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1 Introduction

This paper is the result of an investigation into a number of q-binomial and q-multinomial
identities. To begin, we will establish essential definitions and ideas. In Section 2, we
will concisely develop a robust collection of some classical and other less so classical
binomial/multinomial identities in their q-analog form. In Section 3, we will demonstrate
a connection between finite differences of the coefficients of generalized Galois numbers
and integer partitions with kinds.

At the heart of this paper is a motivation to present proofs of results using combinato-
rial justification. Along the way, we will encounter a number of objects of regular study in
discrete mathematics: the set [m] , namely the set { 1, 2, . . . , m } ; the set Sm

n (k1, . . . , km) ,
namely the set of sequences of length n whose elements include k1 1’s, . . ., km m’s from
the set [m] ; the inversion and major index statistics on sequences; and partitions of a
positive integer n , namely sums of nonincreasing positive integers that add to n .

1.1 Inversion Statistic

To begin, we will introduce the inversion statistic, which can be found in [7].

Definition 1.1 Let n,m be nonnegative integers, and let σ = ( σ1, . . . , σn ) be a sequence

whose elements are from the set [m] . Then,

inv(σ) := | { (a, b) | a < b and σa > σb } | .
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If a particular σa is fixed, ordered pairs of the form (a, b) that are accounted for by inv(σ)
shall be referred to as the inversions induced by σa or simply i(σa) . Should a particular σb

be fixed, ordered pairs of the form (a, b) that are accounted for by inv(σ) shall be referred

to as the inversions received by σb or simply r(σb) .

Figure 1 contains some examples.

2211 2121 2112
inv(σ) = 4 inv(σ) = 3 inv(σ) = 2

1221 1212 1122
inv(σ) = 2 inv(σ) = 1 inv(σ) = 0

Figure 1: All sequences of length 4 with two 2s and two 1s.

Proposition 1.2 Let n,m be nonnegative integers, and let σ = ( σ1, . . . , σn ) be a se-

quence whose elements are from the set [m] . Then,

inv(σ) =
∑

a∈[n]

i (σa) =
∑

b∈[n]

r (σb) .

Proof. Observe the unions expressed below are disjoint.

{ (a, b) | a < b } =
⋃

a∈[n]

{ (a, b) | a < b } =
⋃

b∈[n]

{ (a, b) | a < b } .

The result follows from the above statement of equality, and the definitions of: inversions,
induced inversions, and received inversions. �

Corollary 1.3 Let n,m be nonnegative integers, and let σ = ( σ1, . . . , σn ) be a sequence

whose elements are from the set [m] . Then,

inv(σ) =
∑

σa≥2

i (σa) =
∑

σb≤m−1

r (σb) .

Proof. When σa is equal to 1 the value of i(σa) equals zero. Similarly, when σb is equal
to m the value of r(σb) equals zero. �

1.2 q-binomial and q-multinomial Coefficients

The following definition, inspired by [4], is foundational.
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Definition 1.4 Let n, k be nonnegative integers such that n ≥ k , and let q be an inde-

terminate. Then
(

n

k

)

q

:=
∑

E⊂[n]
|E|=k

q

(

k∑

i=1
(n−ei)−(k−i)

)

.

where E = { e1, . . . , ek } with ei < ei+1 for every 1 ≤ i ≤ k − 1 .

Noting that the number of subsets of [n] of cardinality k is exactly
(

n

k

)

, one can see
that letting q = 1 yields the corresponding standard binomial coefficient.

Figure 2 contains an example. Observe the parallelism between Figures 1 and 2.

{ 1, 2 } { 1, 3 } { 1, 4 }

q4 q3 q2

{ 2, 3 } { 2, 4 } { 3, 4 }
q2 q1 q0

Figure 2: The sets associated with the terms of
(

4
2

)

q
= q4 + q3 + 2q2 + q + 1 .

Proposition 1.5 If n, k are nonnnegative integers such that n ≥ k and q is an indeter-

minate, then
(

n

k

)

q

=
∑

σ∈S2
n(k,n−k)

qinv(σ) .

Proof. Let E ⊂ [n] be of cardinality k , and let σ = ( σ1, . . . , σn ) be the sequence in
S2
n(k, n − k) such that σa is 2 precisely when a ∈ E . Fix some a ∈ E and consider σa .

The ordered pairs (a, b) accounted for by inv(σ) correspond to indices b such that σb is
1 . Notice that n − ei equals n− a and counts the number of indices j such that j > a .
Also notice that k − i counts the numbers of elements σj such that j > a and σj is 2 .
Hence, (n− ei)− (k− i) counts all ordered pairs (a, b) of interest. The result follows from
observing that every σ ∈ S2

n(k, n− k) can be attained similarly by some E ⊂ [n] . �

In other words, the polynomial
(

n

k

)

q
is the generating function for the statistic of

inversions on the set S2
n(k, n − k) , a standard result which can be found in [7]. The

following definition and proposition, also found in [7], provides a generalization.

Definition 1.6 If m,n, k1, . . . , km are nonnegative integers such that k1 + · · ·+ km = n ,

then
(

n

k1, . . . , km

)

q

:=

(

n

km

)

q

(

n− km

km−1

)

q

· · ·

(

n− km − · · · − k2

k1

)

q

.

