} is stabilized by XD and ZD on both qudits, the
matrix which has to be turned into the unit matrix using the Gaussian algorithm is given
by 

1 0 0 0
0 0 a b
0 1 0 0
0 0 d c

 −→


1 0 0 0
0 1 0 0
0 0 a b
0 0 d c

 , (64)

where we have swapped row 2 and 3. This imposes that the 2 × 2-determinant ac − bd
is invertible in Z/DZ. However, a, b, c, and d are odd. Thus ac − bd is even and cannot
be invertible in Z/DZ. This shows why other methods are needed for the construction of
tetrapartite, ring-graph AME states in even dimensions.

Let us comment on when even-dimensional, tetrapartite AME states do exist in gen-
eral. While it is known that there is no such state in the case of qubits [38], they do
exist for all D = 2n and n ≥ 2. They can be explicitly constructed from Theorem 14 of
Ref. [54] using a correspondence established in Ref. [55]. Alternatively, one can directly
construct them using a procedure analogous to that in Sec. 3.4.2 where the ring Z/2nZ
is replaced by the finite field F2n . Via tensor products, it is straightforward to combine
these even-dimensional AME states with the odd-dimensional AME states of Sec. 3.4.2
to also obtain tetrapartite AME states for all D which are divisible by 4.

4 Noise thresholds for qudit graph states
In this Section, we will consider graph states |Γ〉 which are replaced by a completely mixed
state, globally on all parties, with probability p which is referred to as white noise. We
will denote such states by

ρglob,Γ(p) := (1− p) |Γ〉 〈Γ|+ p
1

Dn
, (65)

and apply bipartite entanglement criteria to find critical noise values pglob such that
p < pglob implies that ρglob,Γ(p) is entangled. Thereby, we will only consider a bipartition
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of size (n− 1, 1) for which the distinguished party (Alice) is incident to at least one edge
because we have numerical evidence that this leads to the best thresholds.

In Sec. 4.1, we derive expressions for the von Neumann entropies S [ρglob,Γ(p)] and
S [TrA[ρglob,Γ(p)]] which directly depend on p,D and n. This makes it computationally
feasible to determine a critical noise threshold pEntr

glob for the entropy criterion. Afterwards,
we apply the Peres-Horodecki criterion in Sec. 4.2 and the reduction criterion in Sec. 4.3.
In both cases, we will establish the noise threshold pPPT

glob (D,n) = pRed
glob(D,n) = 1− 1

Dn−1+1

by explicitly computing an eigenvalue of ρglob,Γ(p)TA and 1A ⊗TrA[ρglob,Γ(p)]− ρglob,Γ(p),
respectively, which is negative for all p < 1− 1

Dn−1+1
. Finally, in Sec. 4.4, we will briefly

comment on the range of applicability of the here-established noise thresholds.

4.1 Entropy criterion for qudit graph states

In order to apply the entropy criterion,

S [ρglob,Γ(p)] < S [TrA[ρglob,Γ(p)]] =⇒ ρglob,Γ(p) is entangled, (66)

to noisy graph states, we need to compute the complete spectra of eigenvalues for both
ρglob,Γ(p) and TrA[ρglob,Γ(p)]. For the unreduced state, no assumption on Γ is needed as
we have

ρglob,Γ(p) |Γ〉 = (1− p) |Γ〉 〈Γ|Γ〉+ p
1

Dn
|Γ〉 =

(
1− p+

p

Dn

)
|Γ〉 (67)

and for every state |ψ〉 which is orthogonal to |Γ〉, we obtain

ρglob,Γ(p) |ψ〉 = (1− p) |Γ〉 〈Γ|ψ〉+ p
1

Dn
|ψ〉 =

p

Dn
|ψ〉 . (68)

Since the whole Hilbert state of all parties decomposes into the one-dimensional span of
|Γ〉 and its Dn− 1-dimensional orthogonal complement, the eigenvalue 1− p+ p

Dn
and p

Dn

has degeneracy 1 and Dn − 1, respectively.
Obviously, we cannot expect to detect entanglement in ρglob,Γ(p) if the adjacency

matrix Γ ∈ (Z/DZ)n×n is trivial. For technical reasons, here we will only consider the
case where at least one entry in Γ is invertible, w.l.o.g. γ1,2. We will comment on the
general case of arbitrary Γ in Sec. 4.2.1. Note that in prime dimension this technicality is
trivial. Let us first obtain an expression for the reduced state where party 1 is discarded:

TrA[ρglob,Γ(p)] =
∑

k∈Z/DZ

〈k|A
(

(1− p) |Γ〉 〈Γ|+ p
1

Dn

)
|k〉A (69)

= (1− p)

 ∑
k∈Z/DZ

|Γk〉 〈Γk|

+ p
1

Dn−1
, (70)
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Thereby, we have substituted |Γk〉 := 〈k|A |Γ〉. From Eq. (47) follows that for k, l ∈ Z/DZ
the inner product of two such (unnormalized) vectors is given by

〈Γl|Γk〉 =
1

Dn

∑
r2,...,rn∈Z/DZ
s2,...,sn∈Z/DZ

ω

n∑
j=2

γ1,jrj(k−l)

D ω

n∑
i=2

n∑
j=i+1

γi,j(rirj−sisj)

D 〈s2, . . . , sn|r2, . . . , rn〉 (71)

=
1

Dn

∑
r2,...,rn∈Z/DZ

ω

n∑
j=2

(kγ1,j−lγ1,j)rj

D =
1

Dn
Dn−1δ(kγ1,2,...,kγ1,n),(lγ1,2,...,lγ1,n). (72)

Note that we have used the relation
∑

r∈(Z/DZ)n−1 ω
(a−b)·r
D = Dnδa,b, i.e., complex roots

sum up to zero. Since we assume that γ1,2 is invertible, we obtain δkγ1,2,lγ1,2 = δk,l and can
establish

〈Γl|Γk〉 =
δk,l
D
. (73)

From this, we obtain for each k ∈ Z/DZ an eigenequation of the form

TrA[ρglob,Γ(p)] |Γk〉 = (1− p)
∑

l∈Z/DZ

|Γl〉 〈Γl|Γk〉+ p
1

Dn−1
|Γk〉 =

(
1− p
D

+
p

Dn−1

)
|Γk〉 .

(74)

Similarly to Eq. (68), we obtain for every state |ψ〉 in the orthogonal complement of
spanC

{
|Γk〉

∣∣ k ∈ Z/DZ
}
in the Hilbert space of all parties but Alice an eigenequation

of the form

TrA[ρglob,Γ(p)] |ψ〉 = (1− p)
∑

l∈Z/DZ

|Γl〉 〈Γl|ψ〉+ p
1

Dn−1
|ψ〉 =

p

Dn−1
|ψ〉 . (75)

Again, by counting the dimensions, we obtain that 1−p
D

+ p
Dn−1 is D-fold degenerate and

p
Dn−1 is (Dn−1 −D)-fold degenerate. From their spectra of eigenvalues, we conclude the
von Neumann entropies

S [ρglob,Γ(p)] = −
(

1− p+
p

Dn

)
log2

(
1− p+

p

Dn

)
− (Dn − 1)

( p

Dn

)
log2

( p

Dn

)
(76)

and S [TrA[ρglob,Γ(p)]] = −D
(

1− p
D

+
p

Dn−1

)
log2

(
1− p
D

+
p

Dn−1

)
(77)

−(Dn−1 −D)
( p

Dn−1

)
log2

( p

Dn−1

)
. (78)

Note that this result is the generalization of the Werner state, our initial example in Sec. 2,
to graph states on n ≥ 2 qudits in dimension D ≥ 2. We defer a numerical evaluation
of the noise threshold resulting from the entropy criterion as in Eq. (66) to Secs. 5.5.3
and 6.3.
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4.2 Peres–Horodecki criterion for qudit graph states

Before we consider arbitrary qudit graph states, it is instructive to first discuss the gen-
eralized n-qudit Werner state

GHZnD(p) := (1− p) |GHZnD〉 〈GHZnD|+ p
1

Dn
. (79)

Although |GHZnD〉 itself is not a qudit graph state, it can be transformed into a graph
state by a local application of the quantum Fourier transform F on all qudits but one.
Such a transformation does not change the entanglement properties of the state. The
following lemma is an application of the Peres-Horodecki criterion to GHZnD(p).

Lemma 4. [56,57] The operator GHZnD(p)TA has λ(p) = p/Dn − (1− p)/D as an eigen-
value. In particular, GHZnD(p) is entangled for all p < 1− 1

Dn−1+1
.

Proof. Using the expression

|GHZnD〉 〈GHZnD|TA =
1

D

n∑
i,j=0

|ji . . . i〉 〈ij . . . j| (80)

we can easily show that |010 . . . 0〉 − |100 . . . 0〉 is an eigenvector of GHZnD(p)TA to the
eigenvalue λ(p) = p/Dn − (1− p)/D. Indeed,(

(1− p) |GHZnD〉 〈GHZnD|TA + p
1

Dn

)
(|010 . . . 0〉 − |100 . . . 0〉) (81)

=
1− p
D

(|100 . . . 0〉 − |010 . . . 0〉) +
p

Dn
(|010 . . . 0〉 − |100 . . . 0〉) (82)

=

(
p

Dn
− 1− p

D

)
(|010 . . . 0〉 − |100 . . . 0〉) . (83)

It is possible to generalize this noise threshold to all graph states |Γ〉 whose adjacency
matrix has at least one invertible (⇔ nonzero for prime D) edge, w.l.o.g. γ1,2 is invertible
in Z/DZ. This result is captured in the following theorem which we prove in Appendix A.

Theorem 5. Let Γ ∈ (Z/DZ)n×n be the adjacency matrix of a graph state such that γ1,2

is invertible. Then, λ(p) = p/Dn− (1−p)/D is an eigenvalue of the operator ρglob,Γ(p)TA.
In particular, ρglob,Γ(p) is entangled for all p < pPPT

glob (D,n) := 1− 1
Dn−1+1

.

The proof of Theorem 5 relied on the technicality that γ1,2 is invertible in Z/DZ.
Interestingly, if we drop this condition, the critical noise threshold becomes better such
that we can draw the following conclusion.
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Corollary 6. Let Γ ∈ (Z/DZ)n×n be a non-trivial adjacency matrix, i.e., Γ 6= 0. The
state ρglob,Γ(p) is entangled for all p < pPPT

glob (D,n) = 1− 1
Dn−1+1

.

Proof. In order to apply Theorem 5, we will reduce to the case of an adjacency matrix
Γ′ with at least one invertible entry. For this, we will have to regard each qudit of
dimensions D as g qudits of dimension d := D/g, where we choose g := gcd(γi,j) as the
greatest common divisor of all entries of the original matrix Γ ∈ (Z/DZ)n×n. This yields
a new adjacency matrix Γ′ ∈ (Z/dZ)n×n for lower-dimensional qudits via γ′i,j := γi,j/g.
Recall from Eq. (47), that graph states can be written as

|Γ〉 =
1√
Dn

∑
r∈(Z/DZ)n

ω

n∑
i=1

n∑
j=i+1

γi,jrirj

D |r〉 . (84)

Using the d-ary decomposition rk =
∑g−1

l=0 d
lRk,l (such that all 0 ≤ rk ≤ D − 1 and

0 ≤ Rk,l ≤ d− 1 are integers), and the fact that ωγi,jD = ω
gγ′i,j
D = ω

γ′i,j
d , we can rewrite the

graph state as

|Γ〉 =
1√
Dn

∑
R∈(Z/dZ)n×g

ω

n∑
i=1

n∑
j=i+1

γ′i,jRi,0Rj,0

d |R〉 (85)

since ωdd = 1 implies ωrkd = ω
∑g−1
l=0 d

lRk,l
d = ω

Rk,0
d . Note that (for a fixed k) the coefficient in

front of |Rk,l〉 is the same for all l = 1, . . . , g − 1. We introduce the notation r′k := Rk,0

and R′k,l := Rk,l for l = 1, . . . , g, to express the matrix R as [r′|R′]. In this way, we can
rewrite the summation over R ∈ (Z/dZ)n×g as

|Γ〉 =

 1√
dn

∑
r∈(Z/dZ)n

ω

n∑
i=1

n∑
j=i+1

γ′i,jr
′
ir
′
j

d |r′〉

⊗
 1
√
d
n(g−1)

∑
R′∈(Z/dZ)n×(g−1)

|R′〉

 (86)

= |Γ′〉 ⊗ |+d〉⊗n(g−1) . (87)

In this way, we can regard the graph state |Γ〉 on n qudits of dimension D as a graph state
on ng qudits of dimension d = D/g with at least one invertible edge (say γ1,2). Therefore,
the operator (1 − p) |Γ〉 〈Γ|TA + p1/Dn has an eigenvalue p/dng − (1 − p)/d which is
negative for all p < pPPT

glob (d, ng) = 1− 1/(dng−1 + 1) and pPPT
glob (D,n) = 1− 1/(Dn−1 + 1) =

1− 1/(dng−g) ≤ 1− 1/(dng−1 + 1) finishes the proof.

4.2.1 Invertible vs non-invertible edges

To better understand the technicality of γ1,2 being invertible or not consider the easiest
example of two ququarts, i.e., D = 4 and n = 2. Further consider the adjacency matrices

Γ2
4(1) =

[
0 1
1 0

]
and Γ2

4(2) =

[
0 2
2 0

]
. (88)
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The important difference is that 1 is invertible in Z/4Z but 2 is not. By Theorem 5,
ρglob,Γ2

4(1)(p) is NPT, thus entangled, for all p < 1 − 1
42−1+1

= 4
5
and from the proof of

Corollary 6 it is clear that ρglob,Γ2
4(1)(p) is NPT for all p < 1 − 1

24−1+1
= 8

9
> 4

5
. That

is, |Γ2
4(2)〉 is more robust against global white noise than |Γ2

4(1)〉. Next, let us bring the
graph states into a form from which we can read off their entanglement properties. Since
ω4 = i and ω2

4 = −1, Eq. (47) yields

|Γ2
4(1)〉 =

1

4

3∑
j,k=0

ijk |j, k〉 and |Γ2
4(2)〉 =

1

4

3∑
j,k=0

(−1)jk |j, k〉 . (89)

From this, it is straightforward to compute

F †4 ⊗ 14 |Γ2
4(1)〉 =

1

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉+ |2〉 ⊗ |2〉+ |3〉 ⊗ |3〉) (90)

as well as

(F2 ⊗ F2)⊗ 14 |Γ2
4(2)〉 =

1√
2

(
|0〉 ⊗ 1√

2
(|0〉+ |2〉) + |1〉 ⊗ 1√

2
(|1〉+ |3〉)

)
. (91)

If we use the binary identification 0 ↔ 00, 1 ↔ 01, 2 ↔ 10, and 3 ↔ 11, we see from
Eq. (90) that |Γ2

4(1)〉 is locally unitary equivalent to the state

1

2

(
|00〉A1A2

|00〉B1B2
+ |01〉A1A2

|01〉B1B2
+ |10〉A1A2

|10〉B1B2
+ |11〉A1A2

|11〉B1B2

)
(92)

=
1

2

(
|00〉A1B1

+ |11〉A1B1

) (
|00〉A2B2

+ |11〉A2B2

)
= |Φ+〉A1B1

|Φ+〉A2B2
. (93)

That is, |Γ2
4(1)〉 carries the same amount of entanglement as two qubit Bell pairs, while

|Γ2
4(2)〉 only is worth one qubit Bell pair as one can read off from Eq. (91). To conclude

our discussion, |Γ2
4(1)〉 is more entangled than |Γ2

4(2)〉 but its entanglement is less robust
against global white noise.

4.3 Reduction criterion for qudit graph states

Here, we will reestablish the noise threshold of Theorem 5 with a much easier proof based
on the reduction criterion,

ρglob,Γ(p) is separable =⇒ 1D ⊗ TrA[ρglob,Γ(p)] − ρglob,Γ(p) ≥ 0. (94)

Although the reduction criterion is in general not better that the Peres-Horodecki crite-
rion [12], the resulting noise thresholds for qudit graph states coincide.

In order to find a negative eigenvalue, we use Eqs. (65) and (69) and rewrite the
operator of interest as 1D ⊗ TrA[ρglob,Γ(p)] − ρglob,Γ(p)

=(1− p)

1D ⊗ ∑
l∈Z/DZ

|Γl〉 〈Γl|

− |Γ〉 〈Γ|
+ p

(
1

Dn−1
− 1

Dn

)
1Dn , (95)
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where |Γl〉 = 〈l|A |Γ〉. By expanding the graph state as

|Γ〉 =
∑

k∈Z/DZ

|k〉A ⊗ |Γk〉 , (96)

we obtain the eigenequation(
1D ⊗ TrA[ρglob,Γ(p)] − ρglob,Γ(p)

)
|Γ〉 (97)

= (1− p)

 ∑
k∈Z/DZ

|k〉A ⊗
∑

l∈Z/DZ

|Γl〉 〈Γl|Γk〉

− |Γ〉
+ p

(
1

Dn−1
− 1

Dn

)
|Γ〉 (98)

=

(
(1− p)

(
1

D
− 1

)
+ p

(
1

Dn−1
− 1

Dn

))
|Γ〉 , (99)

where we have used Eq. (73). That is, 1D⊗TrA[ρglob,Γ(p)] −ρglob,Γ(p) has the eigenvalue,(
(1− p)

(
1

D
− 1

)
+ p

(
1

Dn−1
− 1

Dn

))
=

(
1− 1

D

)(
p

(
1 +

1

Dn−1

)
− 1

)
(100)

which is negative for all p smaller than

pRed
crit,glob(D,n) :=

1

1 + 1
Dn−1

= 1− 1

Dn−1 + 1
. (101)

This is exactly the bound from Theorem 5, however, it takes very little effort to establish
it using the reduction criterion.

