The 0-Rook Monoid and its Representation Theory

Joël Gay Florent Hivert

October 29, 2019

Abstract

We show that a proper degeneracy at $q=0$ of the q-deformed rook monoid of Solomon is the algebra of a monoid R_{n}^{0} namely the 0 -rook monoid, in the same vein as Norton's 0 -Hecke algebra being the algebra of a monoid $H_{n}^{0}:=H^{0}\left(A_{n-1}\right)$ (in Cartan type A_{n-1}). As expected, R_{n}^{0} is closely related to the latter: it contains the $H^{0}\left(A_{n-1}\right)$ monoid and is a quotient of $H^{0}\left(B_{n}\right)$. We give a presentation for this monoid as well as a combinatorial realization as functions acting on the classical rook monoid itself. On the way we get a Matsumoto theorem for the rook monoid a result which was conjectured by Solomon.

The 0 -rook monoid shares many combinatorial properties with the Hecke monoid: its Green right preorder is an actual order, and moreover a lattice (analogous to the right weak order) which has some nice combinatorial, and geometrical features. In particular the 0 -rook monoid is \mathcal{J}-trivial.

Following Denton-Hivert-Schilling-Thiéry, it allows us to describe its representation theory including the description of the simple and projective modules. We further show that R_{n}^{0} is projective on H_{n}^{0} and make explicit the restriction and induction functors along the inclusion map. We finally give a (partial) associative tower structures on the family of $\left(R_{n}^{0}\right)_{n \in \mathbb{N}}$ and we discuss its representation theory.

Contents

1 Introduction 2
1.1 Iwahori-Hecke algebra and its degeneracy at $q=0$ 2
1.2 Rook and q-rooks 4
1.3 Outline of the paper 5
1.4 Aknowledgment 6
2 Background 7
2.1 Rook monoids 7
$2.2 \mathcal{J}$-trivial monoids 8
2.3 Representation theory of \mathcal{J}-trivial monoids 8
2.4 Descent sets, compositions and ribbons 9
2.5 Representation theory of 0-Hecke monoids and algebras 10
2.6 Induction and restriction of H_{n}^{0}-modules 11
3 The 0-rook monoid 12
3.1 Definition of R_{n}^{0} by generators and relations 12
3.2 Definition by action and R-codes 15
3.2.1 R-code and rooks 16
3.2.2 Counting rook according to the position of the first 0 19
3.3 Equivalence of the definitions of R_{n}^{0} 22
3.4 A Matsumoto theorem for rook monoids 29
3.5 More actions of R_{n}^{0} 31
4 The \mathcal{R}-order on rooks 32
$4.1 \quad \mathcal{R}$-triviality of R_{n}^{0} 33
4.2 The lattice of the \mathcal{R}-order 37
4.3 Chains in the rook lattice 41
4.4 Geometrical remarks 45
4.5 A monoid associated to the stellohedron 47
4.5.1 The stelloid lattice 49
4.5.2 Higher order Stelloid monoid and lattices 50
5 Representation theory of the 0-Rook monoid R_{n}^{0} 52
5.1 Idempotents and Simple modules 52
5.2 Indecomposable projective modules 54
5.3 Ext-Quivers 56
5.4 Restriction functor to H_{n}^{0} 57
5.5 Tower of monoids 61
5.5.1 Restriction and induction of simple modules 62
5.5.2 Projective indecomposable modules 68
A Implementation 70
B Tables 70
References 72

1 Introduction

This article is the first of a series of two on the degeneracy at $q=0$ of the q-rook and more generally q-Renner monoids and their representation theory [Gay and Hivert(2018)]. This first paper is focused on Cartan type A, that is only on the rook case. We start by recalling Iwahori's [Iwahori(1964)] construction of the Iwahori-Hecke algebra, and the importance of the $q=0$ degeneracy.

1.1 Iwahori-Hecke algebra and its degeneracy at $q=0$

Let \mathbb{F}_{q} be the finite field with q elements. Let $G:=\mathbf{G L} \mathbf{L}_{n}\left(\mathbb{F}_{q}\right)$ be its general linear group of invertible $n \times n$ matrices, and $B \subset G$ its subgroup of upper triangular matrices. Both groups G and B are finite of respective cardinalities $|G|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)$ and $|B|=(q-1)^{n} q^{\binom{n}{2}}$. We denote \mathfrak{S}_{n} the symmetric group acting on $\{1, \ldots, n\}$ and identify a permutation with its associated permutation matrix. The Bruhat decomposition [Björner and Brenti(2005)] tells that for all $M \in G$ there is a unique permutation $\sigma \in \mathfrak{S}_{n}$ such that $M \in B \sigma B$, that is :

$$
\begin{equation*}
G=\bigsqcup_{\sigma \in \mathfrak{S}_{n}} B \sigma B . \tag{1.1}
\end{equation*}
$$

For $\sigma \in \mathfrak{S}_{n}$, let T_{σ} be the element of the group algebra $\mathbb{C}[G]$ defined by:

$$
\begin{equation*}
T_{\sigma}:=\frac{1}{|B|} \sum_{x \in B \sigma B} x . \tag{1.2}
\end{equation*}
$$

The Hecke $\operatorname{ring} \mathcal{H}(G, B)$ is the \mathbb{Z}-ring spanned by the T_{w}. Its identity is $\varepsilon=T_{\mathrm{Id}}=\frac{1}{|B|} \sum_{b \in B} b$. Furthermore, $\mathcal{H}(G, B)=\varepsilon \mathbb{Z}[G] \varepsilon$. Let $S=\left\{s_{1}, \ldots, s_{n-1}\right\}$ be the elementary transpositions which generate \mathfrak{S}_{n} as a group. For $q \in \mathbb{C}$, let $\mathcal{H}_{\mathbb{Z}}(q)$ denote the \mathbb{Z}-algebra defined by generators and relations as follows:

$$
\begin{align*}
T_{i}^{2} & =q \cdot 1+(q-1) T_{i} & & 1 \leq i \leq n-1, \tag{H1}\\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} & & 1 \leq i \leq n-2, \tag{H2}\\
T_{i} T_{j} & =T_{j} T_{i} & & |i-j| \geq 2, . \tag{H3}
\end{align*}
$$

If q is the cardinality of a finite field, Iwahori proved that the maps $T_{i} \mapsto T_{s_{i}}$ extends to a full ring isomorphism from $\mathcal{H}_{\mathbb{Z}}(q)$ to $\mathcal{H}(G, B)$ and consequently, the equations above give a presentation of $\mathcal{H}_{\mathbb{Z}}(q)$. By extending the scalar to \mathbb{C} we get a \mathbb{C}-algebra $\mathcal{H}_{\mathbb{C}}(q)$ which extends the definition of the Hecke ring outside of prime powers. It is well known that when q is neither zero nor a root of the unity, the Iwahori-Hecke algebra is isomorphic to the complex group algebra $\mathbb{C}\left[\mathfrak{S}_{n}\right]$.

The degeneracy at $q=0$ of the Iwahori-Hecke algebra has many interesting properties and applications. Its first appearance is perhaps in Demazure character formula [Demazure(1974)] through divided differences. Then, its central role in Schubert calculus was discovered by Lascoux [Lascoux(2001), Lascoux(2003), Lascoux(2003/04)], with further recent connection with K-theory through Grothendieck polynomials (see e.g. [Miller(2005), Lam et al.(2010)Lam, Schilling, and Shin Its representation theory was first studied by Norton [Norton(1979)] in type A and Carter [Carter(1986)] in the other types. In type A, Krob and Thibon [Krob and Thibon(1997)] explained how induction and restriction of these modules give an interpretation of the products and coproducts of the Hopf algebras of noncommutative symmetric functions and quasi-symmetric functions, giving thus analogue of the well know Frobenius isomorphism from the character ring of the symmetric groups to symmetric functions (See e.g. [Macdonald(1995)]). This was the main motivation for the present work at the beginning. Two other important steps were further made by Duchamp-Hivert-Thibon [Duchamp et al.(2002)Duchamp, Hivert, and Thibon] for type A and Fayers [Fayers(2005)] for other types, using the Frobenius structure to get more results, including a description of the Ext-quiver. Denton [Denton(2010)] gave a family of minimal orthogonal idempotents.

This degeneracy is defined by putting $q=0$ in the relation of the q-Iwahori-Hecke algebra:

$$
\begin{align*}
T_{i}^{2} & =-T_{i} & & 1 \leq i \leq n-1, \tag{1.3}\\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1} & & 1 \leq i \leq n-2 \tag{1.4}\\
T_{i} T_{j} & =T_{j} T_{i} & & |i-j| \geq 2 . \tag{1.5}
\end{align*}
$$

One interesting remark which as been discovered independently several times is that this is the algebra of a monoid [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry]. To see this, they are two possibilities: define either $\pi_{i}:=-T_{i}$ or $\pi_{i}:=T_{i}+1$, and get the following
presentation of the Hecke monoid at $q=0$, which we denote H_{n}^{0} (as opposite to its algebra denoted by $\left.H_{n}(0)\right)$:

$$
\begin{align*}
\pi_{i}^{2} & =\pi_{i} & & 1 \leq i \leq n-1 \tag{M1}\\
\pi_{i} \pi_{i+1} \pi_{i} & =\pi_{i+1} \pi_{i} \pi_{i+1} & & 1 \leq i \leq n-2 \tag{M2}\\
\pi_{i} \pi_{j} & =\pi_{j} \pi_{i} & & |i-j| \geq 2 \tag{M3}
\end{align*}
$$

For a permutation σ, one defines $\pi_{\sigma}:=\pi_{i_{1}} \ldots \pi_{i_{k}}$ where $s_{i_{1}} \ldots s_{i_{k}}$ is any reduced word (word of minimal length) for σ. Thanks to the braid relations M2,M3, and Matsumoto's theorem the result is independent of the choice of the reduced word. Then H_{n}^{0} is nothing but the set $\left\{\pi_{\sigma} \mid \sigma \in \mathfrak{S}_{n}\right\}$ and therefore of cardinality $n!$.

In general, being the algebra of a monoid helps a lot understanding the representation theory. In this particular case, this is even more true since the monoid has a very specific property: it is \mathcal{J}-trivial. Those are the monoids which bears an order such that the product of x and y is smaller than both x and y. According to Denton-Hivert-SchillingThiéry [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry], the representation theory of these kinds of monoids is entirely combinatorial (see section 2.2 for an overview of their properties). In particular, they showed that many of the previous works about the representation theory of H_{n}^{0} such as [Norton(1979), Carter(1986), Duchamp et al.(2002)Duchamp, Hivert, and Thibon, Fayers(2005)] are just particular cases of the general theory for \mathcal{J}-trivial monoids.

1.2 Rook and q-rooks

In [Solomon(1990), Solomon(2004)], Solomon constructed an analogue of Iwahori's construction replacing the general linear group by its full matrix monoid $M:=\mathbf{M}_{n}\left(\mathbb{F}_{q}\right)$. It goes as follows: recall that $B \subset M$ denotes the set of invertible upper triangular matrices. Then M admits a Bruhat decomposition [Renner(1995)] too: the set of permutation matrices is replaced by the set R_{n} of so-called rook matrices of size n, that is a $n \times n$ matrices with entries $\{0,1\}$ and at most one nonzero entry in each row and column. Then

$$
\begin{equation*}
M=\bigsqcup_{r \in R_{n}} B r B \tag{1.6}
\end{equation*}
$$

The product of two rook matrices is still a rook matrix so that they form a submonoid R_{n} of M. For any $r \in R_{n}$, Solomon defined as in Section 1.1 an element T_{r} of the monoid algebra $\mathbb{C}[M]$ by

$$
\begin{equation*}
T_{r}:=\frac{1}{|B|} \sum_{x \in B r B} x \tag{1.7}
\end{equation*}
$$

Those elements span a sub algebra $\mathcal{H}(M, B)$ which contains $\mathcal{H}(G, B)$ with the same identity ε, and can also be defined by $\mathcal{H}(M, B)=\varepsilon \mathbb{C}[M] \varepsilon$.

Halverson [Halverson(2004)] further got a presentation of this ring. It is generated by the two families T_{1}, \ldots, T_{n-1} and P_{1}, \ldots, P_{n} together with the relations of the Iwahori-Hecke algebra (Equations H1, H2, H3) and the following extra relations:

$$
\begin{align*}
P_{i}^{2} & =P_{i} & & 1 \leq i \leq n \tag{RH4}\\
P_{i} P_{j} & =P_{j} P_{i} & & 1 \leq i, j \leq n \tag{RH5}\\
P_{i} T_{j} & =T_{j} P_{i} & & i<j \tag{RH6}
\end{align*}
$$

$$
\begin{array}{ll}
P_{i} T_{j}=T_{j} P_{i}=q P_{i} & \\
P_{i+1}=q P_{i} T_{i}^{-1} P_{i} & 1 \leq i<n \tag{RH8}
\end{array}
$$

Note that the last relation can also be reformulated using the first as

$$
\begin{equation*}
P_{i+1}=P_{i} T_{i} P_{i}-(q-1) P_{i} \tag{RH8a}
\end{equation*}
$$

The question whether there exists a proper degeneracy at $q=0$ of this ring and if it exists, if it is the monoid-ring of a monoid, is therefore very natural. The main goal of the present article is to construct such a monoid denoted R_{n}^{0}, show that it is, as H_{n}^{0}, a \mathcal{J}-trivial monoid, which allows us to analyze easily its representation theory.

1.3 Outline of the paper

The paper is organized as follows: in Section 2, after some background on the rook matrices (or just rooks) and their one-line notations, we sketch out Denton-Hivert-Schilling-Thiéry work on representation theory of \mathcal{J}-trivial monoids and how it applies to 0 -Hecke monoids. We also briefly review Krob-Thibon's work [Krob and Thibon(1997)] linking representation theory of 0-Hecke algebra to the Hopf algebras of noncommutative symmetric functions and quasi-symmetric functions.

In Section 3, we turn to the definition of the 0-rook monoid. We actually give two equivalent definitions: The first definition is by generators and relations (Subsection 3.1): We show that a suitable rewriting of Halverson's presentation when specialized at $q=0$ is actually a monoid presentation (Definition 3.1). We then study some particular elements of this monoid which allows us to give a simpler equivalent presentation (Corollary 3.6).

The second definition is as operators acting on the rook monoid (Definition 3.8). To show that these two definitions are actually equivalent (Corollary 3.46), we choose to go a somewhat lengthy road, taking the following steps:

1. We first notice that the operators verify the relations of the presentation (Remark 3.9).
2. We generalize to rooks a variant of the notion of Lehmer code of permutations (Definition 3.12), building a bijection between rooks and the so-called R-code (Theorem 3.27).
3. After a little combinatorial detour (Section 3.2.2), we associate to each R-code c, a canonical word π_{c} (Definition 3.34) and its corresponding s_{c} in the classical rook monoid such that (Proposition 3.36) for all rook $r \in R_{n}$ then $1_{n} \cdot \pi_{\operatorname{code}(r)}=1_{n} \cdot s_{\text {code }(r)}=r$.
4. We then translate on R-code c the action on rook (Definition 3.38), and prove that, for any generator t, the element $\pi_{\mathrm{c}} t$ is equivalent to $\pi_{\mathrm{c} \cdot t}$ modulo the relations of the presentation (Theorem 3.41).
5. By induction this shows that any word is equivalent to a word π_{c}, but since there are as many R-codes as rooks we will conclude that the two definitions are equivalent (Corollary 3.46).

Note that we do not use the well-known presentation of the classical rook monoid or of the q-rook algebra, but prove them again from scratch. Though it is combinatorially technical, we argue that our approach has several advantages. First it is self contained and purely monoidal, providing arguments for monoid theory people which are not familiar with Coxeter
group theory. Second, our approach is very explicit and algorithmic providing a canonical reduced word for all rooks or 0-rooks together with an explicit algorithm transforming any word in its equivalent canonical one. Moreover, the Lehmer code is central ingredient in the theory of Schubert polynomials whose modern combinatorial incarnation is the pipedream theory. We find interesting to provide such a combinatorial tool. Finally, this allows us to have a much finer understanding of the combinatorics of reduced words. In particular, we get an analogue of Matsumoto's theorem (Theorem 3.54), an ingredient which was noticed missing by Solomon [Solomon(2004)]. As a consequence, all the previous proof of presentation had to rely on some dimension argument so that they were only valid on a field. Notice that, if we had this theorem from the beginning, we could have worked only on reduced words as for the classical case of Hecke algebras.

Section 4 is devoted to the study of the analogue of the weak permutohedron order on rooks or equivalently to Green's \mathcal{R}-order of the 0 -rook monoid. Using a generalization of the notion of inversion sets (Definition 4.6), we provide an algorithm to compare two rooks (Definition 4.10 and Theorem 4.16). A very important consequence in particular for the representation theory is that R_{n}^{0} is \mathcal{R}-trivial, \mathcal{L}-trivial and thus \mathcal{J}-trivial (Corollary 4.17). We then show that the right order, as for permutations, is actually a lattice (Corollary 4.19), giving algorithms to compute the meet and the join (Theorem 4.18 and 4.22). We moreover provide a formula enumerating the meet irreducible (Proposition 4.28), give a bijection for a certain subposet with the subposet of singletons in the Tamari lattice (Section 4.3) and conclude this section by some geometric remarks.

Section 5 deals with the representation theory of the 0-rook monoid. It heavily uses the fact that R_{n}^{0} is \mathcal{J}-trivial through the theory of Denton-Hivert-Schilling-Thiéry [Denton et al.(2010/11)Denton, Hi We describe the set of idempotents and their lattice structure (Proposition 5.7 and 5.9). As for any \mathcal{J}-trivial monoids, we show that the simple modules are all 1-dimensional (Theorem 5.8), describe the indecomposable projective module as some kind of descent classes (Theorem 5.17) and describe the quiver (Theorem 5.19). We then study how the representation theory of H_{n}^{0} and R_{n}^{0} are related. The main result here is that the later is projective on the former (Theorem 5.24). We moreover give the decomposition functor (Theorem 5.27).

Finally Section 5.5 , is devoted to the tower of monoids structure on the sequence of 0 -rook monoids. Recall that Bergeron-Li [Bergeron and $\mathrm{Li}(2009)$] gave some necessary condition to get Hopf algebra structure on the Grothendieck groups generalizing the algebras of symmetric [Macdonald(1995)], noncommutative symmetric and quasi-symmetric functions [Krob and Thibon(1997)]. This was the main motivation for this work, but unfortunately, it does not work as nicely as expected. We present such an associative structure but it does not fulfill all the requirement of Bergeron-Li. In particular, R_{m+n}^{0} is not projective over $R_{m}^{0} \times R_{n}^{0}$. We nevertheless explicit some structure and in particular the induction rule for simple modules (Theorem 5.46).

1.4 Aknowledgment

We thank Vincent Pilaud for numerous fruitful discussions and suggestions. We also would like to thank Nicolas M. Thiéry, Jean-Christophe Novelli for various suggestions about representation theory and combinatorics. We are grateful to Jean-Yves Thibon who suggested the problem. We also would like to thanks James Mitchell for his help using libsemigroup [Mitchell and Torpey(2018)] setting up some advanced difficult computations related to this work.
J. Gay was founded by Fondation DIGITEO, project TRAGIC, grant \#2015-3181D. The computation where made using the Sagemath [Stein et al.(2018)] software. Development is supported by the OpenDreamKit Horizon 2020 European Research Infrastructures project grant \#676541.

2 Background

2.1 Rook monoids

We start by recalling some basic combinatorial facts about rooks.
Definition 2.1. A rook matrix is a $n \times n$ matrix with entries $\{0,1\}$ and at most one nonzero entry in each row and column.

Enumeration of rook matrices has received a considerable research effort in the past (See e.g. [Riordan(2002), Butler et al.(2010)Butler, Haglund, Can, and Remmel] and the references therein) and has recently be renewed by connection with PASEP [Josuat-Vergès(2011)]. The product of two rook matrices is still a rook matrix. Thus the following definition:

Definition 2.2. The rook monoid of size n is the submonoid R_{n} of the matrix monoid containing the rook matrices of size n.

Identifying permutations with their matrices, we see that \mathfrak{S}_{n} is a submonoid of R_{n}. To deal with rook matrices, it is easier to have an analogue of the so-called one line notation for permutations as in [Can and Renner(2012)]:

Notation 2.3. We encode a rook matrix by its rook vector (or just rook) of size n whose i-th coordinate is 0 if there is no 1 in the i-th column of r, and the index of the row containing the 1 in the i-th column otherwise.

Example 2.4. Here are two matrices with their associated rook vector:

In the sequel, we identify rooks matrices and rook vectors and speak about rooks when there is no ambiguity.

Definition 2.5. In the monoid R_{n}, let $\left(s_{i}\right)_{i=1 \ldots n-1}$ denotes the rook matrices of the elementary transpositions $(i, i+1)$. Let P_{i} also denote the diagonal $n \times n$ matrix with the i first diagonal entries nul and the remaining one as 1.

For example with $n=4$, here are the matrices of $s_{1}, s_{2}, s_{3}, P_{1}, P_{2}, P_{3}, P_{4}$ and their associated vectors
$\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \quad\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{lllll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{lllllllllllll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

It is well-known that the $\left(s_{i}\right)_{i}$ generate the symmetric group as a the group of permutation matrices and $\left(s_{i}\right)_{i}, P_{1}$ generate the rook monoid. We will later give a presentation (Remark 3.9).

$2.2 \mathcal{J}$-trivial monoids

We present here basic facts about monoids. We refer to [Pin(2010)] or [Steinberg(2016)] for more details. Through this paper, all monoids are supposed to be finite.

Recall that the left (resp. right, resp. bi-sided) ideal of M generated by x is the set $M x:=\{m x \mid m \in M\}$ (resp. $x M:=\{x m \mid m \in M\}$, resp. $M x M:=\{m x n \mid m, n \in M\}$). In 1951, Green [Green(1951)] introduced several preorders on monoids related to inclusion of ideals. The standard terminology is to write \mathcal{R} for right ideal, \mathcal{L} for left and \mathcal{J} for bi-sided. Let $\mathcal{K} \in\{\mathcal{R}, \mathcal{L}, \mathcal{J}\}$ and M be a monoid. For $x, y \in M$, we write $x \leq \mathcal{K} y$ when the \mathcal{K}-ideal generated by x is contained in the \mathcal{K}-ideal generated by y. For example, if $\mathcal{K}=\mathcal{L}$, this means that $x \leq_{\mathcal{L}} y$ if $M x \subseteq M y$ or equivalently if $x=u y$ for some $u \in M$. These relations are clearly preorders (reflexive and antisymmetric) and naturally give rise to equivalence relations denoted simply by \mathcal{K} : for example $x \mathcal{L} y$ if and only if $M x=M y$.

Definition 2.6. A monoid M is called \mathcal{K}-trivial if all \mathcal{K}-classes are of cardinality one, that is if the \mathcal{K}-preorder is antisymmetric and therefore an actual order. Specifically, M is \mathcal{J}-trivial if $M x M=$ MyM implies $x=y$.

For the reader which is more familiar with Cayley graph, this means that the \mathcal{J}-sided Cayley graphs has only trivial (i.e. singletons) strongly connected components. Examples of \mathcal{J}-trivial monoid of interest for this work include the 0 -Hecke algebra for any Coxeter group [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry]. Beware that 1 is the largest element of those (pre)-orders. This is the usual convention in the semigroup community, but is the converse convention from the closely related notions of left and right weak order in a Coxeter group.

Finally, for finite monoids, \mathcal{R}, \mathcal{L} and \mathcal{J} are related as follows:
Lemma $2.7([\operatorname{Pin}(2010)] \mathrm{V}$. Theorem 1.9). A finite monoid is \mathcal{J}-trivial if and only if it is both \mathcal{R}-trivial and \mathcal{L}-trivial.

2.3 Representation theory of \mathcal{J}-trivial monoids

The representation theory of \mathcal{J}-trivial monoids has been well studied by Denton, Hivert, Schilling and Thiéry [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry]. It turns out that it is combinatorial: more precisely, one can compute the simple, projective modules, the Cartan matrix and even the quiver by computing only in the monoid, without requiring linear combinations. For example, the representation theory of any algebra A is largely governed by its idempotents (elements such that $e^{2}=e$). However, when dealing with a finite \mathcal{J}-trivial monoid M, it is sufficient to look for idempotents in the monoid M itself rather than in its monoid algebra $\mathbb{C}[M]$.

In this subsection, M will always by a finite \mathcal{J}-trivial monoid and we will denote by $E(M)$ the set of idempotents of M. They parameterize the simple M-modules:
Theorem 2.8 ([Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Proposition 3.1 and 3.3]). There are as many as (isomorphism classes of) simple modules S_{e} as idempotents $e \in E(M)$, all of dimension 1. Their structure is as follows: S_{e} is spanned by some vector ϵ_{e} with the action of any $m \in M$ given by

$$
m \cdot \epsilon_{e}=\left\{\begin{array}{cc}
\epsilon_{e} & \text { if } m e=e \tag{2.1}\\
0 & \text { otherwise }
\end{array}\right.
$$

We now describe the structure of the radical. Given $x \in M$, the sequence $\left(x^{i}\right)_{i \in \mathbb{N}}$ is decreasing for the \mathcal{J}-order, therefore it must eventually stabilize to an idempotent element which is usually denoted x^{ω}.

Theorem 2.9 ([Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Theorem 3.4 and 3.7]). Define a product \star on $E(M)$ by $x \star y:=(x y)^{\omega}$. Then the restriction of $\leq \mathcal{J}$ to $E(M)$ is a lower semi-lattice such that $x \wedge_{\mathcal{J}} y=x \star y$ where $x \wedge_{\mathcal{J}} y$ is the meet of x and y. In particular, $(E(M), \star)$ is a commutative monoid.

Moreover $(\mathbb{C}[E(M)], \star)$ is isomorphic to $\mathbb{C}[M] / \operatorname{Rad}(\mathbb{C}[M])$ and the mapping $\phi: x \mapsto x^{\omega}$ is the canonical algebra morphism associated to this quotient.

Finally, we also describe the projective module: Define

$$
\begin{equation*}
\operatorname{rfix}(x):=\min \{e \in E(M) \mid x e=x\}, \quad \text { and } \quad \operatorname{lfix}(x):=\min \{e \in E(M) \mid e x=x\}, \tag{2.2}
\end{equation*}
$$

the min being taken for the \mathcal{J}-order (which exists according to [Denton et al.(2010/11)Denton, Hivert, Schillin Proposition 3.16]).

Theorem 2.10 ([Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Theorem 3.23]). For any idempotent e denote by $L(e):=M e$, and set

$$
\begin{equation*}
L_{=}(e):=\{x \in M e \mid \operatorname{rfix} x=e\} \quad \text { and } \quad L_{<}(e):=\left\{x \in M e \mid \operatorname{rfix} x<_{\mathcal{L}} e\right\} . \tag{2.3}
\end{equation*}
$$

Then, the projective module P_{e} associated to S_{e} is isomorphic to $\mathbb{K} L(e) / \mathbb{K} L_{<}(e)$. In particular, taking as basis the image of $L_{=}(e)$ in the quotient, the action of $m \in M$ on $x \in L_{=}(e)$ is given by: $m \cdot x=m x$ if $\operatorname{rfx}(m x)=e$ and 0 otherwise.