3



Proposition 1.7 If m,n, k1, . . . , km are nonnegative integers such that k1+ · · ·+km = n ,

then
(

n

k1, . . . , km

)

q

=
∑

σ∈Sm
n (k1,...,km)

qinv(σ) .

Proof. Fix a sequence σ = ( σ1, . . . , σn ) in Sm
n (k1, . . . , km) . Note that the inversions

induced by all σa for which σa equals m correspond to ordered pairs (a, b) such that σb is
less than m . By Proposition 1.5, it follows that

(

n

km

)

q
corresponds precisely to inversions

induced by all σa equal to m .
Further observe that inversions induced by all σa for which σa equals m−1 correspond

to ordered pairs (a, b) such that σb is less than m − 1 . In particular, no such (a, b) will
correspond to a σb equal to m . As such, Proposition 1.5 applies to the subsequence of
σ containing the n− km elements of σ that do not equal m , and it follows that

(

n−km
km−1

)

q

corresponds precisely to inversions induced by all σa equal to m− 1 .
A similar argument holds for the remaining elements of σ . �

1.3 Fundamental Sequences

We will introduce an additional definition that will be especially helpful in establishing
the results of Section 3.

Definition 1.8 If n,m are nonnegative integers, define Sm
n to be the set of all sequences

of length n whose elements are in [m] . If σ is in Sm
n , define the fundamental sequence of σ

to be

F (σ) := (F1, . . . , Fm) ,

where each Fj is the multiset { i (σa) | a ∈ [n] and σa = j } . Subsequently define the

fundamental set of Sm
n to be the set

Fm
n := {F (σ) | σ ∈ Sm

n } .

Figure 3 contains some examples.

2211 2121 2112
(

{0, 0} , {2, 2}
) (

{0, 0} , {2, 1}
) (

{0, 0} , {2, 0}
)

1221 1212 1122
(

{0, 0} , {1, 1}
) (

{0, 0} , {1, 0}
) (

{0, 0} , {0, 0}
)

Figure 3: The fundamental sequences of σ in S2
4 (2, 2) .

Proposition 1.9 If m,n are nonnegative integers, then

|Sm
n | = |Fm

n | .
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Proof. Define the function ϕ : Sm
n → Fm

n by the assignment σ 7→ F (σ) . By the definition
of fundamental set, ϕ is surjective.

Assume σ1, σ2 are sequences in Sm
n such that F (σ1) and F (σ2) are both equal to

(F1, . . . , Fm) . Observe that the elements of Fm forces the set { a ∈ [n] | σi
a = m } to

be the equal for i = 1, 2 . Subsequently observe that the elements of Fm−1 forces the set
{ a ∈ [n] | σi

a = m− 1 } to be equal for i = 1, 2 , and so on. Hence, ϕ is injective. �

2 Binomial and Multinomial Identities

In this section, we will acquaint ourselves with the act of generalizing binomial and multi-
nomial identities into their corresponding q-analogs.

2.1 Symmetry

We will begin with the q-analog to symmetry from [7], namely that
(

n

k

)

equals
(

n

n−k

)

.

Proposition 2.1 If n, k are nonnegative integers such that n ≥ k , then

(

n

k

)

q

=

(

n

n− k

)

q

.

Proof. Let S2
n(k, n − k) be the set of sequences of length n whose elements are in [2]

with k 2’s, and refer to an arbitrary sequence in S2
n(k, n− k) by σ = ( σ1, . . . , σn ) . For

every x ∈ [2] , say that x equals 1 when x is 2 and x equals 2 when x is 1 . Define a map

ϕ : S2
n(k, n− k) → S2

n(n− k, k) by ( σ1, . . . , σn ) 7→ ( σn, . . . , σ1 ) .

Fix some a ∈ [n] and consider σa . If σa is 2 and i(σa) is c , then the number of 1’s that
follow σa in σ must be c . By the definition of ϕ , notice the number of 2’s preceding σa

in ϕ (σ) is also c . Hence, the numbers i(σa) and r(σa) are equal. Should σa be 1 , observe
that i(σa) and r(σa) are both zero. Further observing that ϕ is bijective, the desired result
follows from Proposition 1.2. �

We will now derive the multinomial generalization, also found in [7].

Proposition 2.2 If m,n, k1, . . . , km are nonnegative integers such that k1+ · · ·+km = n

and π is a permutation of [m] , then

(

n

k1, . . . , km

)

q

=

(

n

kπ(1), . . . , kπ(m)

)

q

.

Proof. Refer to an arbitrary sequence in Sm
n (k1, . . . , km) by σ = ( σ1, . . . , σn ) , and

define a map

θ : Sm
n (k1, . . . , ki, ki+1, . . . , km) → Sm

n (k1, . . . , ki+1, ki, . . . , km)

5



such that θ(σ)a equals σa when σa is neither i nor i+ 1 . It follows that

∑

σa>i+1

i(σa) =
∑

θ(σ)a>i+1

i (θ(σ)a) ,
∑

σa<i

i(σa) =
∑

θ(σ)a<i

i (θ(σ)a) .

For the subsequence of σ for which σa is equal to i or i+1 , let θ act on that subsequence
analogously to ϕ in Proposition 2.1. It follows that

∑

σa∈{i,i+1}

i(σa) =
∑

θ(σ)a∈{i,i+1}

i (θ(σ)a) .