4.4 Range of applicability of the established noise thresholds

The noise thresholds established in Sec. 4 apply to all entangled qudit graph states with
arbitrary qudit dimension D. In Lemma 7 of Ref. [51] it is shown that every stabilizer
state is local-unitary equivalent to a graph state if D is prime. Therefore, our noise
thresholds even hold for all stabilizer states (at least if D is prime). A counterexample
of a non-stabilizer state with a worse noise threshold is the W -state defined in Eq. (20).
Numerically, we find that (1− p) |W 〉 〈W | + p1/8 is NPT iff p < 0.7904 while the three-
qubit GHZ state tolerates up to pPPT

glob (2, 3) = 0.8 global white noise. This implies that
the noise threshold established in Corollary 6 cannot be extended to general entangled
states. The result only holds for stabilizer states.

We have restricted ourselves to bipartitions with a single isolated party (Alice) and
did not consider other bipartitions because we have numerical evidence that this leads
to the best noise thresholds. Since we only applied bipartite entanglement criteria, we
are not able make statements about multipartite entanglement aspects of the noisy states
using this approach, recall the example in Sec. 2.2.2. Furthermore, we could only apply
these criteria to the simplest noise model of a global depolarizing channel. In order to
capture also multipartite entanglement aspects, even for a more complicated noise model,
we will introduce a helpful technical tool in the next section.
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5 Sector lengths
The sector lengths of a multipartite quantum state are properties which can sometimes
capture certain aspects of multipartite entanglement [58–62]. In general, the resulting
entanglement criteria are not strong enough to verify genuine multipartite entanglement.
This weakness has been attributed to the otherwise convenient fact that sector lengths are
invariant under local unitary operations [60] which will enable us to establish noise thresh-
olds to rule out (n1, . . . , nk)-separability (recall Sec. 2.2.1) for two types of noise: global
white noise and local white noise. However, we will be able to rule out semiseparability
in some cases which elude other approaches.

We begin with the definition of sector lengths and some of their elementary properties
in Sec. 5.1. In Sec. 5.2, we explain how entanglement criteria can be derived from sector
lengths. In Sec. 5.3, we discuss how sector lengths of stabilizer states are influenced
by global and local white noise, respectively. Since knowing the sector lengths of the
corresponding pure stabilizer state will turn out to be crucial, we have devoted Sec. 5.4
for their calculation for important families of states. In Sec. 5.5 we compare the resulting
noise thresholds with other thresholds from the literature.

5.1 Definition and basic properties

Recall from the proof of Theorem 1 from Sec. 3.2 that the projector onto every stabilizer
state |ψ〉 can be rewritten as

|ψ〉 〈ψ| = 1

Dn

∑
S∈S|ψ〉

S =
1

Dn

n∑
j=0

Pj. (102)

Hereby, we have combined the stabilizers which (non-trivially) act on the same number j
of qudits into

Pj :=
∑
S∈S|ψ〉

S acts on (exactly) j qudits

S. (103)

As the Pauli operators Xr
DZ

s
D, where r, s ∈ (Z/DZ)n, constitute an orthonormal basis of

the complex Dn ×Dn-matrices, with respect to the Hilbert-Schmidt inner product, i.e.,

1

Dn
Tr
[
(Xr′

DZ
s′

D)†Xr
DZ

s
D

]
= δr,r′δs,s′ , (104)

every arbitrary state ρ can be decomposed as

ρ =
1

Dn

∑
r,s∈(Z/DZ)n

wr,sX
r
DZ

s
D =

1

Dn

n∑
j=0

Pj (105)
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for some coefficients wr,s ∈ C [63]. Hereby, we have again combined the terms which act
on the same number j of qudits into

Pj :=
∑

r,s∈(Z/DZ)n

swt(r,s)=j

wr,sX
r
DZ

s
D, (106)

where the symplectic weight of (r, s) is formally defined as swt(r, s) := |{i|ri 6= 0 ∨ si 6= 0}|.
In the case where Ψ = |ψ〉 〈ψ| is the projector onto a stabilizer state, Eq. (105) and
Eq. (106) simplify to Eq. (102) and Eq. (103), respectively.

Based on such decompositions, the sector lengths `nj [ρ] of an n-partite quantum state
ρ are defined as the Hilbert-Schmidt norm of the operators Pj [58, 61], i.e.,

`nj [ρ] := ||Pj||2 :=
1

Dn
Tr
[
P †j Pj

]
=

∑
r,s∈(Z/DZ)n

swt(r,s)=j

|wr,s|2. (107)

Note that the normalization condition Tr[ρ] = 1 implies P0 = 1Dn , thus `n0 [ρ] = 1. For
pure stabilizer states Ψ = |ψ〉 〈ψ|, |wr,s|n is either 0 or 1, cf. Eq. (103). Thus, the sector
lengths are simply given by

`nj [Ψ] =
∣∣{S ∈ S|ψ〉 | S acts on j qudits}

∣∣ . (108)

Under tensor products, sector lengths behave as follows [61]. Consider an n-qudit
state ρ = ρ′ ⊗ ρ′′ which is the tensor product of an m- and an (n−m)-qudit state, say

ρ′ ⊗ ρ′′ =
(

1

Dm

m∑
k=0

P ′k

)
⊗
(

1

Dn−m

n−m∑
l=0

P ′′l

)
=

1

Dn

m∑
k=0

n−m∑
l=0

P ′k ⊗ P ′′l =
1

Dn

n∑
j=0

Pj, (109)

where P ′k and P ′′l are defined in analogy to Eq. (106). The operators Pj in the decompo-
sition of ρ = ρ′ ⊗ ρ′′ follow as

Pj =

j∑
i=0

P ′i ⊗ P ′′j−i, (110)

where we set P ′i = 0 if i > m. As the terms in Eq. (110) are mutually orthogonal (with
respect to the Hilbert-Schmidt inner product), the sector lengths of ρ′ ⊗ ρ′′ and of ρ′, ρ′′
are related by

`nj [ρ′ ⊗ ρ′′] =

j∑
i=0

`mi [ρ′] `n−mj−i [ρ′′], (111)

where we set `mi [ρ] = 0 if i > m for consistency with Eq. (107).
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5.2 Tailoring entanglement criteria from sector lengths

The key to construct entanglement criteria for an n-qudit state ρ is its purity which is
defined as Tr[ρ2] and can take values between 1/Dn and 1. It is equal to 1 iff ρ is a pure
state. Conversely, it is equal to 1/Dn iff ρ = 1/Dn is the completely mixed state [47].
Since the operators Pj in the decomposition of ρ are mutually orthogonal, we can relate
the purity of a quantum state to its sector lengths,

Tr[ρ2] =
1

Dn

n∑
j=0

`nj [ρ]. (112)

For single qudit states, the condition Tr[ρ2] ≤ 1 is equivalent to `1
1[ρ] ≤ D − 1, with

equality iff ρ is pure. More generally, omitting all but one of the (nonnegative) terms in
Eq. (112) yields inequalities of the form

`nj [ρ] ≤ Dn − 1 (113)

for all 1 ≤ j ≤ n. In less generic cases, tighter inequalities are known [61]. Using the
behavior of sector lengths under tensor products, Eq. (111), one can recursively construct
upper bounds on the sector lengths of states that are (n1, . . . , nk)-separable [59]. As the
triangle inequality of the Hilbert Schmidt norm implies

`nj [pρ+ (1− p)ρ̃] ≤ p`nj [ρ] + (1− p)`nj [ρ̃], (114)

for all convex combinations of n-partite states ρ and ρ̃, it suffices to construct such upper
bounds for product states of corresponding separability. This provides entanglement
criteria for states which exceed these bounds. To demonstrate the procedure [59], we will
now recursively derive such bounds for up to n = 4 parties as we will separately study
tetrapartite quantum networks in Sec. 5.5.3.

For two qudits, the only nontrivial separability type is (1, 1). Such a fully separable
state ρ = ρA ⊗ ρB fulfills

`2
1[ρA ⊗ ρB] = `1

1[ρA] + `1
1[ρB] ≤ 2(D − 1) =: b

(1,1)
1

and `2
2[ρA ⊗ ρB] = `1

1[ρA]`1
1[ρB] ≤ (D − 1)2 =: b

(1,1)
2 ,

(115)

as a repeated use of Ineq. (113) with n = j = 1 shows. Therefore, a bipartite state ρAB

with `2
j [ρAB] > b

(1,1)
j for j = 1 or j = 2, is necessarily entangled.

For three qudits, there are two nontrivial separability types: full separability (1, 1, 1)
and biseparability (2, 1). Similar to Eq. (115), we obtain the bounds

`3
1[ρ] = `1

1[ρA] + `1
1[ρB] + `1

1[ρC] ≤ 3(D − 1) =: b
(1,1,1)
1 ,

`3
2[ρ] = `1

1[ρA]`1
1[ρB] + `1

1[ρA]`1
1[ρC] + `1

1[ρB]`1
1[ρC] ≤ 3(D − 1)2 =: b

(1,1,1)
2 ,

and `3
3[ρ] = `1

1[ρA]`1
1[ρB]`1

1[ρC] ≤ (D − 1)3 =: b
(1,1,1)
3

(116)
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(1,1,1,1)

(2,1,1)

(2,2) (3,1)

(4)

Figure 2: The five partitions of the number four. Each partition cor-
responds to a separability type of a tetrapartite quantum system. The
arrows indicate relations between the separability types, e.g., (1, 1, 1, 1)-
separability implies (2, 1, 1)-separability.

for fully separable states ρ = ρA ⊗ ρB ⊗ ρC. Thus, if a sector length of a tripartite state
exceeds one of the above bounds, it cannot be fully separable. Such a state, however,
could be biseparable still. To derive a bound which could rule out this possibility, consider
w.l.o.g. a biseparable product state of the form ρ = ρA ⊗ ρBC. Its sector lengths fulfill

`3
1[ρA ⊗ ρBC] = `1

1[ρA] + `2
1[ρBC] ≤ D2 +D − 2 =: b

(2,1)
1 ,

`3
2[ρA ⊗ ρBC] = `2

2[ρBC] + `1
1[ρA]`2

1[ρBC] ≤ D3 −D =: b
(2,1)
2 ,

and `3
3[ρA ⊗ ρBC] = `1

1[ρA]`2
2[ρBC] ≤ D3 −D2 −D + 1 =: b

(2,1)
3 .

(117)

Here, we used Ineq. (113) with n, j ∈ {1, 2}. Again, if a sector length of a tripartite
state exceeds one of the bounds in Eq. (117), the state cannot be biseparable and is thus
genuinely tripartite entangled.

For four qudits, there are five separability types as displayed in Fig. 2. Using the
trivial bound b(n)

j = Dn − 1 and the bounds previously established, we obtain in analogy
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to Eq. (111) the nontrivial tetrapartite bounds

b
(3,1)
1 := b

(3)
1 + b

(1)
1 = D3 +D − 2,

b
(2,2)
1 := b

(2)
1 + b

(2)
1 = 2(D2 − 1),

b
(2,1,1)
1 := b

(2)
1 + b

(1,1)
1 = D2 + 2D − 3,

b
(1,1,1,1)
1 := b

(1,1)
1 + b

(1,1)
1 = 4(D − 1),

(118)

b
(3,1)
2 := b

(3)
2 + b

(3)
1 b

(1)
1 = D4 −D3,

b
(2,2)
2 := b

(2)
2 + b

(2)
1 b

(2)
1 + b

(2)
2 = D4 − 1,

b
(2,1,1)
2 := b

(2)
2 + b

(2)
1 b

(1,1)
1 + b

(1,1)
2 = 2(D3 − 2D + 1),

b
(1,1,1,1)
2 := b

(1,1)
2 + b

(1,1)
1 b

(1,1)
1 + b

(1,1)
2 = 6(D2 − 2D + 1),

(119)

b
(3,1)
3 := b

(3)
3 + b

(3)
2 b

(1)
1 = D4 −D,

b
(2,2)
3 := b

(2)
2 b

(2)
1 + b

(2)
1 b

(2)
2 = 2(D4 − 2D2 + 1),

b
(2,1,1)
3 := b

(2)
2 b

(1,1)
1 + b

(2)
1 b

(1,1)
2 = D4 − 2D2 + 1,

b
(1,1,1,1)
3 := b

(1,1)
2 b

(1,1)
1 + b

(1,1)
1 b

(1,1)
2 = 4(D3 − 3D2 + 3D − 1),

(120)

b
(3,1)
4 := b

(3)
3 b

(1)
1 = D4 −D3 −D + 1,

b
(2,2)
4 := b

(2)
2 b

(2)
2 = D4 − 2D2 + 1,

b
(2,1,1)
4 := b

(2)
2 b

(1,1)
2 = D4 − 2D3 + 2D − 1, and

b
(1,1,1,1)
4 := b

(1,1)
2 b

(1,1)
2 = D4 − 4D3 + 6D2 −D + 1.

(121)

In general, there are exactly p(n) separability types for an n-qudit system, where p is
the number-theoretical partition function. Since not even an explicit expression of p(n)
is known, we do not hope to find a closed expression of all such bounds. However, the
following lemma provides the bounds for full separability in the general n-qudit case.

Lemma 7. The sector lengths of every fully separable state ρ fulfill

`nj [ρ] ≤ b
(1,...,1)
j :=

(
n
j

)
(D − 1)j. (122)

Proof. We prove this lemma by induction. The base case was treated already. Now,
assume `n−1

j [ρ] ≤
(
n−1
j

)
(D−1)j for all fully separable n-qudit states ρ and all 0 ≤ j ≤ n−1.

Let ρ′ be some additional single qudit state. From Eq. (111), we obtain (for j 6= n)

`nj [ρ′ ⊗ ρ] =`1
0[ρ′]`n−1

j [ρ] + `1
1[ρ′]`n−1

j−1 [ρ′] (123)

≤
(

1
0

)
(D − 1)0

(
n−1
j

)
(D − 1)j +

(
1
1

)
(D − 1)1

(
n−1
j−1

)
(D − 1)j−1 (124)

=
((

n−1
j−0

)
+
(
n−1
j−1

))
(D − 1)j =

(
n
j

)
(D − 1)j. (125)

And for j = n, we have

`nn[ρ′ ⊗ ρ] =`1
1[ρ′]`n−1

n−1[ρ] ≤
(

1
1

)
(D − 1)1

(
n−1
n−1

)
(D − 1)n−1 =

(
n
n

)
(D − 1)n. (126)
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However, most of these bounds are trivial as they are fulfilled by all states: In the
qubit case, for example, it is conjectured that for all j there exists an nj, such that for all
n ≥ nj, `nj [ρ] ≤

(
n
j

)
holds for all n-qubit states [61]. The conjecture is proven for all j ≤ 3

with n1 = 1, n2 = 3, and n3 = 5 [61]. However, as we will show in Appendix B, at least
the full-body sector length `nn[ρ] exceeds b(1,...,1)

n = (D − 1)n for a very large class of pure
stabilizer states ρ = |Γ〉 〈Γ|. As we show next, this leads to nontrivial noise thresholds
based on sector lengths.

5.3 Sector lengths of noisy stabilizer states

In this section, we establish how sector lengths of a stabilizer state |ψ〉 change in the
presence of noise. This will lead to certain noise thresholds similar to those in Sec. 4. As
in Eq.(65), we use the abbreviation

ρglob,ψ(p) := (1− p) |ψ〉 〈ψ|+ p
1

Dn
(127)

for the state that has passed a global noise channel

E (p)
depol;Dn : ρ 7−→ (1− p)ρ+ p

1

Dn
. (128)

Furthermore, we will be able to draw conclusions about states of the form

ρloc,ψ(p) := (E (p)
depol;D)⊗n [|ψ〉 〈ψ|] . (129)

For spatially separated qudits, this is the physically more relevant noise model as it
corresponds to n independent depolarization processes. We will refer to these noise models
as global and local white noise, respectively. The following proposition shows how precisely
they diminish sector lengths.

Proposistion 8. Let |ψ〉 be an n-qudit stabilizer state and write Ψ = |ψ〉 〈ψ|. For every
j ∈ {1, . . . , n} and every p ∈ [0, 1] it holds:

`nj [ρglob,ψ(p)] = (1− p)2`nj [Ψ] (130)
`nn [ρloc,ψ(p)] = (1− p)2n`nn[Ψ] (131)

Proof. First note that the depolarizing channel which adds global white noise can be
regarded as an error channel where a discrete Pauli error Xr

DZ
s
D occurs with probability

pglob
r,s :=

{
1− p+ p

D2n if r = s = (0, . . . , 0)
p

D2n otherwise,
(132)

i.e., E (p)
depol;Dn [ρ] =

∑
r,s∈(Z/DZ)n p

glob
r,s (Xr

DZ
s
D)ρ(Xr

DZ
s
D)†; see Ref. [17] for a proof of this.