Of course the corresponding statement holds on the right. Then [Denton et al.(2010/11)Denton, Hivert, Sc Theorem 3.20] further give a formula for the Cartan invariant matrix: for $i, j \in E(M)$ is given by:

$$
\begin{equation*}
c_{i, j}=\mid\{x \in M \mid i=\operatorname{lfix} x \text { and } j=\operatorname{rfix} x\} \mid . \tag{2.4}
\end{equation*}
$$

2.4 Descent sets, compositions and ribbons

Before applying the preceding theory to the 0 -Hecke monoid, we recall some classical combinatorial ingredient: each subset S of $\llbracket 1, n-1 \rrbracket$ of cardinality p can be uniquely associated with a so called composition of n of length $p+1$ that is a tuple $I:=\left(i_{1}, \ldots, i_{p+1}\right)$ of positive integers of sum n :

$$
\begin{equation*}
S=\left\{s_{1}<s_{2}<\cdots<s_{p}\right\} \longmapsto \mathrm{C}(S):=\left(s_{1}, s_{2}-s_{1}, s_{3}-s_{2}, \ldots, n-s_{p}\right) . \tag{2.5}
\end{equation*}
$$

The converse bijection, sending a composition to its descent set, is given by:

$$
\begin{equation*}
I=\left(i_{1}, \ldots, i_{p}\right) \longmapsto \operatorname{Des}(I)=\left\{i_{1}+\cdots+i_{j} \mid j=1, \ldots, p-1\right\} . \tag{2.6}
\end{equation*}
$$

we write $I \vDash n$ when I is a composition of n and write $\ell(I)$ the length of I. We will sometimes extend this definition to subsets $J \subset \llbracket 0, n-1 \rrbracket$ by prepending a 0 to $\mathrm{C}(S)$ when $0 \in S$.

For instance, the composition $(3,1,2,1,2,2) \vDash 11$ corresponds to the subset $\{3,4,6,7,9\}$ of $\llbracket 0,10 \rrbracket$ and $(0,3,4,1) \vDash 8$ corresponds to the subset $\{0,3,7\}$ of $\llbracket 0,7 \rrbracket$.

Compositions can be pictured as a ribbon diagram, that is, a set of rows composed of square cells of respective lengths i_{j}, the first cell of each row being attached under the last
cell of the previous one. I is called the shape of the ribbon diagram. Recall also that the descent set $\operatorname{Des}(\sigma)$ of a permutation σ is the set of i such that $\sigma(i)>\sigma(i+1)$ (the descents of σ), and the (right) descent composition $\mathrm{C}(\sigma)$ of σ is the unique composition I of n such that $\operatorname{Des}(I)=\operatorname{Des}(\sigma)$, that is the shape of a filled ribbon diagram whose row reading is σ and whose rows are increasing and columns decreasing. For example, Figure 2.1 shows that the descent composition of $(3,5,4,1,2,7,6)$ is $I=(2,1,3,1)$.

Figure 2.1: The ribbon diagram of the permutation 3541276.
Conversely, with a composition I, associate its maximal permutation $\sigma=\omega(I)$ as the permutation with descent composition I and maximal inversion number. Similarly, the minimal permutation $\alpha(I)$ is the permutation with descent composition I and minimal inversion number. It is well known that the set of permutations whose descent composition is I is the weak order right interval $[\alpha(I), \omega(I)]$ (see e.g. [Krob and Thibon(1997), Lemma 5.2]). For example, if $I=(2,1,3,1), \omega(I)=6752341$ and $\alpha(I)=1432576$.

2.5 Representation theory of 0 -Hecke monoids and algebras

We now shortly explain how the previous theory applies to H_{n}^{0}. First of all H_{n}^{0} is \mathcal{R}-trivial, the corresponding order being defined as $\pi_{\sigma} \leq_{\mathcal{R}} \pi_{\mu}$ if and only if $\mu \leq_{R} \sigma$ where \leq_{R} is the right weak order of the symmetric group. The same holds on the left, and actually H_{n}^{0} is isomorphic to its own opposite. Thanks to Lemma 2.7, it is then \mathcal{J}-trivial.

For any composition $I=\left(i_{1}, \ldots, i_{p}\right) \vDash n$, we consider the parabolic submonoid H_{I}^{0} generated by $\left\{\pi_{i} \mid i \in \operatorname{Des}(I)\right\}$. It is isomorphic to the direct product $H_{i_{1}}^{0} \times H_{i_{2}}^{0} \times \cdots \times H_{i_{p}}^{0}$. Each parabolic submonoid contains a unique zero element $\pi_{J}=\pi_{\omega_{J}}$ where ω_{J} is the maximal element of the parabolic Coxeter subgroup \mathfrak{S}_{J}. The collection $\left\{\pi_{J} \mid J \vDash n\right\}$ is exactly the set of idempotents in H_{n}^{0}.

Recall that the length $\ell(\sigma)$ of a permutation σ is the minimal length of a word in the $\left(s_{i}\right)_{i}$ whose product is σ. It is also equal to the number of inversions of σ. Recall also that such a minimal length word is called reduced. The left and right descent sets and content of $w \in \mathfrak{S}_{n}$ are respectively defined by:

$$
\begin{aligned}
D_{L}(w)= & \left\{i \in I \mid \ell\left(s_{i} w\right)<\ell(w)\right\}, \quad \text { and } \quad D_{R}(w)=\left\{i \in I \mid \ell\left(w s_{i}\right)<\ell(w)\right\}, \\
& \operatorname{cont}(w)=\left\{i \in I \mid s_{i} \text { appears in some reduced word for } w\right\},
\end{aligned}
$$

Write C_{L}, C_{r} and cont the associated compositions. In this last condition "some" may be replaced by "any". Moreover, the above conditions on $s_{i} w$ and $w s_{i}$ are respectively equivalent to $\pi_{i} \pi_{w}=\pi_{w}$ and $\pi_{w} \pi_{i}=\pi_{w}$. One has cont $\left(\pi_{J}\right)=D_{L}\left(\omega_{J}\right)$, or equivalently $\operatorname{cont}\left(\pi_{J}\right)=D_{R}\left(\omega_{J}\right)$. Then, for any $\sigma \in \mathfrak{S}_{n}$, we have $\pi_{\sigma}^{\omega}=\pi_{\operatorname{cont}(\sigma)}$, lixix $\pi_{\sigma}=\pi_{C_{L}(\sigma)}$, and rfix $\pi_{\sigma}=\pi_{C_{R}(\sigma)}$.

The left projective module P_{J} corresponding to the idempotent π_{J} has its basis b_{w} indexed by the elements of w having J as right descent composition. The action of π_{i} coincides with the usual left action, except that $\pi_{i} \cdot b_{w}=0$ if $\pi \cdot w$ has a different right descent composition than w.

2.6 Induction and restriction of H_{n}^{0}-modules

It is well known that character theory of the family of symmetric groups $\left(\mathfrak{S}_{n}\right)_{n}$ can be encoded into symmetric functions via the Frobenius isomorphism [Macdonald(1995)]. Under this morphism, irreducible characters χ_{λ} of \mathfrak{S}_{n} are mapped to Schur functions s_{λ} of degree n, induction and restriction along the natural inclusion $\mathfrak{S}_{m} \times \mathfrak{S}_{n} \longrightarrow \mathfrak{S}_{m+n}$ correspond respectively to product and coproduct (the so called Littlewood-Richardson rule) of the Hopf algebra Sym of symmetric function.

According to Krob-Thibon [Krob and Thibon(1997), yves Thibon(1998)], this construction has an analogue for the 0 -Hecke monoids $\left(H_{n}^{0}\right)_{n}$. However, due to non semi-simplicity of H_{n}^{0}, the situation is a little more complicated. Note that the classical presentation deals with the algebra $H_{n}(0)$ rather than the monoid. First of all, the maps

$$
\rho_{m, n}:\left\{\begin{array}{ccc}
H_{m}^{0} \times H_{n}^{0} & \longrightarrow & H_{m+n}^{0} \tag{2.7}\\
\left(\pi_{i}, \pi_{j}\right) & \longmapsto & \pi_{i} \pi_{j+m}=\pi_{j+m} \pi_{i}
\end{array}\right.
$$

are injective monoid morphisms which moreover verify some associativity conditions endowing $\left(H_{n}^{0}\right)_{n}$ with a tower of monoid structure (see [Bergeron and $\operatorname{Li}(2009)$, Virmaux (2014)] for a precise definition). One can build two analogues of character rings, namely $\mathcal{G}_{0}:=\sum_{n} \mathbb{C G}_{0}\left(H_{n}^{0}\right)$ the direct sum of the (complexified) Grothendieck groups of H_{n}^{0}-modules on one hand, and $\mathcal{K}_{0}:=\sum_{n} \mathbb{C} \mathcal{K}_{0}\left(H_{n}^{0}\right)$ the direct sum of the Grothendieck groups of projective H_{n}^{0}-modules on the other hand. Recall that \mathcal{G}_{0} is the free \mathbb{Z}-module generated by simple module S_{I}, whereas \mathcal{K}_{0} is the free \mathbb{Z}-module generated by the indecomposable projective modules P_{I}.

Now for two integers m and n, we denote by $\operatorname{Res}_{m, n}$ the restriction functor from the category of H_{m+n}^{0}-modules to $H_{m}^{0} \times H_{n}^{0}$-modules along the morphism $\rho_{m, n}$. It turns out that this defines proper co-products on \mathcal{G}_{0} and \mathcal{K}_{0}. In particular, H_{m+n}^{0} is projective over $H_{m}^{0} \times H_{n}^{0}$. Dually, the induction $\operatorname{Ind}_{m, n}$ defines products on \mathcal{G}_{0} and \mathcal{K}_{0}. These products and coproducts are compatible giving the structure of a Hopf algebra. The analogue of Frobenius isomorphism goes as follows: let QSym denote Gessel's [Gessel(1984)] Hopf algebra of quasi-symmetric functions, and NCSF denote the Hopf algebra of noncommutative symmetric functions [Gelfand et al.(1995)Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thibon]. Recall that these two dual Hopf algebras have their bases indexed by compositions. Then the map sending the simple module S_{I} to the element F_{I} of the fundamental basis is a Hopf algebra morphism from \mathcal{G}_{0} to $\mathbf{Q S y m}$. Dually, the map sending the indecomposable projective module P_{I} to the so-called ribbon basis element R_{I} [Gelfand et al.(1995)Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thib Krob and Thibon(1997)] is a Hopf algebra morphism from \mathcal{K}_{0} to NCSF. The duality between QSym and NCSF mirrors Frobenius duality between \mathcal{G}_{0} and \mathcal{K}_{0}, the commutative image $c:$ NCSF \rightarrow QSym being nothing but the Cartan map.

As an illustration, we give the induction rule of indecomposable projective H_{n}^{0}-modules. For any two compositions $I \vDash m$ and $J \vDash n$:

$$
\begin{equation*}
\operatorname{Ind}_{m, n}\left(P_{I} \otimes P_{J}\right) \simeq P_{I \cdot J} \oplus P_{I \triangleright J} \tag{2.8}
\end{equation*}
$$

where $I \cdot J$ is the concatenation of I and J and $I \triangleright J:=\left(i_{1}, \ldots i_{k-1}, i_{k}+j_{1}, j_{2}, \ldots j_{\ell}\right)$. For example, $\operatorname{Ind}_{6,7}\left(P_{(3,1,2)} \otimes P_{(3,2,2)}\right)=P_{(3,1,2,3,2,2)} \oplus P_{(3,1,5,2,2)}$. This is the same rule as the multiplication rule of the ribbon basis of NCSF [Gelfand et al.(1995)Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thil

As already said, the main motivation for the present paper was to understand how this picture translate to rook monoids. Unfortunately, it turns out that everything does not work as nicely as expected, but this may be because we did not choose the right tower of monoids structure.

3 The 0-rook monoid

3.1 Definition of R_{n}^{0} by generators and relations

To define the 0-rook monoid, we take back Halverson's relations (Equations H1 to H3 and RH4 to RH8) and put $q=0$. In order to get a monoid, we write Equation RH8 as

$$
\begin{equation*}
P_{i+1}=P_{i} T_{i} P_{i}+P_{i}=P_{i} T_{i} P_{i}+P_{i} P_{i}=P_{i}\left(T_{i}+1\right) P_{i} . \tag{3.1}
\end{equation*}
$$

Setting $\pi_{i}:=T_{i}+1$, we finally obtain:
Definition 3.1. We denote by G_{n}^{0} the monoid generated by the two families $\pi_{1}, \ldots, \pi_{n-1}$ and P_{1}, \ldots, P_{n} together with relations

$$
\begin{align*}
\pi_{i}^{2} & =\pi_{i} & & 1 \leq i \leq n-1, \tag{R1}\\
\pi_{i} \pi_{i+1} \pi_{i} & =\pi_{i+1} \pi_{i} \pi_{i+1} & & 1 \leq i \leq n-2, \tag{R2}\\
\pi_{i} \pi_{j} & =\pi_{j} \pi_{i} & & |i-j| \geq 2 . \tag{R3}\\
P_{i}^{2} & =P_{i} & & 1 \leq i \leq n, \tag{R4}\\
P_{i} P_{j} & =P_{j} P_{i} & & 1 \leq i, j \leq n, \tag{R5}\\
P_{i} \pi_{j} & =\pi_{j} P_{i} & & i<j, \tag{R6}\\
P_{i} \pi_{j} & =\pi_{j} P_{i}=P_{i} & & j<i, \tag{R7}\\
P_{i+1} & =P_{i} \pi_{i} P_{i} & & 1 \leq i<n . \tag{R8}
\end{align*}
$$

Using Relation R8 we note that it is generated only by $\pi_{1}, \ldots, \pi_{n-1}$ and P_{1}.
Notation 3.2. To state that two words are equal in G_{n}^{0}, we rather write explicitely that they are equivalent modulo the relations above as $e \equiv_{0} f$.

We recall here the plan we introduced in the summary. Definition 3.1 introduces a monoid defined by generators and relations. The G stands for "generators". We will later give a definition of the monoid F_{n}^{0} (Definition 3.8) as a monoid of operators acting on rooks (F stands for "functions"). We will actually prove in Corollary 3.46 that the two definitions actually coincide. We will then call this monoid the 0 -rook monoid, and denote it by R_{n}^{0}.

We start by focusing on the monoid generated by the $\left(P_{i}\right)$:
Lemma 3.3. $P_{i} P_{k} \equiv{ }_{0} P_{\max (i, k)}$.
Proof. Thanks to Relation R5, we may assume that $k \geq i$. Relation R8 shows us that there is a word for P_{k} beginning with P_{i}. Relation R4 says that P_{i} is an idempotent.

Lemma 3.4. The element P_{n} is the unique zero of the monoid G_{n}^{0}, that is for any $e \in G_{n}^{0}$ then $e P_{n} \equiv_{0} P_{n} e \equiv_{0} P_{n}$. Furthermore P_{n} have the two following expressions:

$$
\begin{align*}
P_{n} & \equiv_{0} P_{1} \pi_{1} P_{1} \pi_{2} \pi_{1} P_{1} \pi_{3} \pi_{2} \pi_{1} P_{1} \ldots P_{1} \pi_{n-1} \pi_{n-2} \ldots \pi_{1} P_{1} \\
& \equiv_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-2} \pi_{n-1} P_{1} \ldots P_{1} \pi_{1} \pi_{2} \pi_{3} P_{1} \pi_{1} \pi_{2} P_{1} \pi_{1} P_{1} . \tag{3.2}
\end{align*}
$$

Proof. We prove this by induction on $n \geq 1$. It is obvious that $P_{2} \equiv_{0} P_{1} \pi_{1} P_{1}$ by Relation R8. To show that P_{2} is a zero, it is enough to prove that the generators π_{1} et P_{1} stabilize it. It is clear for P_{1} which is idempotent, and $\pi_{1} P_{1} \pi_{1} P_{1} \equiv_{0} \pi_{1} P_{2} \equiv_{0} P_{2}$ by the Relation R7.

Assume that the result is proven for all $1 \leq k \leq n$. Let us prove it for $n+1$:

$$
\begin{aligned}
P_{n+1} \equiv_{0} P_{n} \pi_{n} P_{n} & \equiv_{0} P_{n} \pi_{n} P_{n-1} \pi_{n-1} \pi_{n-2} \ldots \pi_{3} \pi_{2} \pi_{1} P_{1} \text { (by induction) } \\
& \equiv_{0} P_{n} P_{n-1} \pi_{n} \pi_{n-1} \pi_{n-2} \ldots \pi_{3} \pi_{2} \pi_{1} P_{1} \text { (by R6) } \\
& \equiv_{0} P_{n} \pi_{n} \pi_{n-1} \pi_{n-2} \ldots \pi_{3} \pi_{2} \pi_{1} P_{1}(\text { by Lemma } 3.3) .
\end{aligned}
$$

Thus the result holds. Since all the relations are symmetric, we get the other formula.
To show that P_{n+1} is a zero we prove that it is stabilized under multiplication by any generator among $\pi_{1}, \ldots, \pi_{n}, P_{1}$. The stability by P_{1} is obvious by Lemma 3.3. For all the others, we deduce from Relation R7 that $\pi_{i} P_{n} \equiv_{0} P_{n}$ since $i \leq n-1$.

Finally, the uniqueness of the zero holds in any semigroup.
Corollary 3.5. In the presentation of G_{n}^{0} one can replace the Relations $R 4, R 5, R 6$ and R^{7} by the following three and still get the same monoid:

$$
\begin{align*}
P_{1}^{2} & =P_{1}, \tag{R.1}\\
P_{1} \pi_{j} & =\pi_{j} P_{1} \quad j \neq 1, \tag{R5.1}\\
\pi_{1} P_{1} \pi_{1} P_{1} & =P_{1} \pi_{1} P_{1}=P_{1} \pi_{1} P_{1} \pi_{1} . \tag{R6.1}
\end{align*}
$$

In particular the monoid G_{n}^{0} is generated by $\left(\pi_{i}\right)_{1 \leq i \leq n-1}$ and P_{1} subject to Relations $R 1$ to $R 3$ and R4.1 to R6.1; Relation R8 being seen as a definition for P_{i} for $i>1$.

Proof. Deducing Relations R5.1 and R6.1 from Relations R1 to R8 is obvious: Relation R6.1 is only Relation R7 applied with $i=2$ and $j=1$.

Let us prove the converse: Relations R1 to R8 can be deduced from Relations R1 to R4, R5.1, R6.1 and R8 seen as a definition. We will now prove that Lemma 3.3 and Lemma 3.4 (and Relation R4) are still true. We prove simultaneously by induction on n the following statements

- for all $k \leq n$, the element P_{k} is given by the relation of Lemma 3.4.
- for all $i, k \leq n$, then $P_{k}^{2} \equiv_{0} P_{k}$ and $P_{i} P_{k} \equiv_{0} P_{\max (i, k)}$.

The case $n=1$ is obvious with Relation R4.
We now assume the statements for $n \geq 1$. We only have to prove that two words for P_{n+1} are given by Lemma 3.4, that $P_{n+1}^{2} \equiv{ }_{0} P_{n+1}$ and that $\forall i \leq n+1, P_{n+1} P_{i} \equiv \equiv_{n+1}$.

Regarding the words for P_{n+1}, a close look to the proof of Lemma 3.4 shows that we use only Relation R6.1 (for the basis step), Relation R6 when $i<j \leq n$, Relation R4 when $i \leq n$ and Lemma 3.3 for $i, k \leq n$. But all these relations have already been proved by induction. Consequently we have the two expressions for P_{n+1}.

From there, the relation $P_{i} P_{n+1} \equiv_{0} P_{n+1} P_{i} \equiv_{0} P_{n+1}$ for $i \leq n$ is clear using these words and the fact that $P_{i}^{2}=P_{i}$. It remains only to prove that P_{n+1} is idempotent.

$$
\begin{aligned}
P_{n+1}^{2} & \equiv_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{1} \ldots P_{1} \pi_{1} \pi_{2} P_{1} \pi_{1} P_{1} \cdot P_{1} \pi_{1} P_{1} \pi_{2} \pi_{1} P_{1} \ldots P_{1} \pi_{n} \pi_{n-1} \ldots \pi_{1} P_{1} \\
& \equiv_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{1} P_{n} P_{n} \pi_{n} \pi_{n-1} \ldots \pi_{2} \pi_{1} P_{1} \\
& \equiv_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{1} P_{n} \pi_{n} \pi_{n-1} \ldots \pi_{2} \pi_{1} P_{1},
\end{aligned}
$$

by induction. Now using R3 and R5.1:

$$
\begin{equation*}
P_{n+1}^{2} \equiv{ }_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{1} \ldots P_{1} \pi_{1} \pi_{2} \pi_{3} P_{1} \pi_{1} \pi_{2} P_{1} \pi_{1} P_{1} \tag{}
\end{equation*}
$$

Now, call ρ, the first part of the previous calculation:

$$
\rho:=P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n}
$$

Then

$$
\begin{array}{rlr}
\rho & \equiv_{0} P_{1} \pi_{1} \pi_{2} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} \pi_{2} \pi_{3} \ldots \pi_{n-2} \pi_{n-1} & \\
& \equiv_{0} P_{1} \pi_{1} P_{1} \pi_{2} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} \pi_{2} \pi_{3} \ldots \pi_{n-2} \pi_{n-1} & \\
& \equiv_{0} P_{1} \pi_{1} P_{1} \pi_{1} \pi_{2} \pi_{1} \pi_{3} \ldots \pi_{n-1} \pi_{n} \pi_{2} \pi_{3} \ldots \pi_{n-2} \pi_{n-1} & \\
& \equiv_{0} P_{1} \pi_{1} P_{1} \pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n-1} \pi_{n} \pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n-2} \pi_{n-1} & \\
& (\text { by Ry } 3) \\
& { }_{0} P_{1} \pi_{1} P_{1} \pi_{2} \pi_{3} \ldots \pi_{n-1} \pi_{n} \pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n-2} \pi_{n-1} & \\
& \equiv_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-2} \pi_{n-1} & \\
\text { (by Ry } 6.1) \\
& \text { by } 5.1) .
\end{array}
$$

Taking back Relation (*) we thus have:

$$
\begin{aligned}
P_{n+1}^{2} \equiv{ }_{0} P_{1} \pi_{1} \pi_{2} \ldots & \pi_{n-1} \pi_{n} \\
& P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-2} \pi_{n-1} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-2} \pi_{n-1} P_{1} \ldots P_{1} \pi_{1} \pi_{2} \pi_{3} P_{1} \pi_{1} \pi_{2} P_{1} \pi_{1} P_{1}
\end{aligned}
$$

We recognize the end of the left term to be Equation * for n instead of $n+1$. Thus:

$$
P_{n+1}^{2} \equiv_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{n} P_{n} \equiv_{0} P_{1} \pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} P_{n} \equiv_{0} P_{n+1}
$$

Finally we have proved that the statement holds for $n+1$: indeed, we have thus Relations R1 to R4 and the two Lemmas 3.3 and 3.4. Relation R5 follows directly from Lemma 3.3, and Relation R6 can be deduced from Lemma 3.4 using R5.1 and R3.

It remains to prove R7 using only R6.1 and Lemma 3.4. Since Lemma 3.4 and all the relations are symmetric, we only need to show that $\pi_{j} P_{i} \equiv_{0} P_{i}$ for $j<i$, the proof of the other case could be conducted the same way.

For $j=1$ and $i=2$ it is exactly Relation R6.1. For $j=1$ without condition on i, it comes from the fact that, because of Lemma 3.4, a word for P_{i} begin with $P_{1} \pi_{1} P_{1}$, and we conclude with R6.1.

Otherwise, for $j \geq 2$ and $i>j$, we get:

$$
\pi_{j} P_{i} \equiv_{0} \pi_{j} P_{1} \pi_{1} P_{1} \pi_{2} \pi_{1} P_{1} \ldots P_{1} \pi_{j-1} \pi_{j-2} \ldots \pi_{2} \pi_{1} P_{1} \pi_{j} \pi_{j-1} \ldots \pi_{2} \pi_{1} P_{1} \ldots P_{1} \pi_{i-1} \pi_{i-2} \ldots \pi_{1} P_{1}
$$

with R3 and R5.1:

$$
\begin{aligned}
& \equiv_{0} P_{1} \pi_{1} P_{1} \pi_{2} \pi_{1} P_{1} \ldots P_{1} \pi_{j} \pi_{j-1} \pi_{j-2} \ldots \pi_{2} \pi_{1} P_{1} \pi_{j} \pi_{j-1} \ldots \pi_{2} \pi_{1} P_{1} \ldots P_{1} \pi_{i-1} \pi_{i-2} \ldots \pi_{1} P_{1} \\
& \equiv_{0} P_{1} \pi_{1} P_{1} \pi_{2} \pi_{1} P_{1} \ldots P_{1} \pi_{i-1} \pi_{i-2} \ldots \pi_{1} P_{1}=P_{i}(\text { with } \rho)
\end{aligned}
$$

Hence the result.
We finally get a new shorter presentation for G_{n}^{0}, by setting $\pi_{0}:=P_{1}$.
Corollary 3.6. The monoid G_{n}^{0} is generated by $\pi_{0}, \ldots, \pi_{n-1}$ subject to the relations:

$$
\begin{array}{rlrl}
\pi_{i}^{2} & =\pi_{i} & & 0 \leq i \leq n-1 \\
\pi_{i} \pi_{i+1} \pi_{i} & =\pi_{i+1} \pi_{i} \pi_{i+1} & & 1 \leq i \leq n-2 \\
\pi_{1} \pi_{0} \pi_{1} \pi_{0} & =\pi_{0} \pi_{1} \pi_{0}=\pi_{0} \pi_{1} \pi_{0} \pi_{1}, \\
\pi_{i} \pi_{j} & =\pi_{j} \pi_{i} & & \tag{RB4}\\
& & 0 \leq i, j \leq n-1, \quad|i-j| \geq 2
\end{array}
$$

Proof. It is obvious from Corollary 3.5 by letting $\pi_{0}=P_{1}$.
Remark 3.7. We can see that G_{n}^{0} is a quotient of the Hecke monoid of type B_{n} at $q=0$ (see [Fayers(2005)] for a study of the representation theory of it).

3.2 Definition by action and R-codes

The goal of this section is to construct a bijection between R_{n} and R_{n}^{0} which generalizes the bijection between \mathfrak{S}_{n} and H_{n}^{0}. In the case of permutations, one argues using Matsumoto's theorem: recall that it says that two reduced words (words of minimal length) generate the same permutation if and only if they are congruent using only braid Relations M2, M3 and not the quadratic one. Then, for a permutation σ, one defines $\pi_{\sigma}:=\pi_{i_{1}} \ldots \pi_{i_{k}}$ where $s_{i_{1}} \ldots s_{i_{k}}$ is any reduced word for σ. Thanks to Matsumoto's theorem the result is independent of the choice of the reduced word. One concludes that H_{n}^{0} is nothing but the set $\left\{\pi_{\sigma} \mid \sigma \in \mathfrak{S}_{n}\right\}$ and therefore of cardinality $n!$. The same argument is in fact valid for the algebras $H_{n}(q)$ and is often found in this case in the literature.

Unfortunately, as noticed by Solomon [Solomon(2004), p. 209, bottom of the middle paragraph], such a theorem is not known for the rook monoid. So we choose a different path (see the discussion in the outline) effectively ending up proving the generalization of Matsumoto's theorem. We introduce another monoid defined in term of a faithful action of R_{n}^{0} on R_{n}. It will turns out (Corollary 3.49) that this action is nothing but the right multiplication.