By Proposition 1.2, we have that inv(σ) equals inv(θ(σ)) .
Observe that this Proposition has been shown for π that are of the form of a simple

transposition. Given that any permutation is a composition of simple transpositions, we
have our desired result for any permutation π . �

2.2 Pascal’s Identity

We will now consider Pascal’s Identity, which can be found in [6],

(

n

k1, . . . , km

)

=

(

n− 1

k1 − 1, . . . , km

)

+

(

n− 1

k1, k2 − 1, . . . , km

)

+ · · ·+

(

n− 1

k1, . . . , km − 1

)

.

Interpreting
(

n

k1,...,km

)

as the number of sequences in Sm
n (k1, . . . , km) , then

(

n−1
k1−1,...,km

)

counts such sequences that end in a 1 ,
(

n−1
k1,k2−1,...,km

)

counts such sequences that end in a
2 , and so on.

Proposition 2.3 If m,n, k1, . . . , km are nonnegative integers such that k1+ · · ·+km = n ,

then
(

n

k1,...,km

)

q
is equal to

qk2+···+km

(

n− 1

k1 − 1, . . . , km

)

q

+ qk3+···+km

(

n− 1

k1, k2 − 1, . . . , km

)

q

+ · · ·+

(

n− 1

k1, . . . , km − 1

)

q

.

Proof. Interpret
(

n

k1,...,km

)

q
as the generating function for inversions on Sm

n (k1, . . . , km) .

For such sequences that end in a 1 , note that k2 + · · · + km inversions will be received
by that 1 . Thus, the product of qk2+···+km and

(

n−1
k1−1,...,km

)

q
accounts precisely for the

inversions of sequences that end in a 1 . The argument is similar for the remaining terms
of our desired sum. �

Note that applying Proposition 2.2 to Proposition 2.3 yields m! different articulations
of the q-analog to Pascal’s Identity. For the case m = 2 , Figure 4 contains the resulting
2! articulations.
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qk2
(

n− 1

k1 − 1, k2

)

q

+

(

n− 1

k1, k2 − 1

)

q

(

n− 1

k1 − 1, k2

)

q

+ qk1
(

n− 1

k1, k2 − 1

)

q

Figure 4: The two articulations of
(

n

k1,k2

)

q
via the q-analog of Pascal’s Identity.

2.3 Diagonal Sum Identity

We will now consider the Diagonal Sum Identity, which can be found in [6],

(

n

k1, . . . , km

)

=

k1
∑

i=0

m
∑

j=2

(

n− i− 1

k1 − i, k2, . . . , kj − 1, . . . , km

)

.

Interpreting
(

n

k1,...,km

)

as the number of sequences in Sm
n (k1, . . . , km) , then the expression

(

n−i−1
k1−i,k2,...,kj−1,...,km

)

counts such sequences that end in a j followed by i 1’s.

Proposition 2.4 If m,n, k1, . . . , km are nonnegative integers such that k1+ · · ·+km = n ,

then

(

n

k1, . . . , km

)

q

=

k1
∑

i=0

m
∑

j=2

q

(

(n−k1)i+
m∑

v=j+1
kv

)

(

n− i− 1

k1 − i, k2, . . . , kj − 1, . . . , km

)

q

.

Proof. Interpret
(

n

k1,...,km

)

q
as the generating function for inversions on Sm

n (k1, . . . , km) .

Observe that for any such sequence σ , ordered pairs (a, b) associated with inv(σ) are of
exactly one of the following forms: a, b are both less than n − i in value; a is less than
n− i in value and b is at least n− i in value; a, b are both at least n− i in value.

Note that:
(

n−i−1
k1−i,...,km

)

q
accounts for ordered pairs (a, b) associated with inversions such

that a, b are both less than n − i in value; there are (n − k1 − 1)i +
∑

kv ordered pairs
(a, b) associated with inversions such that a is less than n− i and b is at least n− i ; and
there are i ordered pairs (a, b) associated with inversions such that a, b are both at least
n− i . �

2.4 Vandermonde’s Identity

We will now consider Vandermonde’s Identity, which can be found in [6],

(

n1 + n2

k1, . . . , km

)

=
∑

r1+···+rm=n1

0≤ri≤ki

(

n1

r1, . . . , rm

)(

n2

k1 − r1, . . . , km − rm

)

.

Interpreting
(

n1+n2

k1,...,km

)

as the number of sequences in Sm
n1+n2

(k1, . . . , km) , then each term
of the sum accounts for the sequences whose first n1 elements contains exactly r1 1’s, . . .,
rm m’s.
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Proposition 2.5 If m,n1, n2, k1, . . . , km are nonnegative integers such that k1+ · · ·+ km
equals n1 + n2 , then

(

n1 + n2

k1, . . . , km

)

q

=
∑

r1+···+rm=n1

0≤ri≤ki

q

(

∑

j∈[m]

f(rj)

)

(

n1

r1, . . . , rm

)

q

(

n2

k1 − r1, . . . , km − rm

)

q

where f(rj) = rj
∑

i∈[j−1]

(ki − ri) for every j ∈ [m] .