From this, it follows that also (E (p)
depol;D)⊗n can be regarded as a Pauli error channel with
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error probabilities

p̃loc
r,s :=

(
1− p̃+

p̃

D2

)n−swt(r,s)(
p̃

D2

)swt(r,s)

, (133)

i.e., (E (1−p̃)
depol;D)⊗n[ρ] =

∑
r,s∈(Z/DZ)n p̃

loc
r,s(X

r
DZ

s
D)ρ(Xr

DZ
s
D)†, as this is the probability that

the number of qudits on which nontrivial errors occur is exactly swt(r, s).
Since it will be convenient to express the stabilizer operators in terms of their exponent

vectors we introduce the following notation. As a Z/DZ-module, the stabilizer group of
|ψ〉 is isomorphic to

M|ψ〉 := {(k, l) ∈ (Z/DZ)n × (Z/DZ)n | ∃S ∈ S|ψ〉 : S ∝ Xk
DZ

l
D}. (134)

Note that the corresponding phase of a stabilizer operator is uniquely determined by
(k, l) ∈ M|ψ〉, i.e., there is a function f : M|ψ〉 → Z/DZ such that the isomorphism from
M|ψ〉 to S|ψ〉 is given by (k, l) 7→ ω

f(k,l)
D Xk

DZ
l
D. The module M|ψ〉 is the disjoint union of

Mj := {(k, l) ∈M|ψ〉 | swt(k, l) = j} (135)

for j ∈ {0, . . . , n}. With this notation we can rewrite the projector onto |ψ〉 as

Ψ =
1

Dn

∑
S∈S|ψ〉

S =
1

Dn

n∑
j=0

∑
(k,l)∈Mj

ω
f(k,l)
D Xk

DZ
l
D (136)

and the application of a Pauli error channel with an error distribution (pr,s)r,s∈(Z/DZ)n as

ρ :=
∑

r,s∈Z/DZ

pr,s(X
r
DZ

s
D)Ψ(Xr

DZ
s
D)† =

1

Dn

n∑
j=0

Pj (137)

with

Pj =
∑

(k,l)∈Mj

ω
f(k,l)
D Xk

DZ
l
D

∑
r,s∈(Z/DZ)n

pr,sω
k·s−r·l
D , (138)

where we have used Eq. (30) to cancel (Xr
DZ

s
D) with (Xr

DZ
s
D)† at the expense of the phase

factors ωk·s−r·l
D . By Eq. (107), the sector lengths of ρ follow as

`nj [ρ] = ||Pj||2 =
∑

(k,l)∈Mj

∣∣∣∣∣ ∑
r,s∈(Z/DZ)n

pr,sω
k·s−r·l
D

∣∣∣∣∣
2

. (139)

We will proceed by simplifying this expression in the case of pglob
r,s and p̃loc

r,s, respectively.
First, consider global white noise. Let (k, l) ∈ Mj for some j ≥ 1. We are interested

in ∑
r,s∈(Z/DZ)n

pglob
r,s ω

k·s−r·l
D = p0 + pe

∑
r,s∈Z/DZ
(r,s)6=(0,0)

ωk·s−r·l
D , (140)
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where we have used the abbreviation p0 := 1 − p + p
D2n and pe := p

D2n . By splitting the
second sum into three parts (first: r = 0, second: s = 0, third: r, s 6= 0) we obtain∑

r,s∈Z/DZ
(r,s)6=(0,0)

ωk·s−r·l
D =

∑
s6=0

ωk·s
D +

∑
r6=0

ω−r·l
D +

∑
s6=0

ωk·s
D

∑
r6=0

ω−r·l
D (141)

= (δk,0D
n − 1) + (δl,0D

n − 1) + (δk,0D
n − 1)(δl,0D

n − 1) (142)
= δk,0δl,0D

2n − 1 = δj,0D
2n − 1 = −1. (143)

From line (141) to (142), we have used the fact that (nontrivial) complex roots of unity
sum up to zero in the form of

∑
s∈(Z/DZ)n ω

k·s
D = δk,0D

n, and likewise for −r and l. Since
this result does not depend on (k, l) ∈Mj, Eqs. (139) and (140) simplify to

`nj [ρglob,ψ(p)] = |p0 − pe|2
∑

(k,l)∈Mj

1 = (1− p)2`nj [Ψ], (144)

as claimed in Eq. (130).
Finally, consider local white noise. Let (k, l) ∈Mn. We are interested in

∑
r,s∈(Z/DZ)n

p̃loc
r,sω

k·s−r·l
D =

n∑
m=0

p̃n−m0 p̃me
∑

r,s∈Z/DZ
swt(r,s)=m

ωk·s−r·l
D , (145)

where we have again used an abbreviation p̃0 := 1− p̃+ p̃
D2 and p̃e := p̃

D2 . For each term
in the second sum, we can permute the nonzero pairs of (ri, si) to the first m positions.
As there are

(
n
m

)
choices for this, the sum can be rewritten as

∑
r,s∈Z/DZ

swt(r,s)=m

ωk·s−r·l
D =

(
n
m

) ∑
(r′1,s

′
1)6=(0,0)

ω
k′1s
′
1−r′1l′1

D . . .
∑

(r′m,s
′
m)6=(0,0)

ω
k′ms

′
m−r′ml′m

D (146)

=
(
n
m

)
(−1)m, (147)

where we have used
∑

(r′i,s
′
i) 6=(0,0) ω

k′is
′
i−r′il′i

D = δk′i,0δl′i,0D
2 − 1 = −1. Again, this result does

not depend on (k, l) ∈Mn. Using the binomial theorem, Eqs. (139) and (145) simplify to

`nn[ρloc,ψ(p)] = |p̃0 − p̃e|2n
∑

(k,l)∈Mn

1 = (1− p̃)2n`nn[Ψ], (148)

as claimed in Eq. (131).

From this proposition, we are now able to express critical noise thresholds in terms of
sector lengths as follows.
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Corollary 9. Let |ψ〉 be an n-qudit stabilizer state and Ψ = |ψ〉 〈ψ|. Furthermore,
let b(n1,...,nk)

j be the bound on sector lengths of a specific partition (n1, . . . , nk) of n for
j ∈ {1, . . . , n}. If p < p

Sec(n1,...,nk)
glob,j [Ψ] (or p̃ < p

Sec(n1,...,nk)
loc [Ψ]), where

p
Sec(n1,...,nk)
glob,j [Ψ] = 1−

√
b

(n1,...,nk)
j /`nj [Ψ] and (149)

p
Sec(n1,...,nk)
loc [Ψ] = 1− 2n

√
b

(n1,...,nk)
n /`nn [Ψ], (150)

then `nj [ρglob,ψ(p)] > b
(n1,...,nk)
j (or `nn [ρloc,ψ(p̃)] > b

(n1,...,nk)
n ). That is, ρglob,ψ(p) (or ρloc,ψ(p̃))

is not (n1, . . . , nk)-separable.

Proof. Equating b(n1,...,nk)
j to Eq. (130), and b(n1,...,nk)

n to Eq. (131), respectively, and solving
for p yields the corresponding noise thresholds. The solutions given in Eqs. (149) and
(150) are the only physically relevant solution (i.e., between 0 and 1) as `nj [ρglob,ψ(p)] and
`nn [ρloc,ψ(p)] are strictly monotonically decreasing in p.

If we combine this result with Theorem 5, it becomes clear that the global-white-noise
thresholds based on sector lengths are not tight: It will turn out that best sector-length
entanglement criterion is obtained for j = n which is still outperformed by the Peres-
Horodecki noise threshold pPPT

glob (D,n) = 1− 1
Dn−1+1

. Indeed, since each sector length
is trivially bounded by Dn − 1 [recall Eq. (113)], no sector-length threshold can exceed
1−
√

(D − 1)n/(Dn − 1). To see that the Peres-Horodecki criterion is superior, it suffices
to verify the inequality

1−
√

(D − 1)n

Dn − 1
< 1− 1

Dn−1 + 1
(151)

which is equivalent to

(D − 1)n(Dn−1 + 1)2 > Dn − 1. (152)

This, in turn, holds true because the relations (D− 1)n ≥ 1 (for D ≥ 2) and D2n−2 ≥ Dn

(for D,n ≥ 2) imply the chain of inequalities

(D − 1)n(Dn−1 + 1)2 ≥ D2n−2 + 2Dn−1 + 1 > D2n−2 − 1 ≥ Dn − 1. (153)

Nevertheless, the sector-length criterion is still better than the entropy criterion.
For example, the noise thresholds for the Werner state defined in Eq. (4) are given by
pEntr

glob ≈ 0.2524, pSec
glob,2[Φ+] = 1− 1/

√
3 ≈ 0.4226 and pPPT

glob (2, 2) = 2/3 ≈ 0.6667. Further-
more, sector-length entanglement criteria are not limited to ruling out full separability;
in contrast to the Peres-Horodecki criterion as in Theorem 5.
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5.4 Explicit derivation of sector lengths

In order to make use of the noise thresholds established in Corollary 9, we have to know
two things: Sector lengths `nj [Ψ] of the pure stabilizer state Ψ = |ψ〉 〈ψ| and corresponding
bounds b(n1,...,nk)

j which are exceeded by `nj [Ψ]. While we have already explained in Sec. 5.2
how b

(n1,...,nk)
j can be derived, explicit derivations of sector lengths are still missing. To

fill this gap, we will now establish sector lengths of important families of qudit stabilizer
states by combinatorial investigations; recall from Eq. (108),

`nj [Ψ] =
∣∣{S ∈ S|ψ〉 | S acts on j qudits}

∣∣ , (108)

that the sector lengths of a stabilizer state are given by the number of stabilizer operators
with a fixed number j of support qudits. Using Eq. (108), we can show that the sector
lengths of the Greenberger-Horne-Zeilinger state as defined in Eq. (22) are as follows:

Proposistion 10. [62] The sector length distribution of the GHZ state is given by

`nj [|GHZnD〉 〈GHZnD|] = δj,n(D − 1)Dn−1 +

(
n

j

)
(D − 1)j + (−1)j(D − 1)

D
. (154)

We defer the lengthy proof to Appendix C. Here, we just calculate the sector lengths
of the tetrapartite AME state |Γ4

D〉 from Eq. (51).

Proposistion 11. Let D be odd. The sector length distribution of the tetrapartite AME
state Ψ4

D = |Γ4
D〉 〈Γ4

D| is given by `4
0[Ψ4

D] = 1, `4
1[Ψ4

D] = `4
2[Ψ4

D] = 0, `4
3[Ψ4

D] = 4(D2 − 1),
and `4

4[Ψ4
D] = (D2 − 1)(D2 − 3).

Proof. Recall from Sec. 3.4 that the stabilizer group of |Γ4
D〉 is isomorphic to the submod-

uleM ⊂ (Z/DZ)4×(Z/DZ)4 which is generated by the four exponent vectors in Eq. (59).
By forming all possible linear combinations, we obtain the parametrization

M =
{
((a, b, c, d), (b− d, a+ c, b+ d,−a+ c))

∣∣ a, b, c, d ∈ Z/DZ
}
. (155)

As we are interested in the number of stabilizers of |Γ4
D〉 acting on exactly j qudits,

we decompose M into the disjoint union of Mj := {(r, s) ∈ M | swt(r, s) = j} for
j ∈ {0, 1, 2, 3, 4}. The sector lengths follow as `4

j [Ψ
4
D] = |Mj|. We will now consecutively

count the vectors in Mj. For this we will use the more convenient notation(
a b c d

b− d a+ c b+ d −a+ c

)
:= ((a, b, c, d), (b− d, a+ c, b+ d,−a+ c)) (156)

from which the symplectic weight can be easily seen by the number of nonzero columns.
As always, there is exactly one vector in M0, namely the one with a = b = c = d = 0.

Hence, `4
0[Ψ4

D] = 0. For j = 1, exactly one column in Eq. (156) must be nonzero; w.l.o.g.
b = c = d = 0 to achieve this in the upper part. The resulting vector is of the form(

a 0 0 0
0 a 0 −a

)
. (157)

39



If a = 0 and a 6= 0, it has symplectic weight 0 and 3, respectively. Thus, M1 = ∅, i.e.,
`4

1[Ψ4
D] = 0.
Similarly, for j = 2, exactly two columns must be nonzero. Because of the upper row

in Eq. (156), this implies that at least two of the four number a, b, c and d are equal to
zero. Although there are

(
4
2

)
= 6 possible cases, it suffices to consider the two of them:

c, d = 0 (b, c = 0, a, d = 0 and a, b = 0 are analogous) and b, d = 0 (a, c = 0 is analogous).
The first (second) case is that where the stabilizer generators of two (non-)neighboring
vertices of Γ4

D are “turned off”. The corresponding vectors are of the form(
a b 0 0
b a b a

)
and

(
a 0 c 0
0 a+ c 0 −a+ c

)
. (158)

There is no choice for a and b such that the left vector in Eq. (158) has symplectic weight
2, i.e., no such vector lies in M2. Similarly, if the right vector in Eq. (158) would have
symplectic weight 2, a and c must fulfill a + c = −a + c = 0, thus 2c = 0. But since we
have assumed that D is odd, no c ∈ Z/DZ fulfills 2c = 0; i.e., no vector with a, c 6= 0 lies
in M2. Therefore, also M2 = ∅, i.e., `4

2[Ψ4
D] = 0.

For j = 3, exactly three of the of the columns must be nonzero. Thus, at least one of
the four numbers a, b, c and d is equal to zero. Consider for example d = 0. In this case
the rightmost column in Eq. (156) is supposed to be zero, i.e., −a + c = 0. Thus, a = c
and the corresponding vector is of the form(

a b a 0
b 2a b 0

)
. (159)

Since 2a 6= 0 is equivalent to a 6= 0 (D is odd), each combinations of a, b ∈ Z/DZ for
which not both a and b are zero yields a vector in M3, i.e., there are D2 − 1 vectors in
M3 with d = 0. Analogously, the three other cases (c = 0, b = 0, and a = 0) yield D2 − 1
vectors each. Therefore, `4

3[Ψ4
D] = 4(D2 − 1).

From normalization, the full-body sector length follows as `4
4[Ψ4

D] = D4−4(D2−1)−1.
The polynomial is equal to (D2 − 1)(D2 − 3) as one can easily verify by checking that
both polynomials share the same roots ±1 and ±

√
3. This finishes the proof.

Since the sector length distributions of the tetrapartite AME and GHZ state are
dominated by their corresponding full-body sector length, `4

4[Ψ4
D] = D4 − 4D2 + 3 and

`4
4[GHZ4

D] = D4 − 4D2 + 3(2D − 1), respectively, the best noise thresholds are obtained
by choosing j = 4 in Corollary 9. The corresponding separability bounds are b(1,1,1,1)

4 ,
b

(2,1,1)
4 , b(3,1)

4 , and b(2,2)
4 as defined in Eq. (121). In Fig. 3, we display these sector lengths

(dashed lines) and separability bounds (dotted and solid lines) with an overall scaling
factor of 1/D4 as a function of D. Vertical lines indicate odd qudit dimensions. Every
case where a sector length exceeds a bound yields a nontrivial noise threshold. Because
of `4

4[GHZ4
D] > `4

4[Ψ4
D], these thresholds will be higher for GHZ states. The green lines

b
(1,1,1,1)
4 , b(2,1,1)

4 , and b
(3,1)
4 are surpassed by the dashed lines `4

4[Ψ4
D] and `4

4[GHZ4
D]. In

particular, this allows us to rule out semiseparability (except for the qutrit AME state,
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Figure 3: Comparison of the full-body sector lengths of tetrapartite GHZ
(black) and AME (blue) states to the corresponding separability bounds
as a function of the qudit dimension. To provide a better overview, we
depict all these quantities with a normalization factor of 1/D4.

where `4
4[Ψ4

3] < b
(3,1)
4 ). However, the red line b(2,2)

4 is strictly larger than the dashed lines.
This is because for four qudits, the state with the largest full-body sector length is a
tensor product of two Bell states, `4

4[ΦD ⊗ ΦD] = (D2 − 1)2 = b
(2,2)
4 [62]. Because of this

limitation, sector length criteria are not strong enough to establish a noise threshold to
establish genuine multipartite entanglement.

5.5 Noise robustness of small quantum networks for qudits

In this section, we compare the noise thresholds based on sector lengths with other noise
thresholds from the literature which we briefly review in Secs. 5.5.1 and 5.5.2. In Sec. 5.5.3,
we carry out the comparison.

5.5.1 Witnessing genuine multipartite entanglement

For every pure GME state |ψ〉 the Hermitian operator

W := α1− |ψ〉 〈ψ| (160)

is a GME witness [64], where

α = max
|φ〉∈B

| 〈φ|ψ〉 |2, (161)

denotes the maximal overlap of |ψ〉 with the set of biseparable states B. Equating

Tr

[
W

(
(1− p) |ψ〉 〈ψ|+ p

1

Dn

)]
= p

(
1− 1

Dn

)
− (1− α) (162)
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and zero yields the critical noise threshold

pWit:GME
glob =

Dn

Dn − 1
(1− α). (163)

To make use of this noise threshold, one has to know α. For our purposes, the following
result will suffice:

Lemma 12. Let |ψ〉 be an AME state. The maximal overlap of |ψ〉 with the biseparable
states is given by α = 1/D.