Definition 3.8. We denote F_{n}^{1} the submonoid of the monoid of functions on R_{n} generated by $s_{1}, \ldots, s_{n-1}, P_{1}$ acting on R_{n} by right multiplication of matrices. Namely, if $\left(r_{1}, \ldots, r_{n}\right)$ is a rook then:

$$
\begin{align*}
\left(r_{1} \ldots r_{n}\right) \cdot s_{k} & =r_{1} r_{2} \ldots r_{k-1} r_{k+1} r_{k} r_{k+2} \ldots r_{n} \tag{3.3}\\
\left(r_{1} \ldots r_{n}\right) \cdot P_{1} & =0 r_{2} \ldots r_{n} \tag{3.4}
\end{align*}
$$

We denote F_{n}^{0} the submonoid of the monoid of functions generated by $\pi_{1}, \ldots, \pi_{n-1}, P_{1}$ acting on R_{n} by the action:

$$
\left(r_{1} \ldots r_{n}\right) \cdot \pi_{k}:= \begin{cases}\left(r_{1} \ldots r_{n}\right) \cdot s_{k} & \text { if } r_{k}<r_{k+1} \tag{3.5}\\ \left(r_{1} \ldots r_{n}\right) & \text { otherwise }\end{cases}
$$

Remark 3.9. A simple calculation shows that the generators of F_{n}^{0} satisfy the Relations R1 to R3 and R4.1 to R6.1. Similarly, the generators of F_{n}^{1} satisfy

$$
\begin{align*}
s_{i}^{2} & =1 & & 1 \leq i \leq n-1, \tag{Rs1}\\
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & 1 \leq i \leq n-2, \\
s_{i} s_{j} & =s_{j} s_{i} & & |i-j| \geq 2 . \\
P_{1}^{2} & =P_{1}, & & j \neq 1 \tag{Rs2}\\
P_{1} s_{j} & =s_{j} P_{1} & & \tag{Rs3}\\
s_{1} P_{1} s_{1} P_{1} & =P_{1} s_{1} P_{1}=P_{1} s_{1} P_{1} s_{1} . & &
\end{align*}
$$

We denote by G_{n}^{1} the monoid generated by $\left\{s_{1}, \ldots, s_{n-1}, P_{1}\right\}$ with the relations above. We can rephrase Remark 3.9 as follows: there are two surjective morphisms of monoids:

$$
\begin{equation*}
\Phi_{1}: G_{n}^{1} \rightarrow F_{n}^{1} \quad \text { and } \quad \Phi_{0}: G_{n}^{0} \rightarrow F_{n}^{0} \tag{3.6}
\end{equation*}
$$

Furthermore, these two morphisms give us an action of G_{n}^{1} and G_{n}^{0} over R_{n}.

Remark 3.10. The map $\left(r_{1} r_{2}\right) \mapsto\left(r_{1} 0\right)$ is equal to the composition $s_{1} P_{1} s_{1}$ and therefore belongs to F_{2}^{1}. However, it can be checked that it does not belong to F_{2}^{0}, neither to its algebra $\mathbb{C}\left[F_{2}^{0}\right]$. More generally, in F_{n}^{0}, for any subset $I \subset \llbracket 1, n \rrbracket$ which is not of the form $\llbracket 1, k \rrbracket$ the maps replacing the letter in position i by 0 , does not belong to F_{n}^{0} or $\mathbb{C}\left[F_{n}^{0}\right]$.

Our goal is now to show that Φ_{1} and Φ_{0} are actually isomorphisms.

3.2.1 R-code and rooks

In this subsection, we build a combinatorial tool, namely the R-code, which allows us to define for any rook a canonical reduced word. A classical way to do that for permutations is to proceed by induction along the chain of inclusions $\mathfrak{S}_{1} \subset \mathfrak{S}_{2} \subset \cdots \subset \mathfrak{S}_{n-1} \subset \mathfrak{S}_{n} \subset \ldots$ noticing that the number of cosets in $\mathfrak{S}_{n-1} \backslash \mathfrak{S}_{n}$ is exactly n. One can for example take $\left\{1, s_{n-1}, s_{n-1} s_{n-2}, s_{n-1} s_{n-2} s_{n-3}, \ldots\right\}$ as a cross-section. In a more combinatorial setting, this is equivalent to say that given a permutation $\sigma \in \mathfrak{S}_{n-1}$ there are exactly n permutations which give back σ when erasing the letter n. Therefore any permutation can be encoded by a sequence $\mathrm{c}=\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n}\right)$ satisfying $0 \leq \mathrm{c}_{i}<i$. This can be done by the Lehmer code ([Lothaire(2002), Page 330]) of the permutation, or a variant of thereof. See Remark 3.15 for a definition of the Lehmer code and how it relates to our generalized R-code.

The case of rooks is more involved because some times n does not appear in the rook vector and to go from R_{n} to R_{n-1} one has to erase a 0 . It turns out that the right choice to minimize the number of moves (since we are looking for a reduced word) is to remove the first 0 . However, this means that, given a rook r of size $n-1$, the number of rook of size n which give back r depends on r and more precisely on the position of its first 0 . We now unravel the corresponding combinatorics, starting with some notations:

Notation 3.11 (Word and Letter). The length of a word w is denoted by $\ell(w)$. The empty word (the only word of length 0) will be denoted by ε. When we need to distinguish between words and letters (for example when matching a word), we use the convention that words will be underlined as in \underline{w}, while i will rather be a single letter. If the letter $i \in \mathbb{Z}$ appears in the word \underline{w} we write it $i \in \underline{w}$; it means for example that \underline{w} can be written as $\underline{w}=\underline{a} i \underline{b}$.

Definition 3.12. For a rook r of length n, we call the code of r and denote code (r) the word on \mathbb{Z} of length n defined recursively by:

1. If $n=0$ then $\operatorname{code}(\varepsilon):=\varepsilon$.
2. Otherwise, if $n \in r$, then r can be written uniquely $r=\underline{b} n \underline{e}$. Let $r^{\prime}:=\underline{b e}$ (the subword of r where the unique occurrence of n is removed). Then $\operatorname{code}(r):=\operatorname{code}\left(r^{\prime}\right) \cdot(\ell(\underline{b})+1)$.
3. Otherwise, $n \notin r$, and therefore r can be written uniquely $r=\underline{b 0} \underline{e}$ with $0 \notin \underline{b}$. Let $r^{\prime}:=\underline{b e}$ (the subword of r where the first 0 is removed). Then $\operatorname{code}(r):=\operatorname{code}\left(r^{\prime}\right) \cdot(-\ell(\underline{b}))$.

Notation 3.13. When writing a code, \bar{i} stands for $-i$ for $i \in \mathbb{N}$.
Example 3.14. Let $r=02401$. Then:

$$
\operatorname{code}(02401)=\operatorname{code}(2401) 0=\operatorname{code}(201) 20=\operatorname{code}(21) \overline{1} 20=\operatorname{code}(1) 1 \overline{1} 20=11 \overline{1} 20
$$

An easy remark is that r is a permutation if and only if its code contains only positive letters.

Remark 3.15. Recall that the Lehmer code [Lothaire(2002), Page 330] of a permutation is defined by

$$
\begin{equation*}
\operatorname{Lehmer}(\sigma)=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \quad \text { with } \quad \mathrm{c}_{i}:=|\{j>i \mid \sigma(i)>\sigma(j)\}| \tag{3.7}
\end{equation*}
$$

When r is actually a permutation σ, the codes are related as follows: write the code as $\operatorname{code}(\sigma)=r_{1} \ldots r_{n}$ and the Lehmer code as Lehmer $(\sigma)=\mathrm{c}_{1} \ldots \mathrm{c}_{n}$. Then $\mathrm{c}_{i}=\sigma(i)-r_{\sigma(i)}$. For example taking $\sigma=516432$, then $\operatorname{code}(\sigma)=122213$ and Lehmer $(\sigma)=403210$.

We now describe a subset C_{n} of \mathbb{Z}^{n} that we call the set of R-codes. We will see in Proposition 3.22 and Theorem 3.27 that it is exactly the set of codes of a rook.

Definition 3.16. To each word \underline{w} over \mathbb{Z}, we associate a nonnegative number $m(\underline{w})$ defined recursively by: $m(\varepsilon)=0$ and for any word \underline{w} and any letter d,

$$
m(\underline{w} d):= \begin{cases}-d & \text { if } d \leq 0 \tag{3.8}\\ m(\underline{w})+1 & \text { if } 0<d \leq m(\underline{w})+1 \\ m(\underline{w}) & \text { if } d>m(\underline{w})+1\end{cases}
$$

A word on \mathbb{Z} is an R-code if it can be obtained by the following recursive construction: the empty word ε is a code, and $\underline{w} d$ is a code if \underline{w} is a code and $-m(\underline{w}) \leq d \leq n$. We denote by C_{n} the set of R-codes of size n.

Notation 3.17. In order to make the difference between the rook 1234 and the code 1234 , we make the convention to write codes in sans-serif font.

Example 3.18. $m(12836427)=5$: there is no negative letter, thus it only increments on integers $1,2,3,4$ and 2 in this order. $m(364 \overline{4} 294 \overline{3} 52538)=6$. Indeed, the last negative letter is -3 , thus $m(364 \overline{4} 294 \overline{3})=3$ and it increments on letters 2,5 and 3 in this order. Similarly, $m(021 \overline{1} 1254)=4$.

Example 3.19. Here are the first R-codes: $C_{1}=\{0,1\}, C_{2}=\{00,01,02,1 \overline{1}, 10,11,12\}$ and

$$
\begin{aligned}
& C_{3}=\{000,001,002,003,01 \overline{1}, 010,011,012,013,020,021,022,023,1 \overline{1}, 1 \overline{1} 0,1 \overline{1} 1,1 \overline{1} 2 \\
&1 \overline{1} 3,100,101,102,103,11 \overline{2}, 11 \overline{1}, 110,111,112,113,12 \overline{2}, 12 \overline{1}, 120,121,122,123\}
\end{aligned}
$$

The R-codes of C_{9} with prefix $021 \overline{1} 1254$ are $021 \overline{1} 1254 \overline{4}, 021 \overline{1} 1254 \overline{3}, \ldots, 021 \overline{1} 12549$.
Remark 3.20. If $\mathrm{c} \in C_{n}$, then necessarily we have $m(\mathrm{c}) \leq \ell(\mathrm{c})$.
Definition 3.21. We note FZ (standing for First Zero) the function defined for any rook $r=r_{1} \ldots r_{n} b y$

$$
\begin{equation*}
\mathrm{FZ}(r):=\min \left\{j \leq n \mid r_{j}=0\right\}-1 \tag{3.9}
\end{equation*}
$$

with the convention that if there is no zero among the r_{j} (that is r is in fact a permutation), we set $\mathrm{FZ}(r)=n$.

We now show that code is a bijection between R-codes and rook vectors of the same length.
Proposition 3.22. If $r \in R_{n}$ then $\operatorname{code}(r) \in C_{n}$ and $\mathrm{FZ}(r)=m(\operatorname{code}(r))$.

Proof. We show the result by induction on n : it is trivial for $n=0$. We now show the induction step, assuming that it holds for $n-1$. Let $r \in R_{n}$. Let us first prove the case $n \in r$. We then write $r=\underline{b} n \underline{e}$ and $r^{\prime}=\underline{b} e$. By induction $\operatorname{code}\left(r^{\prime}\right) \in C_{n-1}$ and $\operatorname{code}(r)=\operatorname{code}\left(r^{\prime}\right) \cdot(\ell(\underline{b})+1)$ with $(\ell(\underline{b})+1) \in \llbracket 1, n \rrbracket \subset \llbracket-m\left(\operatorname{code}\left(r^{\prime}\right)\right), n \rrbracket$ so that $r \in R_{n}$.

The only remaining case is $n \notin r$. We write $r=\underline{b 0} \underline{e}$ with $0 \notin \underline{b}, r^{\prime}=\underline{b e}$. By induction $\operatorname{code}\left(r^{\prime}\right) \in C_{n-1}$ and $\operatorname{code}(r)=\operatorname{code}\left(r^{\prime}\right) \cdot-\ell(\underline{b})$. By definition of FZ we have $\ell(\underline{b})=\mathrm{FZ}\left(r^{\prime}\right)$, and $\mathrm{FZ}\left(r^{\prime}\right)=m\left(\operatorname{code}\left(r^{\prime}\right)\right)$ by induction. So $-\ell(\underline{b}) \in \llbracket-m\left(\operatorname{code}\left(r^{\prime}\right)\right), 0 \rrbracket \subset \llbracket-m\left(\operatorname{code}\left(r^{\prime}\right)\right), n \rrbracket$ and so $r \in R_{n}$.

We have proven the first part of the statement in every case. Let us now focus on the second part. First of all, if $0 \notin r$, then r is a permutation and its code $\mathrm{c}_{1} \ldots \mathrm{c}_{n}$ is such that $0<\mathrm{c}_{i} \leq i$. As a consequence $m(\operatorname{code}(r))=n=\mathrm{FZ}(r)$.

We finally need to prove that when $0 \in r$ then $\mathrm{FZ}(r)=m(\operatorname{code}(r))$, knowing by induction that $\mathrm{FZ}\left(r^{\prime}\right)=m\left(\operatorname{code}\left(r^{\prime}\right)\right)$. We distinguish the two nontrivial cases:

- If $n \in r$ then $r=\underline{b} n \underline{e}$ and $r^{\prime}=\underline{b e}$. The number of 0 of r is the same that r^{\prime}. We have two possibilities:
- If $0 \notin \underline{b}$ then the first zero of r^{\prime} is in \underline{e}. Thus $\mathrm{FZ}(r)=\mathrm{FZ}\left(r^{\prime}\right)+1$. But also $\operatorname{code}(r)=\operatorname{code}\left(r^{\prime}\right) \cdot(\ell(\underline{b})+1)$ with $\ell(\underline{b})+1 \leq m\left(\operatorname{code}\left(r^{\prime}\right)\right)=\mathrm{FZ}\left(r^{\prime}\right)$. So, by definition of $m, m(\operatorname{code}(r))=m\left(\operatorname{code}\left(r^{\prime}\right)\right)+1$. Hence the equality.
- If $0 \in \underline{b}$ then $\mathrm{FZ}(r)=\mathrm{FZ}\left(r^{\prime}\right)$. Furthermore $m(\operatorname{code}(r))=m\left(\operatorname{code}\left(r^{\prime}\right)\right)$ by definition of m. So that we get $\mathrm{FZ}(r)=\mathrm{FZ}\left(r^{\prime}\right)=m\left(\operatorname{code}\left(r^{\prime}\right)\right)=m(\operatorname{code}(r))$.
- If $n \notin r$, then $r=\underline{b} 0 \underline{e}$ with $0 \notin \underline{b}, r^{\prime}=\underline{b e}$ and $\operatorname{code}(r)=\operatorname{code}\left(r^{\prime}\right) \cdot-\ell(\underline{b})$. Since $0 \notin \underline{b}$ we have $\mathrm{FZ}(r)=\ell(\underline{b})$. We write $\operatorname{code}(r)=\mathrm{c}_{1} \ldots \mathrm{c}_{n}$ then $\mathrm{FZ}(r)=-\mathrm{c}_{n}$ by definition of code. Furthermore $m(\operatorname{code}(r))=-\boldsymbol{c}_{n}$ so that $\mathrm{FZ}(r)=m(\operatorname{code}(r))$.

We now define a candidate for the converse bijection.
Definition 3.23. For $\mathrm{c}=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \in C_{n}$, we define inductively a vector decode(c) as follows: first, set $\operatorname{decode}(\varepsilon):=\varepsilon$. Then, let $r^{\prime}:=\operatorname{decode}\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right)$. If c_{n} is nonnegative, insert the letter n in r^{\prime} at the position c_{n}. Otherwise insert 0 at $-\mathrm{c}_{n}+1$.

Proposition 3.24. If $\mathrm{c} \in C_{n}$ then $\operatorname{decode}(\mathrm{c}) \in R_{n}$.
Proof. It is clear that we get a rook, since only 0 can be repeated. The size is also clear.
Example 3.25. Let $\mathrm{c}=11 \overline{1} 20$. Then decode $(1)=1$. $\operatorname{decode}(11)=21$. $\operatorname{decode}(11 \overline{1})=201$. decode $(11 \overline{1} 2)=2401$. Finally decode $(11 \overline{1} 20)=02401$.

Proposition 3.26. Let $\mathrm{c}=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \in C_{n}$. Then $\mathrm{FZ}(\operatorname{decode}(\mathrm{c}))=m(\mathrm{c})$. In particular, if $\mathrm{c}_{n} \leq 0, \mathrm{FZ}(\operatorname{decode}(\mathrm{c}))=-\mathrm{c}_{n}$.

Proof. We prove it by induction on n. The assertion is clear for words of length 0 . Otherwise, assume that we have proved the result for all words of length strictly less than n. Let $\mathrm{b}:=\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}$.

- If $\mathrm{c}_{n}>0$: by induction $\mathrm{FZ}(\operatorname{decode}(\mathrm{b}))=m(\mathrm{~b})$. But $\mathrm{FZ}(\operatorname{decode}(\mathrm{c}))=\mathrm{FZ}(\operatorname{decode}(\mathrm{b}))+1$ if $\mathrm{c}_{n} \leq \mathrm{FZ}(\operatorname{decode}(\mathrm{b}))+1$ and $\mathrm{FZ}(\operatorname{decode}(\mathrm{c}))=\mathrm{FZ}(\operatorname{decode}(\mathrm{b}))$ otherwise. By definition of function m we get $\mathrm{FZ}(\operatorname{decode}(\mathrm{c}))=m(\mathrm{c})$.
- If $\mathrm{c}_{n} \leq 0$ we have two possibilities:
- If $\forall i \leq n-1, \mathrm{c}_{i}>0$ then $0 \notin \operatorname{decode}(\mathrm{~b})$ by definition, and so decode(c) has a single zero which is the one inserted between decode(b) and decode(c), and is thus at position $\left(-\mathrm{c}_{n}+1\right)-1=m(\mathrm{c})$.
- Otherwise, by induction $m(\mathrm{~b})=\mathrm{FZ}(\operatorname{decode}(\mathrm{b}))$. By definition of $m, m(\mathrm{c})=-\mathrm{c}_{n}$. By definition of R-codes we get $-\mathrm{c}_{n} \leq m(\mathrm{~b})=\mathrm{FZ}(\operatorname{decode}(\mathrm{b}))$. Thus the zero inserted at position $-c_{n}+1$ is left to the former first zero.
Finally FZ(decode(c)) $=-\mathrm{c}_{n}=m(\mathrm{c})$.
Theorem 3.27. The functions code and decode are inverse one from the other: for all $\mathrm{c} \in C_{n}$ and $r \in R_{n}$ then

$$
\begin{equation*}
\operatorname{code}(\operatorname{decode}(\mathrm{c}))=\mathrm{c} \quad \text { and } \quad \text { decode }(\operatorname{code}(r))=r . \tag{3.10}
\end{equation*}
$$

Proof. We proceed by induction on the size n of r and c . The result is clear if $n=0$. Assume now that we have proved the result up to $n-1$. We begin with rooks. Let $r \in R_{n}$.

- If $n \in r$, write $r=\underline{b} n \underline{e}$ and $r^{\prime}=\underline{b e}$ with $\operatorname{decode}\left(\operatorname{code}\left(r^{\prime}\right)\right)=r^{\prime}$ by induction. Since $\operatorname{code}(r)=\operatorname{code}\left(r^{\prime}\right) \cdot(\ell(\underline{b})+1)$, code (r) is the word $\operatorname{code}\left(r^{\prime}\right)$ with the position of n as final letter. Since decode $(\operatorname{code}(r))$ inserts in decode $\left(\operatorname{code}\left(r^{\prime}\right)\right)=r^{\prime}$ the n at this position, we have the result.
- Otherwise code (r) is the word $\operatorname{code}\left(r^{\prime}\right)$ with at the end the opposite of the position minus 1 of the first zero of r. But decode $(\operatorname{code}(r))$ insert a zero in decode $\left(\operatorname{code}\left(r^{\prime}\right)\right)=r^{\prime}$ at this position.

We now do the proof for R-codes in a similar way: Let $\mathrm{c}=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \in C_{n}$ and $\mathrm{c}^{\prime}=\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}$, and assume that code $\left(\operatorname{decode}\left(\mathrm{c}^{\prime}\right)\right)=\mathrm{c}^{\prime}$.

- If $c_{n}>0$ then decode(c) inserts in decode (c^{\prime}) a letter n at position c_{n}. Computing further code(decode(c)) adds at the end of code(decode $\left.\left(c^{\prime}\right)\right)=c^{\prime}$ this position.
- Otherwise, decode(c) insert in decode($\left.\mathrm{c}^{\prime}\right)$ a letter 0 in position $-c_{n}+1$. Since it is the first zero of decode(c) by Proposition 3.26, code(decode(c)) add c_{n} at the end of $\operatorname{code}\left(\operatorname{decode}\left(\mathrm{c}^{\prime}\right)\right)=\mathrm{c}^{\prime}$.

In particular, there are as many R-codes of size n as rooks:
Corollary 3.28. For all n : $\left|C_{n}\right|=\left|R_{n}\right|$.

3.2.2 Counting rook according to the position of the first 0

This subsection is a little detour through enumerative combinatorics and permutations statistics. It is interesting to count rooks of size n according to the position of the first zero. We
denote $R(n, k):=\left\{r \in R_{n} \mid \mathrm{FZ}(r)=k\right\}$ and $r(n, k):=|R(n, k)|$. Here are the first values:

n / k	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	3	2	2					
3	13	9	6	6				
4	73	52	36	24	24			
5	501	365	260	180	120	120		
6	4051	3006	2190	1560	1080	720	720	
7	37633	28357	21042	15330	10920	7560	5040	5040

For example, here are the rooks of size 2 sorted according to their first zero:

$$
R(2,0)=\{00,01,02\}, \quad R(2,1)=\{10,20\}, \quad R(2,2)=\{12,21\}
$$

Lemma 3.29. The sequence $r(n, k)$ verifies the following recurrence relation for $n>0$:

$$
\begin{equation*}
r(n, k)=k r(n-1, k-1)+(n-k-1) r(n-1, k)+\sum_{i=k}^{n} r(n-1, i), \tag{3.11}
\end{equation*}
$$

with the convention that $r(n, k)=0$ if $k<0$ or $k>n$.
Proof. To get the set of rooks of size n from the set of rooks of size $n-1$, one has either to insert n or to insert a 0 . To make sure to get each rook only once, one has to insert 0 only before the first zero. According to the definition of FZ, in what follows, positions are counted starting with 0 . Then

- $k \cdot r(n-1, k-1)$ is the number of rooks where n is (and therefore was inserted) before position FZ.
- $k(n-k-1) r(n-1, k)$ is the number of rooks where n is after the first 0 .
- $\sum_{i=k}^{n} r(n-1, i)$ is the number of rooks where n does not appear. They are obtained by inserting a 0 in position k, in a rook r such that $i:=\mathrm{FZ}(r) \geq k$.

One recognizes the triangle A206703 of [Sloane(2015)]. It is defined as the number $C(n, k)$ of the injective partial function on $\llbracket 1, n \rrbracket$ where the union the cycle supports has cardinality k. Recall that a rook vector $r=\left(r_{1}, \ldots, r_{n}\right)$ can been seen as an injective partial function by setting $r(i)=r_{i}$ if $r_{i} \neq 0$ and $r(i)$ is undefined otherwise. We consider the generalization of the notion of cycle of permutations to rooks (See [Flajolet and Sedgewick(2009), Example II.21, page 132]), this combinatorics was studied in details in [Ganyushkin and Mazorchuk(2006)]): the sequence of the iterated images $\left(r^{n}(i)\right)_{n \in \mathbb{N}}$ of some integer i under r can have one of the two following behaviors:

- Either for some $n \geq 1$ one has $r^{n}(i)=i$ (the sequence must be periodic and not only ultimately periodic because of injectivity). We say that i belongs to a cycle of r.
- Or starting from some $n \geq 1$ the iterated image $r^{n}(i)$ stops being defined; we say that i belongs to a chain of r.

Rooks can therefore be decomposed as two sets: the set of its cycles (counting fixed points) and the set of its maximal chains, that is maximal finite sequences $\left(c_{1}, \ldots, c_{k}\right)$ such that $r\left(c_{i}\right)=c_{i+1}$ if $i<k$ and undefined otherwise. Clearly, the supports of the cycles and the chains of the rook r form a partition of $\llbracket 1, n \rrbracket$.

Example 3.30. Consider the rook vector $r=205109706$, it corresponds to the function

$$
\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & \perp & 5 & 1 & \perp & 9 & 7 & \perp & 6
\end{array}\right)
$$

where \perp means undefined. It has two cycles $(6,9)$ and (7) and three maximal chains $(4,1,2)$, $(3,5)$ and (8).

Proposition 3.31. Let $C(n, k)$ be the set of rooks of size n where the union of cycle supports has cardinality k, and denote by $c(n, k)$ its cardinality. Then $c(n, k)=r(n, k)$ for all k and n.

We show here the rooks of size 2 sorted according to their number of points in a cycle:

$$
C(2,0)=\{00,01,20\}, \quad C(2,1)=\{10,02\}, \quad C(2,2)=\{12,21\}
$$

Proof. We define a bijection Φ from $C(n, k)$ to $R(n, k)$. It is an adaptation of Foata fundamental transformation (See [Lothaire(2002), Chapter. 10]). For $r \in C(n, k)$, write its cycles starting from the smallest elements and sort the set of cycles according to their smallest element in decreasing order. By concatenating those words one obtains a first word CycleW (r). Second, write the maximal chain backward replacing the last element of the chain (now the first of the word) by a 0 and sort the chains according to their last element in increasing order. By concatenating those words one obtains a second word ChainW (r). Now define $\Phi(r):=$ CycleW (r) ChainW (r). Then $\Phi(r)$ is a rook of size n whose first zero is in position k, so that $\Phi(r) \in R(n, k)$.

We now explain how to recover r from $s:=\Phi(r)$, that is the converse bijection: cut s at the places just before the zeros replacing those zeros by the values missing in s in increasing order. The various words obtained except the first one are the (reversed) chains of r. One recover the cycle of r by cutting the first word before the lower records (elements that are only preceded by larger ones) and interpret each part as a cycle. Knowing all the chains and cycles of r is sufficient to recover r.

Example 3.32. We get back to Example 3.30. The rook vector $r=205109706$ has cycles $(6,9)$ and (7) and chains $(4,1,2),(3,5)$ and (8). Therefore CycleW $(r)=769$ and ChainW $(r)=$ 014030, so that $\Phi(r)=769014030$.

To demonstrate the computation of the inverse, we start with 769014030 . The missing numbers are $\{2,5,8\}$. Replacing the zeros by them and cutting gives $769|214| 53 \mid 8$. So that we already got the chains $(4,1,2),(3,5)$ and (8). Now the word 769 is cut as $7 \mid 69$ recovering the cycles.