Proof. Interpret
(

n1+n2

k1,...,km

)

q
as the generating function for inversions on Sm

n1+n2
(k1, ..., km) .

Observe that for any such sequence σ , ordered pairs (a, b) associated with inv(σ) are of
exactly one of the following forms: a, b at most n1 in value; a, b greater than n1 in value;
a at most n1 in value and b greater than n1 in value.

Note that:
(

n1

r1,...,rm

)

q
accounts for ordered pairs (a, b) associated with inversions such

that a, b are at most n1 in value;
(

n2

k1−r1,...,km−rm

)

q
accounts for ordered pairs (a, b) asso-

ciated with inversions such that a, b are greater than n1 in value; q
∑

f(rj) accounts for
ordered pairs (a, b) associated with inversions such that a is at most n1 in value and b is
greater than n1 in value. �

We will now derive a generalization.

Proposition 2.6 If m,n1, ..., ns, k1, ..., km are nonnegative integers such that k1+· · ·+km
is equal to n1 + · · ·+ ns , then

(

n1 + · · ·+ ns

k1, . . . , km

)

q

=
∑

ri,1+···+ri,m=ni

r1,j+···+rs,j=kj
0≤ri,j

q

(

∑

(i,j)∈[s]×[m]

f(ri,j)

)

(

n1

r1,1 , . . . , r1,m

)

q

· · ·

(

ns

rs,1 , . . . , rs,m

)

q

where f(ri,j) = ri,j
j−1
∑

v=1

s
∑

u=i+1

ru,v for every (i, j) ∈ [s]× [m] .

Proof. Consider Sm
n1+···+ns

(k1, . . . , km) , and interpret
(

n1+···+ns

k1,...,km

)

q
as the generating func-

tion for inversions on this set of sequences. Let σ be such a sequence.
For every i in [s] , define Xi to be { x ∈ Z | n1 + · · ·+ ni−1 +1 ≤ x ≤ n1 + · · ·+ ni } .

Observe that ordered pairs (a, b) associated with inv(σ) are of exactly one of the following
forms: a, b are both in Xi for some i ∈ [s] ; a, b are not both in Xi for some i ∈ [s] .

Note that
(

ni

ri,1 ,...,ri,m

)

q
accounts for ordered pairs (a, b) associated with inversions such

that (a, b) are both in Xi . Also note that q
∑

f(ri,j) accounts for ordered pairs (a, b)
associated with inversions such that a, b are not both in Xi for some i ∈ [s] . �
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2.5 Chu Shih-Chieh (Zhu Shijie)’s Identity

We will now consider Chu Shih-Chieh’s Identity, which can be found in [6],

(

n

k1, . . . , km

)

=

n−k1
∑

r=0

∑

r2+···+rm=r
0≤rj≤kj

(

r

0, r2, . . . , rm

)(

n− r − 1

k1 − 1, k2 − r2, . . . , km − rm

)

.

Interpreting
(

n

k1,...,km

)

as the number of sequences in Sm
n (k1, . . . , km) , then each term of the

sum accounts for the sequences ( σ1, . . . , σn ) such that σr+1 equals 1 and ( σ1, . . . , σr ) is
a sequence with r2 2’s, . . ., rm m’s.

This can generalize as follows.

Proposition 2.7 If m,n, k1, . . . , km are nonnegative integers such that k1 + · · ·+ km is

equal to n , then
(

n

k1,...,km

)

q
is equal to

∑

E⊂[n]

|E|=k1

∑

ri,2+···+ri,m=ni

r1,j+···+rs,j=kj
0≤ri,j

q

(

∑

(i,j)∈[s]×[m]

f(ri,j)

)

(

n1

0, r1,2, ..., r1,m

)

q

· · ·

(

ns

0, rs,2 , ..., rs,m

)

q

where E = { e1, . . . , ek1 } with ei < ei+1 for every 1 ≤ i ≤ k1 − 1 ; s is equal to k1 + 1 ;
n1 equals e1 − 1 ; ni equals ei − ei−1 − 1 for every 2 ≤ i ≤ k1 ; ns equals n − ek1 ; and

f(ri,j) = ri,j

(

k1 − i+ 1 +
j−1
∑

v=2

s
∑

u=i+1

ru,v

)

for every (i, j) ∈ [s]× [m] .

Proof. Interpret
(

n

k1,...,km

)

q
as the generating function for inversions on Sm

n (k1, . . . , km),.

Given any such sequence σ = ( σ1, . . . , σn ), let E be the set { i ∈ [n] | σi = 1 } .
The remainder of the proof is similar to that of Proposition 2.6, with two exceptions.

For every i in [s] , define Xi to be { x ∈ Z | n1+ · · ·+ni−1+ i ≤ x ≤ n1+ · · ·+ni+ i−1 } .
Second, observe that the term k1−i+1 in the expression of f(ri,j) is to account for ordered
pairs (a, b) such that a is in Xi and σb is equal to 1 . �

2.6 “Apartment Complex” Identity

The following identity was adapted from an indentity contained in [8]. Consider a hy-
pothetical scenario with an apartment complex whose buildings will contain exactly one
unit per floor. Assume there are to be n1 buildings, with n2 of them receiving a second
floor. Exactly k of the units will be rented.