Proof. First note that α can be rewritten as the maximal squared Schmidt coefficient over
all nontrivial bipartitions [24]. For every bipartition, the Schmidt decomposition of |ψ〉 is
given by

|ψ〉 =
Dk∑
i=1

λi |vi〉J ⊗ |wi〉JC , (164)

where the subset J ⊂ I = {1, . . . , n} corresponds to the bipartition and {|vi〉} and
{|wi〉} are sets of orthonormal vectors in the Hilbert space of the parties in J and JC,
respectively. We assume w.l.o.g. |J | >

∣∣JC
∣∣ =: k. The real numbers λi are referred to

as Schmidt coefficients. Since |ψ〉 is AME, tracing out the larger set of parties J yields a
completely mixed state,

1

Dk
= TrJ [|ψ〉 〈ψ|] =

Dn−k∑
j=1

〈aj|J

 Dk∑
i=1

λ2
i |vi〉 〈vi|J ⊗ |wi〉 〈wi|JC

 |aj〉J (165)

=
Dk∑
i=1

λ2
i |wi〉 〈wi|JC

Dn−k∑
j=1

∣∣ 〈aj|vi〉 ∣∣2 =
Dk∑
i=1

λ2
i |wi〉 〈wi|JC , (166)

where {|aj〉J} is a basis for the Hilbert space associated to J . Since {|wi〉} is an orthonor-
mal set, we obtain λi = 1√

Dk
for all i. Maximizing over 1 ≤ k ≤ n/2 (the size of the

bipartition) yields α = λ2
max = 1/D. This finishes the proof.

5.5.2 Noise thresholds for Greenberger-Horne-Zeilinger states

Because of the simple form of |GHZnD〉, there exists a plethora of noise thresholds for this
state in the literature. The first one we review here is due to Huber et al. [65]. There, the
critical global white noise threshold below which one can rule out a certain separability
type is given by

pHuber
glob = 1− γ

γ +Dn−1
(167)

42



where γ is the corresponding number of possible partitions, see Ref. [57] for more details.
We will only use Eq. (167) with γ = 1 for full separability, γ = n for semiseparability,
and γ = 2n−1 − 1 for biseparability [66]. Note that Eq. (167) with γ = 1 coincides with
the Peres-Horodecki (or reduction) noise threshold for qudit graph states which we have
derived in Sec. 4.

There is also a GME-criterion based on positive maps [25] which leads to the global
white noise threshold

pPosMap:GME
glob = 1− 1 + (D − 2)(2n−1 − 1)

1 + (D − 2)(2n−1 − 1) + (D − 2)Dn−1
. (168)

In the case of local white noise, the only noise threshold we found in the literature is
based on the Peres-Horodecki criterion [67],

pPPT
loc = 1−

n
√

4 + n
√

2
√

4 + n
√

2D
n
√

4 + n
√

2
√

4 + n
√

2D + 2D
. (169)

It can only be used to rule out full separability.

5.5.3 Comparison of noise thresholds for tetrapartite qudit states

In Fig. 4, we have plotted all previously-discussed noise thresholds for the tetrapartite
GHZ state and the AME state Ψ4

D = |Γ4
D〉 〈Γ4

D| as defined in Eqs. (22) and (51) as a
function of D. If the noise parameter p is below a solid, dashed and dotted curve, one
can rule out full separability, semiseparability and biseparability, respectively.

First, consider the upper part of the figure which depicts global white noise thresholds.
One can see that the PPT (and reduction) noise threshold from Sec. 4.2 (and Sec. 4.3)
as well as the literature thresholds from Secs. 5.5.1 and 5.5.2 are good in the sense that
they converge to one in the limit of large D. That is, these criteria can certify genuine
multipartite entanglement for even almost completely mixed states in the limit of large
dimensions. Our thresholds based on sector lengths, on the other hand, converge to
zero. Only the entropy criterion from Sec. 4.1 is worse than the sector-length thresholds.
The reason why the latter converge to zero is because, both the full-body sector lengths
`4

4[GHZ4
D] and `4

4[Ψ4
D] as well as the bounds b(1,1,1,1)

4 , b(2,1,1)
4 , and b(3,1)

4 scale as D4. To yield
good noise thresholds, however, they would need to be large compared to these bounds.
Also note that the sector-length noise thresholds are slightly better for the GHZ than for
the AME state because of `4

4[GHZ4
D] > `4

4[Ψ4
D]. For D ≥ 7, however, this effect is barely

visible anymore.
Now, consider the lower part of Fig. 4 which shows local white noise thresholds. In

this case, the only threshold we found in the literature is based on the Peres-Horodecki
criterion, recall Eq. (169). Although also this curve converges to zero here, it is still better
than the corresponding sector-length threshold for the GHZ state. Also note that here the
sector length thresholds are smaller than in the upper plot. This is always the case because
one has to take a larger root in Eq. (150) than in Eq. (149). An intuitive argument for
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why global white noise thresholds are generally higher than their local counterparts is the
following. Regarded as generalized Pauli error channels, all (nontrivial) errors occur with
equal probability for global noise while large-weight Pauli errors are suppressed for local
white noise, recall the proof of Proposition 8. The errors which are stabilizers of a given
state do not deteriorate it. As we have seen at the example of GHZ states (Prop. 10) and
the tetrapartite AME state (Prop. 11), most stabilizer operators have a large symplectic
weight. That is, for local noise it is less likely that stabilizer errors occur.

In conclusion, the methods developed in Sec. 5 yield noise thresholds for tetrapartite
GHZ and AME states. Since for the case of global white noise GME-thresholds are known,
they only provide new insights in the case of local white noise: For both GHZ and AME
states, we obtain for the first time thresholds to rule out semiseparability; for the AME
state also the full-separability threshold is the only threshold we are aware of. Since our
new noise thresholds based on sector lengths scale very bad in the dimension of the qudits,
we have devoted the final section of this thesis for a detailed investigation of the qubit
case.

6 Small quantum quantum networks for qubits
In the special case of qubits, graph states have received the most attention and are thus
best understood. In particular, a meaningful classification of qubit graph states has been
carried out which we review in Sec. 6.1. In Sec. 6.2, we introduce a graph-theoretical
puzzle whose solution yields the full-body sector length and solve it for four important
families of graph states. In Sec. 6.3 we numerically investigate noise thresholds established
in the previous sections and compare them to other thresholds from the literature.

6.1 Classification of few-qubit graph states

In order to keep the number of inequivalent classes of graph states small and as lucid as
possible, one puts states with the same entanglement properties into a single class: In
the distant laboratory paradigm, the parties can apply unitary single qubit operations
without changing the entanglement properties of their state. Thus, graph states which
are local-unitary (LU) equivalent or the same up to relabeling of the qubits are grouped
together. Since the graph state of a graph with two disconnected components is the same
as the tensor product of two graph states corresponding to these components, it suffices
to establish a classification for connected graphs.

In Sec. 6.1.1, we present the technique of local complementation which is used to
illustrate the change of graphs under the action of certain local unitaries. In Sec. 6.1.2,
we introduce four families of n-qubit graph states which are sufficient to classify graph
states up to n = 5 qubits. In Sec. 6.1.3, we present the classification for n ≤ 8 and in
Sec. 6.1.4, we comment on which sector lengths are possible for graph states.
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Figure 5: Exemplary sequence of local complementations on a tetra-
partite graph. At every step, local Clifford gates according to Eq. (170)
are applied to the current graph state |Γ〉. In particular, all depicted
graphs correspond to LU-equivalent graph states.

6.1.1 Local complementation

Here, we review an important class of local operations which transform certain LU-
equivalent graph states into one another [15, 68]. Let k ∈ V be a vertex of a graph
with adjacency matrix Γ ∈ Fn×n2 and consider the unitary operator

Uk :=
√
−iX(k)

n∏
j=1

(√
iZ(j)

)γj,k
, (170)

where

√
iX = (

√
−iX)† =

1√
2

(
1 −i
−i 1

)
and

√
iZ =

(
eiπ/4 0

0 e−iπ/4

)
(171)

are single-qubit Clifford gates [69]. Applying this operation to |Γ〉 yields again a graph
state,

Uk |Γ〉 = |Lk(Γ)〉 , (172)

where the entries of the new adjacency matrix are given by Lk(Γ)i,j = γi,j + γi,kγj,k.
Graphically, the new graph arises via local complementation about k from the original one.
In graph-theoretical terms, this means that the subgraph induced by the neighborhood
of k is inverted. In Fig. 5, we depict a series of local complementations which shows that
the graph states (C1,2Z)(C2,3Z)(C3,4Z)(C4,1Z) |+〉⊗4 and (C1,3Z)(C3,2Z)(C2,4Z) |+〉⊗4 are
local-Clifford (LC) equivalent. It was shown that for each pair of LC-equivalent graph
states, there exists a sequence of local complementations which transforms them into
each other [68]. For up to eight qubits, one can prove that every pair of LU-equivalent
graph states is already LC-equivalent [15, 70, 71]. This motivated to conjecture that this
is also true for arbitrary graph states [72, 73]. However, explicit counterexamples with
n = 27 and n = 28 qubits have been constructed which prove that this so-called LU-LC
conjecture is wrong [74, 75]. In particular, this implies that there exist LU-equivalent
graph states for which the corresponding graphs differ by more than a sequence of local
complementations.
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Figure 6: Star graphs with two, three, four, five, and six vertices. We
call vertex 1 central vertex. The other vertices are leaves.
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Figure 7: Dandelion graphs with five, six, seven, and eight vertices. We
call vertex 1 lower central vertex, vertices 2 and 3 root vertices, vertex 4
upper central vertex, and all other vertices seed vertices as they resemble
the seeds of a dandelion seed head.

6.1.2 Star, dandelion, line, and ring graphs

Consider the graphs in Fig. 6. They are referred to as star graphs because they have
one distinguished vertex which is connected via an edge to all of the other vertices which
have no direct connections among each other, i.e., they are are leaves. If one applies a
Hadamard gate to all leaf qubits of a star-graph state |Γnstar〉, one obtains the n-qubit GHZ
state |GHZn2 〉. Via local complementation about the central vertex, one can show that the
GHZ state is also LU-equivalent to a graph state with a fully connected graph [15,68].

A slight variation of the star-graph is obtained when one of the leaves gets connected
to two additional vertices, in which case we call them dandelion graphs , see Fig. 7. One
can define dandelion graphs with n ≥ 5 vertices. The third family of graph states we
consider here corresponds to line graphs, see Fig. 8. If a controlled-Z gate is applied to
the two leaf-qubits of a line graph state |Γnline〉, one obtains a ring graph state |Γnring〉 as

1 2 1 2 3 1 2 3 4

Figure 8: Line graphs with two, three, and four vertices.
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Figure 9: Ring graphs with three, four, five, and six vertices.

displayed in Fig. 9. One can define ring graphs with n ≥ 3 vertices.

6.1.3 Classification of graph states on up to eight qubits

Here, we present the classification of graph states for an increasing number of qubits n up
to n = 8. For a single qubit, the only graph state is |+〉 which corresponds to the trivial
graph with a single vertex. For n = 2, there is also only one connected graph which can
be regarded either as star graph or line graph and it corresponds to the graph state

|Γ2
star〉 = |Γ2

line〉 =
1

2


1
1
1
−1

 (173)

which is LU-equivalent to the Bell states defined in Eq. (23). In Ref. [15], the classification
starts at n = 2 and |Γ2

star〉 has been labeled graph state No. 1.
For three qubits, the still-coinciding star and line graph has been labeled graph state

No. 2. However, there is also the ring graph which looks different at a first glance. But
for three parties, the ring graph is fully connected, i.e., local complementation of a star
(or line) graph about the central vertex shows that the states |Γ3

star〉 = |Γ3
line〉 and |Γ3

ring〉
are LU-equivalent. Since these are all connected graphs with three vertices, there is also
only one equivalence class of graph states on n = 3 qubits.

For n = 4 qubits, it turns out that there are exactly two equivalence classes which
can be represented by the star graph (No. 3) and the line graph (No. 4). The sequence of
local complementations in Fig. 5 shows that |Γ4

ring〉 also belongs to class No. 4.
For n = 5 qubits, there are exactly four equivalence classes with representatives |Γ5

star〉
(No. 5), |Γ5

dandelion〉 (No. 6), |Γ5
line〉 (No. 7), and |Γ5

ring〉 (No. 8). That is, the four families
introduced in Sec. 6.1.2 are sufficient for the classification on up to five qubits.

For n = 6 qubits, there are already eleven inequivalent classes of connected graph
states, see Fig. 4 in Ref. [15] for their graphical representation. For even more qubits, the
number of inequivalent classes is growing very fast, see Table 1 for the first few values.
There are exactly 146 inequivalent classes of connected graph states on up to eight qubits,
see Figs. 4 and 5 in Ref. [15] and Fig. 2 in Ref. [70] for the corresponding graphs.
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n 2 3 4 5 6 7 8
number of graphs 1 1 2 4 11 26 101

Table 1: Number of connected graphs which correspond to inequivalent
n-qubit graph states. More information about this sequence is available
in The On-Line Encyclopedia of Integer Sequences R© [OEIS:A090899].

6.1.4 Sector length distributions of graph states

With the classification of qubit graph states at hand, we can answer the question which
sector length distributions can occur for few-qubit graph states. Note that these are inde-
pendent of the representative of the equivalence class as sector lengths are LU-invariant.
Also note that the sector length distribution of a graph state with a disconnected graph
can be obtained my means of Eq. (111). Here, we make use of Eq. (108) which, in the
case of graph states, simplifies to

`nj [Ψn
Γ] =

∣∣{r ∈ Fn2
∣∣ swt(r,Γr) = j

}∣∣ . (174)

We have written a C++ routine which, for a given input graph Γ, computes `nj [Ψn
Γ]

by counting the number of bitstrings r ∈ Fn2 for which swt(r,Γr). It is computationally
feasible to run the routine for n ≤ 28 qubits. Table 2 shows the sector length distributions
obtained in this way for all graph states on up to six qubits. Our method is consistent with
previous results [71]. For seven and eight qubits, we provide similar tables in Appendix D.
Note that it can happen that two LU-inequivalent states have the same sector length
distribution, e.g., state No. 13 and No. 15.

From the tables, one finds, in consistency with the recently proven fact that the GHZ
state has the largest full-body sector length [62, 76], that the star graph state has the
largest full-body sector length among the graph states on n ≤ 8 qubits. It is given by

`nn[Ψn
star] =

{
2n−1 if n is odd
2n−1 + 1 if n is even .

(175)

We can also see that for 5 ≤ n ≤ 8, the second largest full-body sector length is obtained
by graph state No. 11, No. 22, and No. 48, all of which belong to the family of dandelion
graph states. In fact, among all possible generalizations of these three graphs, we focus on
dandelion graphs because we have numerical evidence that they have the second largest
full-body sector length; even for n > 8. In Sec. 6.2.2, we will show that it is given by

`nn[Ψn
dandelion] =

{
5× 2n−4 if n is odd
5× 2n−4 + 4 if n is even .

(176)

Note that line graph states have a rather small full-body sector length. However, we find
that for 4 ≤ n ≤ 8 ring graph states have the smallest full-body sector length, which, for
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Name `n0 `n1 `n2 `n3 `n4 `n5 `n6 Family
No. 1 1 0 3 star/line
No. 2 1 0 3 4 star/line
No. 3 1 0 6 0 9 star
No. 4 1 0 2 8 5 line/ring
No. 5 1 0 10 0 5 16 star
No. 6 1 0 4 6 11 10 dandelion
No. 7 1 0 2 8 13 8 line
No. 8 1 0 0 10 15 6 ring
No. 9 1 0 15 0 15 0 33 star
No. 10 1 0 7 8 7 24 17
No. 11 1 0 6 0 33 0 24 dandelion
No. 12 1 0 4 8 13 24 14
No. 13 1 0 3 8 15 24 13
No. 14 1 0 2 8 17 24 12 line
No. 15 1 0 3 8 15 24 13
No. 16 1 0 3 0 39 0 21
No. 17 1 0 1 8 19 24 11
No. 18 1 0 0 8 21 24 10 ring
No. 19 1 0 0 0 45 0 18

Table 2: Reproduced from Ref. [71]. Sector length distributions for graph
states up to six qubits. The graphs for which no family is mentioned do
not belong to one of the four families of Sec. 6.1.2. See Tables 4–7 in
Appendix D for the sector length distributions for graph states on seven
and eight qubits.
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general n, is given by:

`nn[Ψn
ring] = 1 +

bn/3c∑
k=1

(
n− 2k − 1

k − 1

)
n

k
(177)

as we will show in Sec. 6.2.4. We conjecture that there is no n-qubit graph state |Γ〉 with
a connected graph for which `nn[ΨΓ] is smaller than `nn[Ψn

ring]. In any case, we can conclude
using Theorem 5 and Proposition 8 that the state ρ = 1

2
(Ψn

ring + 1

2n
) is a GME mixed state

with a full-body sector length as low as `nn[ρ] = 1
4
`nn[Ψn

ring]. Similarly follows

inf
ρ GME

`nn[ρ] <
1

4
+

1

4

bn/3c∑
k=1

(
n− 2k − 1

k − 1

)
n

k
, (178)

as an upper bound on the lowest possible full-body sector length that an n-qudit state ρ
can have while still being genuinely multipartite entangled.

6.2 A graph-theoretical puzzle related to the full-body sector
length

Here, we will derive the full-body sector lengths for the graph states families introduced
in Sec. 6.1.2. It turns out that this is possible by means of the following graph-theoretical
puzzle.

Puzzle. Given a graph, in how many ways can one color its vertices such that every
white vertex has an odd number of black neighbors?

Proposistion 13. For a graph with adjacency matrix Γ ∈ Fn×n2 , the solution of the puzzle
above is given by `nn[ΨΓ].