Using the so-called symbolic method (See [Flajolet and Sedgewick(2009), Example II.21, page 132]), the decomposition by cycles and chains shows that the generating series is given by

$$
\begin{equation*}
\sum_{n, k} r(n, k) \frac{x^{n} y^{k}}{n!}=\frac{\exp (x /(1-x))}{1-x y} \tag{3.12}
\end{equation*}
$$

3.3 Equivalence of the definitions of R_{n}^{0}

We now get back to the 0 -rook monoid. Thanks to the previously defined R-code, we are now in position to define the canonical reduced word π_{c} associated to a R-code and thus to a rook. To define π_{c}, the following notation is handy:

Notation 3.33. For $i, n \in \mathbb{N}$ we write (with $\pi_{0}:=P_{1}$):

$$
\left[\begin{array}{ll}
n \\
\vdots \\
\vdots
\end{array}\right]:=\left\{\begin{array}{ll}
1 & \text { if } i>n, \\
\pi_{n} \ldots \pi_{i} & \text { if } 0 \leq i \leq n, ~ \text { and } \\
\pi_{n} \ldots \pi_{1} \pi_{0} \pi_{1} \ldots \pi_{i} & \text { if } i<0, \\
\vdots \\
\vdots
\end{array}\right]:= \begin{cases}1 & \text { if } i>n, \\
s_{n} \ldots s_{i} & \text { if } 0 \leq i \leq n, \\
s_{n} \ldots s_{1} \pi_{0} s_{1} \ldots s_{i} & \text { if } i<0 .\end{cases}
$$

A priori $\left[\begin{array}{c}n \\ \vdots \\ i\end{array}\right] \in G_{n}^{0}$ and $\left[\begin{array}{c}n \\ \vdots \\ \vdots \\ i\end{array}\right] \in G_{n}^{1}$. Using Φ_{0} and Φ_{1} of Remark 3.9 we will sometimes see them as elements of F_{n}^{0} or F_{n}^{1}.

Definition 3.34. For any R-code $\mathrm{c}=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \in C_{n}$, we define $\pi_{\mathrm{c}} \in G_{n}^{0}$ and $s_{\mathrm{c}} \in G_{n}^{1}$ by

$$
\left.\left.\left.\pi_{\mathrm{c}}:=\left[\begin{array}{c}
0 \tag{3.13}\\
\vdots \\
c_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
\vdots \\
c_{2}
\end{array}\right] \cdots \cdots \cdot \begin{array}{|c}
n-1 \\
\vdots \\
c_{n}
\end{array}\right], \quad \text { and } \quad s_{\mathrm{c}}:=\begin{array}{|c|c}
0 \\
\vdots \\
c_{1}
\end{array}\right] \cdot\left[\begin{array}{|c}
1 \\
\vdots \\
c_{2}
\end{array}\right] \cdots \cdots \cdot \begin{array}{|c}
\begin{array}{c}
n-1 \\
\vdots \\
c_{n}
\end{array} \\
\hline
\end{array}\right] .
$$

Example 3.35. Let $\mathrm{c}=11 \overline{1} 20$. Then:

$$
\pi_{\mathrm{c}}=\left[\begin{array}{c}
0 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
\vdots \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
\vdots \\
0
\end{array}\right]=1 \cdot \pi_{1} \cdot \pi_{2} \pi_{1} \pi_{0} \pi_{1} \cdot \pi_{3} \pi_{2} \cdot \pi_{4} \pi_{3} \pi_{2} \pi_{1} \pi_{0} .
$$

Going further, let us show how π_{c} acts on the identity rook 12345:

$$
\begin{aligned}
& 12345 \cdot \pi_{c}=12345 \cdot 1 \cdot \pi_{1} \cdot\left[\begin{array}{c}
2 \\
\vdots \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
\vdots \\
0
\end{array}\right]=21345 \cdot \pi_{2} \pi_{1} \pi_{0} \pi_{1} \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
\vdots \\
0
\end{array}\right]= \\
& 2 \mathbf{3 1 4 5} \cdot \pi_{1} \pi_{0} \pi_{1} \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
\vdots \\
0
\end{array}\right]=\mathbf{3 2 1 4 5} \cdot \pi_{0} \pi_{1} \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
\vdots \\
0
\end{array}\right]=\mathbf{0 2 1 4 5} \cdot \pi_{1} \cdot\left[\begin{array}{l}
3 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
4 \\
\vdots \\
0
\end{array}\right]= \\
& 20145 \cdot \pi_{3} \pi_{2} \cdot\left[\begin{array}{c}
4 \\
\vdots \\
0
\end{array}\right]=24015 \cdot \pi_{4} \pi_{3} \pi_{2} \pi_{1} \pi_{0}=02401=\operatorname{decode}(\mathrm{c}) .
\end{aligned}
$$

We see that the i-th column of π_{c} places the letter i (or the corresponding zero), at its place, effectively decoding c . This is actually a general fact and it is also true replacing π_{i} by s_{i} :

Proposition 3.36. If $r \in R_{n}$ then $1_{n} \cdot \pi_{\text {code }(r)}=1_{n} \cdot s_{\text {code }(r)}=r$.
Proof. We will prove it by induction on n. It is evident for $n=0$. Assume that we have proved the result up to step $n-1$, and let $r \in R_{n}$.

If $n \in r$ then r writes $r=\underline{b} n \underline{e}, r^{\prime}=\underline{b e}$ and $\operatorname{code}(r)=\operatorname{code}\left(r^{\prime}\right) \cdot(\ell(\underline{b})+1)$. By definition we have $\pi_{\operatorname{code}(r)}=\pi_{\operatorname{code}\left(r^{\prime}\right)}$| n |
| :---: |
| \vdots |
| $\ell(b)+1$ | . By induction $1_{n-1} \cdot \pi_{\operatorname{code}\left(r^{\prime}\right)}=r^{\prime}$. So $1_{n} \cdot \pi_{\operatorname{code}\left(r^{\prime}\right)}=r^{\prime} n=\underline{\text { ben }} n$, since $\pi_{\text {code }\left(r^{\prime}\right)}$ only acts on the first $n-1$ coordinates. Since $0<\ell(\underline{b})+1 \leq n$, a direct calculation gives us $\underline{b} \underline{n} \cdot\left[\begin{array}{|c}n \\ \vdots \\ \vdots \\ (b)+1\end{array}\right]=\underline{b} n \underline{e}=r$. So $1_{n} \cdot \pi_{\text {code }(r)}=r$.

Otherwise $n \notin r$. Then r writes $r=\underline{b} 0 \underline{e}$ with $0 \notin \underline{b}, r^{\prime}=\underline{b e}$ and $\operatorname{code}(r)=\operatorname{code}\left(r^{\prime}\right) \cdot-\ell(\underline{b})$. We get in the exact same way $1_{n} \cdot \pi_{\operatorname{code}\left(r^{\prime}\right)}=r^{\prime} n=\underline{b e n}$. Since $-\ell(\underline{b}) \leq 0$, a simple calculation gives us $\underline{b e n} \cdot\left[\begin{array}{c}n \\ \vdots \\ \ell(\underline{b})\end{array}\right]=\underline{b} 0 \underline{e}=r$. So $1_{n} \cdot \pi_{\operatorname{code}(r)}=r$.

The same proof works mutatis mutandis for s.
Corollary 3.37. For all $n,\left|G_{n}^{0}\right| \geq\left|F_{n}^{0}\right| \geq\left|R_{n}\right|=\left|C_{n}\right|$ et $\left|G_{n}^{1}\right| \geq\left|F_{n}^{1}\right| \geq\left|R_{n}\right|=\left|C_{n}\right|$.
Proof. All the functions $\pi_{\text {code }(r)}$ and $s_{\text {code }(r)}$ for $r \in R_{n}$ are distinct since they have a distinct action on identity 1_{n}. We conclude with Corollary 3.28 and Remark 3.9.

The next step is to transfer on R-codes the action on rooks:
Definition 3.38. For $\mathrm{c}=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \in C_{n}$ and $t \in\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{n-1}\right\} \subset G_{n}^{0}$ we define $\mathrm{c} \cdot t$ recursively the following way:

- If $n=1$ and $t=\pi_{0}$ then $\mathrm{c} \cdot t:=0$.

Otherwise we proceed by induction depending on the sign of c_{n} and the value of t :
Pos. If $\mathrm{c}_{n}=i \geq 1$:
a. If $t=\pi_{i}$ then $\mathrm{c} \cdot t:=\mathrm{c}$.
b. If $t=\pi_{i-1}$ then $\mathrm{c} \cdot t:=\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\left(\mathrm{c}_{n}-1\right)$.
c. If $t=\pi_{j}$ with $j<i-1$ then $\mathrm{c} \cdot t:=\left[\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \cdot \pi_{j}\right] \mathrm{c}_{n}$.
d. If $t=\pi_{j}$ with $j>i$ then $\mathrm{c} \cdot t:=\left[\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \cdot \pi_{j-1}\right] \mathrm{c}_{n}$.

Neg. If $\mathrm{c}_{n}=-i \leq 0$:
a. If $t=\pi_{i}$ then $\mathrm{c} \cdot t:=\mathrm{c}$.
b. If $t=\pi_{j}$ with $0<j<i$ then $\mathrm{c} \cdot t:=\left[\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \cdot \pi_{j}\right] \mathrm{c}_{n}$.
c. If $t=\pi_{j}$ with $j>i+1$ then $\mathrm{c} \cdot t:=\left[\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \cdot \pi_{j-1}\right] \mathrm{c}_{n}$.
d. If $t=\pi_{0}$ then $\mathrm{c} \cdot t:=\left[\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \cdot \pi_{0} \ldots \pi_{i-1}\right] 0$. (In particular $\mathrm{c} \cdot t=\mathrm{c}$ if $i=0$.)
e. If $t=\pi_{i+1}$ (thus $i \neq n$) we have two possibilities:
α. If $m\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right)=i$ then $\mathrm{c} \cdot t:=\mathrm{c}$.
β. Otherwise $\mathrm{c} \cdot t:=\mathrm{c}_{1} \ldots \mathrm{c}_{n-1} \overline{i+1}$.
Lemma 3.39. For any code $\mathrm{c}=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \in C_{n}$ and generator $t \in\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{n-1}\right\} \subset G_{n}^{0}$, then $\mathrm{c} \cdot t$ is a code of size n.

Proof. We will prove the result by induction on n, and we will prove along the way that $m(\mathrm{c} \cdot t) \geq m(\mathrm{c})$ if $t \neq \pi_{0}$. It is evident if $n=1$.

For all subcases of case Pos. of Definition 3.38 it is evident that we get a code by induction since the last value is positive which do not lead to difficulties (we add to $\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}$ either c_{n} or $c_{n}-1$). The property of function m is clear for subcase a. In b. if $i-1 \neq 0$ then $c_{n}-1>0$ so $m\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\left(\mathrm{c}_{n}-1\right)\right) \geq m(\mathrm{c})$. In c. the induction gives us $m\left(\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \cdot \pi_{j}\right) \geq m\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right)$ and we conclude with the definition of m to get $m\left(\left[\left(c_{1} \ldots c_{n-1}\right) \cdot \pi_{j}\right] c_{n}\right) \geq m\left(c_{1} \ldots c_{n-1} c_{n}\right)$ (we do the same for d.).

The subcase Neg.a. is clear. We prove subcases Neg.b. and Neg.c. using the induction on the condition of m and the fact that in these two subcases $m(\mathrm{c} \cdot t)=\mathrm{c}_{n}=m(\mathrm{c})$. The subcase Neg.d. is clear by induction (we do not have to prove the condition of m here), as subcase Neg.e. α. The subcase Neg.e. β remains, whose condition gives us $m\left(c_{1} \ldots c_{n-1}\right)>i$ (since $\mathrm{c} \in C_{n}$) so $\mathrm{c} \cdot t \in C_{n}$ and $m(\mathrm{c} \cdot t)=i+1>m(\mathrm{c})=i$.

It therefore makes sense to apply the decode algorithm to $\mathrm{c} \cdot t$. The crucial fact that motivated the definition of the action on a code is that, forall R-code c

$$
\begin{equation*}
\operatorname{decode}(\mathrm{c} \cdot t)=\operatorname{decode}(\mathrm{c}) \cdot t \tag{3.14}
\end{equation*}
$$

We could prove this fact right away, by a tedious explicit calculation, distinguishing all cases. We urge the reader who want to understand the motivation of Definition 3.38 to do so. For example, in case Neg.e. α, the assumption that $m\left(c_{1} \ldots c_{n-1}\right)=i=-c_{n}$ shows that, using Proposition 3.26, FZ $\left(\operatorname{decode}\left(c_{1} \ldots c_{n-1}\right)\right)=i$. Therefore decode $\left(c_{1} \ldots c_{n-1}\right)$ is of the form

$$
\operatorname{decode}\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right)=r_{1} \ldots r_{i} 0 r_{i+2} \ldots r_{n-1} n
$$

where none of the r_{j} for $j \leq i$ vanish. Decoding further, since $\mathrm{c}_{n}=-i$, on finds that

$$
\operatorname{decode}\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n}\right)=r_{1} \ldots r_{i} 00 r_{i+2} \ldots r_{n-1}
$$

So that, decode(c) $\cdot \pi_{i+1}=\operatorname{decode}(\mathrm{c})$. That's why, in case Neg.e. α, we defined $\mathrm{c} \cdot \pi_{i+1}:=\mathrm{c}$. Instead of doing the proof in all other cases, we will get the properties as a corollary of the much stronger fact that $\pi_{c \cdot t} \equiv{ }_{0} \pi_{\mathrm{c}} t$ using the morphism $\Phi_{0}: G_{n}^{0} \rightarrow F_{n}^{0}$.

We turn now to the proof of that later statement. It will use intensively the following technical lemma:
Lemma 3.40. If $i>0, k<0$ and $j<i-1$ we have the following identities:

$$
\pi_{j}\left[\begin{array}{c}
i \tag{3.15}\\
\vdots \\
k
\end{array}\right]=\left[\begin{array}{c}
i \\
\vdots \\
\vdots
\end{array}\right] \pi_{j} \text { if } 0<j<|k| \quad \text { and } \quad \pi_{j}\left[\begin{array}{c}
i \\
\vdots \\
k
\end{array}\right]=\left[\begin{array}{c}
i \\
\vdots \\
\vdots
\end{array}\right] \pi_{j+1} \quad \text { if } j>|k| \text {. }
$$

In particular, by immediate induction:

$$
\left[\begin{array}{c}
j \tag{3.16}\\
\vdots \\
i
\end{array}\right] \cdot\left[\begin{array}{c}
i \\
\vdots \\
k
\end{array}\right]=\left[\begin{array}{c}
i \\
\vdots \\
k
\end{array}\right] \cdot\left[\begin{array}{c}
j \\
\vdots \\
i
\end{array}\right] \quad \text { if } 0<l \leq j<\min (i,|k|) .
$$

Proof. We will only use relations (RB1 to RB4) of Remark 3.9 written according to Corollary 3.6. For the first equality we just apply successively in this order RB4, RB2, RB4, RB2 and RB4. For the second we only apply RB4, RB2 and RB4.

We may now proceed to the main theorem of this section:
Theorem 3.41. For a code $\mathrm{c}=\mathrm{c}_{1} \ldots \mathrm{c}_{n} \in C_{n}$ and a generator $t \in\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{n-1}\right\} \subset G_{n}^{0}$, the congruence $\pi_{\mathrm{c} \cdot t} \equiv_{0} \pi_{\mathrm{c}} t$ holds. Furthermore $\ell\left(\pi_{\mathrm{c} \cdot t}\right) \leq \ell\left(\pi_{\mathrm{c}}\right)+1$.
Proof. We will only use the relations of the proof of Lemma 3.40. We then prove the theorem by induction on n depending on c_{n} and t. The remark on the length can be checked systematically in all the cases, we left it to the reader.

If $n=1$ and $t=\pi_{0}$ then $\mathrm{c} \cdot t=0$. Then $\pi_{c \cdot t}=\pi_{0}=\pi_{c} t$ by RB1.
Otherwise we write $\mathrm{c}^{\prime}:=\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}$ and we recall that $\pi_{\mathrm{c}}=\pi_{\mathrm{c}^{\prime}}\left[\begin{array}{c}n-1 \\ \vdots \\ c_{n}\end{array}\right]$.

Pos. $\mathrm{c}_{n}=i \geq 1$
a. If $t=\pi_{i}$ then $\mathrm{c} \cdot t=\mathrm{c}$. Then $\pi_{\mathrm{c}^{\prime}}\left[\begin{array}{c}n-1 \\ \vdots \\ c_{n}\end{array}\right] t=\pi_{\mathrm{c}^{\prime}} \pi_{n-1} \ldots \pi_{i} \pi_{i} \equiv_{0} \pi_{\mathrm{c}^{\prime}}\left[\begin{array}{c}n-1 \\ \vdots \\ c_{n}\end{array}\right]$ by RB1.
b. If $t=\pi_{i-1}$ then $\mathrm{c} \cdot t=\mathrm{c}^{\prime}\left(\mathrm{c}_{n}-1\right)$. The relation is just $\left.\pi_{\mathrm{c}^{\prime}}\left[\begin{array}{c}n-1 \\ \vdots \\ c_{n}\end{array}\right] \pi_{i-1}=\pi_{\mathrm{c}^{\prime}} \begin{array}{c}n-1 \\ \vdots \\ c_{n}-1\end{array}\right]$.
c. If $t=\pi_{j}$ with $j<i-1$ then $\mathrm{c} \cdot t=\left(\mathrm{c}^{\prime} \cdot \pi_{j}\right) \mathrm{c}_{n}$. Then

$$
\left.\left.\left.\pi_{\mathrm{c}} t=\pi_{c^{\prime}} \begin{array}{c}
n-1 \\
\vdots \\
c_{n}
\end{array}\right] \pi_{j} \equiv \equiv_{0} \pi_{\mathrm{c}^{\prime}} \pi_{j} \begin{array}{c}
n-1 \\
\vdots \\
c_{n}
\end{array}\right] \equiv{ }_{0} \pi_{\mathrm{c}^{\prime} \cdot \pi_{j}} \begin{array}{c}
n-1 \\
\vdots \\
c_{n}
\end{array}\right]=\pi_{\left(\mathrm{c}^{\prime} \cdot \pi_{j}\right) \mathrm{c}_{n}}=\pi_{\mathrm{c} \cdot t}
$$

Indeed, the first congruency is Lemma 3.40, and the second holds by induction.
d. If $t=\pi_{j}$ with $j>i$ then $\mathrm{c} \cdot t=\left(\mathrm{c}^{\prime} \cdot \pi_{j-1}\right) \mathrm{c}_{n}$. We do the same than in Pos.c. using this time Relation RB2 and Relation RB4.

Neg. $\mathbf{c}_{n}=-i \leq 0$
a. If $t=\pi_{i}$ we do the same than in Pos.a. with RB1.
b. If $t=\pi_{j}$ with $0<j<i$ we do the same than in Pos.c. with RB4.
c. If $t=\pi_{j}$ with $j>i+1$ we do the same than in Pos.d. with RB2 and RB4.
d. If $t=\pi_{0}(i \neq 0)$ then $\mathrm{c} \cdot t=\left[\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \cdot \pi_{0} \ldots \pi_{i-1}\right] 0$. Furthermore

$$
\begin{array}{rlrl}
\begin{array}{|c}
n-1 \\
\vdots \\
c_{n}
\end{array} \\
& \pi_{0} & =\pi_{n-1} \ldots \pi_{2} \pi_{1} \pi_{0} \pi_{1} \pi_{2} \ldots \pi_{i} \pi_{0} & \\
& \equiv & \\
& \equiv \pi_{n-1} \ldots \pi_{2} \pi_{1} \pi_{0} \pi_{1} \pi_{0} \pi_{2} \ldots \pi_{i} & & \text { by RB4 } \\
& \equiv \pi_{n-1} \ldots \pi_{2} \pi_{0} \pi_{1} \pi_{0} \pi_{2} \ldots \pi_{i} & & \text { by RB3 } \\
& \equiv \pi_{0} \pi_{n-1} \ldots \pi_{2} \pi_{1} \pi_{0} \pi_{2} \ldots \pi_{i}=\pi_{0} \begin{array}{|c}
\begin{array}{c}
n-1 \\
\vdots \\
0 \\
0
\end{array} \pi_{2} \ldots \pi_{i}
\end{array} & & \text { by RB4. }
\end{array}
$$

Now using iteratively Lemma 3.40, one gets

$$
\left.\left.\pi_{0} \begin{array}{c}
n-1 \tag{3.17}\\
\vdots \\
0
\end{array}\right] \pi_{2} \ldots \pi_{i} \equiv_{0} \pi_{0} \pi_{1} \begin{array}{c}
n-1 \\
\vdots \\
0
\end{array}\right] \pi_{3} \ldots \pi_{i} \equiv_{0} \ldots \equiv_{0} \pi_{0} \ldots \pi_{i-1} \begin{gathered}
n-1 \\
\vdots \\
0 \\
\hline
\end{gathered}
$$

Thus $\pi_{\mathrm{c}} \pi_{0} \equiv_{0} \pi_{\mathrm{c}^{\prime}}\left(\pi_{0} \ldots \pi_{i-1}\right)\left[\begin{array}{c}n-1 \\ \vdots \\ 0\end{array}\right] \equiv \equiv_{0} \pi_{\mathrm{c}^{\prime} \cdot\left(\pi_{0} \ldots \pi_{i-1}\right) 0}=\pi_{\mathrm{c} \cdot \pi_{0}}$.
e. If $t=\pi_{i+1}$ (so $i \neq n$) we have two possibilities:
α. Either $m\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right)=i$;
β. Or $m\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right) \neq i$. In this second case $\mathrm{c} \cdot t=\mathrm{c}^{\prime} \overline{i+1}$, and we proceeds as in case Pos.b.

The last remaining case is then $\mathrm{c}_{n}=-i \leq 0$ with $t=\pi_{i+1}$ and $m\left(\mathrm{c}_{1} \ldots \mathrm{c}_{n-1}\right)=i$. In this case we have $\mathrm{c} \cdot t=\mathrm{c}$.

Let k be the index of the last non-positive $c_{k} \leq 0$. Since, by hypothesis, $m\left(c_{1} \ldots c_{n-1}\right)=i$, there are $i-\left|\mathrm{c}_{k}\right|=i+\mathrm{c}_{k}$ further indexes where the value of m increase, we write them as $k<j_{1}<\cdots<j_{i+\mathrm{c}_{k}}<n$. In other words, these are the steps of the inductive construction of
decode(c) where the value of FZ change. For each such index j_{u}, we split the columns of the corresponding decoded word into two parts as

$$
\left.\begin{array}{|c}
\hline j_{u}-1 \tag{3.18}\\
\vdots \\
c_{j_{u}}
\end{array}=\begin{array}{c}
j_{u}-1 \\
\vdots \\
\left|c_{k}\right|+u+1
\end{array} \begin{array}{|c|}
\left|c_{k}\right|+u \\
\vdots \\
c_{j_{u}}
\end{array}\right] .
$$

For the other indexes not belonging to the j_{u}, we consider them as first parts, leaving their second parts empty. Thanks to Lemma 3.40, all the second parts commute with the first parts on their right so that:

We similarly further split the column $\left.\begin{array}{c}\overline{k-1} \\ \vdots \\ c_{k}\end{array}\right]$ into its negative and positive part, and commute the negative part as

We now focus on the product of the the second parts which we call S. Using RB4, and striping the second parts from their topmost element, we get:

$$
\begin{aligned}
& \left.S:=\pi_{0} \pi_{1} \ldots \pi_{\left|c_{k}\right|}\left[\begin{array}{c}
n-1 \\
\vdots \\
-i-1 \\
\hline
\end{array} \begin{array}{|cc|}
\hline c_{k} \mid+1 \\
\vdots \\
c_{j_{1}}
\end{array}\right] \ldots \begin{array}{|c}
i \\
\vdots \\
c_{j_{i+c_{k}}}
\end{array}\right] \\
& \left.\equiv{ }_{0} \pi_{0} \begin{array}{c}
n-1 \\
\vdots \\
-i-1 \\
\hline
\end{array} \pi_{1} \ldots \pi_{\left|c_{k}\right|} \pi_{\left|c_{k}\right|+1} \ldots \pi_{i} \begin{array}{|c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right] . \begin{array}{|c}
i-1 \\
\vdots \\
c_{j_{i}+c_{k}} \\
\hline
\end{array} \\
& \left.\equiv{ }_{0} \pi_{0} \begin{array}{c}
n-1 \\
\vdots \\
2 \\
\hline
\end{array} \pi_{1} \pi_{0} \pi_{1} \ldots \pi_{i} \pi_{i+1} \pi_{1} \ldots \pi_{\left|c_{k}\right|} \pi_{\left|c_{k}\right|+1} \ldots \pi_{i} \begin{array}{|c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right] \ldots \begin{array}{|cc|}
\hline i-1 \\
\vdots \\
c_{j_{i}+c_{k}} \\
\hline
\end{array} \\
& \equiv 0 \begin{array}{c}
\begin{array}{c}
n-1 \\
\vdots \\
2 \\
\hline
\end{array} \\
\pi_{0}
\end{array} \pi_{1} \pi_{0} \pi_{1} \ldots \pi_{i} \pi_{i+1} \pi_{1} \ldots \pi_{i} \begin{array}{|c}
\left\lvert\, \begin{array}{c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right. \\
\end{array} . \begin{array}{|c}
i-1 \\
\vdots \\
c_{j_{i+c_{k}}} \\
\hline
\end{array} .
\end{aligned}
$$

We can now use RB3 and redistribute the colors:

$$
\equiv \begin{gathered}
\left.\begin{array}{c}
n-1 \\
\vdots \\
2 \\
\hline
\end{array} \pi_{0} \pi_{1} \pi_{0} \pi_{2} \ldots \pi_{\left|c_{k}\right|+1} \pi_{\left|c_{k}\right|+2} \ldots \pi_{i+1} \pi_{1} \ldots \pi_{i} \begin{array}{|c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right]
\end{gathered} \begin{gathered}
i-1 \\
\vdots \\
c_{j_{i+c_{k}}} \\
\hline
\end{gathered}
$$

Now thanks to Lemma 3.40:

$$
\begin{aligned}
& \left.\left.\equiv 0 \pi_{0} \begin{array}{c}
n-1 \\
\vdots \\
1 \\
\hline
\end{array} \pi_{2} \ldots \pi_{\left|c_{k}\right|+1} \pi_{\left|c_{k}\right|+2} \ldots \pi_{i+1} \pi_{0} \pi_{1} \ldots \pi_{i} \begin{array}{c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right] \ldots \begin{array}{|cc|}
\hline i-1 \\
\vdots \\
c_{j_{i}+c_{k}}
\end{array}\right] \\
& \left.\equiv{ }_{0} \pi_{0} \pi_{1} \ldots \pi_{\left|c_{k}\right|} \pi_{\left|c_{k}\right|+1} \ldots \pi_{i} \begin{array}{c}
n-1 \\
\vdots \\
1 \\
\hline
\end{array} \pi_{0} \pi_{1} \ldots \pi_{i} \begin{array}{|c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right] \ldots \begin{array}{|c}
i-1 \\
\vdots \\
c_{j_{i}+c_{k}} \\
\hline
\end{array}
\end{aligned}
$$

$$
=\pi_{0} \pi_{1} \ldots \pi_{\left|\mathrm{c}_{k}\right|} \pi_{\left|\mathrm{c}_{k}\right|+1} \ldots \pi_{i}\left[\begin{array}{c}
n-1 \\
\vdots \\
-i-1 \\
\hline
\end{array} \begin{array}{c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right] \ldots\left[\begin{array}{c}
i-1 \\
\vdots \\
\mathrm{c}_{j_{i+c_{k}}}
\end{array}\right] .
$$

Going back to the main computation we can undo the splitting of Equation 3.18:

$$
\begin{aligned}
& \left.\left.\left.\pi_{\mathrm{c}} t \equiv{ }_{0} \pi_{\mathrm{c}_{1} \ldots \mathrm{c}_{k-1}}\left[\begin{array}{c}
k-1 \\
\vdots \\
1
\end{array}\right] \ldots \begin{array}{|c}
j_{1}-1 \\
\vdots \\
c_{k} \mid+2
\end{array}\right] \ldots \begin{array}{|c}
j_{i+c_{k}}-1 \\
\vdots \\
i+1
\end{array}\right] \pi_{0} \pi_{1} \ldots \pi_{\left|c_{k}\right|} \pi_{\left|c_{k}\right|+1} \ldots \pi_{i}\left[\begin{array}{c}
n-1 \\
\vdots \\
-i-1
\end{array}\right]\left[\begin{array}{c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right] \ldots \begin{array}{c}
i-1 \\
\vdots \\
c_{j_{i+c_{k}}}
\end{array}\right] \\
& \left.\left.\left.\equiv{ }_{0} \pi_{\mathrm{c}_{1} \ldots \mathrm{c}_{k-1}}\left[\begin{array}{c}
k-1 \\
\vdots \\
c_{k}
\end{array}\right] \cdots \begin{array}{|c}
\begin{array}{c}
j_{1}-1 \\
\vdots \\
\left|c_{k}\right|+1
\end{array} \\
\hline
\end{array} \cdots \begin{array}{|c}
j_{i+c_{k}}-1 \\
\vdots \\
\vdots
\end{array}\right] \cdots \begin{array}{|c}
n-1 \\
\vdots \\
-i
\end{array}\right] \cdot\left[\begin{array}{c}
\left|c_{k}\right| \\
\vdots \\
c_{j_{1}}
\end{array}\right] \cdots \begin{array}{|c}
i-1 \\
\vdots \\
c_{j_{1}+c_{k}}
\end{array}\right] \text { by RB4 } \\
& \left.\left.\equiv{ }_{0} \pi_{\mathrm{c}_{1} \ldots \mathrm{c}_{k-1}}\left[\begin{array}{c}
k-1 \\
\vdots \\
c_{k}
\end{array}\right] \ldots\left[\begin{array}{c}
j_{1}-1 \\
\vdots \\
c_{j_{1}}
\end{array}\right] \ldots \begin{array}{|c}
j_{i+c_{k}}-1 \\
\vdots \\
c_{j_{i+}+c_{k}}
\end{array}\right] \ldots \begin{array}{|c}
n-1 \\
\vdots \\
-i
\end{array}\right] \text { by Lemma 3.40. }
\end{aligned}
$$

So that we have proved that $\pi_{\mathrm{c}} t=\pi_{\mathrm{c}}$ in the last remaining case.
As told at the beginning of the proof, the remark on the length has been checked through all cases.