(

n1

n2

)(

n1 + n2

k

)

=
∑

k1+k2=k

(

n1

k1

)(

n1

n1 − n2, k2, n2 − k2

)

.

The complex owner could first choose which n2 of the n1 buildings will receive a second
floor, and then k tenants could choose which of the n1 + n2 units to rent. Alternatively,

9



for all k1 in between 0 and k , the owner could first rent out k1 of the n1 first floor units,
and then of the n1 buildings: n1 − n2 buildings could receive no second floor; k2 of them
could receive a second floor that is rented; and n2 − k1 could receive a second floor that
is unrented. This can generalize as follows.

Proposition 2.8 If n1, . . . , nj, k are nonnegative integers such that nj ≤ · · · ≤ n1 and

k ≤ n1 + · · ·+ nj , then

(

j
∏

i=2

(

ni−1

ni

)

)

(

n1 + · · ·+ nj

k

)

=
∑

k1+···+kj=k

(

n1

k1

) j
∏

i=2

(

ni−1

ni−1 − ni, ni − ki, ki

)

.

Proof. For every 2 ≤ i ≤ j , let Si−1 be the set S2
ni−1

(ni, ni−1 − ni) . Also let Sj be the

set S2
n1+···+nj

(k, n1 + · · · + nj − k) . In addition, let T1 be the set S2
n1
(k1, n1 − k1) . For

every 2 ≤ i ≤ j , let Ti be the set S3
ni−1

(ni−1 − ni, ni − ki, ki) .
Define

ϕ :

j
∏

i=1

Si →

j
∏

i=1

Tj via (σ1, . . . , σj) 7→ (τ 1, . . . , τ j)

in the following way. For every 1 ≤ i ≤ j − 1 , let Ci = { s ∈ [ni] | σi
s = 2 } . Express

Ci as { ci,1 , . . . , ci,ni+1
} where ci,p < ci,p+1 for every 1 ≤ p ≤ ni+1 − 1 . Further, let Ni be

equal to n1 + · · ·+ ni . Finally, for every 1 ≤ i ≤ j − 1 , let

τ 1s = σj
s ,

τ i+1
s =















1 if σi
s = 1 ,

2 if σi
s = 2 and σ

j
Ni+p = 1 where s = ci,p ,

3 if σi
s = 2 and σ

j
Ni+p = 2 where s = ci,p .

The desired result follows from observing that ϕ is bijective. �

Proposition 2.9 If n1, . . . , nj, k are nonnegative integers such that nj ≤ · · · ≤ n1 and

k ≤ n1 + ...+ nj , then

(

j
∏

i=2

(

ni−1

ni

)

q

)

(

n1 + · · ·+ nj

k

)

q

=
∑

k1+···+kj=k

qf(K)

(

n1

k1

)

q

j
∏

i=2

(

ni−1

ni−1 − ni, ni − ki, ki

)

q

where f(K) =
j−1
∑

i=1

ki

( j
∑

u=i+1

nu − ku

)

for every K equal to ( k1, . . . , kj ) .

Proof. We will utilize the notation of Proposition 2.8 and interpret the q-analogs within
this identity as generating functions for the inversion statistic on sequences.

We will begin by accounting for the inversions associated with
(

n1+···+nj

k

)

q
. For every

i in [j] , define Xi to be { x ∈ Z | n0 + · · ·+ ni−1 + 1 ≤ x ≤ n1 + · · ·+ ni } where n0 is

10



equal to zero. Observe that ordered pairs (a, b) associated with inv(σj) are of exactly one
of the following forms: a, b are both in Xi for some i in [j] ; a, b are not both in Xi for
some i in [j] .

Note that for every i in [j] , the ordered pairs (a, b) associated with inversions of inv(σj)
such that a, b are both in Xi is accounted for by

inv
(

τ 1
)

, when i = 1 ;
∑

τ is=2

r (τ rs ) , when i ≥ 2 .

Also note that qf(K) accounts for ordered pairs (a, b) associated with inversions such that
a, b are not both in Xi for some i in [j] .

We will now account for inversions associated with
∏
(

ni−1

ni

)

q
. Observe that for every

2 ≤ i ≤ j ,

inv
(

σi−1
)

=
∑

σi−1
s =1

r
(

σi−1
s

)

=
∑

τ is=1

r
(

τ is
)

.

The desired result follows as an application of Corollary 1.3. �

Notice that developing a complete enumerative understanding of the original “apart-
ment complex” identity in terms of sequences enabled us to develop the corresponding
q-analog. It is the viewpoint of the authors that a deep grasp of the enumerative com-
binatorics of any binomial or multinomial identity enables the development of a q-analog
generalization.

3 Galois Numbers and Integer Partitions

In this section, we will investigate a connection between the coefficients of generalized
Galois numbers and integer partitions with kinds.

3.1 Major Index Statistic

To support our investigation, we will require a different statistic on sequences from [5].

Definition 3.1 If m,n are nonnegative integers and σ = ( σ1, . . . , σn ) is a sequence

whose elements are in [m] , then

maj(σ) :=
∑

a∈[n−1]
σa>σa+1

a .

The value of maj(σ) shall be referred to as the major index of σ .

Figure 5 contains some examples, and the following two lemmas and corollary will
develop additional familiarity with the major index statistic while also proving useful in
a later theorem.