Proof. Recall from Eq. (174) that `nn[ΨΓ] is equal to the number of bitstrings r ∈ Fn2 for
which swt(r,Γr) = n. That is, a given bitstring r contributes to the full-body sector
length of Ψn

Γ iff for all i ∈ {1, . . . , n} it holds ri = 1 or
∑n

j=1 γi,jrj = 1 (or both). Now,
color the vertices i ∈ V for which ri = 1 black and all other vertices white. This bitstring
will contribute iff

∑n
j=1 γi,jrj = 1 for every white vertex i ∈ V , i.e., if every white vertex

has an odd (the sum is evaluated in F2) number of black (rj = 1) neighbors (γi,j = 1).
This finishes the proof.

In Fig. 10, we display the solution of the puzzle for a line graph with three vertices.
Each allowed coloring of the vertices corresponds to the full weight stabilizer operator∏n

i=1 S
ri
i = XrZΓr, where we write ri = 0 (ri = 1) if vertex i is white (black). For

all graphs it is possible to color all vertices black (uppermost coloring in Fig. 10) as
this corresponds to the stabilizer operator S =

∏n
i=1 Si = X(1,...,1)ZΓ(1,...,1) for which

all stabilizer generators are “activated”, i.e., ri = 1 for all i ∈ {1, . . . , n}. If one of the
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(1,1,1)
2 Z
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(1,1,0)
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1 2 3 X
(0,1,1)
2 Z

(1,1,1)
2

1 2 3 X
(0,1,0)
2 Z

(1,0,1)
2

Figure 10: All four colorings of a line graph with three vertices (left) ac-
cording to the rule every white vertex has an odd number of black neigh-
bors. They are in one-to-one correspondence to the full-weight stabilizer
operators (right) of the graph state, i.e., `nn[Ψ3

line] = 4.

1

2

3

45

6

Figure 11: The additional coloring of a star graph where the central
vertex is white; here depicted for n = 6. Because of the rule every white
vertex has an odd number of black neighbors, this coloring is only possible
if n is even.

stabilizer generators Si is “deactivated” (ri = 0), vertex i has to posses activated neighbors
which induce a Z operator on qubit i (for which S does not has an X operator anymore).
If, however, the number activated neighbors was even, the Z operators induced on qubit
i would cancel. That is why, for example, the coloring “black-white-black” does not occur
in Fig. 10.

In the next four subsections, we solve the graph-theoretical puzzle for the four families
of graph states introduced in Sec. 6.1.2. While the full-body sector length of star graph
states can be found, e.g., in Ref. [61,62,76], the results for dandelion, line and ring graph
states were to our knowledge not known before.

6.2.1 Solution of the puzzle for star graphs

Here, we verify using our graph-theoretical puzzle that the full-body sector length of a
star graph state on n qubits is given by Eq. (175). First note that, as long as the central
vertex is black, any coloring of the leaf vertices is in accordance to the rule of the puzzle
since their only neighbor is the (black) central vertex. This gives 2n−1 colorings. If n is
even, there is one additional coloring, see Fig. 11. Since n is even, the number of the
neighbors of the central vertex is odd. Thus, if all leaf vertices are black, the rule is
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1 2 3 4 5 6 7 8 9

Figure 12: Example of coloring vertices according to the rule every white
vertex has exactly one black neighbor on a line graph with n = 9 vertices.
In the bulk, white vertices can only come in pairs of exactly two which
are separated by at least one (here two) black vertex.

fulfilled. No further colorings according to the rule of the puzzle are possible. This proves
Eq. (175).

6.2.2 Solution of the puzzle for dandelion graphs

In order to explain why the solution of the puzzle for dandelion graphs is indeed given by
Eq. (176), we use the naming for its vertices which is given in the caption of Fig. 7: Let us
now discuss the possible colorings which are in accordance to the rule of the puzzle. We
distinguish the two cases where the lower central vertex is black and white, respectively.
If it is black, every coloring (of which there are four) of the root vertices is valid. Similar
to the case of the star graph state, all 2n−4 colorings of the seed vertices are valid as long
as the upper central vertex is black. If, on the other hand, the upper central vertex is
white, all seed vertices must be colored black. This gives one additional coloring; but
only if n − 3 is odd as also the number of marked neighbors of the upper central vertex
must be odd. This gives 4×

(
2n−4 +

(
1+(−1)n

2

))
valid colorings for the first case. In the

second case, the lower central vertex is white. Then, all of its three neighbors must be
black. Again, there are 2n−4 possible choices for the seed vertices. Since the upper central
vertex is necessarily black now, there are no further colorings. We thus obtain the total
number of colorings according to Eq. (176).

6.2.3 Solution of the puzzle for line graphs

For line graphs, each vertex has at most two neighbors and the rule of the puzzle can be
simplified as follows: Every white vertex has exactly one black neighbor. Using Proposi-
tion 13, we are able to derive the following recursive relation:

Corollary 14. The full-body sector length of a line graph state is given by `1
1[Ψ1

star] = 1,
`2

2[Ψ2
star] = 3, `3

3[Ψ3
star] = 4, and `nn[Ψn

star] = `n−1
n−1[Ψn−1

star ] + `n−3
n−3[Ψn−3

star ] for all n ≥ 4.
More information about this sequence, e.g., its generating function, is available in The
On-Line Encyclopedia of Integer Sequences R© [OEIS:A179070].

Proof. According to the rule of the puzzle, it is only allowed to color a leaf vertex white if
its neighbor is black. Furthermore, white vertices in the bulk are allowed iff also (exactly)
one of its neighbors is white. Thus, white vertices can only come in pair of two, see Fig. 12
for an example. To solve the problem, we introduce the notation `nn[Ψn

line] = c
(n)
2 +c

(n)
1 +c

(n)
0 ,
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n 2 3 4 5 6 7 8 9 10 11
`nn[Ψn

line] 3 4 5 8 12 17 25 37 54 79
c

(n)
2 1 1 2 3 4 6 9 13 19 28
c

(n)
1 2 2 2 4 6 8 12 18 26 38
c

(n)
0 0 1 1 1 2 3 4 6 9 13

Table 3: Number of allowed colorings c(n)
i of a line graph with n vertices

such that i leaf vertices are black. We find three relations: c(n)
1 = 2c

(n−1)
2

for n ≥ 3, c(n)
2 = c

(n−1)
2 + c

(n−3)
2 for n ≥ 5, and c(n)

0 = c
(n−2)
2 for n ≥ 4.

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 13: Illustration of the relation c(n)
1 = 2c

(n−1)
2 at the example n = 5.

Depicted are all colorings of a line graph with four (left) and five (right)
vertices according to the rule every white vertex has exactly one black
neighbor. We have highlighted in blue c(4)

2 = 2 choices where both leaves
of a four-vertex line graph are black.

where c(n)
i is the number colorings of an n-vertex line graph where exactly i of the two

leaf vertices are black, e.g., c(3)
2 = 1, c(3)

1 = 2, and c(3)
0 = 1 as one can infer from Fig. 10.

In Table 3 we show the first few values of c(n)
i . There are a few relations among the values

in this table. First, note that for every allowed coloring on n− 1 vertices where the two
leaves are black, one can attach an nth vertex which is white. As one can attach this
additional vertex on either side, one obtains c(n)

1 = 2c
(n−1)
2 for n ≥ 3. This relation is best

illustrated in Fig. 13. We also find the recursive formula c(n)
2 = c

(n−1)
2 + c

(n−3)
2 for n ≥ 5

which we illustrate in Fig. 14. The reason for this relation is the following. Consider the
second vertex next to the leaf on the very right (vertex n − 1). If this vertex is black,
there are c(n−1)

2 allowed colorings for the remaining vertices since we can “remove” the
rightmost vertex and obtain the same combinatorial problem on a smaller graph. If, on
the other hand, vertex n− 1 is white, also the neighbor to its left (vertex n− 2) must be
white. Similar to the first case, we can remove the three rightmost vertices and obtain
a 1:1-correspondence to the c(n−3)

2 colorings of the smaller graph with two black leaves.
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n Colorings

2 1 2

3 1 2 3

4

1 2 3 4

1 2 3 4

5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

8

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

8

8

8

8

8

8

8

8

8

Figure 14: Illustration of the relation c(n)
2 = c

(n−1)
2 +c

(n−3)
2 at the example

of n ∈ {5, 6, 7, 8}. The c(n−1)
2 colorings of the previous line graph are

highlighted in blue; similarly for c(n−3)
2 and red.
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This shows the claimed recursive formula. Finally, the allowed colorings for n where both
leaves are white are in 1:1-correspondence with the allowed colorings for n− 2 where the
leaves are black; just remove the two white leaves of the larger graph. Thus, c(n)

0 = c
(n−2)
2

for n ≥ 4. In combination, we obtain

`nn[Ψn
line] = c

(n)
2 + c

(n)
1 + c

(n)
0 = c

(n)
2 + 2c

(n−1)
2 + c

(n−2)
2 (179)

= c
(n−1)
2 + c

(n−3)
2 + 2

(
c

(n−2)
2 + c

(n−4)
2

)
+ c

(n−3)
2 + c

(n−5)
2 (180)

= c
(n−1)
2 + c

(n−3)
2 + c

(n−1)
1 + c

(n−3)
1 + c

(n−1)
0 + c

(n−3)
0 (181)

= `n−1
n−1[Ψn−1

line ] + `n−3
n−3[Ψn−3

line ], (182)

where we have used c(m)
2 = c

(m−1)
2 +c

(m−3)
2 with m ∈ {n−2, n−1, n} to get from line (179)

to (180). This finishes the proof.

6.2.4 Solution of the puzzle for ring graphs

Here, we will prove that the full-body sector length of the ring graph state is given by

`nn[Ψn
ring] = 1 +

bn/3c∑
k=1

(
n− 2k − 1

k − 1

)
n

k
. (177)

The first term “1” in Eq. (177) corresponds to the coloring where all vertices are black. For
the ring graph, the rule of the puzzle implies that white vertices can only come in pairs of
exactly two, i.e., two such pairs are separated by at least one black vertex. The number k
over which the sum in Eq. (177) runs should be regarded as the number of white pairs on
a ring graph. Note that up to k = bn/3c white pairs fit on the ring. Hence, the validity of
Eq. (177) directly follows from the following lemma which we prove in Appendix E using
the theory of group actions.

Lemma 15. Let N(n, k) be the number of choices to place k pairs of white vertices on
an n-vertex ring graph such that any two such pairs are separated by at least one black
vertex. Then, it holds N(n, k) =

(
n−2k−1
k−1

)
n
k
.

According to The On-Line Encyclopedia of Integer Sequences R© [OEIS:A001609], the
sequence fulfills `nn[Ψring

n ] = `n−1
n−1[Ψn−1

ring ] + `n−3
n−3[Ψn−3

ring ] for all n ≥ 6 which is the same recur-
sion relation as for the line graph. However, the starting values `3

3[Ψring
3 ] = 4, `4

4[Ψring
4 ] = 5,

and `5
5[Ψring

5 ] = 6 are smaller for the ring graph. This shows `nn[Ψring
n ] < `nn[Ψline

n ] for all
n ≥ 4. We conjecture that ring graph states have the smallest full-body sector length
among all graph states with a connected graph.
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6.3 Investigation of noise thresholds

For qubit graph states with a connected graph, the maximal overlap with the biseparable
states is given by α = 1/2 [24]. Hence, the global white noise threshold from Eq. (163)
simplifies to

pWit:GME
glob =

2n

2n+1 − 2
=

1

2
+

1

2n+1 − 2
. (183)

Furthermore, there is an explicit entanglement distillation protocol [77] which shows that
every qubit graph state can tolerate local white noise up to at least

pDist
loc = 1− 2−2/(mi+mj+2), (184)

where mi and mj are the maximal degrees (number of neighbors) of two neighboring
vertices i and j.

Here, we compare these known thresholds to our new thresholds from Corollary 9.
Thereby, we will compare the full-body sector length of the pure graph states, recall
Sec. 6.2, to the bounds b(1,1,...,1)

n = 1, b(2,1,...,1)
n = 3, b(3,1,...,1)

n = 4, b(4,1,...,1)
n = 9, and

b(n−1,1)
n = 2n−2 +

1 + (−1)n−1

2
(185)

which follow from Eq. (111) and the fact that there is no n-qubit state whose full-body
sector length exceeds 2n−1 +

(
1+(−1)n

2

)
[62, 76]. We chose these bounds as they allow us

to gain new insights. We separately discuss graph states with star, dandelion, and line
graphs in Sec. 6.3.1, 6.3.2, and 6.3.3, respectively, and spare a discussion of ring graph
states as it would be almost the same as for line graph states. Finally, in Sec. 6.3.4, we
comment on how our methods can be generalized to arbitrary graph states.

6.3.1 Noise thresholds for qubit GHZ states

Greenberger-Horne-Zeilinger states (LU-equivalent to star-graph states) belong to the
best studied n-qubit states as they are simply given by an equal superposition of only
two computational basis states. For the case of global white noise, we depict its noise
thresholds in the upper part of Fig. 15. First, consider the full-separability thresholds
(solid curves). If the noise is below such a curve, GHZn(p) := (1 − p) |GHZn2 〉 〈GHZn2 | +
p1/2n is entangled. The highest of these thresholds (red curve), pPPT

glob = 1 − 1
2n−1+1

, is
known for 20 years [56]. In the limit of many qubits, this threshold, as well as the full-
separability threshold based on sector lengths (blue curve), converge to 1. In contrast,
the threshold based on the entropy criterion (green curve) only converges to 1/2. This
shows that our new noise threshold outperforms the entropy criterion.

Next, consider the witness threshold pWit:GME
glob (dotted yellow curve) from Eq. (183)

that can rule out biseparability. In Ref. [78] it is shown that this threshold is tight in
the sense that GHZn(p) is GME iff p < pWit:GME

glob . Note that this GME-threshold can
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Figure 15: Noise thresholds for global (top) and local (bottom) white
noise on n-qubit GHZ states. For noise parameters below a given curve,
the corresponding separability type is ruled out. For example, below a
solid curve, the corresponding state is not fully separable, thus entangled.
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also be obtained with the approach of Ref. [65] 5 as well as with an approach based on
positive maps [25]. The results by Huber et al. also provide a threshold from which
semiseparability can be ruled out, recall Eq. (167). Here, this threshold (dashed brown
curve) simplifies to

p
Huber:(n−1,1)
glob = 1− n

n+ 2n−1
. (186)

This curve exceeds all (blue) curves based on sector lengths; in particular, the semisepa-
rability threshold (dashed bright blue curve) which converges to 1− 1/

√
2 ≈ 0.29. Thus,

our approach does not provide any new insights about the GHZ state in the case of global
white noise.

In the case of local white noise, however, our approach yields a nontrivial semisepa-
rability threshold for all n-qubit GHZ states as one can see in the lower part of Fig. 15
(dashed bright blue curve). To our knowledge such a semiseparability threshold was not
known before. To rule out full separability (solid curves), the best known threshold (red
curve) is based on the Peres-Horodecki criterion. Here (for qubits), Eq. (169) simplifies
to

pPPT
loc = 1− 1√

22−2/n + 1
(187)

which was first derived in Ref. [80]. In the limit of many qubits, this threshold converges
to 1 − 1/

√
5 ≈ 0.55. The sector length thresholds for ruling out (j, 1, . . . , 1)-separability

for a constant j, converge to 1 − 1/
√

2 ≈ 0.29. This is better than the full-separability
threshold pDist

loc = 1− 2−2/(n+2) based on the entanglement distillation protocol of Ref. [77]
which converges to 0.

6.3.2 Noise thresholds for qubit dandelion-graph states

As the family of dandelion graphs was defined by us, there are no entanglement thresholds
particularly tailored to these states. Still, we can compare our new thresholds to the
literature thresholds for generic qubit graph states. In the case of global white noise,
see the upper part of Fig. 16, again the Peres-Horodecki criterion (red curve) yields
the highest full-separability threshold, followed by the sector length criterion (solid blue
curve), and the entropy criterion (green curve). As the semiseparability threshold based
on sector lengths (dashed bright blue curve) is always below the biseparability threshold
based on witnesses (dotted yellow curve), it does not provide any new insights. However,
for n ≥ 5, sector lengths can rule out (2, 1, . . . , 1)- and (3, 1, . . . , 1)-separability for a
larger amount of global noise than the GME-witness. This comparison is not completely

5There is a typo in Ref. [65]: The stated GME noise threshold 1 − 3
2n−1+3 contradicts the fact that

threshold 1
2 + 1

2n+1−2 is tight [78]. Also note that in Ref. [79] a biseparable decomposition for GHZ4(p)

is constructed, where p ≈ 1 − 0.466 = 0.534 < 0.7272 = 1 − 3
24−1+3 . We were informed that the correct

version of the noise threshold in Ref. [65] is obtained if one replaces 3 by 2n−1 − 1 [66].
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Figure 16: Noise thresholds for global (top) and local (bottom) white
noise on n-qubit dandelion-graph states. For noise parameters below a
given curve, the corresponding separability type is ruled out. For exam-
ple, below a solid curve, the corresponding state is not fully separable,
thus entangled.
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fair as we expect that replacing α = 1/2 in Eq. (163) by the maximal overlap with the
(j, 1, . . . , 1)-separable states, where j ∈ {2, 3}, would provide an even higher threshold
to rule out (j, 1, . . . , 1)-separability. However, we are not aware of an explicit expression
of this overlap. That is, to rule out these types of separability, the corresponding sector
length thresholds are the highest which are currently known.