Example 3.42. Since this last calculation is huge using specific notations, we now give an explicit example of calculation in case Neg.e. α. We take $\mathbf{c}=1234 \overline{2} 126 \overline{4}$. Then, with $t=\pi_{5}$:

$$
\begin{aligned}
& \pi_{\mathbf{c}} t=\left[\begin{array}{c}
4 \\
\vdots \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
\vdots \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
8 \\
\vdots \\
-4
\end{array}\right] \pi_{5} \\
& \left.\equiv_{0} \begin{array}{c}
4 \\
\vdots \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
\vdots \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
\vdots \\
5
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
\vdots \\
\vdots \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
8 \\
\vdots \\
-5
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
\vdots \\
2
\end{array}\right] \text { by RB4 and Lemma } 3.40 \\
& \equiv_{0}\left[\begin{array}{c}
4 \\
\vdots \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
\vdots \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
\vdots \\
\vdots
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
\vdots \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
8 \\
\vdots \\
-5
\end{array}\right] \pi_{1} \pi_{2} \pi_{3} \pi_{4} \cdot\left[\begin{array}{c}
2 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \text { by RB4 } \\
& \equiv_{0}\left[\begin{array}{c}
4 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
\vdots \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
\vdots \\
5
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
\vdots \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
8 \\
\vdots \\
2
\end{array}\right] \pi_{0} \pi_{1} \pi_{0} \pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{1} \pi_{2} \pi_{3} \pi_{4} \cdot\left[\begin{array}{c}
2 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \text { by RB4 } \\
& \equiv \equiv_{0}\left[\begin{array}{c}
4 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
\vdots \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
\vdots \\
5
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
\vdots \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
8 \\
\vdots \\
2
\end{array}\right] \pi_{0} \pi_{1} \pi_{0} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{1} \pi_{2} \pi_{3} \pi_{4} \cdot\left[\begin{array}{c}
2 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right] \text { by RB3 and redistributing. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\equiv_{0}\left[\begin{array}{c}
4 \\
\vdots \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
\vdots \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
\vdots \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
\vdots \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
8 \\
\vdots \\
-4
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
\vdots \\
2
\end{array}\right]=\begin{array}{c}
4 \\
\vdots \\
\vdots \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
\vdots \\
1
\end{array}\right] \cdot\left[\begin{array}{c}
6 \\
\vdots \\
2
\end{array}\right] \cdot\left[\begin{array}{c}
7 \\
\vdots \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
8 \\
\vdots \\
-4
\end{array}\right]=\pi_{\mathrm{c}} \text { by Lemma } 3.40 .
\end{aligned}
$$

Remark 3.43. The Definition 3.38, the Lemma 3.39 and the Theorem 3.41 can be also adapted to the case of G_{n}^{1}, using the transformation $\pi_{i} \mapsto s_{i}$ for $i \neq 0$ and $\pi_{0} \mapsto \pi_{0}$. There are only few cases which differ; they are precisely those where relation RB1 is used (with $i \neq 0$), that is case Pos.a. and Neg.a. The modifications in the definition are thus the followings:

Pos.a. $c_{n}=i>0$ and $t=s_{i}$ then $\mathrm{c} \cdot s_{i}=\mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{n}-1}\left(\mathrm{c}_{\mathrm{n}}+1\right)$.
Neg.a. $c_{n}=-i \leq 0$ and $t=s_{i}$ then $\mathrm{c} \cdot s_{i}=\mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{n}-1}\left(\mathrm{c}_{\mathrm{n}}+1\right)$.
The equivalent of Lemma 3.39 can be proved the same way. Finally the proof of Theorem 3.41 only use the relation $s_{i}^{2}=1$ in these two cases.

Corollary 3.44. Let 1_{n}^{c} denote the code of the identity rook of size n. For any $\pi \in G_{n}^{0}$ and $s \in G_{n}^{1}$, the congruencies $\pi \equiv_{0} \pi_{1_{n}^{c} \cdot \pi}$ et $s \equiv_{1} s_{1_{n}^{c} \cdot s}$ hold.
Proof. We use Theorem 3.41 and Remark 3.43 at $\mathrm{c}=1_{\mathrm{n}}^{\mathrm{c}}$ and proceed by induction on the length of the words π or s.

We now have an easy proof of the identities that motivated Definition 3.38:
Corollary 3.45. For any generator the following diagram is commutative:

Proof. We start by Theorem 3.41, $\pi_{c \cdot t} \equiv_{0} \pi_{c} t$. Now since $\Phi_{0}: G_{n}^{0} \rightarrow F_{n}^{0}$ is a morphism, we can apply this relation to the rook 1_{n}. We obtain: $1_{n} \cdot \pi_{c \cdot t}=1_{n} \cdot\left(\pi_{c} t\right)=\left(1_{n} \cdot \pi_{c}\right) t$. We conclude thanks to Proposition 3.36 and Theorem 3.27.
Corollary 3.46. The maps $\left\{\begin{aligned} & C_{n} \rightarrow G_{n}^{0} \\ & c \mapsto \pi_{c}\end{aligned}\right.$ and $\left\{\begin{aligned} & C_{n} \rightarrow G_{n}^{1} \\ & c \mapsto s_{c}\end{aligned}\right.$ are surjective; the following cardinalities coincide:

$$
\left|C_{n}\right|=\left|R_{n}\right|=\left|F_{n}^{0}\right|=\left|G_{n}^{0}\right|=\left|F_{n}^{1}\right|=\left|G_{n}^{1}\right| .
$$

Moreover, $F_{n}^{0} \simeq G_{n}^{0}, F_{n}^{1} \simeq G_{n}^{1}$ as monoids.
Proof. Using both Remark 3.9 and Corollary 3.45, we get the following sequence of surjective maps: $C_{n} \rightarrow G_{n}^{0} \rightarrow F_{n}^{0}$. Furthermore $\left|F_{n}^{0}\right| \geq\left|C_{n}\right|$ by Corollary 3.37. Consequently $\left|C_{n}\right|=$ $\left|F_{n}^{0}\right|=\left|G_{n}^{0}\right|$ and $F_{n}^{0} \simeq G_{n}^{0}$ as monoids.

Example 3.47. Let $r=240503$ and $t=\pi_{0}$. Then $r \cdot t=040503$. Let us check our algorithm.
Firstly code $(r)=01323 \overline{2}$. Our algorithm gives us the following serie of operations:

$$
\begin{aligned}
013232 \cdot \pi_{0} & =\left[(01323) \cdot \pi_{0} \pi_{1}\right] 0 \\
& =\left[\left((0132) \cdot \pi_{0}\right) 3 \cdot \pi_{1}\right] 0=\left[\left((013) \cdot \pi_{0}\right) 23 \cdot \pi_{1}\right] 0=\left[\left((01) \cdot \pi_{0}\right) 323 \cdot \pi_{1}\right] 0 \\
& =\left[00323 \cdot \pi_{1}\right] 0=\left[0032 \cdot \pi_{1}\right] 30 \\
& =003130
\end{aligned}
$$

Finally we really have decode $(003130)=040503$.
Now, there is no need to distinguish between the monoids of functions from the presented monoids, since we have the proof that they are isomorphic.
Notation 3.48. We denote $R_{n}^{0}:=F_{n}^{0} \simeq G_{n}^{0}$ the 0 -rook monoid.
For any rook r we also denote $\pi_{r}:=\pi_{\text {code }(r)}$.
Corollary 3.49. π_{r} is the unique element of R_{n}^{0} such that $1_{n} \cdot \pi_{r}=r$. With the identification $r \leftrightarrow \pi_{r}$, the action of R_{n}^{0} on R_{n} is nothing but the right multiplication in R_{n}^{0} : $\pi_{r} \pi_{s}=\pi_{r \cdot \pi_{s}}$.

Proof. The identity $1_{n} \cdot \pi_{r}=r$ is Proposition 3.36, and π_{r} is unique thanks to cardinalities. Finally, $1_{n} \cdot \pi_{r} \pi_{s}=\left(1_{n} \cdot \pi_{r}\right) \cdot \pi_{s}=r \cdot \pi_{s}$ and we conclude by unicity.

We have, by the way, re-proven the presentation for the classical rook monoid:
Corollary 3.50. For all n, We have the following isomorphisms of monoids: $F_{n}^{1} \simeq R_{n} \simeq G_{n}^{1}$. Proof. The monoid morphism $\left\{\begin{array}{cl}\left\langle s_{1}, \ldots, s_{n-1}, \pi_{0}\right\rangle \subseteq R_{n} & \longrightarrow F_{n}^{1} \subseteq \mathcal{F}\left(R_{n}, R_{n}\right) \\ r & \longmapsto\left(r^{\prime} \mapsto r^{\prime} \cdot r\right)\end{array}\right.$ is well-defined, and surjective. By Corollary 3.46 we can deduce that $\left\langle s_{1}, \ldots, s_{n-1}, \pi_{0}\right\rangle \simeq R_{n} \simeq F_{n}^{1}$.

Here is a further immediate consequence of the presentation:
Corollary 3.51. The monoid R_{n}^{0} is isomorphic to its opposite.
Proof. It comes from the fact that the relations of the presentation of R_{n}^{0} are symmetrical.

3.4 A Matsumoto theorem for rook monoids

We now turn to the specific study of reduced words.
Proposition 3.52. The words $s_{\mathrm{code}(r)}$ and $\pi_{\mathrm{code}(r)}$ are reduced expressions (i.e. of minimal length) respectively for $r \in R_{n}$ and $\pi_{r} \in R_{n}^{0}$.

Proof. Corollary 3.44 tells us that every element of R_{n} and R_{n}^{0} can be written as π_{c} and s_{c} for some code c. Moreover, according to Theorem 3.41 the rewriting of any word to π_{c} and s_{c} only decrease the length. To conclude, we still have to argue that π_{c} and s_{c} cannot be obtained with a different shorter code, which is clear from Proposition 3.36.

Remark 3.53. The Corollary 3.44 gives us a standard expression for every element of R_{n}^{0}. We can now look back at Lemma 3.4 and realize that P_{n} corresponds to the R-code $00 \ldots 0$ (n times), and thus to the action of replacing all the entries by 0 .

A final important consequence of our construction is a proof of the analogue of Matsumoto's theorem, answering a question of Solomon [Solomon(2004), p. 209, bottom of the middle paragraph]:

Theorem 3.54 (Matsumoto theorem for Rook monoids). If \underline{u} and \underline{v} are two reduced words over $\left\{\pi_{0}, s_{1} \ldots, s_{n-1}\right\}$ (resp. $\left\{\pi_{0}, \pi_{1}, \ldots, \pi_{n-1}\right\}$) for the same element r of $R_{n}^{1}\left(\right.$ resp. $\left.R_{n}^{0}\right)$, then they are congruent using only the two Relations RB2 and RB4, namely the braid relations:

$$
\begin{align*}
s_{i} s_{i+1} s_{i} & =s_{i+1} s_{i} s_{i+1} & & 1 \leq i \leq n-2, \tag{Rs2}\\
s_{i} s_{j} & =s_{j} s_{i} & & |i-j| \geq 2 . \tag{Rs3}\\
\pi_{0} s_{j} & =s_{j} \pi_{0} & & j \neq 1 . \tag{Rs5.1}
\end{align*}
$$

Respectively:

$$
\begin{align*}
\pi_{i} \pi_{i+1} \pi_{i} & =\pi_{i+1} \pi_{i} \pi_{i+1} & & 1 \leq i \leq n-2 \tag{RB2}\\
\pi_{i} \pi_{j} & =\pi_{j} \pi_{i} & & 0 \leq i, j \leq n-1, \quad|i-j| \geq 2 \tag{RB4}
\end{align*}
$$

Proof. First of all, we only do the proof at $q=0$, the $q=1$ case is done similarly. Moreover, by transitivity, it is sufficient to work in the case where $\underline{v}=\pi_{\mathrm{c}}$ whith $\mathrm{c}=\operatorname{code}\left(1_{n} \cdot r\right)$. We proceed by induction on the common length ℓ of \underline{u} and \underline{v}. It is obvious when $\ell=0$. We now consider a reduced word $\underline{v}=\underline{v}^{\prime} t$ for an element r. Then \underline{v}^{\prime} is also reduced for an element r^{\prime}, so that $r^{\prime} t=r$. We assume by induction that \underline{v}^{\prime} is congruent to $\pi_{c^{\prime}}$ where $\mathrm{c}^{\prime}:=\operatorname{code}\left(1_{n} \cdot r^{\prime}\right)$ using only Relations RB2 and RB4. Therefore $\underline{v}^{\prime} t$ and $\pi_{c^{\prime}} t$ are congruent too. In the proof of Theorem 3.41, we explicitely gave how to go from $\pi_{\mathrm{c}^{\prime}} t$ to $\pi_{\mathrm{c}^{\prime}, t}$. Hence we only need to check that Relations RB1 and RB3 are only used in the case where $\underline{v}^{\prime} t$ is not reduced that is when the length of $\underline{v}^{\prime} t$ is larger that the length of $\pi_{c^{\prime} \cdot t}$. This indeed holds, namely, in cases Pos.a., Neg.a which use RB1 on one hand, and cases Neg.d, Neg.e. α which use RB3 on the other hand.

As a consequence reduced words for R_{n}^{1} and R_{n}^{0} are the same:
Corollary 3.55. Let $\underline{w}^{1} \in G_{n}^{1}$ a word for a rook r and \underline{w}^{0} its corresponding word in G_{n}^{0} obtained by replacing s_{i} by π_{i} and leaving P_{1}. Then \underline{w}^{1} is reduced if and only if \underline{w}^{0} is reduced. Moreover, when they are, for any $k=0, \ldots,|w|$, one has $1_{n} \cdot w_{1}^{1} \cdots w_{k}^{1}=1_{n} \cdot w_{1}^{0} \cdots w_{k}^{0}$ and the elements $\left(1_{n} \cdot w_{1}^{0} \cdots w_{k}^{0}\right)_{k=0 \ldots|w|}$ are all distinct.
Proof. Any reduced word is congruent by braid relations to a canonical one: s_{c} and π_{c}. Moreover, the canonical words corresponds by the exchange $s \leftrightarrow \pi$ and the braid relations keep this correspondence, so that the first statement holds. Now assume that a word \underline{w}^{i} is reduced. Thanks to Corollary 3.49, we know that the sequence of elements are distinct, otherwise it would imply that some products $w_{1}^{i} \cdots w_{k}^{i}$ are equal for two different values of k leading to a shorter word. Now Equation 3.5, prove the equality.

As explained by Solomon $[\operatorname{Solomon}(2004)]$, this is sufficient to give a presentation of the q-rook algebra. Here is a quick sketch on how to do that: fix a parameter q in a ring \mathbf{R} and define an endomorphism T_{i} of $\mathbf{R} R_{n}$ interpolating between $q=1$ and $q=0$ by

$$
\begin{equation*}
r \cdot T_{i}:=q\left(r \cdot s_{i}\right)+(1-q)\left(r \cdot\left(\pi_{i}-1\right)\right), \tag{3.19}
\end{equation*}
$$

for $i=1, \ldots, n-1$ (where s_{i} and π_{i} acts according to Equations 3.3 and 3.5). It is well known [Lascoux(2003), Lascoux and Schützenberger(1987)] that these operators generate the Hecke algebra. We now consider the algebra generated by those generators plus P_{1} defined as in Equation 3.5. Since P_{1} commutes with s_{i} and π_{i} for $i \geq 2$, it commutes with T_{i}. Therefore for any rook r, it makes sense to define $T_{r}:=T_{i_{1}} T_{i_{2}} \ldots P_{1} \ldots T_{i_{k}}$ for any reduced word $s_{i_{1}} P s_{i_{2}} \ldots P_{1} \ldots s_{i_{k}}$. Due to the braid relations the result is independent from the chosen reduced word. Moreover for each of those words

$$
\begin{equation*}
1 \cdot T_{r}=r+\text { shorter terms }, \tag{3.20}
\end{equation*}
$$

so that these $\left(T_{r}\right)_{r \in R_{n}}$ are linearly independent. It finally suffices to add four more relations which explain how to simplify non reduced words. Namely:

$$
\begin{align*}
\left(T_{i}+1\right)\left(T_{i}-q\right) & =0, \tag{3.21}\\
P_{1}^{2} & =P_{i}, \tag{3.22}\\
\left(P_{1}-1\right) T_{1}\left(P_{1}-1\right) T_{1} & =T_{1}\left(P_{1}-1\right) T_{1}\left(P_{1}-1\right), \tag{3.23}\\
P_{1}\left(T_{1}-q\right) P_{1}\left(T_{1}\left(1-P_{1}\right) T_{1}-q\right) & =0 . \tag{3.24}
\end{align*}
$$

We remark that this presentation is true over \mathbb{Z} and therefore over any ring, and not only on fields. As far as we know, this was unknown before.

3.5 More actions of R_{n}^{0}

In Definition 3.8, we have given a right action of R_{n}^{0} on R_{n}. It is now clear from Corollary 3.49 that this action is nothing but the right multiplication in R_{n}^{0}. Under this action, P_{j} acts by killing the first j entries:

$$
\begin{equation*}
\left(r_{1} \ldots r_{n}\right) \cdot P_{j}=0 \ldots 0 r_{j+1} \ldots r_{n} \tag{3.25}
\end{equation*}
$$

The inverse of a permutation matrix is its transpose. Transposing a rook matrix still gives a rook matrix, so that one can transfer the notion to rook vectors. It is computed as follows: for a rook r, the i-th coordinate of r^{t} is the position of i in r if $i \in r$, and 0 otherwise. For instance $(105203)^{t}=146030$.

Transposing the natural right action, we naturally get a left action of the opposite monoid on rooks. However R_{n}^{0} is isomorphic to its oppose. It is therefore possible to define a left natural action:

Definition 3.56. For $0 \leq i \leq n$ and $r=r_{1} \ldots r_{n} \in R_{n}$, define

$$
\begin{equation*}
\pi_{i} \cdot r:=\left(r^{t} \cdot \pi_{i}\right)^{t} \quad \text { so that } \quad r \cdot \pi_{i}=\left(\pi_{i} \cdot r^{t}\right)^{t} \text {. } \tag{3.26}
\end{equation*}
$$

More explicitely, for $0 \leq j \leq n$, we write $j \in r$ if $j \in\left\{r_{1}, \ldots, r_{n}\right\}$. Then for any rook r :

- π_{0} replaces 1 by 0 in r if $1 \in r$, and fixes r otherwise.
- For $i>0$, the action of π_{i} on r is
- if $i, i+1 \in r$, call k and l their respective positions. Then π_{i} fixes r if $l<k$, otherwise it exchanges i and $i+1$.
- if $i \notin r$ and $i+1 \in r$, then π_{i} replaces $i+1$ by i.
$-i f i+1 \notin r$ then π_{i} fixes r.
Lemma 3.57. The previous definition is a left monoid action of R_{n}^{0} on R_{n} called the left natural action. Under this action, P_{j} acts by replacing the entries smaller than j by 0 .

Example 3.58. $\pi_{0} \cdot 0342=0342, \quad \pi_{1} \cdot 0342=0341, \quad \pi_{2} \cdot 0342=0342, \quad \pi_{3} \cdot 0342=0432$, $\pi_{0} \cdot 132=032$.

This sheds some light on the link with the type B_{n} : it is well known that type B_{n} can be realized using signed permutations. The quotient giving the 0 -rook monoid can be realized by replacing the negative numbers by zeros.

Proposition 3.59. π_{r} is the unique element of R_{n}^{0} such that $\pi_{r} \cdot 1_{n}=r$. With the identification $r \leftrightarrow \pi_{r}$, the left action of R_{n}^{0} on R_{n} is nothing but the left multiplication in $R_{n}^{0}: \pi_{r} \pi_{s}=\pi_{\pi_{r} \cdot s}$.

Proof. For a rook r, let us call temporarily ${ }_{r} \pi$ the reverse of the word π_{r}. Transposing Corollary 3.49 we get that ${ }_{r} \pi$ is characterized by ${ }_{r} \pi \cdot 1_{n}=r$ and ${ }_{r} \pi_{s} \pi=\pi_{r} \cdot s$. However, at this stage it's not clear that ${ }_{r} \pi=\pi_{r}$ (as element of R_{n}^{0}). Nevertheless, for generators that is words of length 1 , the equality ${ }_{r} \pi=\pi_{r}$ holds. Now given any reduced word $\underline{w}=w_{1} \ldots w_{l}$ for an element $x \in R_{n}^{0}$, set $r:=1_{n} \cdot \underline{w}=1_{n} \cdot w_{1} \cdot w_{2} \cdots w_{l}$ so that $x=\pi_{r}$ in $\overline{R_{n}^{0}}$. Since \underline{w} is reduced, using Corollary 3.55, one gets that $r=\underline{w}^{1}$ (the product of the corresponding word in R_{n}^{1} which is nothing but a matrix product). But this gives that $r=\underline{w}^{1} \cdot 1_{n}$ so that using the transpose of Corollary 3.55, $r=\underline{w} \cdot 1_{n}$. By unicity, one concludes that ${ }_{r} \pi=\pi_{r}$.

Corollary 3.60. The natural left and right actions of R_{n}^{0} on R_{n} commute.
Proof. Thanks to 3.49 and 3.59 , this is just associativity in R_{n}^{0}.

One can also extend the action of H_{n}^{0} by isobaric divided differences on polynomials: the monoid R_{n}^{0} acts also on the polynomials in n indeterminates over any ring $k, k\left[X_{1}, \ldots, X_{n}\right]$ in the following way.
Lemma 3.61. Let $f \in k\left[X_{1}, \ldots, X_{n}\right]$. Define

$$
\begin{equation*}
f \cdot \pi_{0}:=f_{\mid X_{1}=0}=f\left(0, X_{2}, \ldots X_{n}\right), \quad \text { and } \quad f \cdot \pi_{i}:=\frac{X_{i} f-\left(X_{i} f\right) \cdot s_{i}}{X_{i}-X_{i+1}} \tag{3.27}
\end{equation*}
$$

This definition is a right monoid action of R_{n}^{0} over $k\left[X_{1}, \ldots, X_{n}\right]$. Under this action,

$$
\begin{equation*}
f \cdot P_{j}=f\left(0, \ldots 0, X_{j}, \ldots X_{n}\right) \tag{3.28}
\end{equation*}
$$

Proof. It is a well-known fact [Lascoux and Schützenberger(1987)] that isobaric divided differences give an action of the Hecke algebra at $q=0$. It remains only to show the relation $\pi_{1} P_{1} \pi_{1} P_{1}=P_{1} \pi_{1} P_{1}=P_{1} \pi_{1} P_{1} \pi_{1}$. We easily check by an explicit computation that the three members are equals to the operator P_{2} defined by $f \cdot P_{2}=f\left(0,0, X_{2}, \ldots, X_{n}\right)$. The action of P_{n} can be easily obtained by induction with $P_{i+1}=P_{i} \pi_{i} P_{i}$.

Actually, there is an extra relation, which can be checked by a explicit computation:

$$
\begin{equation*}
f \cdot \pi_{1} \pi_{0} \pi_{1}=f \cdot \pi_{0} \pi_{1} \pi_{0} \tag{3.29}
\end{equation*}
$$

This shows that the monoid which is actually acting is $H^{0}\left(A_{n+1}\right)$ (Cartan type $\left.A_{n+1}\right)$ thanks to the following sequence of surjective morphisms:

$$
\begin{equation*}
H^{0}\left(B_{n}\right) \rightarrow R_{n}^{0} \rightarrow H^{0}\left(A_{n+1}\right) \tag{3.30}
\end{equation*}
$$

Finally, we note that it is actually possible to get an action of the full generic q-rook algebra by taking the same definition as Relation 3.19.