11



2211 2121 2112
maj(σ) = 2 maj(σ) = 4 maj(σ) = 1

1221 1212 1122
maj(σ) = 3 maj(σ) = 2 maj(σ) = 0

Figure 5: All sequences of length 4 with two 2s and two 1s.

Lemma 3.2 Let m,n, k be nonnegative integers such that n−m+ 1 ≥ k + 1 ,

Mm+1
n (k) := { σ ∈ Sm+1

n | maj(σ) = k } ,

Ai = { σ ∈ Mm+1
n (k) | σn−i = σn−i+1 } when 1 ≤ i ≤ m− 1 ,

Am = { σ ∈ Mm+1
n (k) | σn = m+ 1 } .

Then,

Mm+1
n (k) \

⋃

i∈[m]

Ai = { σ ∈ Mm+1
n (k) | σk+1 = 1 and ω = (1, 2, . . . , m) } ,

where ω = ( σn−m+1 , . . . , σn ) is the subsequence of σ containing its last m elements.

Proof. Let σ be in Mm+1
n (k) \ ∪Ai . Since n −m + 1 must be at least k + 1 in value

and maj(σ) is equal to k , the subsequence ω must be nondecreasing. In addition, since
σ is not in ∪Ai , the subsequence ω must be strictly increasing and not end in m + 1 .
Given that the length of ω is m , it is forced that ω = ( 1, 2, . . . , m ) . The desired inclusion
follows from observing that for every k + 1 ≤ j ≤ n −m+ 1 , the value of σj must be 1
or else the major index of σ would be greater than k .

The reverse inclusion follows by the definitions of the Ai’s and Mm+1
n (k) . �

Corollary 3.3 Let m,n, k be nonnegative integers such that n−m+1 ≥ k+1 . Also let

A1, . . . , Am be as in Lemma 3.2. Then,

∣

∣

∣

∣

Mm+1
n (k) \

⋃

i∈[m]

Ai

∣

∣

∣

∣

=
∣

∣ { σ ∈ Mm+1
k+1 (k) | σk+1 = 1 }

∣

∣ .

Proof. The result follows from observing that for every σ in Mm+1
n (k) \ ∪Ai , the value

of elements σk+2, . . . , σn are fixed and can be removed without affecting maj(σ) . �

Lemma 3.4 Let m,n, k be nonnegative integers such that n −m + 1 ≥ k + 1 . Also let

A1, . . . , Am and ω be as in Lemma 3.2. If J is a subset of [m] with |J | = i , then

∣

∣

∣

∣

∣

⋂

j∈J

Aj

∣

∣

∣

∣

∣

=
∣

∣Mm+1
n−i (k)

∣

∣ .
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Proof. Let ϕ : ∩ Aj → Mm+1
n−i (k) via σ 7→ σ , where σ is ( σ1, . . . , σn−m , ω1 , . . . , ωm )

and σ is the subsequence of σ with ωj removed for every j ∈ J . Note that σ is of the
proper length for the expressed codomain of ϕ . Also note that the elements of σ whose
indices are accounted for by maj(σ) are unaffected by ϕ : when |J | < m , the values of
n−m is at least k ; when |J | = m , every ωi equals m+1 . As such, the values of maj(σ)
and maj(σ) are equal. Hence, the image of ϕ is contained within the desired codomain.

To show surjectivity, observe that each Aj in ∩Aj induces a loss of one degree of
freedom in the expression of any σ from Mm+1

n (j) . Viewing this loss as being induced
on the element ωj , the map ϕ results in σ being free from the adjacent element equality
that is forced by the Aj ’s.

To show injectivity, consider σ1, σ2 in ∩Aj such that σ1 and σ2 are unequal. Let a be
the largest index of element such that σ1

a differs from σ2
a . If a is greater than n−m , the

result follows from observing that σ1
a and σ2

a are necessarily not among the ωj removed by
ϕ . Should a be at most n−m , the result follows given that such σ1

a and σ2
a are unaffected

by ϕ . �

It is encouraged to take a moment to observe the parallelism that exists between
Figure 1 and Figure 5. This parallelism is in fact not a coincidence. MacMahon showed
in [5] that when considering the set of sequences Sm

n (k1, . . . , km) , the generating function
for major index and the generating function for inversions are equal. Stated precisely, if
m,n, k1, · · · , km are nonnegative integers such that k1 + · · ·+ km = n , then

(

n

k1, . . . , km

)

q

=
∑

σ∈Sm
n (k1,...,km)

qinv(σ) =
∑

σ∈Sm
n (k1,...,km)

qmaj(σ) . (1)

3.2 The Insertion Method

We now want to describe a construction that uses the major index statistic to form a
unique sequence of length n whose entries are in [m] from a given fundamental sequence
in Fm

n . This construction, called The Insertion Method, was first developed by Carlitz
[1] and later was clarified by Wilson [11].