Next, consider the case of local white noise for which we plot noise thresholds in
the lower part of Fig. 16. For any n, the sector length criterion (solid blue curve)
yields a higher full-separability threshold than the distillation protocol which is here
given by pDist

loc = 1 − 2−2/(n+2) (solid green curve). As for GHZ-states, the sector length
threshold converges to 1 − 1/

√
2 ≈ 0.29, in the limit of many qubits, while the dis-

tillation threshold converges to 0. Furthermore, we obtain a nontrivial semiseparabil-
ity threshold for all n-qubit dandelion graph states because the full-body sector length
`nn[Ψn

dandelion] = 5× 2n−4 + 4
(

1+(−1)n−1

2

)
is strictly larger than the corresponding semisep-

arability bound b(n−1,1)
n = 2n−2 +

(
1+(−1)n−1

2

)
. In conclusion, our sector length approach

yields new insights for dandelion graph states under local white noise.

6.3.3 Noise thresholds for qubit line-graph states

Consider the upper part of Fig. 17, where we display global white noise thresholds for
qubit line graph states. For these states, there exist entanglement witnesses which rule
out full separability [27]. The corresponding threshold pWit

glob = 2k/(2k + 1) is the solid
yellow curve in Fig. 17, where k = b(n+ 2)/4c. Also note the break in the dotted yellow
curve which is due to the fact that the GME witnesses of Ref. [28] outperform the generic
witnesses from Eq. (160) for n ∈ {4, 5, 6}.

Also here, the Peres-Horodecki criterion provides the best threshold to rule out full
separability (red curve). The witness threshold (solid yellow curve) and the sector length
threshold (solid blue curve) perform similarly well. For large n, however, sector lengths
are slightly superior; the smallest instance is n = 9. The semiseparability threshold based
on sector lengths (dashed bright blue curve) is trivial for all n ≥ 5 because `nn[Ψn

line] is
growing less quickly than the corresponding bound b(n−1,1)

n . As in Sec. 6.3.2, the only new
insights concern (j, 1, . . . , 1)-separability, where j ∈ {2, 3, 4}.

Now, consider local white noise thresholds for qubit line graph states which we show in
the lower part of Fig. 17. For n ≥ 4, the distillation threshold (green curve) is independent
of n and constant 0.2833, cf. Eq. (184) [77]. This outperforms the sector length threshold
(solid blue curve) for all n. Using a fixed point ansatz based on the recursive formula
from Corollary 14, we can show that this curve converges to

lim
n→∞

p
Sec(1,...,1)
glob,n [Ψn

line] = 1−

√
3

√
2(
√

93 + 9)− 3

√
2(
√

93− 9)

3
√

6
≈ 0.174. (188)

Therefore, also in the case of local white noise, the only new insights concern (j, 1, . . . , 1)-
separability, where j ∈ {2, 3, 4}.
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Figure 17: Noise thresholds for global (top) and local (bottom) white
noise on n-qubit line graph states. For noise parameters below a given
curve, the corresponding separability type is ruled out. For example,
below a solid curve, the corresponding state is not fully separable, thus
entangled.
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6.3.4 On noise thresholds for general qubit graph states

So far, we have only discussed noise thresholds for families of qubit graph states for which
we are able to solve the graph-theoretical puzzle analytically. Given an arbitrary qubit
graph state ΨΓ = |Γ〉 〈Γ|, one can extend our methods using the following two steps.

(i) Numerically compute `nn[ΨΓ] or a lower bound thereof.

(ii) The state ΨΓ can tolerate at least pSec
loc = 1− 2n

√
b/`nn[ΨΓ] local white noise without

becoming separable (b = 1) or semiseparable
(
b = 2n−2 + 1+(−1)n−1

2

)
. If here a lower

bound of `nn[ΨΓ] is used instead of `nn[ΨΓ] itself, this noise threshold is still valid,
though more coarse.

Note that Proposition 13 can be formally restated as

`nn[ΨΓ] =

∣∣∣∣∣
{
r ∈ Fn2

∣∣∣∣ ∀i ∈ {1, . . . , n} : (1 + ri)

(
1 +

n∑
j=1

γi,jrj

)
= 0

}∣∣∣∣∣ . (189)

Numerically computing this cardinality is an instance of the Boolean Multivariate Quadratic
Polynomial Problem for which an algorithm with runtime O(20.841n) is known [81]. By
changing the rule of the puzzle to every vertex has an odd number of black neighbors, one
obtains the lower bound `nn[ΨΓ] ≥

∣∣∣{r ∈ Fn2
∣∣ ∀i ∈ {1, . . . , n} :

∑n
j=1 γi,jrj = 1

}∣∣∣ which is
efficiently computable via, e.g., Gaussian elimination. Such a lower bound on the full-
body sector length can provide at least a coarse threshold if it is intractable to run the
algorithm with runtime O(20.841n).

7 Conclusion
To conclude this thesis, we recapitulate our main results in Sec. 7.1 and give an outlook
on future work in Sec. 7.2.

7.1 Main results

We have studied how much noise a given state can tolerate without losing its entanglement.
Using the Peres-Horodecki criterion [20, 21] and the reduction criterion [22, 23], we have
shown that every (non-trivial) graph state on n qudits of dimension D does not become
separable if it is replaced by the maximally mixed state 1/Dn with a probability smaller
than pPPT

glob (D,n) = pRed
glob(D,n) = 1− 1

Dn−1+1
, where D ≥ 2 can be any number.

To capture more aspects of multipartite entanglement and to establish critical noise
thresholds against local white noise, we have applied the concept of sector lengths. For
an n-qudit stabilizer state Ψ, the j-body sector length `nj [Ψ] is given by the number of its
weight-j stabilizers, where 1 ≤ j ≤ n. Sector lengths can also be defined for general states
ρ. If `nj [ρ] exceeds a certain bound b, one can conclude that ρ is not a mixture of states with
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a specific multipartite separability type, e.g., a tripartite ρ is entangled if `3
j [ρ] > b

(1,1,1)
j

and genuinely tripartite entangled if `3
j [ρ] > b

(2,1)
j . More concretely, denote an n-qudit

stabilizer state Ψ that is mixed with 1/Dn with probability p by ρglob(p). Likewise, let
ρloc(p) denote a state to which a depolarizing channel σ 7→ (1− p)σ + p1/D was applied
to each qudit individually. For noise parameters p below pSec

glob,j[Ψ] := 1 −
√
b/`nj [Ψ] and

pSec
loc [Ψ] := 1 − 2n

√
b/`nn[Ψ], we have shown that `nj [ρglob(p)] and `nn[ρloc(p)], respectively,

exceeds a such a bound b.
In order to make use of these thresholds, we have computed the sector lengths of

important states. For example, the sector length distribution of a D-dimensional, n-qudit
Greenberger-Horne-Zeilinger (GHZ) states [31] is given by `nj [GHZnD] = δj,n(D−1)Dn−1 +(
n
j

)
((D − 1)j + (−1)j(D − 1))/D. For the special case of qubits, we have created tables

of the sector length distribution for all 146 graph states with n ≤ 8 qubits [15, 70]. The
so-called full-body sector length, `nn[Ψ], yields the best noise threshold. We have related
`nn[Ψ] to a graph-theoretical puzzle which we solved for four important families of qubit
graph states. To our knowledge, the full-body sector length of line-graph states, ring-
graph states, and here-introduced dandelion-graph states were not known before. Finally,
we described a method to compute `nn[Ψ] for arbitrary qubit graph states.

We have also carried out a numerical analysis of the noise thresholds derived here and
compared them to preexisting thresholds. The larger the full-body sector length of the
investigated state, the better the corresponding noise thresholds are. For the GHZ state
which has the largest full-body sector length, however, many other criteria previously
have been investigated such that our approach only yields new insights in the case of
semiseparability and local white noise. For qubit dandelion-graph states, however, the
best local-noise thresholds which now exist are based sector lengths.

7.2 Outlook

In our investigation, we have mainly focused on the full-body sector length of a given
state since this provided the best thresholds among the j-body sector lengths. To further
improve these thresholds, it would be worthwhile to combine our results about how sector
lengths are diminished under noise with the consideration linear combinations of sector
lengths (and not only `nn[Ψ]), similar to Ref. [60]. For local white noise it is then necessary
extend Proposition 8 to `nj [ρloc(p)].

We have studied the sector length distributions for qubit graph states and gathered
numerical evidence that the ring graph state has the smallest full-body sector length
among the qubit graph states with a connected graph. Likewise, we have numerical
evidence that (after the GHZ state) the dandelion-graph state has the second largest
full-body sector length. Formal proofs for this (or counterexamples) would be interesting.

Finally, it would be useful to develop a numerical method (e.g., a semidefinite pro-
gramming relaxation based on the graph-theoretical puzzle) to efficiently compute a good
lower bound on the full-body sector length of an arbitrary graph state. This would provide
efficiently computable noise thresholds for arbitrary stabilizer states.
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9 Clarification of the originality of my results
Here, I clarify to what extent the results in this thesis are my own results.

Theorem 1. The content of this theorem was already stated in Ref. [43], although only
in the case where S ∼=

∏n
i=1 Z/DZ and without a formal proof. For the more heavily

studied case of qubits, the theorem is proven e.g., in Ref. [44]. My proof, which works for
arbitrary qudit dimension, consists of two parts. As already mentioned in Sec. 3.2, the
essential idea of “(ii)⇒(i)” is due to Gheorghiu [46] (also in this reference, the content of
Thrm. 1 is contained). On the other hand, I formulated the proof of “(i)⇒(ii)” on my
own.

Lemma 2. This lemma is an immediate consequence of Theorem 1 and often used in
the community in one form or another. Since the lemma is easily proven (no difficulty
arises by considering qudits), I could not find out who used it first. The given proof was
written by myself.

Lemma 3. This lemma can be regarded as a trivial application of a classical result
known as Schur’s lemma [82, p. 13]. It can also be regarded as a direct consequence of
the relation

1

Dn
=

1

D2n

∑
r,s∈(Z/DZ)n

(XrZs) ρ (XrZs)† (190)

which I have formally shown in Ref. [17] for all n-qudit states ρ. Despite its elementary
form, I did not find an adequate reference for Lemma 3 in the literature. Therefore, the
direct proof of Lemma 3 presented here was formulated by myself.

Lemma 4. This result is well-known in the community. For qubits it was proven by
Dür et al. in 1999 [56]. For qudits it is known for at least 10 years, e.g., in Ref. [57] it is
mentioned without a proof. The proof presented here is straightforward and I formulated
it on my own.

Theorem 5, Corollary 6. I found these results and formulated their proofs on my
own. While the resulting noise thresholds are readily established for many special cases,
I could not find a formulation of this result in the literature which is as general as here.
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Lemma 7. This lemma is a straightforward application of Eq. (111) and I would not
be surprised if it is already known to the community. Note that Thrm. 4 of Ref. [59] also
is an entanglement criterion based on sector lengths which can be used to rule out full
separability; although it is not directly related to Lemma 7.

Proposition 8, Corollary 9. To the best of my knowledge, these results were not
known before.

Proposition 10. I figured out this result on my on. Recently, however, it was indepen-
dently discovered in Ref. [62] by Eltschka and Siewert. Their preprint was uploaded after
I finished the formulation and the proof of Proposition 10 (but before the submission of
this thesis).

Proposition 11. To my knowledge, the sector length distribution of the tetrapartite
AME state has not been calculated before. Note that our result is consistent with the
approximation `nn[Ψn

D] ≈ Dn
(
1− 1

D2

)n of the full-body sector length of an n-qudit AME
state [62].

Lemma 12. Although proving this result is not very difficult, I did not find it in the
literature. I thank Marcus Huber for suggesting the idea of the proof.

Proposition 13, Corollary 14. To my knowledge, these results were not known before.

Lemma 19. I wrote this proof on my own. It could be possible that a shorter proof
based on some combinatorial argument I am not aware of exists.

Lemma 16, Lemma 17. These facts directly follow from elementary group-theoretical
considerations and it is very likely that they have been used before in a different context.

Lemma 18. This result can be understood as a generalization of Proposition 10 as the
Z/DZ-module MZ generated by the vectors in Eq. (241) is an example for ker(ϕ) in the
proof of Lemma 18.
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A Proof of Theorem 5
Here, we state the proof of Theorem 5 from the main text. For a better readability, we
repeat it now.

Theorem 5. Let Γ ∈ (Z/DZ)n×n be the adjacency matrix of a graph state such that γ1,2

is invertible. Then, λ(p) = p/Dn− (1−p)/D is an eigenvalue of the operator ρglob,Γ(p)TA.
In particular, ρglob,Γ(p) is entangled for all p < pPPT

glob (D,n) := 1− 1
Dn−1+1

.

Proof. We will prove this statement by showing that this operator has an eigenvector
v ∈ CDn to the eigenvalue λ(p) whose entries are given by

vs := ω

n∑
i=2

n∑
j=i+1

γi,jsisj

D

ω n∑
j=2

γ1,jsj

D δs1,0 − δs1,1

 (191)

for all s = (s1, . . . , sn) ∈ (Z/DZ)n. Thereby, we will only consider the non-trivial case
p 6= 1 and work with the operator

σ :=
Dn

1− p

(
(1− p) |Γ〉 〈Γ|TA + p

1

Dn
− 1

Dn

)
+ 1. (192)

The claim is equivalent to the simpler eigenequation σv = −Dn−1v because by passing
from ρglob,Γ(p)TA = (1− p) |Γ〉 〈Γ|TA + p1/Dn to σ, the eigenvalue λ(p) changes into

Dn

1− p

(
λ(p)− 1

Dn

)
+ 1 =

Dn

1− p

(
−1− p

Dn
− 1− p

D

)
+ 1 = −Dn−1 (193)

while the eigenvector remains unchanged. To obtain the explicit expression of σ, recall
from Eq. (47) that the projector onto a graph state |Γ〉 is given by

|Γ〉 〈Γ| = 1

Dn

∑
r,s∈(Z/DZ)n

ω

n∑
i=1

n∑
j=i+1

γi,j(rirj−sisj)

D |r〉 〈s| . (194)

The partial transposition with respect to Alice swaps r1 and s1, i.e.,

|Γ〉 〈Γ|TA =
1

Dn

∑
r,s∈(Z/DZ)n

ω

n∑
j=2

γ1,j(s1rj−r1sj)+
n∑
i=2

n∑
j=i+1

γi,j(rirj−sisj)

D |r〉 〈s| . (195)

Inserting this expression into Eq. (192) yields that for all r, s ∈ (Z/DZ)n the entries of
the operator σ are given by the single expression

σr,s = ω

n∑
j=2

γ1,j(s1rj−r1sj)+
n∑
i=2

n∑
j=i+1

γi,j(rirj−sisj)

D , (196)
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in particular they do not depend on p.
We now start the main work of showing σv = −Dn−1v for each component, i.e., for

every r ∈ (Z/DZ)n, we want to prove that

∑
s∈(Z/DZ)n

σr,svs =
∑

s∈(Z/DZ)n

ω

n∑
j=2

γ1,j(s1rj−r1sj)+
n∑
i=2

n∑
j=i+1

γi,jrirj

D

ω n∑
j=2

γ1,jsj

D δs1,0 − δs1,1

 (197)

= ω

n∑
i=2

n∑
j=i+1

γi,jrirj

D

∑
s∈(Z/DZ)n

ω

n∑
j=2

γ1,j(s1rj−r1sj)

D

ω n∑
j=2

γ1,jsj

D δs1,0 − δs1,1

 (198)

is equal to−Dn−1vr = −Dn−1ω

n∑
i=2

n∑
j=i+1

γi,jrirj

D

ω n∑
j=2

γ1,jrj

D δr1,0 − δr1,1

 .

(199)

Thus, it suffices to show that

An(r) :=
∑

s∈(Z/DZ)n

ω

n∑
j=2

γ1,j(s1rj−r1sj)

D

ω n∑
j=2

γ1,jsj

D δs1,0 − δs1,1

 (200)

and Bn(r) := −Dn−1

ω n∑
j=2

γ1,jrj

D δr1,0 − δr1,1

 (201)

are equal for all n and all r ∈ (Z/DZ)n. This we do with a proof by induction over the
parties n ≥ 2.

For n = 2, this theorem is only about adjacency matrices of the form

Γ =

[
0 γ
γ 0

]
, (202)

where γ ∈ Z/DZ is invertible. In that case, however, |Γ〉 is locally Clifford equivalent to
|GHZ2

D〉 = 1⊗M(γ)F † |Γ〉. From the proof of lemma 4, we know(
(1− p) |GHZ2

D〉 〈GHZ2
D|

TA + p
1

D2

)
(|0, 1〉 − |1, 0〉) = λ(p) (|0, 1〉 − |1, 0〉) , (203)

thus, the vector

1⊗M(γ)†F (|0, 1〉 − |1, 0〉) =
1√
D

∑
k,l∈Z/DZ

ωklD |γ−1k〉B 〈l|B (|0, 1〉 − |1, 0〉) (204)

=
1√
D

∑
k∈Z/DZ

(
ωk·1D |0, γ−1k〉 − ωk·0D |1, γ−1k〉

)
(205)

=
1√
D

∑
s∈Z/DZ

(ωγsD |0, s〉 − |1, s〉) (206)
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is an eigenvector of ρglob,Γ(p) to the eigenvalue λ(p). Note that we have substituted k = γs
in the last step. Identifying s with s2 and γ with γ1,2 is becomes clear that (up to rescaling)
the vector in Eq. (206) is the same as v which was defined in Eq. (191). We have thus
established σv = −Dv which implies the base case of the induction, A2(r1, r2) = B2(r1, r2)
for all r1, r2 ∈ Z/DZ.