4 The \mathcal{R}-order on rooks

In this section, we seek for combinatorial, order theoretic and geometric analogs of the permutohedron for rooks. Recall that the right Cayley graph of the symmetric group \mathfrak{S}_{n} has several interpretations, namely:

- the Hasse diagram of the right weak order of \mathfrak{S}_{n} seen as a Coxeter group, which is naturally a lattice [Guilbaud and Rosenstiehl(1963)];
- the Hasse diagram of Green's \mathcal{R}-order of the 0 -Hecke monoid H_{n}^{0} [Denton et al.(2010/11)Denton, Hivert,
- the skeleton of the polytope obtained as the convex hull of the set of points whose coordinates are permutations [Ziegler(1995), Example 0.10].
As we will see, some of these properties have an analog for rooks.
We first notice an important difference: on the contrary to \mathfrak{S}_{n} the right order is not graded. This has been already noted for R_{2}^{0}. Indeed in the left part of Figure 4.1 we see two paths from 12 to 00 namely $\pi_{0} \pi_{1} \pi_{0}$ on the left and $\pi_{1} \pi_{0} \pi_{1} \pi_{0}$ on the right. Starting with $n=3$ the right order is moreover not isomorphic to its dual order.

Figure 4.1: The right Cayley graph of R_{2}^{0} and R_{3}^{0}.

4.1 \mathcal{R}-triviality of R_{n}^{0}

In this section we study the right Cayley graph of R_{n}^{0} showing that except for loops (edge from a vertex to itself) it is acyclic. In monoid theoretic terminology, one says that R_{n}^{0} is \mathcal{R}-trivial. From Coxeter group point of view, this is the analogue on rook of the (dual) right weak order. Note that the order considered here is different to the (strong) Bruhat order. Its analogue for rook is the subject of [Can and Renner(2012)].

Having shown this acyclicity, we will deduce from the symmetry of the relations of R_{n}^{0} that the left sided Cayley graph is also acyclic. By a standard semigroup theory argument, this will imply that the two-sided Cayley graph is acyclic too, that is that R_{n}^{0} is actually \mathcal{J}-trivial.

We first recall a combinatorial description of the \mathcal{R}-order of the 0 -Hecke monoid (or equivalently the dual right-weak order of the symmetric group seen as a Coxeter group) [Björner and Brenti(2005)]. Recall that for two permutations σ and τ one has $\sigma \leq_{\mathcal{R}} \tau$ if there exists a sequence (i_{1}, \ldots, i_{k}) with $0<i_{j}<n$ such that $\sigma=\tau \cdot \pi_{i_{1}} \ldots \pi_{i_{k}}$. Note that, in accord with the monoid convention and contrary to the Coxeter group convention, the identity is the largest element for this order. An algorithmic way to compare two permutations is to use values inversions (sometimes called co-inversions). We give here a definition which is also valid for rooks:

Definition 4.1. For a rook r, the set of inversions of r is defined by

$$
\begin{equation*}
\operatorname{Inv}(r):=\left\{\left(r_{i}, r_{j}\right) \mid i<j \text { and } r_{i}>r_{j}>0\right\} . \tag{4.1}
\end{equation*}
$$

It is a subset of $\Delta:=\{(b, a) \mid n \geq b>a>0\}$, but not all subsets are inversions sets of permutations and of rooks as we will see.

Definition 4.2. A subset $I \subseteq \Delta$ is transitive if $(c, b) \in I$ and $(b, a) \in I$ implies $(c, a) \in I$.
Here is a characterization of inversions sets:
Lemma 4.3. Given a set $I \subseteq \Delta$, there exists a permutation σ such that $\operatorname{Inv}(\sigma)=I$ if and only if I and $\Delta \backslash I$ are both transitive. When this holds the permutation σ is unique.

Proof. This is a folklore result. To reconstruct σ from its inversion set, one shows that the relation $I \cup\{(i, j) \mid(j, i) \in \Delta \backslash I\}$ is a total order, that is a permutation.

Inversion sets allow to characterize the right order:
Lemma 4.4 ([Björner and Brenti(2005)]). Let $\sigma, \tau \in \mathfrak{S}_{n}$, then $\sigma \leq_{\mathcal{R}} \tau$ if and only if $\operatorname{Inv}(\tau) \subseteq$ $\operatorname{Inv}(\sigma)$.

Proposition 4.5 ([Björner and Brenti(2005)]). The right \mathcal{R}-order on permutations is a lattice. The meet $\sigma \wedge_{\mathcal{R}} \mu$ of σ and τ is characterized by: $\operatorname{Inv}\left(\sigma \wedge_{\mathcal{R}} \mu\right)$ is the transitive closure of $\operatorname{Inv}(\sigma) \cup \operatorname{Inv}(\mu)$. The join of σ and τ is characterized by: $\Delta \backslash \operatorname{Inv}\left(\sigma \vee_{\mathcal{R}} \mu\right)$ is the transitive closure of $(\Delta \backslash \operatorname{Inv}(\sigma)) \cup(\Delta \backslash \operatorname{Inv}(\mu))$.

We now present how to adapt inversion sets to rooks. The idea is to record usual inversions as well as inversion with a 0 letter. Here is a way to do it:

Definition 4.6. We call the support of a rook r denoted $\operatorname{supp}(r)$ the set of non-zero letters appearing in its rook vector. For each letter $\ell \in \operatorname{supp}(r)$, we denote $Z_{r}(\ell)$ the number of 0 which appear after ℓ in the rook vector of r.

We finally say that $\left(\operatorname{supp}(r), \operatorname{Inv}(r), Z_{r}\right)$ is the rook triple associated to r.
Example 4.7. For example for $r=2054001$, one gets $\operatorname{supp}(r)=\{1,2,4,5\}$, together with $\operatorname{Inv}(r)=\{(2,1),(4,1),(5,4),(5,1)\}, Z_{r}(1)=0, Z_{r}(2)=3$ and $Z_{r}(4)=Z_{r}(5)=2$.

Here is a characterization of the rook triples:
Proposition 4.8. A triple (S, I, Z) where $S \subseteq\{1, \ldots n\}, I \subseteq \Delta$ and $Z: S \mapsto \mathbb{N}$ is the rook triple of a rook r if and only if the three following properties hold:

- the sets $I \subset \Delta \cap S^{2}$ and I and $\left(\Delta \cap S^{2}\right) \backslash I$ are both transitive.
- for $\ell \in S$, one has $0 \leq Z(\ell) \leq n-|S|$;
- if $(b, a) \in I$ then $Z(b) \geq Z(a)$ else $Z(b) \leq Z(a)$.

Moreover, when these properties hold the corresponding rook r is unique.
Proof. We first prove the direct implication. The first statement says that if one erases the zeros from a rook, one gets a permutation of its support. The second statement says that there are $n-|\operatorname{supp}(r)|$ zeros. The third statement says that if a is after b in r, then there are less 0 to the right of a than to the right of b.

Conversely, given such a triple, we can reconstruct a rook r in two steps: the first condition ensures that there is a unique permutation σ of the support S with inversions set I. The third statement says that the function Z is decreasing along the word σ. As a consequence, writing σ_{i}^{Z} the subword of σ composed by the letters ℓ such that $Z(\ell)=i$, one has

$$
\begin{equation*}
\sigma=\sigma_{n-|\operatorname{supp}(r)|}^{Z} \ldots \sigma_{2}^{Z} \sigma_{1}^{Z} \sigma_{0}^{Z} \tag{4.2}
\end{equation*}
$$

Note that some of the σ_{i}^{Z} may be empty. Then the rook

$$
\begin{equation*}
r=\sigma_{n-|\operatorname{supp}(r)|}^{Z} \ldots 0 \sigma_{2}^{Z} 0 \sigma_{1}^{Z} 0 \sigma_{0}^{Z} \tag{4.3}
\end{equation*}
$$

is indeed associated with the triple (S, I, Z) and is by construction unique.
Example 4.9. Going back to Example 4.7, consider the following triple with $n=7$:

$$
(S, I, Z)=\left(\{1,2,4,5\},\{(2,1),(4,1),(5,4),(5,1)\},\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & 3 & 5
\end{array}\right)\right) .
$$

There is a unique permutation σ of S with inversion set I, namely 2541 . Writing $Z(i)$ below i for each letter of σ, we get $\left(\begin{array}{cc}2 & 5 \\ 3 & 2\end{array} 4104\right.$) and see that Z is indeed decreasing. We then get that $\sigma_{3}^{Z}=(2), \sigma_{2}^{Z}=(54), \sigma_{1}^{Z}=(), \sigma_{0}^{Z}=(1)$, so that we recover $r=2054001$.

Our aim is now to show that the \mathcal{R}-order is actually an order. To do so, we start by defining combinatorially an order $r \leq_{I} u$, and then show that \leq_{I} and $\leq_{\mathcal{R}}$ are actually equivalent.

Definition 4.10. Let r and $u \in R_{n}$. We write $r \leq_{I} u$ if and only if the three following properties hold:

- $\operatorname{supp}(r) \subseteq \operatorname{supp}(u)$,
- $\{(b, a) \in \operatorname{Inv}(u) \mid b \in \operatorname{supp}(r)\} \subseteq \operatorname{Inv}(r)$,
- $Z_{u}(\ell) \leq Z_{r}(\ell)$ for $\ell \in \operatorname{supp}(r)$.

Remark 4.11. If r and u are permutations, then $\operatorname{supp}(r)=\operatorname{supp}(u)=\{1, \ldots, n\}$, so that $r \leq_{I} u$ if and only if $\operatorname{Inv}(u) \subset \operatorname{Inv}(r)$.

Moreover, as a consequence of the second condition, if $(b, a) \in \operatorname{Inv}(u)$ and $b \in \operatorname{supp}(r)$ then $a \in \operatorname{supp}(r)$. We abstract this fact with the following definition and lemma:

Definition 4.12. Let $I \subseteq \Delta$ and $S \subset \llbracket 1, n \rrbracket$. We say that S is I-compatible if $(b, a) \in I$ and $b \in S$ implies $a \in S$, for all b, a.

The previous remark now rephrases as:
Lemma 4.13. If $r \leq_{\mathcal{R}} u$ then $\operatorname{supp}(r)$ is $\operatorname{Inv}(u)$-compatible.
We will further need the following basic facts about compatibility:
Lemma 4.14. The union $S_{1} \cup S_{2}$ of two I-compatibles sets S_{1} and S_{2} is I-compatible.
If S is I_{1} and I_{2}-compatible, then it is $I_{1} \cup I_{2}$-compatible.
If S is I-compatible then it is compatible with the transitive closure of I.
We get back to the study of \leq_{I}.
Proposition 4.15. The set R_{n} endowed with the relation \leq_{I} is a poset with maximal element 1_{n} and minimal element $0_{n}=0 \ldots 0$.

Proof. The relation \leq_{I} is reflexive, by definition.
If $r, u \in R_{n}$ are such that $r \leq_{I} u$ and $u \leq_{I} r$ then $\operatorname{supp}(r)=\operatorname{supp}(u)$ and therefore $\operatorname{Inv}(r)=\operatorname{Inv}(u)$ and $Z_{r}=Z_{u}$. As a consequence, the non-zero letters appear in the same order in r and u and the zeros are in the same places. Thus \leq_{I} is antisymmetric.

Let $r \leq_{I} u \leq_{I} v$. Then $\operatorname{supp}(r) \subseteq \operatorname{supp}(v)$. Let $(b, a) \in \operatorname{Inv}(v)$ with $b \in \operatorname{supp}(r)$. Necessarily $b \in \operatorname{supp}(u)$ so that $(b, a) \in \operatorname{Inv}(u)$ and consequently $(b, a) \in \operatorname{Inv}(r)$. Finally if $\ell \in \operatorname{supp}(r)$ then $Z_{v}(\ell) \leq Z_{u}(\ell) \leq Z_{r}(\ell)$. Thus \leq_{I} is transitive.

Theorem 4.16. Let $r, u \in R_{n}$. Then $\pi_{r} \leq_{\mathcal{R}} \pi_{u}$ if and only if $r \leq_{I} u$.
Proof. By definition, $\pi_{r} \leq_{\mathcal{R}} \pi_{u}$ if there exists $\pi \in R_{n}^{0}$ such that $\pi_{r}=\pi_{u} \pi$. Using the identification $r \leftrightarrow \pi_{r}$ of Corollary 3.49, this is equivalent to $r=u \cdot \pi$. By abuse of notation in this proof we will therefore write $r \leq_{\mathcal{R}} u$ if there exists $\pi \in R_{n}^{0}$ such that $r=u \cdot \pi$.

For the direct implication, by induction and transitivity, it is sufficient to assume that $r=u \cdot \pi_{i}$ with $r \neq u$ and show $r<_{I} u$.

- If $i \neq 0$. Then $\operatorname{supp}(u)=\operatorname{supp}(r)$. Since $r \neq u$ we must have $u_{i}<u_{i+1}$ and also $r=u_{1} \ldots u_{i+1} u_{i} \ldots u_{n}$. If $u_{i} \neq 0$ then $\operatorname{Inv}(r)=\operatorname{Inv}(u) \sqcup\left\{\left(u_{i+1}, u_{i}\right)\right\}$ and $Z_{r}=Z_{u}$. On the contrary, if $r_{i}=0$, then $\operatorname{Inv}(r)=\operatorname{Inv}(u)$ and $Z_{r}(\ell)=Z_{u}(\ell)$ for $\ell \neq u_{i+1}$ and $Z_{r}\left(u_{i+1}\right)=Z_{u}\left(u_{i+1}\right)+1$.
- If $i=0$. Since $r \neq u$ we have $r_{1} \neq 0$ and $u=0 r_{2} \ldots r_{n}$. We can deduce that $\operatorname{supp}(r)=\operatorname{supp}(u) \cup\left\{r_{1}\right\}$. Furthermore,

$$
\begin{equation*}
\operatorname{Inv}(r)=\left\{\left(u_{i}, u_{j}\right) \in \operatorname{Inv}(u) \mid i \neq 1\right\}=\left\{\left(u_{i}, u_{j}\right) \in \operatorname{Inv}(u) \mid u_{i} \in r\right\} . \tag{4.4}
\end{equation*}
$$

Finally for $\ell \in \operatorname{supp}(r), Z_{u}(\ell)=Z_{r}(\ell)$.
For the converse implication, assume that $r<_{I} u$. By induction and transitivity it is sufficient to show that there exists i such that $r \leq_{I} u \cdot \pi_{i}$ and $u \cdot \pi_{i} \neq u$. We proceed by a case analysis. First $\operatorname{since} \operatorname{supp}(u) \subseteq \operatorname{supp}(u)$, we can distinguish whether $\operatorname{supp}(u)=\operatorname{supp}(u)$ or $\operatorname{supp}(u) \subsetneq \operatorname{supp}(u)$. In the equality case, we further distinguish whether $Z_{u}=Z_{r}$ or not.

- If $\operatorname{supp}(u)=\operatorname{supp}(r)$, and $Z_{u} \neq Z_{r}$, then there must exist $\ell \in \operatorname{supp}(r)$ such that $Z_{u}(\ell)<Z_{r}(\ell)$. Pick the leftmost ℓ in u which verifies this condition. First, there must be some 0 on the left of ℓ in u because there are $Z_{u}(\ell)$ on the right and at least $Z_{r}(\ell)$ in the word. Thus ℓ is not the first letter of u.
Let k be the letter immediately preceding ℓ in u. We claim that either $k=0$ or k is after ℓ in r. Indeed if $k \neq 0$ and k is before ℓ in r then we have $Z_{r}(k) \geq Z_{r}(\ell)$. Moreover $Z_{u}(\ell)=Z_{u}(k)$ because there is no zero in u between ℓ and k. Therefore $Z_{r}(k) \geq Z_{r}(\ell)>Z_{u}(\ell)=Z_{u}(k)$ which contradicts our choice of ℓ as being the leftmost.
Now, call i the position of this k in u. If $k=0$, the only difference between the rook triples of u and $u \cdot \pi_{i}$ is that $Z_{u \cdot \pi_{i}}(\ell)=Z_{u}(\ell)+1$ so that $r \leq_{I} u \cdot \pi_{i}$. On the contrary, if $k \neq 0$, then the only difference between the rook triples of u and $u \cdot \pi_{i}$ is that $\operatorname{Inv}\left(u \cdot \pi_{i}\right)=\operatorname{Inv}(u) \sqcup\{(l, k)\}$ so that again $r \leq_{I} u \cdot \pi_{i}$.
- If $\operatorname{supp}(u)=\operatorname{supp}(r)$, and $Z_{u}=Z_{r}$, then necessarily $\operatorname{Inv}(u) \subsetneq \operatorname{Inv}(r)$. Write \tilde{r} and \tilde{u} the words obtained by removing the zeros in r and u. The inclusion of inversions
shows that $\tilde{u} \leq_{S} \tilde{r}$ where \leq_{S} is the right order for permutations of $S=\operatorname{supp}(u)$. As a consequence, we know that it is possible to exchange two consecutive letters $a<b$ in \tilde{u} to get a permutation \tilde{v} of $\operatorname{supp}(u)$ such that

$$
\begin{equation*}
\operatorname{Inv}(\tilde{v})=\operatorname{Inv}(\tilde{u}) \sqcup\{(b, a)\} \subset \operatorname{Inv}(\tilde{r}) \tag{4.5}
\end{equation*}
$$

From the equality of Z, there cannot be any 0 between a and b in u, thus a and b are consecutive in u as well. Writing i for the position of a in u, we have $r \leq_{I} u \cdot \pi_{i}$.

- The remaining case is $\operatorname{supp}(r) \subsetneq \operatorname{supp}(u)$. Let $\ell:=\max (\operatorname{supp}(u) \backslash \operatorname{supp}(r))$. If ℓ is in position 1 in u then $r \leq_{I} u \cdot \pi_{0}$ and we are done in this case.

Otherwise if ℓ is not in position 1 , we claim that the letter k immediately preceding ℓ in u is smaller than l. If not, then there is an inversion (k, ℓ) in u. Since $\operatorname{supp}(r)$ is $\operatorname{Inv}(u)$-compatible, then $k \notin \operatorname{supp}(r)$. This contradicts our choice of ℓ as being the maximum.
Writing i for the position of k in u, we proceed as in the end of the first case: the only difference between the rook triples of u and $u \cdot \pi_{i}$ is that $\operatorname{Inv}\left(u \cdot \pi_{i}\right)=\operatorname{Inv}(u) \sqcup\{(\ell, k)\}$ so that again $r \leq_{I} u \cdot \pi_{i}$.

We are now in position to prove the main result of this section:
Corollary 4.17. The monoid R_{n}^{0} is \mathcal{R}-trivial, \mathcal{L}-trivial and thus \mathcal{J}-trivial.
Proof. A consequence Theorem 4.16 is that the \mathcal{R}-preorder is an order so that R_{n}^{0} is \mathcal{R}-trivial. Moreover, it is isomorphic to its opposite by Corollary 3.51 and thus it is \mathcal{L}-trivial. We conclude with Lemma 2.7.

4.2 The lattice of the \mathcal{R}-order

Our goal here is to show that, similarly to the weak order of permutations, the \mathcal{R}-order for the rooks is a lattice. We start with an algorithm which computes the meet.

Theorem 4.18. Let u and v be two rooks of size n. Define a new rook r by the following algorithm:

- Let I_{0} be the transitive closure of $\operatorname{Inv}(u) \cup \operatorname{Inv}(v)$.
- Let S be the largest (for inclusion) I_{0}-compatible set contained in $\operatorname{supp}(u) \cap \operatorname{supp}(v)$.
- Let $I:=I_{0} \cap S^{2}$.
- Finally, for $x \in s$ let $Z(x):=\max \left\{Z_{u}(i), Z_{v}(i) \mid i=x\right.$ or $\left.(x, i) \in I\right\}$ with the convention that $Z_{s}(i)=0$ if $i \notin \operatorname{supp}(s)$.

Then (S, I, Z) is a rook triple whose associated rook r is the meet $u \wedge_{\mathcal{R}} v$ of u and v for the \mathcal{R}-order.

Proof. We first prove that (S, I, Z) is indeed a rook triple.

- By definition, $I \subset \Delta \cap S^{2}$, let us show that I and $\left(\Delta \cap S^{2}\right) \backslash I$ are transitive. We claim that I is the transitive closure of $\left(\operatorname{Inv}(u) \cap S^{2}\right) \cup\left(\operatorname{Inv}(v) \cap S^{2}\right)$. Indeed, for any $(b, a) \in I$, then $(b, a) \in I_{0}$. By definition of the transitive closure, there exists a decreasing sequence of integer $b=c_{1}>c_{2}>\cdots>c_{k}=a \operatorname{such}$ that $\left(c_{i}, c_{i+1}\right) \in \operatorname{Inv}(u) \cup \operatorname{Inv}(v)$ for $i=1, \ldots, k-1$. By induction, since $b \in S$, compatibility ensures that all of the c_{i} belong to S. Hence the claim.

As a consequence, using Proposition $4.5, I$ is the inversion set of the meet in the permutohedron of the restriction of u and v to S so that I and $\left(\Delta \cap S^{2}\right) \backslash I$ are transitive.

- On has $|S| \leq \max (|\operatorname{supp}(u)|,|\operatorname{supp}(v)|)$. So that the condition $0 \leq Z(x) \leq n-|S|$ holds.
- Write $\mathcal{Z}(x):=\left\{Z_{u}(i), Z_{v}(i) \mid i=x\right.$ or $\left.(x, i) \in I\right\}$ so that $Z(x):=\max \mathcal{Z}(x)$. If $(b, a) \in$ I, the transitivity of I ensures that as sets $\mathcal{Z}(b) \supseteq \mathcal{Z}(a)$ so that $Z(b) \geq Z(a)$. Conversely write $\bar{I}:=\left(\Delta \cap S^{2}\right) \backslash I$. If $(b, a) \in \bar{I}$, the transitivity of \bar{I} shows that $(a, i) \in \bar{I}$ implies $(b, i) \in \bar{I}$. By contraposition, $(b, i) \in I$ implies $(a, i) \in I$ so that $\mathcal{Z}(b) \subseteq \mathcal{Z}(a)$ and therefore $Z(b) \leq Z(a)$.

Hence, we have proved that (S, I, Z) is a rook triple. It remains to prove that its associated rook is the meet $u \wedge_{\mathcal{R}} v$. By construction, $r \leq_{I} u$ and $r \leq_{I} v$. So that we only need to prove that for any rook s such that $s \leq_{I} u$ and $s \leq_{I} v$ then $s \leq_{I} r$.

- Using the rephrasing of Remark 4.11 we know that then $\operatorname{supp}(s)$ is $\operatorname{Inv}(u)$ and $\operatorname{Inv}(v)$ compatible and therefore compatible with the transitive closure of their union I_{0}. Since $S=\operatorname{supp}(r)$ is defined as the largest such set, $\operatorname{supp}(s) \subseteq \operatorname{supp}(r)$.
- Suppose $(b, a) \in \operatorname{Inv}(r)$, with $b \in \operatorname{supp}(s)$. Then by construction of r, there is a decreasing sequence $b=c_{1}>c_{2}>\cdots>c_{k}=a$ such that $\left(c_{i}, c_{i+1}\right) \in \operatorname{Inv}(u) \cup \operatorname{Inv}(v)$ for $i=1, \ldots, k-1$. By induction, having $s \leq_{I} u$ and $s \leq_{I} v$, one prove $c_{i} \in \operatorname{supp}(s)$ and $\left(c_{i}, c_{i+1}\right) \in \operatorname{Inv}(s)$. One concludes by transitivity that $(b, a)=\left(c_{1}, c_{k}\right) \in \operatorname{Inv}(s)$.
- Finally, assume $x \in \operatorname{supp}(s)$. Then $Z_{s}(x) \geq Z_{u}(x)$ and $Z_{s}(x) \geq Z_{v}(x)$. Moreover for any i such that $(x, i) \in \operatorname{Inv}(r)$, by the preceding item, $i \in \operatorname{supp}(s)$ and $(x, i) \in \operatorname{Inv}(s)$. One deduces that $Z_{s}(x) \geq Z_{s}(i) \geq Z_{u}(i)$ and $Z_{s}(x) \geq Z_{s}(i) \geq Z_{v}(i)$. We just showed that $Z_{s}(x) \geq \max \mathcal{Z}(x)$.

Corollary 4.19. The \mathcal{R}-order of R_{n}^{0} is a lattice.
Proof. From the previous theorem, we know that R_{n}^{0} is a meet semi-lattice. Now it is well known that a meet semi-lattice with a maximum element is a lattice.

From the proof, we have a more explicit algorithm to compute the meet:

- Start with $S:=\operatorname{supp}(u) \cap \operatorname{supp}(v)$. Then while one can find a $(b, a) \in \operatorname{Inv}(u) \cup \operatorname{Inv}(v)$ with $b \in S$ and $a \notin S$, remove b from S. When no more such (b, a) can be found, S is the support of $u \wedge_{\mathcal{R}} v$.
- Using the usual algorithm for permutations of the set S (see the sketch of the proof of Lemma 4.3), compute the meet of the restriction $u_{\mid S}$ and $v_{\mid S}$.
- Compute the Z function using max as in the statement of Theorem 4.18.
- Finish inserting the zeros using $Z(x)$ as in the proof of Proposition 4.8.

Example 4.20. Let $u=25104$ and $v=12453$. So $\operatorname{supp}(u) \cap \operatorname{supp}(v)=\{1,2,4,5\}$. But $(4,3)$ and $(5,3) \in \operatorname{Inv}(v)$ and $3 \notin S$. So $S=\{1,2\}$. We then get $I=\{(2,1)\}$, So that $\left(u \wedge_{\mathcal{R}} v\right)_{\mid S}=21$. It remains to insert the zeros. One compute $Z(2)=1$ and $Z(1)=1$ so that $u \wedge_{\mathcal{R}} v=00210$. Here is a bigger example: Let us compute $r=31086502 \wedge_{\mathcal{R}}$ 02178534. One finds that $S=\{1,2,3\}$, and $I=\{(3,2),(3,1),(2,1)\}$ and $Z=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 2\end{array}\right)$, so that $r=00032100$. Similarly

$$
30175082 \wedge_{\mathcal{R}} 02154738=00308210 \quad \text { and } \quad 43017582 \wedge_{\mathcal{R}} 02154738=75430821
$$

In the case of permutations, the involution $\sigma \rightarrow \tilde{\sigma}=\sigma \omega$ where ω is the maximal permutation (otherwise said, $\tilde{\sigma}$ is the mirror image of σ) is an isomorphism from the \mathcal{R}-order to its dual. A a consequence, one can compute the join using the meet: $\sigma \vee_{\mathcal{R}} \mu=\widetilde{\sigma} \wedge_{\mathcal{R}} \tilde{\mu}$. However, as seen for example on Figure 4.1 this trick does not work anymore for rooks. This ask for an algorithm to compute the join of two rooks. To describe this algorithm, we need a notion of non-inversion and a dual notion of compatibility:

Definition 4.21. For any rook r, call set of version of r the set:

$$
\begin{equation*}
\overline{\operatorname{Inv}}(r):=(\Delta \backslash \operatorname{Inv}(r)) \cup\{(b, a) \in \Delta \mid a \notin r \text { and } b \in r\} \tag{4.6}
\end{equation*}
$$

Let $I \subseteq \Delta$ and $S \subset \llbracket 1, n \rrbracket$. We say that S is dual I-compatible if $(b, a) \in \Delta \backslash I$ and $a \in S$ implies $b \in S$.