Let m,n be nonnegative integers, and let (F1, . . . , Fm) be a fundamental sequence in
Fm
n . For every v in [m] , list the elements of Fv in nonincreasing order, labeling them

as fv,1 ≥ · · · ≥ fv,kv where kv equals |Fv| . The sequence ( f1,1 , f1,2 , . . . , fm,km ) will be
referred to as τ = ( τ1, . . . , τn ) . Also define the value function v : [n] → [m] such that v(i)
equals j , where τi corresponds to its respective fj,k . We will build a sequence σ in Sm

n

inductively using τ and v .
Let σ1 = ( v(1) ) . For every 2 ≤ i ≤ n , there is some a ∈ [i] such that σi

a equals v(i) .
Moreover, the sequence σi shall be of the form

σi
b =















v(i) when b = a ,

σi−1
b when 1 ≤ b < a ,

σi−1
b−1 when a < b ≤ i .
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The value a shall be determined by the following process:

1. Label σi
i with a zero.

2. Working greatest to least among j in [i− 2] , for every σi−1
j > σi−1

j+1 label σi
j+1 with

successively increasing positive integers 1, 2, 3, . . . , d.

3. Working least to greatest among j in [i − 1] , if σi
j is currently unlabeled, label σi

j

with successively positive integers d+ 1, d+ 2, . . . , i− 1 .

4. Find the σi
j labeled with a τi , and let a equal j .

Example 3.5 Consider the fundamental sequence
(

F1, F2, F3, F4

)

=
(

{0, 0} , {1} , {2, 3} , {1, 5}
)

.

Note the contents of Figure 6.

i τi v(i) Labeling for σi σi maj(σi)

1 0 1 ( 1 ) 0

2 0 1 ( 1 , 0 ) ( 1 , 1 ) 0

3 1 2 ( 1 , 2 , 0 ) ( 2 , 1 , 1 ) 1

4 3 3 ( 2 , 1 , 3 , 0 ) ( 2 , 1 , 3 , 1 ) 4

5 2 3 ( 3 , 2 , 4 , 1 , 0 ) ( 2 , 3 , 1 , 3 , 1 ) 6

6 5 4 ( 3 , 4 , 2 , 5 , 1 , 0 ) ( 2 , 3 , 1 , 4 , 3 , 1 ) 11

7 1 4 ( 4 , 5 , 3 , 6 , 2 , 1 , 0 ) ( 2 , 3 , 1 , 4 , 3 , 4 , 1 ) 12

Figure 6: The construction of σ for Example 3.5

The proof of the fact that The Insertion Method provides a bijection from Fm
n to

Sm
n is omitted here as it is contained in [1]. Additional consequences of [1] include:

maj(σi) = maj(σi−1) + τi , which will be an essential observation for the two propositions
that follow.

Proposition 3.6 Let m,n be nonnegative integers, let σ be in Sm
n , and let F (σ) be the

fundamental sequence of σ . Then, σn equals 1 if and only if all elements of the multisets

F2, . . . , Fm are nonzero.

Proof. The desired result follows from: step 1 in The Insertion Method, namely that σi
i

is labeled with a zero; and the fact that maj(σi) = maj(σi−1) + τi �

Our observations can be further clarified through the following.

Proposition 3.7 Let m,n, k be nonnegative integers. Then

Fm
n (k) := {F (σ) | σ ∈ Sm

n and inv(σ) = k } = {F (σ) | σ ∈ Sm
n and maj(σ) = k } .

Proof. The desired result follows from: the definition of F (σ) ; and the fact that
maj(σi) = maj(σi−1) + τi . �
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3.3 Integer Partitions with Kinds

We will now define the notion of an integer partition with kinds, which can be found in
[3].

Definition 3.8 Let k,m be nonnegative integers. An integer partition of k with m kinds

is a composition of k whose parts are positive integers of the form

k = k1
1 + · · ·+ ki1

1 + k1
2 + · · ·+ ki2

2 + · · ·+ k1
m + · · ·+ kim

m ,

where i1, . . . , im are nonnegative integers, and when ia is nonzero kj
a ≥ kj+1

a for all j in

the set [ia − 1] . The set of all integer partitions of k with m kinds shall be referred to as

Pm
k .

Figure 7 contains some examples.

31 32 21 + 11 21 + 12 11 + 22

22 + 12 11 + 11 + 11 11 + 11 + 12 11 + 12 + 12 12 + 12 + 12

Figure 7: The integer partitions of 3 with 2 kinds.

Proposition 3.9 Let m,n, k be nonnegative integers such that k ≤ n . Then

|Pm
k | =

∣

∣ { (F1, . . . , Fm+1) ∈ Fm+1
n (k) | 0 6∈ F2 , . . . , 0 6∈ Fm+1 }

∣

∣ .

Proof. Define ϕ : Pm
k → { (F1, . . . , Fm+1) ∈ Fm+1

n (k) | 0 6∈ F2 , . . . , 0 6∈ Fm+1 } via

k1
1 + · · ·+ ki1

1 + k1
2 + · · ·+ ki2

2 + · · ·+ k1
m + · · ·+ kim

m 7→ (F1, . . . , Fm+1) ,

where: for all 2 ≤ j ≤ m+1 , the multiset Fj equals { k
1
j−1, . . . , k

ij
j−1 } ; and F1 is a multiset

of cardinality n− i1−· · ·− im containing only zeros. Since each ki
j is positive: the value of

i1 + · · ·+ in is at most k and hence |F1| is nonnegative; and all elements of the multisets
F2, . . . , Fm+1 are nonzero.