We now move on with the inductive step: Let n ≥ 2 and assume An(r) = Bn(r) for all
r ∈ (Z/DZ)n. Additionally let rn+1 ∈ Z/DZ. There is a relation between An+1(r, rn+1)
and An(r): For n+ 1, definition (200) reads

An+1(r, rn+1) :=
∑

s1,sn+1∈Z/DZ

∑
s2,...,sn∈Z/DZ

ω

n+1∑
j=2

γ1,j(s1rj−r1sj)

D

ωn+1∑
j=2

γ1,jsj

D δs1,0 − δs1,1

 (207)

=
∑

sn+1∈Z/DZ

(
ω
γ1,n+1(sn+1−r1sn+1)
D x0(r)− ωγ1,n+1(rn+1−r1sn+1)

D x1(r)
)

(208)

where we have used the substitution

x0(r) :=
∑

s2,...,sn∈Z/DZ

ω

n∑
j=2

γ1,j(sj−r1sj)

D and x1(r) :=
∑

s2,...,sn∈Z/DZ

ω

n∑
j=2

γ1,j(rj−r1sj)

D (209)

which helps to separate all terms with index j = n + 1 from the rest. Carrying out the
summation over s1 in definition (200) yields An(r) = x0(r) − x1(r). This is the relation
between An+1(r, rn+1) and An(r). For B, we obtain

Bn+1(r) =−Dn

ωn+1∑
j=2

γ1,jrj

D δr1,0 − δr1,1

 = Dω
γ1,n+1rn+1δr1,0
D Bn(r) (210)

from definition (201). Thus, the inductive hypothesis An(r) = Bn(r) implies

Bn+1(r) = Dω
γ1,n+1rn+1δr1,0
D (x0(r)− x1(r)) . (211)

Now, we will show x0(r) = 0 if r1 6= 1, and x1(r) = 0 if r1 6= 0 as we will need these
facts below. Indeed, if r1 6= 1, Eq. (209) simplifies to

x0(r) =
∑

s2,...,sn∈Z/DZ

ω

n∑
j=2

γ1,j(sj−r1sj)

D =
∑

s3,...,sn∈Z/DZ

ω

n∑
j=3

γ1,j(sj−r1sj)

D

∑
s2∈Z/DZ

ω
γ1,2s2
D = 0,

(212)

since γ1,2 6= 0 implies
∑

s2
ω
γ1,2s2
D = 0 (the powers of a complex root of unity sum up to
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zero as long as not all of them are equal to one). Likewise, if r1 6= 0, we have

x1(r) =
∑

s2,...,sn∈Z/DZ

ω

n∑
j=2

γ1,j(rj−r1sj)

D (213)

=
∑

s3,...,sn∈Z/DZ

ω
γ1,2r2+

n∑
j=3

γ1,j(rj−r1sj)

D

∑
s2∈Z/DZ

ω
−γ1,2r1s2
D = 0. (214)

Note that this is the step where it is crucial that the graph has an invertible edge. (Oth-
erwise, −γ1,2r1 would be zero for at least one r1 ∈ Z/DZ besides r1 = 0. In that case, we
could not have used

∑
s2
ω
−γ1,2r1s2
D = 0.)

To show An+1(r) = Bn+1(r) we will distinguish the three cases. First case: r1 = 0.
We have x0(r) = 0 since r1 6= 1. Thus, Eqs. (208) and (211) simplify to

An+1(0, r2, . . . , rn+1) = −
∑

sn+1∈Z/DZ

ω
γ1,n+1rn+1

D x1(r) = −Dωγ1,n+1rn+1

D x1(r) (215)

= Bn+1(0, r2, . . . , rn+1). (216)

Second case: r1 = 1. We have x1(r) = 0 since r1 6= 0. Thus, Eqs. (208) and (211) simplify
to

An+1(1, r2, . . . , rn+1) =
∑

sn+1∈Z/DZ

x0(r) = Dx0(r) = Bn+1(1, r2, . . . , rn+1) (217)

Third case: r1 ∈ {2, . . . , n}. We have x0(r) = x1(r) = 0 since r1 is neither 0 nor 1. Thus,
Eqs. (208) and (211) simplify to An+1(r) = 0 = Bn+1(r).

This finishes the proof by induction, i.e., we have established that v ∈ CDn as defined
in Eq. (191) is indeed an eigenvector of (1−p) |Γ〉 〈Γ|TA +p1/Dn to the eigenvalue λ(p) =
p/Dn − (1− p)/D.

B Analytical lower bounds on the full-body sector length
of general qudit graph states

Whenever a sector length of a given graph state ΨΓ = |Γ〉 〈Γ| exceeds a corresponding
separability bound, Corollary 9 yields a certain noise threshold. Here, we show that
the full-body sector length, `nn[ΨΓ], is never smaller than b

(1,...,1)
n = (D − 1)n, the full-

separability bound. We also provide coarse lower bounds on `nn[ΨΓ] which already suffice
to establish a nontrivial noise threshold in many cases.

Recall from Eq. (108) that the full-body sector length of ΨΓ is equal to the number of
its full-weight stabilizer operators. Using Eq. (50) we can parametrize its stabilizer group
via the isomorphism

(Z/DZ)n
'−→ S|Γ〉, r 7−→

n∏
i=1

Srii = Xr
DZ

Γr
D , (218)
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where Γr ∈ (Z/DZ)n is the vector obtained by applying the adjacency matrix Γ to the
vector r. Thus, the full-body sector length can be rewritten as

`nj [ΨΓ] =
∣∣{r ∈ (Z/DZ)n

∣∣ j = swt(r,Γr)
}∣∣ . (219)

Since every vector r which has only nonzero entries (i.e., wt(r) = n ⇒ swt(r,Γr) = n)
contributes to this quantity, it follows at once that `nn[ΨΓ] ≥ (D−1)n holds for all graphs.
Thus, to establish a nontrivial noise threshold, it suffices to find a single vector r which
has at least one entry equal to zero, say ri = 0, and which fulfills

∑n
j=1 γi,jrj 6= 0. In

the case where i is a leaf, i.e., there is exactly one j with γi,j 6= 0, the latter condition
simplifies to γi,jrj 6= 0 and the following group-theoretical fact terminates the search for
the additional vector we look for.

Lemma 16. Let γ ∈ Z/DZ. The number of elements r ∈ Z/DZ fulfilling γr 6= 0 is
given by D − gcd(D, γ). 6

Proof. We are looking for the number of elements in the set L := {r ∈ Z/DZ | γr 6= 0}
which can be rewritten as L = Z/DZ\ ker(ϕ) for the group homomorphism

ϕ : Z/DZ −→ Z/DZ, r 7−→ γr. (220)

By the first isomorphism theorem [41, 1.2/ Kor.7], the groups im(ϕ) and (Z/DZ)/ ker(ϕ)
are isomorphic. Since the image im(ϕ) = 〈γ〉 contains ord(γ) = D/ gcd(D, γ) elements,
we obtain

|L| = |Z/DZ| − |ker(ϕ)| = |Z/DZ| − |Z/DZ|
|im(ϕ)| = D − gcd(D, γ). (221)

This finishes the proof.

Note that this indeed provides the additional vector r since D − gcd(D, γ) > 0 holds
for all nonzero γ ∈ Z/DZ. For general graphs, however, the situation is more complicated
as the sum

∑n
j=1 γi,jrj consists of more than one term. In that case, we need the following

generalization of Lemma 16:

Lemma 17. Let γ = (γ1, . . . , γm) ∈ (Z/DZ)m. Denote the number of vectors r fulfilling
γTr 6= 0 and rj 6= 0 for all j by

Nm(γ) :=

∣∣∣∣∣
{
r ∈ (Z/DZ)m

∣∣∣∣ m∑
j=1

γjrj 6= 0 and r1, . . . , rm 6= 0

}∣∣∣∣∣ . (222)

6We use the convention gcd(D, 0) = gcd(D,D) = D.
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Then, the recurrence relation

Nm(γ) = Dm−1 (D − gcd(D,γ))−
m−1∑
k=1

∑
I⊂{1,...,m}
|I|=k

Nk(γ|I) (223)

is fulfilled, where gcd(D,γ) denotes the greatest common divisor of D, γ1, . . . , and γm,
and γ|I ∈ (Z/DZ)k is the restricted vector which results from γ after removing all entries
except for those labeled by I.

Proof. The key is to count the elements in the set

L :=

{
r ∈ (Z/DZ)m

∣∣∣∣ m∑
j=1

γjrj 6= 0

}
(224)

in two different ways. The first possibility follows a direct generalization of Lemma 16:
Rewrite the set as L = (Z/DZ)m\ ker(ϕ) for the Z/DZ-linear map

ϕ : (Z/DZ)m −→ Z/DZ, r 7−→ γTr =
m∑
j=1

γjrj. (225)

Since the image im(ϕ) = 〈γ1, . . . , γm〉 contains D/ gcd(D, γ1, . . . , γm) elements, we obtain

|L| = |(Z/DZ)m| − |(Z/DZ)m|
|im(ϕ)| = Dm−1(D − gcd(D,γ)). (226)

For the second possibility to count the elements in L, consider the decomposition

L =
m⋃
·

k=1

⋃
·

I⊂{1,...,m}
|I|=k

{
r ∈ (Z/DZ)m

∣∣∣∣ m∑
j=1

γjrj 6= 0, rj=0 for j 6∈I
rj 6=0 for j∈I

}
(227)

into disjoint subsets where, for all possible subsets I ⊂ {1, . . . ,m} with k elements, the k
entries of r which correspond to I are nonzero while the other m− k entries are fixed to
zero. The cardinality follows as

|L| =
m∑
k=1

∑
I⊂{1,...,m}
|I|=k

Nk(γ|I) = Nm(γ) +
m−1∑
k=1

∑
I⊂{1,...,m}
|I|=k

Nk(γ|I) (228)

and solving for Nm(γ) under the use of Eq. (226) finishes the proof.

In the special case where all entries of γ are invertible, we can use the recurrence
relation (223) to derive an explicit expression for Nm(γ). As we comment on in Sec. 9, it
not a coincidence that this expression is very similar to Eq. (238).
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Lemma 18. An explicit expression for Nm := Nm(γ1, . . . , γn) where γ1, . . . , γn are in-
vertible is given by

Nm =
(D − 1)m+1 + (−1)m+1(D − 1)

D
. (229)

Proof. We verify this expression by induction. For the base case m = 1, Lemma 16 yields
N1 = D−1 since γ ∈ Z/DZ is invertible implies γ does not divide D, thus, gcd(D, γ) = 1.
It is straightforward to verify that also the right-hand side of Eq. (229) is equal to D− 1.

For the induction step, let m ≥ 2 and assume that Nk = (D−1)k+(−1)k+1(D−1)
D

holds for
all k < m. Since all γi are invertible, Eq. (223) simplifies to

Nm = Dm−1 (D − 1)−
m−1∑
k=1

Nk

∑
I⊂{1,...,m}
|I|=k

1. (230)

Since the number of subsets I ⊂ {1, . . . ,m} with exactly k elements is given by the
binomial coefficient

(
m
k

)
, inserting the induction hypothesis yields the expression

Nm =
D − 1

D

(
Dm −

m−1∑
k=1

(
m
k

) (
(D − 1)k + (−1)k+1

))
. (231)

By applying the binomial theorem
∑m

k=0 a
k = (a + 1)m for a = D − 1 and a = −1,

respectively, we obtain

Nm =
D − 1

D
(Dm − (Dm − 1− (D − 1)m)− (0 + 1 + (−1)m)) (232)

=
(D − 1)m+1 + (−1)m+1(D − 1)

D
. (233)

This finishes the proof.

Denote the set of neighbors of a vertex i by I(i) := {j | γi,j 6= 0} and its degree, i,e,
the number of its neighbors, by mi := |I(i)|. Our investigation shows that the number of
vectors r ∈ (Z/DZ)n fulfilling swt(r,Γr) = n can be lower bounded as

`nn[ΨΓ] ≥ (D − 1)n +
n∑
i=1

(D − 1)n−1−miNmi((γi,j)j∈I(i)). (234)

The term (D − 1)n corresponds to the vectors r which have only nonzero entries. The
sum runs over all parties i and counts the choices where ri = 0 while

∑n
j=1 γi,jrj 6= 0

and rj 6= 0 for all j but i such that swt(r,Γr) = n is fulfilled. Each term in the sum
contributes (D−1)n−1−mi choices for rj 6= 0 where j is not i and not a neighbor of i times

73



Nmi((γi,j)j∈I(i)) choices for the neighbors of i (times 1 choice for ri = 0). We can simplify
the ratio that enters the noise thresholds of Corollary 9 to

b
(1,...,1)
n

`nn[ΨΓ]
≤
(

1 +
n∑
i=1

Nmi((γi,j)j∈I(i))

(D − 1)m+1

)−1

≤ 1. (235)

We can further simplify these expressions in the case where all entries of Γ are either
invertible or zero, which is automatically fulfilled if D is prime. In that case, Inequal-
ity (234) can be rewritten as

`nn[ΨΓ] ≥ (D − 1)n +
n−1∑
m=1

(D − 1)n−1−mMmNm (236)

where Mm is the number of vertices with exactly m neighbors. After inserting Eq. (229),
Inequality (235) simplifies to

b
(1,...,1)
n

`nn[ΨΓ]
≤
(

1 +
1

D

n−1∑
m=1

(
1 +

1

(D − 1)m+1

)
Mm

)−1

≤ 1. (237)

For this coarse bound on the noise threshold, the only thing one has to know about the
graph are the numbers M1, . . . ,Mn−1. However, for D = 2 and graphs where each vertex
has an even number of neighbors, the sum in Eq. (237) vanishes, i.e., the considerations in
this section are not sufficient to obtain a nontrivial noise threshold in this case. However,
we solve this issue in Sec. 6 by a detailed investigation of the qubit case.

C Proof of Proposistion 10
Here, we calculate the sector lengths of state GHZnD := |GHZnD〉 〈GHZnD| which is defined
in Eq. (22).

Proposition 10. [62] The sector length distribution of the GHZ state is given by

`nj [GHZnD] = δj,n(D − 1)Dn−1 +

(
n

j

)
(D − 1)j + (−1)j(D − 1)

D
. (238)

Proof. We have to count the number of stabilizer operators in S := S|GHZnD〉 which act on
exactly j qudits. Note that S is generated by

S1 = X⊗nD , and for all i ∈ {2, . . . , n} (239)
Si = 1Di−2 ⊗ ZD ⊗ Z−1

D ⊗ 1Dn−i , (240)

i.e., S = {∏n
i=1 S

tj
j | tj ∈ Z/DZ}. It follows at once, that every stabilizer S ∈ S with an

XD part (i.e., t1 6= 0) acts on all qudits. Since there are (D − 1) choices for t1 6= 0 and
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Dn−1 choices for t2, . . . , tn there are at least (D − 1)Dn−1 stabilizers which contribute to
`nn [GHZnD]. This is the first term in Eq. (238).

It remains to count the stabilizer without an XD part (i.e., t1 = 0). For this we
consider the free Z/DZ-module of Z-like exponents MZ = spanZ/DZ{b2, . . . ,bn} with
basis vectors given by

b2 = (1,−1, 0, 0, . . . , 0) (241)
b3 = (0, 1,−1, 0, . . . , 0)

...
bn = (0, 0, . . . , 0, 1,−1).