Theorem 4.22. Let u and v be two rooks of size n. Define a new rook r by the following algorithm:

- Let $I_{0}:=\Delta \backslash T$ where T is the transitive closure of $\overline{\operatorname{Inv}}(u) \cap \overline{\operatorname{Inv}}(v)$.
- Let S be the smallest dual I_{0}-compatible set containing $\operatorname{supp}(u) \cup \operatorname{supp}(v)$.
- Let $I:=I_{0} \cap S^{2}$.
- Finally, for $x \in s$ let $Z(x):=\min \left\{Z_{u}(i), Z_{v}(i) \mid i=x\right.$ or $\left.(x, i) \in \Delta \backslash I\right\}$, with the convention that $Z_{s}(i)=+\infty$ if $i \notin \operatorname{supp}(s)$.

Then (S, I, Z) is a rook triple whose associated rook r is the join $u \vee_{\mathcal{R}} v$.
The proof is very similar to the one we did for the meet and is left to the reader.
Example 4.23. Let us compute $r=30175082 \vee_{\mathcal{R}} 72185043$. One finds $S=\{1,2,3,4,5,7,8\}$, $I=\{(7,5),(4,3)\}$ and $Z=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 7 & 8 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$, so that $r=10243758$.

We want to enumerate the join-irreducible elements. As in the classical permutohedron, they are related to descents, however, it the case of rooks, they are two different notions of descents.

Definition 4.24 (Weak and strict descents). Let $r \in R_{n}$ be a rook. For any $0 \leq i<n$, we say that i is a weak (right) descent of r if $r \cdot \pi_{i}=r$. We say that i is a strict (right) descent if there exists a rook $s \neq r$ such that $s \cdot \pi_{i}=r$. Moreover, in the particular case $i=0$, we say that 0 is a strict descent with multiplicity k, if there are exactly k rooks $s \neq r$ such that $s \cdot \pi_{0}=r$.

Any strict descent is a weak descent. Indeed if $s \cdot \pi_{i}=r$ then $r \cdot \pi=s \cdot \pi_{i}^{2}=s \cdot \pi_{i}=r$. Weak descent and strict descents are equivalent when restricted to permutations, but they differ on rooks. For example, the rook 04003 , has 3 weak descent namely $0,2,3$, but only 0,2 are strict $\left(04003=24003 \cdot \pi_{0}\right.$ and $\left.04003=00403 \cdot \pi_{2}\right)$ and 0 has multiplicity $3: 04003=$ $14003 \cdot \pi_{0}=24003 \cdot \pi_{0}=54003 \cdot \pi_{0}$.

Lemma 4.25. The multiplicity of 0 as a strict descent in a rookr is 0 if r does not start with 0 and is the number of 0 in r otherwise.

Definition 4.26. An element z of a lattice L is called meet irreducible if it can not be obtained as a non trivial meet that is $z=z_{1} \wedge z_{2}$ implies $z_{1}=z$ or $z_{2}=z$.

An equivalent definition is that z has only one successor in the Hasse diagram of L. By definition, in a finite lattice, any element can be written as the meet of some meet irreducible elements. As a consequence, they form the minimal generating set of the meet semi-lattice.

For permutations, the number of meet irreducible for the \mathcal{R}-order (that is permutation with only one descent) is $a(n)=2^{n}-n-1$. It is a particular case of Eulerian numbers and is recorded as OEIS A000295. Here are the first values

$$
\begin{equation*}
0,0,1,4,11,26,57,120,247,502,1013,2036,4083,8178,16369,32752 \tag{4.7}
\end{equation*}
$$

For rooks, the number of meet irreducibles has a very simple expression too:
Proposition 4.27. The number of meet irreducibles for $\leq_{\mathcal{R}}$ is $3^{n}-2^{n}$.
This sequence is recorded as OEIS A001047. Here are the first values

$$
\begin{equation*}
0,1,5,19,65,211,665,2059,6305,19171,58025,175099,527345,1586131 \tag{4.8}
\end{equation*}
$$

We will actually prove a stronger statement, the previous one will follow thanks to the identity:

$$
\begin{equation*}
3^{n}-2^{n}=\sum_{i=1}^{n} 3^{n-i} 2^{i-1} \tag{4.9}
\end{equation*}
$$

Proposition 4.28. For any rook vector r denote $p(r)$ the first value r_{0} if its non zero, and 1 if its zero. The number of meet-irreducibles r of R_{n} such that $p(r)=i$ is $3^{n-i} 2^{i-1}$.

Proof. A rook is meet irreducible if and only if it has a unique strict descent (counting multiplicities). Consider a meet irreducible rook r with $p(r)=i$. There are two cases:

- if $i>1$, then the rook is composed by two nondecreasing sequences, the first one starts with i. So each number smaller than i, either appears in the second subsequence or, do not appear at all so that the second sequence starts with some 0 . Similarly each number larger than i, may appear in any of those two subsequences or not at all. So the number of choices is $2^{i-1} 3^{n-i}$.
- if $i=1$, then r start either with 0 or 1 . We want to show that the number of such rooks is 3^{n-1}. We show that the set of those rooks is in bijection with the set of maps $f: \llbracket 2, n \rrbracket \rightarrow\{0,1,2\}$.
In the following, for any set S of integers we write $W(S)$ the word obtained by writing the letter of S in increasing order. Given a map $f: \llbracket 2, n \rrbracket \rightarrow\{0,1,2\}$, one build a
sequence starting with 1 , then ordering the preimage of 0 , putting as many zero as the preimage of 1 , and then ordering the preimage of 2 :

$$
\begin{equation*}
r(f):=1 \cdot W\left(f^{-1}(0)\right) \cdot 0^{\left|f^{-1}(1)\right|} \cdot W\left(f^{-1}(2)\right) \tag{4.10}
\end{equation*}
$$

By definition, the result is a rook of size n with at most one descent. Moreover, each rook with only one descent is obtained exactly once as the image of some f.

It remains to show that the maps which give rooks with no descent by the preceding construction are in bijection with rooks having 0 as unique descent with multiplicity 1. The point is the following: $r(f)$ has zero descents, that is $r(f)$ is nondecreasing, if and only if there exists a $1 \leq k \leq n$ such that

$$
f(i)= \begin{cases}0 & \text { if } i \leq k \tag{4.11}\\ 2 & \text { otherwise }\end{cases}
$$

If it is the case, we redefine $r(f)$ as

$$
\begin{equation*}
r_{1}(f):=0 \cdot W\left(\left\{i-1 \mid i \in f^{-1}(0)\right\}\right) \cdot W\left(\left\{f^{-1}(2)\right\}\right) \tag{4.12}
\end{equation*}
$$

The set of the rooks obtained this way is the set of increasing rooks which start with a 0 . According to Lemma 4.25, those are exactly the rooks having 0 as unique descent with multiplicity 1.
On conclude that there are exactly 3^{n-1} rooks starting either by 0 or 1 .
Example 4.29. Consider the function $f=\left(\begin{array}{ccccccc}2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 0 & 1 & 9 & 1 & 0 & 2\end{array}\right)$. Then $r(f)=1 \cdot 357 \cdot 000 \cdot 28$ which has only one strict descent (the dots are only here to visualize the different part of the right hand side of Equation 4.10).

Now with $f=\left(\begin{array}{cccccccc}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2\end{array}\right)$, Equation 4.10 gives $r(f)=1 \cdot 23456 \cdot 789$ which has no descent at all. So we take the second definition (Equation 4.12) and get the new value $r_{1}(f)=0 \cdot 12345 \cdot 789$ which has 0 as unique strict descent.

As a concluding remark on irreducible elements, we note that, on the contrary to permutations, the poset is not self dual. So there is no reason why the number of meet irreducible elements should be equal to the number of join irreducible elements. They indeed differ and we do not have a formula for the number of join irreducibles. We give here the first values:

$$
\begin{equation*}
0,1,5,16,43,106,249 \tag{4.13}
\end{equation*}
$$

4.3 Chains in the rook lattice

We recall that a chain in a lattice (L, \preceq) is a sequence of elements $\left(x_{1}, \ldots, x_{r}\right)$ such that $x_{1} \preceq x_{2} \preceq \cdots \preceq x_{r}$. A maximal chain is a chain which is not strictly included in another one. Denoting m and M the minimal and maximal elements of L, this is equivalent to $x_{1}=m$, $x_{r}=M$ and for every $i<r$ there is no element between x_{i} and x_{i+1} for the order \preceq. For the weak order on permutations, maximal chains corresponds to reduced expression of the maximal permutation.

We now consider maximal chains of R_{n} (thus also R_{n}^{0} by Corollary 3.49). We see in Figure 4.1 that all the maximal chains are not of equal length. Experimental computation of the numbers of maximal chains give the following sequence: $1,2,23,3625,16489243$. We
did not find any nice property: it is not refered in OEIS and the numbers contain big prime factor. A more interesting question is to only consider maximal chains of minimal length, that is reduced expressions of the maximal rook $P_{n}=0 \ldots 0 \in R_{n}$. Note by Lemma 3.4 that $\ell\left(P_{n}\right)=\binom{n+1}{2}$. We find the following numbers of such chains:

$$
\begin{equation*}
1,2,12,286,33592,23178480 \tag{4.14}
\end{equation*}
$$

This sequence is refered as OEIS A003121. It counts, among many other things, the number of maximal chains of length $\binom{n+1}{2}$ (hence maximal) in the Tamari lattice \mathcal{T}_{n+1}. This suggests that there is a bijection between the chains. It turns out that the coincidence is much stronger: the two posets restricted to the elements appearing in their respective chains of maximal length are isomorphic.

We first need to describe the elements appearing in a reduced expression of P_{n}. We need the following combinatorial definition for this:

Definition 4.30. Let \mathcal{A} be an alphabet and $a, b \in \mathcal{A}, \underline{u}, \underline{v}$ be two words over \mathcal{A}. The shuffle product is defined inductively by:

$$
\begin{equation*}
a \underline{u} Ш b \underline{v}=a(\underline{u}+b \underline{v})+b(a \underline{u}+\underline{v}), \tag{4.15}
\end{equation*}
$$

the initial condition being that the empty word is the unit element.
Proposition 4.31. The rook vectors appearing as a left factor of a reduced expression of P_{n} are the rooks:

$$
\begin{equation*}
\mathcal{M C R}_{n}:=\{0 \ldots 0 \amalg(k+1) \ldots n \mid 0 \leq k \leq n\} . \tag{4.16}
\end{equation*}
$$

Proof. Let $r \in \mathcal{M C R}_{n}$ as defined by Equation 4.16. We assume that r has k zeros, so that the nonzero letters appearing in r are $k+1, \ldots, n$. Take the reduced expression for r given by the R-code (Definition 3.34). Since the nonzero letters are in order, this expression if of length $\ell(r)=1+2+\cdots+k+\sum_{i=k+1}^{n} Z_{r}(i)$. In order to bring r to P_{n} by right action we repeat the following steps until we reach P_{n} : let i be the first nonzero letter and $p=i-Z_{r}(i)$ its position. Then multiplying r on the right by $s_{p-1} \ldots s_{1} \pi_{0}$ brings i to the front and kills it. The length of the word for P_{n} obtained this way is equal to

$$
\begin{equation*}
\ell(r)+\sum_{i=k+1}^{n}\left(i-Z_{r}(i)\right)=\sum_{i=1}^{n} i=\binom{n+1}{2} \tag{4.17}
\end{equation*}
$$

This is the length of P_{n}, hence the expression is reduced, and r appears in a maximal chain of minimal length.

Now we prove the converse inclusion by contradiction. Let $r \in R_{n} \backslash \mathcal{M C} \mathcal{R}_{n}$, with k zeros. We want to show that there is no reduced word for P_{n} of the form $\underline{r} \underline{m}$ where \underline{r} is a word for r. Assume that we have such a word. Since $r \notin \mathcal{M C} \mathcal{R}_{n}$, then either there is a nonzero letter k before a nonzero letter k^{\prime} with $k^{\prime}<k$, or there is a nonzero letter k^{\prime} while a letter $k>k^{\prime}$ is missing. The algorithm computing the canonical reduced word (Definition 3.34) shows that:

$$
\begin{equation*}
\ell(r)>1+2+\cdots+k+\sum_{i \in r, i \neq 0} Z_{r}(i) \tag{4.18}
\end{equation*}
$$

We call $\tilde{r} \in \mathcal{M C R}_{n}$ the rook vector obtained from r by replacing the nonzero letters by $k+1, \ldots, n$ in this order, so that $\sum_{i \in r, i \neq 0} Z_{r}(i)=\sum_{i=k+1}^{n} Z_{\tilde{r}}(i)$. Then $\tilde{r} \underline{m}$ gives P_{n} as well. Thus $\ell(\underline{m}) \geq \sum_{i=k+1}^{n}\left(i-Z_{\tilde{r}}(i)\right)$. So that $\ell\left(P_{n}\right)=|\underline{r} \underline{m}|>\binom{n+1}{2}=\ell\left(P_{n}\right)$, which is absurd.

In particular note that: $\left|\mathcal{M C R}_{n}\right|=\sum_{i=0}^{n}\binom{n}{i}=2^{n}$.
Example 4.32. $\mathcal{M C R}_{2}=\{12\} \cup\{0 \amalg 2\} \cup\{00\}=\{12\} \cup\{02,20\} \cup\{00\}$

$$
\begin{aligned}
\mathcal{M C R}_{3}= & \{123\} \cup\{0 ш 23\} \cup\{00 \amalg 3\} \cup\{000\} \\
= & \{123\} \cup\{023,203,230\} \cup\{003,030,300\} \cup\{000\}, \\
\mathcal{M C R}_{4}= & \{1234\} \cup\{0 ш 234\} \cup\{00 \amalg 34\} \cup\{000 \amalg 4\} \cup\{0000\} \\
= & \{1234\} \cup\{0234,2034,2304,2340\} \cup\{0034,0304,3004,0340,3040,3400\} \\
& \cup\{0004,0040,0400,4000\} \cup\{0000\} .
\end{aligned}
$$

We now introduce a sequence of bijections from $\mathcal{M C R}_{n}$ to some special Dyck paths, that is vertices of the Tamari lattice. For now, recall that a Dyck path of length n is a path in the plane starting from $(0,0)$, ending in $(2 n, 0)$ made with north-east (NE) $(1,1)$ and south-east (SE) $(1,-1)$ such that the path is always above the line $y=0$. We represent a Dyck path by a word of size $2 n$ with n letters 0 and n letters 1 , where 0 is a SE step, and 1 a NE step, and such that in every prefix of the word the number of 0 is less or equal to the number of 1 . For instance 101100110 is a Dyck path. We will also represent it $1^{1} 0^{1} 1^{2} 0^{2} 1^{2} 0^{1}$.

The first bijection sends an element of $\mathcal{M C R}_{n}$ to a subset of $[n+1]$ the following way:

$$
\eta:\left\{\begin{array}{rll}
\mathcal{M C R}_{n} & \longrightarrow & {[n+1]} \tag{4.19}\\
r=r_{1} \ldots r_{n} & \longmapsto & \left\{i \mid r_{i} \neq 0\right\} .
\end{array}\right.
$$

This application is clearly a bijection since the nonzero letters of $r \in \mathcal{M C R}_{n}$ are $k+1, \ldots, n$ in this order, where k is the number of zeros of r. Now that we have a subset of $[n]$ we can use the bijection C to compositions of $n+1$ introduced in Equation 2.5. If $I=\left(i_{1}, \ldots, i_{m}\right) \vDash n+1$ the actions of the generators of R_{n}^{0} through the bijection $\mathrm{C} \circ \eta$ are as follows:

$$
\begin{align*}
& I \cdot \pi_{0}=\left(i_{1}+i_{2}, i_{3}, \ldots, i_{m}\right) \tag{4.20}\\
& I \cdot \pi_{j}=\left(i_{1}, \ldots, i_{j-1}, i_{j}-1, i_{j+1}+1, i_{j+2}, \ldots, i_{m}\right) \text { for } 0<j<m . \tag{4.21}
\end{align*}
$$

We finally send a composition of $n+1$ to a Dyck path as follows:

$$
\begin{equation*}
\delta:\left(i_{1}, \ldots, i_{m}\right) \vDash n+1 \longmapsto 1^{n-m} 0^{i_{1}} 10^{i_{2}} 10^{i_{3}} \ldots 0^{i_{m-1}} 10^{i_{m}} . \tag{4.22}
\end{equation*}
$$

It is easy to check that the Dyck paths we obtain this way are exactly those for whose the pattern 011 is forbidden. Note that the action of the generators of R_{n}^{0} is thus to replace a 01 by 10 which pictorially inserts a diamond in a "valley". See Figure 4.2. We say that a Dyck path D contains another Dyck path D^{\prime}, and we denote it $D^{\prime} \subseteq D$, if the path D is above the path D^{\prime}. Then the \mathcal{R}-order on R_{n}^{0} is mapped to the order \subseteq on Dyck paths avoiding the pattern 011 by the bijection $\delta \circ \mathrm{C} \circ \eta$. The maximal element of the poset on Dyck path is $1^{n+1} 0^{n+1}$ and its minimal $(10)^{n+1}$. See the first line of Figure 4.5 to see all these isomorphisms. We finally remark that all these posets are actually lattices.

Now we briefly present the Tamari order, the reader should ref to [Tamari(1962)] for more details. A Dyck path is called primitive if it is not empty and has no other contact with the line $y=0$ except at the starting and ending point. If u is a Dyck path such that u has a SE step d followed by a primitive path p. Then the rotation on u is to exchange the SE step

Figure 4.2: The flip of a valley in our special Dyck paths. The generator π_{i} adds a diamond in the $i+1$ th valley, counting from the left. Thus π_{0} reduces the number of valley.

Figure 4.3: The rotation of Dyck words.
d with the primitive path p. See Figure 4.3. These rotations are the cover relations of the Tamari order $\preceq \mathcal{\tau}$.

We are interested in Dyck paths in a maximal chain of length $\binom{n}{2}$ in the Tamari lattice of size n. We denote by $\mathcal{M C} \mathcal{T}_{n}$ their set.

Proposition 4.33. The set $\mathcal{M C T}_{n}$ is exactly the set of Dyck paths avoiding 011. Furthermore the order $\preceq_{\mathcal{T}}$ restricted to $\mathcal{M C} \mathcal{T}_{n}$ is equal to the order of inclusion \subseteq.

Proof. The difference of diamonds between the minimal element (10) ${ }^{n}$ and the maximal element $1^{n} 0^{n}$ is exactly $\binom{n}{2}$, so that each rotation must add only one diamond. But a rotation on a SE step 0 followed by two NE steps 11 adds at least two diamonds, so that we can not rotate in such a SE step. Moreover the rotations on another licit SE step preserve the 011 pattern, so that an element with pattern 011 can not be in $\mathcal{M C} \mathcal{T}_{n}$. On the contrary if D is a Dyck path avoiding 011 , then a rotation is exactly to add a diamond in a valley, and the resulting Dyck path also avoids 011.

Now that we have the description of elements of $\mathcal{M C T}_{n}$, doing a rotation corresponds to adding a diamond on a valley, so that the order $\preceq_{\mathcal{T}}$ implies the order \subseteq. Furthermore, by definition of the order $\preceq \mathcal{\tau}$, the converse also holds.

As a consequence we have proven that the order on $\mathcal{M C} \mathcal{T}_{n}$ obtained through the bijection $\delta \circ \mathrm{C} \circ \eta$ is exactly the Tamari order, so that the posets of $\mathcal{M C R}_{n}$ and $\mathcal{M C} \mathcal{T}_{n+1}$ are isomorphic.

The elements appearing in $\mathcal{M C} \mathcal{T}_{n}$ appears in many different contexts, see [Hohlweg and Lange(2007), Hohlweg et al.(2011)Hohlweg, Lange, and Thomas, Labbé and Lange(2018)] and the references in the latters. They correspond to binary trees which are chains, that is also binary trees with exactly one linear extension. For this reason they are called singletons. Equivalently they are permutations avoiding the patterns 132 and 312 , or permutations with exactly
one element in their sylvester class, that is common vertices between the associahedron and the permutahedron. Furthemore the historic definition of the associahedron is to keep only the faces of the permutahedron which contains such a singleton. See Figure 4.4, and [Hohlweg and Lange(2007)] for more details. See also Figure 4.5 for all the bijections seen in this section.

Figure 4.4: The Associahedron is obtained from the Permutahedron by keeping only faces containing a singleton.

4.4 Geometrical remarks

Recall that the right Cayley graph of the symmetric group \mathfrak{S}_{n} is the 1-skeleton of a polytope namely the permutohedron [Ziegler(1995), Example 0.10]. It is defined as the convex hull of the set of points whose coordinates are permutations. It therefore lives in the hyperplane $\sum x_{i}=\frac{n(n+1)}{2}$, so that it is a polytope of dimension $n-1$.

Starting with $n=3$, we can not hope that the right Cayley graph of R_{n} could be the 1 -skeleton of a polytope. Indeed in R_{n} the element $1000 \ldots$ is always of degree 2 , being linked only to $0000 \ldots$ and $0100 \ldots$, whereas the identity $123 \ldots$ is of degre n. Thus it is impossible to get a polytope.

Nevertheless, one can consider in a n-dimensional space the set of points whose coordinates are rook vectors (see Figure 4.6). The extremal points of its convex hull are the points in

$$
\begin{equation*}
\operatorname{Stell}_{n}:=\left\{\mathfrak{S}_{n}(0 \ldots 0 k \ldots n) \mid k \in \llbracket 1, n \rrbracket\right\} \tag{4.23}
\end{equation*}
$$

This polyedron appeared under the name of stellohedron in [Manneville and Pilaud(2017), Figure 18] where it was defined as the graph associahedron of a star graph. It is also the secondary polytope of $\Delta_{n} \cup 2 \Delta_{n}$ (see [Gelfand et al.(2008)Gelfand, Kapranov, and Zelevinsky]), two concentric copies of a n-dimensional simplex, which can also be defined as

$$
\begin{equation*}
\left\{e_{i} \mid i \in[n+1]\right\} \cup\left\{(n+2) e_{i}-\mathbf{1} \mid i \in[n+1]\right\} . \tag{4.24}
\end{equation*}
$$

So we can see the Cayley graph of R_{n} as being drawn on the face of the stellohedron. One can recover this graph from the permutohedron by taking all its projections on coordinate planes. Indeed, it is just saying that a rook can be obtained from a permutation replacing some entries by zeros and that edges are mapped to an identical edge or contracted.

Figure 4.5: The lattice of $\mathcal{M C R}_{4}$, send to subsets of [4], compositions of 5 and $\mathcal{M C \mathcal { T }}_{5}$. On the second row we represent the poset $\mathcal{M C T}_{5}$ seen on binary trees which are chains, and permutations alone in their sylvester class or avoiding 132 and 312. We only represent loops on the rook vectors and the permutations, the other can be deduced by bijection. On the second line we apply generators of H_{5}^{0} rather than R_{4}^{0}. Note that the bijection on the generators is only $\pi_{i} \mapsto \pi_{i+1}$.

Figure 4.6: The Cayley graph of R_{3} embedded in a 3 -dimensional space.

4.5 A monoid associated to the stellohedron

The geometrical considerations raise the question whether there is a monoid structure giving the skeleton of the Stellohedron as Cayley graph. It turns out that the answer is true. Will we show moreover that there are monoids and lattice structures on graphs interpolating between the rook case and the stellar case.

Definition 4.34. For any rook $r \in R_{n}$ denote $M(r):=\max \{i \in \llbracket 1, n \rrbracket \mid i \notin r\}$ define $\operatorname{St}(r)$ to be the rook obtained by replacing by 0 all the letter smaller that $M(r)$ in r.

Example 4.35. $M(104625)=3$ and thus $\operatorname{St}(104625)=004605$. Similarly $M(10806270)=5$ and thus $\operatorname{St}(10806270)=00806070$.

Clearly for any rook $r \in R_{n}$ then $\operatorname{St}(r) \in \operatorname{Stell}_{n}$, and for any $s \in \operatorname{Stell}_{n}$ one has $\operatorname{St}(s)=s$. We have then proved the following lemma:

Lemma 4.36. The map St is a projection (i.e. $\mathrm{St} \circ \mathrm{St}=\mathrm{St}$) on Stell_{n}.
Proposition 4.37. Denote $\mathrm{St}^{0}: R_{n}^{0} \rightarrow R_{n}^{0}$ the map corresponding to St in R_{n}^{0}, that is $\mathrm{St}^{0}\left(\pi_{r}\right):=\pi_{\mathrm{St}(r)}$. Then St^{0} is compatible with the product of R_{n}^{0}, namely for any $r, s \in R_{n}$

$$
\begin{equation*}
\operatorname{St}^{0}\left(\operatorname{St}^{0}\left(\pi_{r}\right) \operatorname{St}^{0}\left(\pi_{s}\right)\right)=\operatorname{St}^{0}\left(\pi_{r} \pi_{s}\right) \tag{4.25}
\end{equation*}
$$

As a consequence, there is a unique monoid structure on $\operatorname{Stell}_{n}^{0}:=\operatorname{St}^{0}\left(R_{n}^{0}\right)=\left\{\pi_{s} \mid s \in \operatorname{Stell}_{n}\right\}$ such that such that $\mathrm{St}^{0}: R_{n}^{0} \rightarrow \mathrm{Stell}_{n}^{0}$ is a surjective monoid morphism.

Proof. It is sufficient to show that for any $i \in \llbracket 0, n-1 \rrbracket$ and any $r \in R_{n}$ one has

$$
\begin{equation*}
\operatorname{St}^{0}\left(r \cdot \pi_{i}\right)=\operatorname{St}^{0}\left(\operatorname{St}^{0}(r) \cdot \pi_{i}\right) \quad \text { and } \quad \operatorname{St}^{0}\left(\pi_{i} \cdot r\right)=\operatorname{St}^{0}\left(\pi_{i} \cdot \operatorname{St}^{0}(r)\right) . \tag{4.26}
\end{equation*}
$$

Indeed these equalities means that the relation \equiv defined by $r \equiv s$ if and only if $\mathrm{St}^{0}(r)=\operatorname{St}^{0}(s)$ is a monoid congruence. They are easily checked on the definition of the left and right action (Definitions 3.8 and 3.56).

We now explicit the left and right multiplication of the generator in $\operatorname{Stell}_{n}^{0}$:

Proposition 4.38. We denote $\bar{\pi}_{i}:=\operatorname{St}^{0}\left(\pi_{i}\right)$. Then Stell ${ }_{n}^{0}$ is generated by $\left\{\bar{\pi}_{i} \mid 0 \leq i<n\right\}$. And for $i \in \llbracket 1, n-1 \rrbracket$ and $s=\left(s_{1} \ldots s_{n}\right) \in \operatorname{Stell}_{n}$, one has $\pi_{s} \bar{\pi}_{i}=\pi_{s} \pi_{i}$ and $\pi_{\left(s_{1} \ldots s_{n}\right)} \cdot \bar{\pi}_{0}=\pi_{u}$ where u is the vector obtained by replacing all the element less or equal to s_{1} by 0 in s .

On the left, the product is given by $\bar{\pi}_{i} \pi_{\left(s_{1} \ldots i+1 \ldots s_{n}\right)}=\pi_{\left(s_{1} \ldots \ldots s_{n}\right)}$ if $i \notin s$ and $i+1 \in s$ and $\bar{\pi}_{i} \pi_{r}=\pi_{i} \pi_{r}$ in all the other cases.