Observing that Definition 1.8 implies F1 must contain only zeros for any fundamental
sequence, the desired bijectivity of ϕ follows naturally from its rule of assignment. �

3.4 Generalized Galois Numbers

We will begin by defining a generalized Galois number, which can be found in [10].

Definition 3.10 If m,n are nonnnegative integers, then

Gm
n :=

∑

k1+···+km=n

(

n

k1, . . . , km

)

q

.

This polynomial is sometimes referred to as the generalized Galois number of (m,n) .
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G3
2 = 3q + 6 G3

3 = q3 + 8q2 + 8q + 10

G3
4 = 3q5 + 9q4 + 18q3 + · · ·+ 15 G3

5 = 3q8 + · · ·+ 48q4 + 45q3 + · · ·+ 21

G3
6 = q12 + · · ·+ 107q4 + 82q3 + · · ·+ 28 G3

7 = 3q16 + · · ·+ 186q4 + 129q3 + · · ·+ 36

Figure 8: Generalized Galois numbers G3
2 , . . . , G

3
7 .

Figure 8 contains examples of generalized Galois numbers of (3, n) that were calculated
using a recursive relation from [10].

Proposition 3.11 If m,n are nonnegative integers, then

Gm
n =

∑

σ∈Sm
n

qinv(σ) =
∑

σ∈Sm
n

qmaj(σ) .

Proof. The result follows from Definition 3.10 and Equation (1). �

One final definition, from [2], is needed to concisely state the theorem that follows.

Definition 3.12 Let f : Z → Z be a function, and define the finite difference of f to be

∇f : Z → Z via n 7→ f(n)− f(n− 1) .

Inductively defining the mth-finite difference of f to be ∇mf := ∇ (∇m−1f ) for any
positive integers m ≥ 2 , a standard result that can be found in [2] follows

∇mf(n) =

m
∑

i=0

(−1)i
(

m

i

)

f(n− i) . (2)

Letting f 3
k (n) be the coefficient of qk in the simplified polynomial G3

n , Figure 9 contains
some example finite difference computations.

∇2f 3
3 (4) = 16 ∇2f 3

3 (5) = 10 ∇2f 3
3 (6) = 10 ∇2f 3

3 (7) = 10

∇2f 3
4 (4) = 9 ∇2f 3

4 (5) = 30 ∇2f 3
4 (6) = 20 ∇2f 3

4 (7) = 20

Figure 9: Sample finite difference computations using f 3
k (n) .

Observe that ∇2f 3
3 (5) , ∇

2f 3
3 (6) , ∇

2f 3
3 (7) are equal to the number of integer partitions

of 3 with 2 kinds (from Figure 7).
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Theorem 3.13 Let m,n, k be nonnegative integers such that n ≥ m+ k . Then,

∇mfm+1
k (n) = |Pm

k | ,

where fm+1
k (n) evaluates to the coefficient of qk in the simplified polynomial Gm+1

n .

Proof. By the definition of Mm+1
n (k) in Lemma 3.2, observe that fm+1

k (n− i) is equal
to
∣

∣Mm+1
n−i (k)

∣

∣ . Applying this observation and Equation 2, we have that

∇mfm+1
k (n) =

m
∑

i=0

(−1)i
(

m

i

)

∣

∣Mm+1
n−i (k)

∣

∣ .

Note that the assumed relation n ≥ m+ k satisfies the similar assumption of Lemma 3.2
and Lemma 3.4. Applying these two lemmas and the Principle of Inclusion and Exclusion
from [2], the following equality is yielded

m
∑

i=0

(−1)i
(

m

i

)

∣

∣Mm+1
n−i (k)

∣

∣ =

∣

∣

∣

∣

Mm+1
n (k) \

⋃

i∈[m]

Ai

∣

∣

∣

∣

,

where A1, . . . , Am are as defined in Lemma 3.2. Letting T be { σ ∈ Mm+1
k+1 (k) | σk+1 = 1 }

and applying Corollary 3.3, it follows that

∇mfm+1
k (n) = | T | .

By restricting the domain of ϕ from Proposition 1.9, we have that

| T | = | {F (σ) | σ ∈ T } | .

Since the rightmost element of every sequence in T is 1, Proposition 3.6 applies to T and
it follows that

∇mfm+1
k (n) =

∣

∣ { (F1, . . . , Fm+1) ∈ Fm+1
k+1 (k) | 0 6∈ F2 , . . . , 0 6∈ Fm+1 }

∣

∣ .

Further applying Proposition 3.9, the desired result is achieved. �

Stated explicitly, Theorem 3.13 expresses that as n grows the mth finite difference
of fm+1

k (n) is eventually constant, and the resulting constant is precisely the number of
integer partitions of k with m kinds. Reflecting back to Figure 9, observe that the sample
computations of ∇2f 3

k (n) become constant when n is at least k + 2 in value.

Corollary 3.14 If n, k are nonnegative integers such that n ≥ k , then

dk

dqk

(

G2
n+1 −G2

n

k!

)
∣

∣

∣

∣

q=0

= part(k) ,

where d
dq

is the derivative operator on polynomials and part(k) is the number of integer

partitions of k with 1 kind.

Proof. Follows directly from Theorem 3.13 and Taylor’s Theorem. �
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