The remaining stabilizers are in one-to-one correspondence with the vectors x ∈MZ and
the number of qudits a stabilizer acts on is equal to the number of nonzero entries of x.
Hence, we have to count the vectors in MZ which contain exactly j nonzero entries. We
denote this number by

knj (D) :=
∣∣{x = (x1, . . . , xn) ∈MZ

∣∣ j = |{i|xi 6= 0}|
}∣∣ (242)

and the sector lengths will follow as `nj [GHZnD] = δj,n(D − 1)Dn−1 + knj (D).
For every j ∈ {0, . . . , n}, the number of vectors of the form (x1, . . . , xj, . . . , 0, 0) ∈MZ

with x1, . . . , xj 6= 0 is independent of n because such vectors are given by some linear
combination of b2, . . . ,bj. Since the coefficients of such a linear combination are in Z/DZ,
this number is a function of D and j which we denote by fj(D). However, there are n
choose j possible permutations of the nonzero entries which yield the other vectors in MZ

with exactly j nonzero entries (since permuting the entries of all bj simultaneously gives
rise to a new basis of MZ). Therefore, the total number of vectors in MZ with exactly j
nonzero entries is of the form

knj (D) =
(
n
j

)
fj(D). (243)

The function fj(D) can be determined recursively : Clearly, the null vector is the only
vector in MZ without any nonzero entries, i.e., f0(D) = 1. For n ≥ 1, the total number
of vectors in MZ (with arbitrarily many nonzero entries) can be rewritten as

Dn−1 = |MZ | =
n∑
j=0

knj (D), (244)

or, equivalently

fn(D) = Dn−1 −
n−1∑
j=0

(
n
j

)
fj(D). (245)
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In particular, the functions fn(D) are in fact polynomials fn ∈ Z[D] of degree fn ≤ n− 1,
i.e., they can be expressed as

fn(D) =
n−1∑
i=0

a
(n)
i Di, (246)

where the vectors of coefficients a(n) := (a
(n)
0 , . . . , a

(n)
n−1) ∈ Zn follow from Eq. (245) and

are recursively given by

a(n) = (0, . . . , 0, 1)−
n−1∑
j=0

(
n
j

)
a(j) (247)

for n ≥ 1, and (a
(0)
0 ) ∈ Z0 is the trivial vector. For the individual coefficients, this gives

the final recursive formula

a
(n)
i = δi,n−1 −

n−1∑
j=0

(
n
j

)
a

(j)
i (248)

for all i ∈ {0, . . . , n−1}. Using a proof by induction, we will now verify the non-recursive
formula

a
(n)
i = (−1)nδi,0 + (−1)n+i+1

(
n
i+1

)
. (249)

The case n = 0 is trivial. Let n ≥ 1 and assume Eq. (249) holds for all j ≤ n− 1 (and
all i). Inserting this into Eq. (248) and rearranging the terms yields that also a(n)

i fulfills
Eq. (249) for all i:

a
(n)
i = δi,n−1 −

n−1∑
j=0

(
n
j

) (
(−1)jδi,0 + (−1)j+i+1

(
j
i+1

))
(250)

= δi,n−1 + δi,0

(
(−1)n

(
n
n

)
−

n∑
j=0

(−1)j
(
n
j

))
(251)

+

(
(−1)n+i+1

(
n
n

)(
n
i+1

)
−

n∑
j=0

(−1)j+i+1
(
n
j

)(
j
i+1

))
(252)

= δi,n−1 + (−1)nδi,0 + (−1)n+i+1
(
n
i+1

)
+ (−1)n+iδi,n−1 (253)

= (−1)nδi,0 + (−1)n+i+1
(
n
i+1

)
(254)

In the first step, we have increased the range of the sums and subtracted the extra term.
In line (251), the alternating sum over binomial coefficients equals δn,0 = 0 (since n ≥ 1).
From line (252) to (253), we have used the fact

l̃∑
k̃=0

(−1)k̃
(

l̃
m̃+k̃

)(
s̃+k̃
ñ

)
= (−1)l̃+m̃

(
s̃−m̃
ñ−l̃

)
, (255)
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from Ref. [83, Eq. (5.24)]. In this case (k̃ = j, l̃ = n, ñ = i+ 1, and m̃ = s̃ = 0), we used
Eq. (255) to evaluate the term

−
n∑
j=0

(−1)j+i+1
(
n
j

)(
j
i+1

)
= (−1)i

n∑
j=0

(−1)j
(
n
j

)(
j
i+1

)
(256)

= (−1)i(−1)n
(

0−0
i+1−n

)
= (−1)n+iδi,n−1. (257)

In the last step in line (257), we used that for all x ∈ Z the relation
(

0
x

)
= δx,0 holds (a

special case of Eq. (5.1) in Ref. [83]). From line (253) to (254), we used that the terms
δi,n−1 and (−1)n+iδi,n−1 cancel each other: δi,n−1+(−1)n+iδi,n−1 = δi,n−1(1+(−1)2n−1) = 0.

We can use the just-proven Eq. (249) to assemble the following explicit formula:

knj (D)
(243),(246)

=
(
n
j

) j−1∑
i=0

a
(j)
i Di (258)

(249)
=
(
n
j

) j−1∑
i=0

(
(−1)jδi,0 + (−1)j+i+1

(
j
i+1

))
Di (259)

=
(
n
j

)(
(−1)j +

j∑
i=1

(−1)j+i
(
j
i

)
Di−1

)
(260)

=
(
n
j

)(
(−1)j − (−1)jD−1 +D−1

j∑
i=0

(
j
i

)
Di(−1)j−i

)
(261)

=
(
n
j

) (
(−1)j(1−D−1) +D−1(D − 1)j

)
(262)

=
(
n
j

)(D − 1)j + (−1)j(D − 1)

D
(263)

Until line (259), we only inserted previously established relations and simplified. From
line (259) to (260), we simplified the sum and performed an index shift. From line (260)
to (261), we subtracted (−1)jD−1 to make the sum start at i = 0 instead of i = 1. From
line (261) to (262), we used the binomial theorem. The last step is a simplification to
recover the initial claim. This finishes the proof.

D Tables of sector lengths for graph states on seven
and eight qubits

For future reference, we provide tables of the sector length distributions of all graph states
up to eight qubits from the classification explained in Sec. 6.1.3. We produced these tables
by running our C++ routine based on Eq. (174). Table 4 and Tables 5-7 show the sector
length distributions for graph states on seven and eight qubits, respectively. See Figs. 4
and 5 in Ref. [15] and Fig. 2 in Ref. [70] for a pictorial representation of the corresponding
graphs.
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Name `7
0 `7

1 `7
2 `7

3 `7
4 `7

5 `7
6 `7

7 Family
No. 20 1 0 21 0 35 0 7 64 star
No. 21 1 0 11 10 15 20 37 34
No. 22 1 0 9 0 35 24 19 40 dandelion
No. 23 1 0 7 10 15 28 41 26
No. 24 1 0 6 9 17 30 40 25
No. 25 1 0 5 12 11 32 47 20
No. 26 1 0 5 4 27 32 31 28
No. 27 1 0 4 7 21 34 38 23
No. 28 1 0 3 10 15 36 45 18
No. 29 1 0 3 6 23 36 37 22
No. 30 1 0 2 9 17 38 44 17
No. 31 1 0 5 12 11 32 47 20
No. 32 1 0 5 0 35 32 23 32
No. 33 1 0 3 10 15 36 45 18
No. 34 1 0 3 6 23 36 37 22
No. 35 1 0 2 9 17 38 44 17 line
No. 36 1 0 3 2 31 36 29 26
No. 37 1 0 2 5 25 38 36 21
No. 38 1 0 1 8 19 40 43 16
No. 39 1 0 1 8 19 40 43 16
No. 40 1 0 0 7 21 42 42 15 ring
No. 41 1 0 1 4 27 40 35 20
No. 42 1 0 0 7 21 42 42 15
No. 43 1 0 0 7 21 42 42 15
No. 44 1 0 0 3 29 42 34 19
No. 45 1 0 1 0 35 40 27 24

Table 4: Sector length distributions for graph states on seven qubits.
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Name `8
0 `8

1 `8
2 `8

3 `8
4 `8

5 `8
6 `8

7 `8
8 Family

No. 46 1 0 28 0 70 0 28 0 129 star
No. 47 1 0 16 12 30 40 16 76 65
No. 48 1 0 13 0 55 0 103 0 84 dandelion
No. 49 1 0 11 12 25 40 41 76 50
No. 50 1 0 12 0 38 64 12 64 65
No. 51 1 0 9 12 23 40 51 76 44
No. 52 1 0 8 16 18 32 64 80 37
No. 53 1 0 8 4 30 56 40 68 49
No. 54 1 0 7 8 25 48 53 72 42
No. 55 1 0 7 6 27 52 49 70 44
No. 56 1 0 5 14 17 36 75 78 30
No. 57 1 0 7 0 49 0 133 0 66
No. 58 1 0 6 6 26 52 54 70 41
No. 59 1 0 5 10 21 44 67 74 34
No. 60 1 0 5 6 25 52 59 70 38
No. 61 1 0 5 4 27 56 55 68 40
No. 62 1 0 4 8 22 48 68 72 33
No. 63 1 0 3 12 17 40 81 76 26
No. 64 1 0 4 12 18 40 76 76 29
No. 65 1 0 4 8 22 48 68 72 33
No. 66 1 0 3 10 19 44 77 74 28
No. 67 1 0 3 8 21 48 73 72 30
No. 68 1 0 2 10 18 44 82 74 25 line
No. 69 1 0 8 16 18 32 64 80 37
No. 70 1 0 7 18 15 28 73 82 32
No. 71 1 0 8 0 50 0 128 0 69
No. 72 1 0 6 12 20 40 66 76 35
No. 73 1 0 7 0 33 64 37 64 50
No. 74 1 0 5 8 23 48 63 72 36
No. 75 1 0 4 12 18 40 76 76 29
No. 76 1 0 4 12 18 40 76 76 29

Table 5: Sector length distributions for graph states on eight qubits
(part 1 of 3).
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Name `8
0 `8

1 `8
2 `8

3 `8
4 `8

5 `8
6 `8

7 `8
8 Family

No. 77 1 0 5 4 27 56 55 68 40
No. 78 1 0 5 0 47 0 143 0 60
No. 79 1 0 5 2 29 60 51 66 42
No. 80 1 0 4 6 24 52 64 70 35
No. 81 1 0 3 10 19 44 77 74 28
No. 82 1 0 3 8 21 48 73 72 30
No. 83 1 0 3 8 21 48 73 72 30
No. 84 1 0 2 10 18 44 82 74 25
No. 85 1 0 3 6 23 52 69 70 32
No. 86 1 0 4 4 26 56 60 68 37
No. 87 1 0 4 0 46 0 148 0 57
No. 88 1 0 2 12 16 40 86 76 23
No. 89 1 0 3 6 23 52 69 70 32
No. 90 1 0 3 4 25 56 65 68 34
No. 91 1 0 2 8 20 48 78 72 27
No. 92 1 0 3 4 25 56 65 68 34
No. 93 1 0 2 8 20 48 78 72 27
No. 94 1 0 3 4 25 56 65 68 34
No. 95 1 0 2 6 22 52 74 70 29
No. 96 1 0 2 6 22 52 74 70 29
No. 97 1 0 1 10 17 44 87 74 22
No. 98 1 0 1 8 19 48 83 72 24
No. 99 1 0 1 8 19 48 83 72 24
No. 100 1 0 0 8 18 48 88 72 21 ring
No. 101 1 0 3 14 15 36 85 78 24
No. 102 1 0 3 8 21 48 73 72 30
No. 103 1 0 2 8 20 48 78 72 27
No. 104 1 0 4 0 46 0 148 0 57
No. 105 1 0 3 4 25 56 65 68 34
No. 106 1 0 3 0 45 0 153 0 54
No. 107 1 0 4 0 30 64 52 64 41
No. 108 1 0 3 2 27 60 61 66 36
No. 109 1 0 1 10 17 44 87 74 22
No. 110 1 0 2 4 24 56 70 68 31
No. 111 1 0 2 4 24 56 70 68 31
No. 112 1 0 2 4 24 56 70 68 31

Table 6: Sector length distributions for graph states on eight qubits
(part 2 of 3).
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Name `8
0 `8

1 `8
2 `8

3 `8
4 `8

5 `8
6 `8

7 `8
8 Family

No. 113 1 0 1 6 21 52 79 70 26
No. 114 1 0 1 6 21 52 79 70 26
No. 115 1 0 1 6 21 52 79 70 26
No. 116 1 0 1 4 23 56 75 68 28
No. 117 1 0 1 4 23 56 75 68 28
No. 118 1 0 0 8 18 48 88 72 21
No. 119 1 0 0 6 20 52 84 70 23
No. 120 1 0 0 6 20 52 84 70 23
No. 121 1 0 4 0 30 64 52 64 41
No. 122 1 0 1 10 17 44 87 74 22
No. 123 1 0 2 0 44 0 158 0 51
No. 124 1 0 4 0 30 64 52 64 41
No. 125 1 0 2 2 26 60 66 66 33
No. 126 1 0 1 6 21 52 79 70 26
No. 127 1 0 1 4 23 56 75 68 28
No. 128 1 0 1 4 23 56 75 68 28
No. 129 1 0 1 2 25 60 71 66 30
No. 130 1 0 0 6 20 52 84 70 23
No. 131 1 0 0 4 22 56 80 68 25
No. 132 1 0 0 4 22 56 80 68 25
No. 133 1 0 0 8 18 48 88 72 21
No. 134 1 0 3 0 45 0 153 0 54
No. 135 1 0 2 0 28 64 62 64 35
No. 136 1 0 1 0 43 0 163 0 48
No. 137 1 0 0 4 22 56 80 68 25
No. 138 1 0 0 2 24 60 76 66 27
No. 139 1 0 1 2 25 60 71 66 30
No. 140 1 0 0 2 24 60 76 66 27
No. 141 1 0 0 0 42 0 168 0 45
No. 142 1 0 0 0 42 0 168 0 45
No. 143 1 0 1 0 27 64 67 64 32
No. 144 1 0 0 0 26 64 72 64 29
No. 145 1 0 0 0 42 0 168 0 45
No. 146 1 0 0 0 26 64 72 64 29

Table 7: Sector length distributions for graph states on eight qubits
(part 3 of 3).
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E Proof of Lemma 19
Here, we state the proof of Lemma 19 from the main text. For a better readability, we
repeat it now.

Lemma 19. Let N(n, k) be the number of choices to place k pairs of white vertices on
an n-vertex ring graph such that any two such pairs are separated by at least one black
vertex. Then, it holds N(n, k) =

(
n−2k−1
k−1

)
n
k
.

Proof. If k pairs are white, there are exactly n−2k black vertices on the ring graph. They
are grouped into k black chains (between any two adjacent white pairs) each consisting of
xi ≥ 1 vertices, where i = 1, . . . , k is a counterclockwise enumeration of the black chains.
The set

L :=

{
(x1, . . . , xk) ∈ Zk

∣∣∣∣ xi ≥ 1,
k∑
i=1

xi = n− 2k

}
. (264)

contains all possible tuples of lengths xi for black chains fitting on the ring graph. We
can use it to characterize all colorings with exactly k white pairs which are in accordance
to the rule of the puzzle from Sec. 6.2. Given ` = (x1, . . . , xk) ∈ L, color vertex 1 and
2 white, vertex 3, . . . , x1 + 2 black, and vertex x1 + 3 and x1 + 4 white. Continuing in a
similar fashion by sequentially coloring two vertices black and xi vertices black gives rise to
an allowed coloring. Starting with a different `′ ∈ L and proceeding in an analogous way
yields a different allowed coloring. However, not all allowed colorings with exactly k white
pairs arise in this way: A counterclockwise shift of all colors by one vertex yields a new
coloring because, e.g., vertex n is black and white before and after the shift, respectively.
A second such shift again yields a new coloring as vertex 1 is now black (and was white
in the two cases before). After x1 + 3 shifts, vertex 1 is (for the first time) white again.
Since the obtained coloring is the initial (i.e., unshifted) coloring for a different tuple,
(x2, . . . , xk, x1) ∈ L, each tuple ` ∈ L contributes exactly x1(`) + 2 colorings which are
in accordance to the rule. Thereby, we have used the notation xi(`) := xi for an ` ∈ L
whose explicit form is given by ` = (x1, . . . , xk).

These considerations show that the number of allowed coloring with exactly k white
pairs is given by

N(n, k) =
∑
`∈L

(x1(`) + 2) = 2|L|+
∑
`∈L

x1(`). (265)

We can use the symmetry of the aforementioned shifts to evaluate this expression. The
necessary mathematical toolbox for this is the theory of group actions, see Chapter 5.1 of
Ref. [41] for an introduction. Write

π : Zk −→ Zk, (x1, . . . , xk) 7−→ (x2, . . . , xk, x1) (266)
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for the cyclic permutation of all entries by one to the left. Let G = {πi | i ∈ {1, . . . , k}},
where π2 = π ◦ π etc., be the group generated by π and consider the group action

G × L −→ L, (πi, `) 7−→ πi(`). (267)

Enumerating the orbits of this group action from 1 to m yields a partition of the form

L =
m⋃
·

j=1

Lj (268)

which we use to split up the sum in Eq. (265) and obtain

N(n, k) = 2|L|+
m∑
j=1

∑
`∈Lj

x1(`). (269)

This reduces the problem to the computation of
∑

`∈Lj x1(`) for a fixed orbit Lj. For
each orbit choose a member `j ∈ Lj and denote its stabilizer subgroup by Sj ⊂ G, i.e.,
Sj = {σ ∈ G | σ(`j) = `j}. Furthermore, choose a representative gr ∈ G for each coset in
G/Sj. (These gr also depend on j.) This yields the parametrization

G =
{
gr ◦ σ

∣∣∣ r ∈ {1, . . . , |G/Sj|} , σ ∈ Sj} . (270)

Note that gr ◦ σ = gr′ ◦ σ′ iff r = r′ and σ = σ′. Because of `j ∈ L, we obtain

n− 2k =
k∑
i=1

xi(`j) =
k∑
i=1

x1(πi(`j)) (271)

=

|G/Sj |∑
r=1

∑
σ∈Sj

x1(gr(σ(`j)︸ ︷︷ ︸
=`j

)) = |Sj|
|G/Sj |∑
r=1

x1(gr(`j)) (272)

= |Sj|
∑
`∈Lj

x1(`). (273)

In line (271), we use the defining equation of elements in L and that πi shifts the ith
entry of `j to the first entry. To get to line (272), we use that the group G has two
parametrizations, G = {πi | i ∈ {1, . . . , k}} and the one given in Eq. (270). Since the
stabilizers σ ∈ Sj trivially act on `j, all terms of the inner sum coincide such that we
can factor out |Sj|. To get to line (273), we use that the elements of the orbit Lj are in
1:1-correspondence to the cosets in G/Sj. Together with |Lj|×|Sj| = |G| = k, this implies∑

`∈Lj x1(`) = |Lj|
(
n
k
− 2
)
. Now, we can compute Eq. (265) as

N(n, k) = 2|L|+
(n
k
− 2
) m∑
j=1

|Lj| = |L|
n

k
. (274)
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The last information we need is the cardinality of the set L, i.e., the number of positive
integer solutions of the equation

∑k
i=1 xi = n− 2k. Using the method of stars and bars,

one can show that the similar equation,
∑k

i=1 x
′
i = m has exactly

(
m+k−1
k−1

)
nonnegative

integer solutions [84, Example 1.5.3]. Substituting x′i = xi − 1 and m = n − 3k, yields
|L| =

(
n−2k−1
k−1

)
. This finishes the proof.
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