We can moreover give a presentation for this new monoid:
Theorem 4.39. The stellar monoid $\operatorname{Stell}_{n}^{0}$ is the quotient of the rook monoid by the relations

$$
\begin{equation*}
\pi_{i} \pi_{i-1} \ldots \pi_{1} \pi_{0} \pi_{i} \equiv \pi_{i} \pi_{i-1} \ldots \pi_{1} \pi_{0} \tag{ST}
\end{equation*}
$$

for $i<n-1$.
In order to prove the theorem, we need two preliminary lemmas.
Lemma 4.40. Relation $S T$ holds in Stell $_{n}^{0}$.
Proof. If we apply both side of Relation ST on the left on the identity rook, then π_{i} exchange i and $i+1$ and $\pi_{i} \pi_{i-1} \ldots \pi_{1} \pi_{0}$ kills all letters from 0 to $i+1$. So both side are equal.

Lemma 4.41. In the rook monoid Relations ST implies the following relations:

$$
\begin{equation*}
\pi_{j} \pi_{i} \pi_{i-1} \ldots \pi_{1} \pi_{0} \equiv \pi_{i} \pi_{i-1} \ldots \pi_{1} \pi_{0} \tag{ST'}
\end{equation*}
$$

for any $0 \leq j \leq i<n$.
Proof. We distinguish three cases:

- $j=0$. In this case, we have

$$
\begin{aligned}
\pi_{0} \pi_{i} \pi_{i-1} \ldots \pi_{1} \pi_{0} & =\pi_{i} \pi_{i-1} \ldots \pi_{2} \pi_{0} \pi_{1} \pi_{0} & & \text { (by R4) } \\
& =\pi_{i} \pi_{i-1} \ldots \pi_{2} \pi_{1} \pi_{0} \pi_{1} \pi_{0} & & (\text { by R3 }) \\
& \equiv \pi_{i} \pi_{i-1} \ldots \pi_{2} \pi_{1} \pi_{0} \pi_{0} & & (\bmod \text { ST with } i=1) \\
& =\pi_{i} \pi_{i-1} \ldots \pi_{2} \pi_{1} \pi_{0} & & \text { (by R1). }
\end{aligned}
$$

- $0<j<i$. In this case, we have

$$
\begin{aligned}
\pi_{j} \pi_{i} \pi_{i-1} \ldots \pi_{1} \pi_{0} & =\pi_{i} \pi_{i-1} \ldots \pi_{j} \pi_{j+1} \pi_{j} \ldots \pi_{1} \pi_{0} & & \text { (by R4) } \\
& =\pi_{i} \pi_{i-1} \ldots \pi_{j+1} \pi_{j} \pi_{j+1} \ldots \pi_{1} \pi_{0} & & (\text { by R2) } \\
& =\pi_{i} \pi_{i-1} \ldots \pi_{j+1} \pi_{j} \ldots \pi_{1} \pi_{0} \pi_{j+1} & & (\text { by R4 }) \\
& \equiv \pi_{i} \pi_{i-1} \ldots \pi_{2} \pi_{1} \pi_{0} & & (\bmod \text { ST with } i=j+1) .
\end{aligned}
$$

- $j=i$. In this case, we just have to apply R1.

Proof of Theorem 4.39. From Corollary 3.49, for any rook $r \in R_{n}$, its R-code $\mathrm{c}=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}\right)$ verifies (with the notation of Definition 3.34):

$$
\pi_{r}=\left[\begin{array}{c}
0 \tag{4.27}\\
\vdots \\
c_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
\vdots \\
c_{2}
\end{array}\right] \ldots \cdots \cdot\left[\begin{array}{c}
n-1 \\
\vdots \\
c_{n}
\end{array}\right],
$$

We denote $m=\max \left\{i \mid \mathrm{c}_{i} \leq 0\right\}$ with the convention that $m=0$ if all the c_{i} are positive. Then thanks to relation ST' we know that

$$
\pi_{r} \equiv \begin{array}{c|c}
\begin{array}{c}
m-1 \\
\vdots \\
0
\end{array} & \begin{array}{c}
m \\
\vdots \\
c_{m+1}
\end{array} \tag{4.28}\\
\cdots \cdots & \begin{array}{c}
n-1 \\
\vdots \\
c_{n}
\end{array}
\end{array} \quad(\bmod S T)
$$

where the first column is empty if $m=0$. We call stellar canonical word any word appearing on the right hand side of this equation. In this case, the $\left(\mathrm{c}_{i}\right)_{i>m}$ verify $0<\mathrm{c}_{i} \leq i$, so that there are

$$
\begin{equation*}
\sum_{m=0}^{n}(m+1) \ldots(n-1) n=\sum_{m=0}^{n} \frac{n!}{m!}=\left|\operatorname{Stell}_{n}^{0}\right| \tag{4.29}
\end{equation*}
$$

stellar canonical words. We have shown that each rook is congruent to a stellar canonical words modulo ST and that they are as many stellar canonical words as element of Stell ${ }_{n}^{0}$. As a consequence Relation ST is the only relations needed to get $\operatorname{Stell} l_{n}^{0}$ from R_{n}^{0}.

4.5.1 The stelloid lattice

By analogy to the Rook lattice, we might wonder if the \mathcal{R}-order or \mathcal{L}-order of Stell $_{n}^{0}$ are lattices (on the contrary to rooks, they are not isomorphic). It turns out that the \mathcal{L}-order is a lattice. See Figure 4.7 for a picture. We will show actually a stronger result:

Figure 4.7: The left order of Stell_{3}^{0}

Theorem 4.42. The \mathcal{L}-order on $\operatorname{Stell}_{n}^{0}$ is a sublattice of the \mathcal{L}-order of R_{n}^{0}.
Proof. We need to conjugate all the rooks to pass to the left order. The conjugate of a stellar rook r is a rook such that all the zeroes are at the beginning. Equivalently this means that in its rook triple $\left(S_{r}, I_{r}, Z_{r}\right)$, the Z_{r} function is the zero function. Now looking at the algorithm for computing the meet and join of two rooks, we have that

$$
\begin{align*}
& Z_{u \wedge_{\mathcal{R} v}}(x):=\max \left\{Z_{u}(i), Z_{v}(i) \mid i=x \text { or }(x, i) \in I_{\left.u \wedge_{\mathcal{R} v}\right\},}\right. \tag{4.30}\\
& Z_{u \vee_{\mathcal{R}} v}(x):=\min \left\{Z_{u}(i), Z_{v}(i) \mid i=x \text { or }(x, i) \in \Delta \backslash I_{u \wedge_{\mathcal{R}} v}\right\} . \tag{4.31}
\end{align*}
$$

As a consequence both $Z_{u \wedge_{\mathcal{R}} v}$ and $Z_{u \vee_{\mathcal{R}} v}$ are zero functions so that $u \wedge_{\mathcal{R}} v$ and $u \vee_{\mathcal{R}} v$ are conjugate stellar rooks too.

Remark 4.43. The preimage of the stellar rook 300 is $\{300,301,310\}$ which is not a interval of the \mathcal{L}-order. As a consequence, St^{0} can't be a lattice morphism and the \mathcal{L}-order of Stell_{n}^{0} is a not a lattice quotient of the \mathcal{L}-order of R_{n}^{0}.

4.5.2 Higher order Stelloid monoid and lattices

The proofs of the two previous theorem makes it clear that the Stell_{n}^{0} monoid together with its \mathcal{L}-lattice is a particular case of a more general construction: for $k \geq 0$, define St_{k} the map from rooks to rooks which replace by 0 all the letter i such that there is k or more missing letter larger that i (the usual St map is the case $k=1$). For example $\mathrm{St}_{2}(3057016)=(3057006)$ and $\mathrm{St}_{2}(3407016)=(3407006)$. Also, $\mathrm{St}_{i} \circ \mathrm{St}_{j}=\mathrm{St}_{\text {max }(i, j)}$. So that for all n, we have the inclusion of sets:

$$
\begin{equation*}
\left\{0^{n}\right\}=\operatorname{St}_{0}\left(R_{n}\right) \subset \operatorname{St}_{1}\left(R_{n}\right) \subset \operatorname{St}_{2}\left(R_{n}\right) \subset \cdots \subset \operatorname{St}_{n}\left(R_{n}\right)=R_{n} . \tag{4.32}
\end{equation*}
$$

The following array give the cardinality of $\mathrm{St}_{k}\left(R_{n}\right)$.

$k \backslash n$	0	1	2	3	4	5	6	7
0	1	1	1	1	1	1	1	1
1		2	5	16	65	326	1957	13700
2			7	31	165	1031	7423	60621
3				34	205	1456	11839	108214
4					209	1541	13165	127289
5						1546	13321	130656
6							13327	130915
7								130922

Then the proof of Proposition 4.37 and Theorem 4.42 generalize to this new cases:
Theorem 4.44. Denote $\mathrm{St}_{k}^{0}: R_{n}^{0} \rightarrow R_{n}^{0}$ the map corresponding to St_{k} in R_{n}^{0}. Then this map is a surjective monoid morphism to $\mathrm{St}_{k}^{0}\left(R_{n}^{0}\right)$. Moreover, the \mathcal{L}-order of $\mathrm{St}_{k}^{0}\left(R_{n}^{0}\right)$ is a sublattice of the \mathcal{L}-order of R_{n}^{0}.

Hence Equation 4.32 is actually a sequence of inclusion of lattices. It also give rise to the following sequence of monoid morphisms:

$$
\begin{equation*}
\left\{0^{n}\right\}=\operatorname{St}_{0}\left(R_{n}^{0}\right) \leftarrow \operatorname{St}_{1}\left(R_{n}^{0}\right) \leftarrow \operatorname{St}_{2}\left(R_{n}^{0}\right) \leftarrow \cdots \leftarrow \operatorname{St}_{n}\left(R_{n}^{0}\right)=R_{n}^{0} . \tag{4.33}
\end{equation*}
$$

Figure 4.8: The left order of $\operatorname{St}_{k}^{0}\left(R_{3}\right)$ for $k=1,2,3$
Figure 4.8 shows the three consecutive quotients of $\mathrm{St}_{k}^{0}\left(R_{3}\right)$ together with their geometric counterpart.

We finally remark that the quotient morphism are in the opposite direction of the inclusion of lattices of Equation 4.32. This suggest some kind of duality, but we haven't been able to give a formulation.

5 Representation theory of the 0-Rook monoid R_{n}^{0}

The goal of this section is to investigate the representation theory of R_{n}^{0}. We write $\mathbb{C}\left[R_{n}^{0}\right]$ the monoid algebra of R_{n}^{0}. In the sequel of the article P_{1} will rather be denoted by π_{0}. Moreover, r will usually denote an element of R_{n}^{0}. Also, we know from Corollary 3.49 and Proposition 3.59 that for any $r \in R_{n}^{0}$ there is a unique rook $\mathbf{r}:=1_{n} \cdot r=r \cdot 1_{n}$ such that $\pi_{\mathbf{r}}=r$. So when there is a need to distinguish, we will denote in normal letter r the elements of the monoid and in boldface as \mathbf{r} their associated rooks.

We start by summarizing the main results (in particular Corollary 3.49) of the Section 3 which concerns the representations:

Proposition 5.1. The maps

$$
f_{R}: \left\lvert\, \begin{array}{clc}
\mathbb{C}\left[R_{n}^{0}\right] & \longrightarrow & \mathbb{C} R_{n} \\
x & \longmapsto & 1_{n} \cdot x,
\end{array} \quad\right. \text { and } \quad f_{L}: \left\lvert\, \begin{array}{clc}
\mathbb{C}\left[R_{n}^{0}\right] & \longrightarrow & \mathbb{C} R_{n} \\
x & \longmapsto & x \cdot 1_{n}
\end{array}\right.
$$

extended by linearity, are two isomorphisms of representations of R_{n}^{0} between the left and right regular representations and the natural one (acting on R_{n}).

5.1 Idempotents and Simple modules

As for any algebra, the representation theory of $\mathbb{C}\left[R_{n}^{0}\right]$ (or equivalently R_{n}^{0}) is largely governed by its idempotents, however since R_{n}^{0} is a \mathcal{J}-trivial monoid, as shown in [Denton et al.(2010/11)Denton, Hivert it is sufficient to look for idempotents in the monoid R_{n}^{0} itself.

Proposition 5.2. For any $S \subset \llbracket 0, n-1 \rrbracket$, we denote π_{S} the zero of the so-called parabolic submonoid generated by $\left\{\pi_{i} \mid i \in S\right\}$.
Proof. This submonoid is finite since the ambient monoid R_{n}^{0} is finite. By Proposition 4.17 it contains a unique minimal element for the \mathcal{J}-order, which is a zero.

Proposition 5.3. For any $S \subset \llbracket 0, n-1 \rrbracket$, write $S^{c}:=\llbracket 0, n-1 \rrbracket \backslash S$ its complement and $I=C\left(S^{c}\right)=\left(i_{1}, \ldots, i_{\ell}\right)$ its associated extended composition. Then $\pi_{S}=\pi_{\mathbf{r}}$ where \mathbf{r} is the block diagonal rook matrix of size n whose block are anti diagonal matrices of 1 of size $\left(i_{1}, \ldots, i_{\ell}\right)$, except the first block which is a zero matrix.

Note that if $0 \notin S$ then the first part of I is zero, so that the first zero block is of size 0 and therefore vanishes.

Example 5.4. If $n=12$ and $S=\{0,1,2,5,7,8,11\}$. Then $S^{c}=\{3,4,6,9,10\}$ so that $I=C\left(S^{c}\right)=(3,1,2,3,1,2)$. Similarly, if $T=\{2,4,5,7,8,9$,$\} , then T^{c}=\{0,1,3,6,10,11\}$ so that $J=C\left(T^{c}\right)=(0,1,2,3,4,1,1)$. Therefore the associated matrices are:

Proof. We fix some S and consider \mathbf{r} the associated rook matrix. The block diagonal structure ensures that $\pi_{\mathbf{r}}$ belongs to the parabolic submonoid $\left\langle\pi_{i} \mid i \in S\right\rangle$. Indeed, suppose that there is a reduced word \underline{w} for $\pi_{\mathbf{r}}$ with some $w_{i} \notin S$. Recall, that from Corollary 3.49, this means that $1_{n} \cdot \underline{w}=\mathbf{r}$. Choose the smallest such i. There are two cases whether $w_{i}=\pi_{0}$ or not.

- if $w_{i}=\pi_{0}$ with $0 \notin S$, then when computing $1_{n} \cdot w_{1} \cdots w_{i-1} \cdot w_{i}$, the action of π_{0} will be to kill a column. In this case, the killed column will never appear again so that there is no way to get the correct matrix.
- if $w_{i}=\pi_{i}$ with $i \neq 0$, when computing $1_{n} \cdot w_{1} \cdots w_{i-1} \cdot w_{i}$, the action of w_{i} is to exchange two columns from two different blocks. However, acting by any π_{j} will never exchange those two columns again, so that it is not possible to get them back in the correct order.

Hence, we have proven that \underline{w} only contains π_{i} with $i \in S$ that is $r \in\left\langle\pi_{i} \mid i \in S\right\rangle$. Furthermore, using the action on matrices one sees that $r \cdot \pi_{i}=r$ or equivalently that $\pi_{\mathrm{r}} \pi_{i}=\pi_{\mathrm{r}}$ if and only if $i \in S$. This shows that π_{r} is the zero of $\left\langle\pi_{i} \mid i \in S\right\rangle$.

Remark 5.5. If we decompose the set S into its maximal components of consecutive letters $S_{1} \cup S_{2} \cup \cdots \cup S_{r}$, then $\pi_{S}=\prod_{1 \leq i \leq r} \pi_{S_{i}}$ where the product commutes. Moreover, if $0 \in S$ then $\pi_{S_{1}}=P_{m}$ where m is the size of the first block.

During the proof, we got the following Lemma:
Lemma 5.6. Let $S \subset \llbracket 0, n-1 \rrbracket$. Then $\pi_{S} \pi_{i}=\pi_{S}=\pi_{i} \pi_{S}$ if $i \in S$, and $\pi_{S} \pi_{i} \neq \pi_{S}$ and $\pi_{i} \pi_{S} \neq \pi_{S}$ otherwise.
Proposition 5.7. The monoid R_{n}^{0} has exactly 2^{n} idempotents: these are the zeros of every parabolic submonoid.
Proof. We already know that R_{n}^{0} has at least 2^{n} idempotents. We now have to prove this exhaust the idempotents of R_{n}^{0}.

Let e an idempotent of R_{n}^{0}. Recall that $\operatorname{cont}(e)$ is the set of the π_{i} with $i \in \llbracket 0, n-1 \rrbracket$ appearing in any reduced word of e. Let us show that $e=\pi_{\operatorname{cont}(e)}$, that is the zero of the parabolic submonoid $\left\langle\pi_{i} \mid i \in \operatorname{cont}(e)\right\rangle$. Indeed for $a \in \operatorname{cont}(e)$, one can write $e=\underline{u} a \underline{v}$ for some \underline{u} and \underline{v} in R_{n}^{0}. By definition of the \mathcal{J}-order, this means that $e \leq \mathcal{J} a$. Using [Denton et al. (2010/11)Denton, Hivert, Schilling, and Thiéry, Lemma 3.6], this is equivalent to $e a=e$ and to $a e=e$, so that e is stable under all its support.

Theorem 5.8. The monoid R_{n}^{0} has 2^{n} left (and right) simple modules, all one-dimensional, indexed by the subsets of $\llbracket 0, n-1 \rrbracket$. Let $S \subset \llbracket 0, n-1 \rrbracket$. Its associated simple module S_{S} is the one-dimensional module generated by ε_{S} with the following action of generators:

$$
\pi_{i} \cdot \varepsilon_{S}= \begin{cases}\varepsilon_{S} & \text { if } i \in S \tag{5.1}\\ 0 & \text { otherwise }\end{cases}
$$

Proof. We apply [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Proposition 3.1] using Lemma 5.6.

Recall that we write x^{ω} any sufficiently large power of x which becomes idempotent, and that the star product of two idempotents is defined as $e * f=(e f)^{\omega}$. This endows the set of idempotents with a structure of a lattice where $*$ is the meet [Denton et al.(2010/11)Denton, Hivert, Schilling, Theorem 3.4]. We now explicitely describe this lattice:

Proposition 5.9. Let $S, T \subset \llbracket 0, n-1 \rrbracket$. Then $\pi_{S} * \pi_{T}=\pi_{S \cup T}$.
Proof. First we note that $\pi_{S} * \pi_{T}$ is inside the parabolic $S \cup T$. It is enough to show that it is a zero of this submonoid, and then conclude by unicity. The product formual is is a consequence of [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Lemma 3.6].

Corollary 5.10. The quotient $\mathbb{C}\left[R_{n}^{0}\right] / \operatorname{Rad}\left(\mathbb{C}\left[R_{n}^{0}\right]\right)$ is isomorphic to the algebra of the lattice of the n-dimensionnal cube.

5.2 Indecomposable projective modules

Recall that the indecomposable projective H_{n}^{0}-modules are spanned by descent classes (see Section 2.5 and reference therein for more details). Extending the definition from the Hecke monoid, we define left and right R-descents sets of a rook as:

$$
\begin{equation*}
D_{R}(r)=\left\{0 \leq i \leq n-1 \mid r \pi_{i}=r\right\} \quad\left(\text { resp. } D_{L}(r)=\left\{0 \leq i \leq n-1 \mid \pi_{i} r=r\right\}\right) \tag{5.2}
\end{equation*}
$$

Example 5.11. Let $r=\mathbf{0 4 2 3 0 0 7} \in R_{n}^{0}$. We have $0<4 \geq 2<3 \geq 0 \geq 0<7$, and the first letter is 0 . So $D_{R}(r)=\{0,2,4,5\}$.

Notation 5.12. We choose to represent an element $r \in R_{n}^{0}$ by a ribbon notation the usual way, with the difference that two zeros are vertical and not horizontal: | 0 | and not | 0 |
| :--- | :--- | :--- |
| 0 | 0 | | .

This change of convention compared to e.g. [Krob and Thibon(1997)] is due to our choice of taking the π 's and not the T_{i} 's for generators of the Hecke algebra. As a consequence, the eigenvalues 0 and 1 are exchanged.
 ribbon together with their associated descent sets. Figure 5.2 depicts the associated boolean lattice. With this notation we can easily find the idempotents of each R-descent set:

Figure 5.1: R-descent sets for R_{4}^{0}.

Proposition 5.13. In each R-descent class there is a unique idempotent. It is obtained by filling ribbon shape by numbers 1 to n in this order, going through the columns left to right and bottom to up. Then if 0 is in the descent class, fill the first column with zeros.

Proof. The existence and the uniqueness come from Corollary 5.6. The way to fill in comes from Proposition 5.3.

Figure 5.2: The lattice of R-descent sets for R_{4}^{0}.
Example 5.14. Consider the R-descent set $\{0,1,2,5,6,7\}$ in size 8 . We show below its associated ribbon shape and its idempotent

We now follow [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Section 3.4], specializing it to the combinatorics of R_{n}^{0}. Recall that the automorphism sub-monoid $\operatorname{rAut}(x)$ and $\operatorname{lAut}(x)$ are defined by

$$
\begin{equation*}
\operatorname{rAut}(x):=\{u \in M \mid x u=x\} \quad \text { and } \quad \operatorname{lAut}(x):=\{u \in M \mid u x=x\} . \tag{5.3}
\end{equation*}
$$

Proposition 5.15. Let $r \in R_{n}^{0}$.

$$
\begin{equation*}
\operatorname{rAut}(r)=\left\langle\pi_{i} \mid i \in D_{R}(r)\right\rangle \quad \text { and } \quad \operatorname{lAut}(r)=\left\langle\pi_{i} \mid i \in D_{L}(r)\right\rangle . \tag{5.4}
\end{equation*}
$$

Proof. We do the proof for rAut. The first inclusion $\left\langle\pi_{i} \mid i \in D_{R}(r)\right\rangle \subseteq \operatorname{rAut}(r)$ is clear.
Let $u \in \operatorname{rAut}(r)$. So $r u=r$. Assume that $u \notin\left\langle\pi_{i} \mid i \in D_{R}(r)\right\rangle$. Let $\pi_{i_{1}} \ldots \pi_{i_{m}}$ a reduced expression of u. Let j be the smallest index such that $i_{j} \notin D_{R}(r)$. Then $r u=r \pi_{i_{j}} \ldots \pi_{i_{m}}$ by minimality. Since $i_{j} \notin D_{R}(r), r \pi_{i_{j}}<\mathcal{J} r$ and by \mathcal{J}-triviality we get $r u<\mathcal{J} r$. This contradict the minimality.

From [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Proposition 3.16], we get the following corollary:
Corollary 5.16. Let $r \in R_{n}^{0}$

$$
\begin{equation*}
\operatorname{rfix}(r)=\pi_{D_{R}(r)} \quad \text { and } \quad \operatorname{lfix}(r)=\pi_{D_{L}(r)} . \tag{5.5}
\end{equation*}
$$

Then, applying Theorem 2.10, we get:
Theorem 5.17. The indecomposable projective R_{n}^{0}-modules are indexed by the R-descents sets and isomorphic to the quotient of the associated R-descent class by the finer R-descent classes.

Figure 5.3: The R-descent classes $\{0,1\},\{0,1,3\},\{2,3\}$ and $\{0,2\}$.
Finally [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Theorem 3.20] gives the coefficients of the Cartan matrix of R_{n}^{0} as the number of rooks with a given left and right descent set. We give it in Annex B, for $n=1,2,3,4$.

Remark 5.18. Contrary to the classical case [Krob and Thibon(1997)] these quotients are not intervals of the \mathcal{R}-order: the descent class depicted in Figure 5.4 has two bottom elements.

5.3 Ext-Quivers

The Ext-quiver of H_{n}^{0} were first computed in [Duchamp et al.(2002)Duchamp, Hivert, and Thibon] in type A, and later in [Fayers(2005)] in the other types. Moreover, [Denton et al.(2010/11)Denton, Hivert, Sch describes an algorithm to compute the quiver of any \mathcal{J}-trivial monoid. This algorithm is implemented in sage-semigroups from the second author, Franco Saliola and Nicolas M. Thiéry [Hivert et al.(2012 It turns out that the quiver of rook monoids are not different from 0 -Hecke monoids:

Theorem 5.19. The kernel of the two following algebra morphisms

$$
\begin{equation*}
\mathbb{C}\left[H^{0}\left(B_{n}\right)\right] \rightarrow \mathbb{C}\left[R_{n}^{0}\right] \quad \text { and } \quad \mathbb{C}\left[R_{n}^{0}\right] \rightarrow \mathbb{C}\left[H^{0}\left(A_{n+1}\right)\right] \tag{5.6}
\end{equation*}
$$

are included in the square radical of their respective domains. As a consequence, these three algebras share the same quiver.

Proof. Recall that all of these algebras are monoid algebras of \mathcal{J}-trivial monoids. Thanks to [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Corollary 3.8], their radical is generated by commutators. Therefore, the following non zero elements: $\pi_{0} \pi_{1} \pi_{0}-\pi_{0} \pi_{1}$ and

Figure 5.4: An example of a R-descent class which is not an interval of the \mathcal{R}-order.
$\pi_{0} \pi_{1} \pi_{0}-\pi_{1} \pi_{0}$ lie in the radical of each of these three algebras. The first map has for kernel the ideal generated by the relation

$$
\pi_{0} \pi_{1} \pi_{0}-\pi_{0} \pi_{1} \pi_{0} \pi_{1}=\left(\pi_{0} \pi_{1} \pi_{0}-\pi_{0} \pi_{1}\right)\left(\pi_{0} \pi_{1} \pi_{0}-\pi_{1} \pi_{0}\right)
$$

which thus lies in the square radical. Similarly the kernel of the second map is the ideal generated by

$$
\pi_{1} \pi_{0} \pi_{1}-\pi_{1} \pi_{0} \pi_{1} \pi_{0}=\left(\pi_{0} \pi_{1} \pi_{0}-\pi_{1} \pi_{0}\right)\left(\pi_{0} \pi_{1} \pi_{0}-\pi_{0} \pi_{1}\right)
$$

We refer the reader who want to see actual picture of the quiver to [Duchamp et al.(2002)Duchamp, Hivert, Except for trivial cases, they are not of known type so that the representation theory of R_{n}^{0} starting from $n=3$ is wild.

5.4 Restriction functor to H_{n}^{0}

We now further examine the links between representations of H_{n}^{0} and R_{n}^{0}. Indeed, since H_{n}^{0} is a submonoid of R_{n}^{0}, it acts by multiplication on R_{n}^{0}. We can see R_{n}^{0} as an H_{n}^{0}-module. Moreover, we can transport modules back and between H_{n}^{0} and R_{n}^{0} trough the induction and restriction functors.

We first look at simple modules whose restriction rule is immediate:
Proposition 5.20. Let $J \subset \llbracket 0, n-1 \rrbracket$, with associated simple R_{n}^{0}-module S_{J}. Then:

$$
\begin{equation*}
\operatorname{Res}_{H_{n}^{0}}^{R_{n}^{0}} S_{J}=S_{J \backslash\{0\}}^{H}, \tag{5.7}
\end{equation*}
$$

where S_{I}^{H} is the simple H_{n}^{0}-module generated by the parabolic $I \subseteq \llbracket 1, n-1 \rrbracket$.
The rule of induction for simple H_{n}^{0}-modules to R_{n}^{0}-modules is otherwise quite intricate and would be very technical. It would be very similar to what we will do in section 5.5.1 for the induction of simple modules of R_{n}^{0} to another R_{m}^{0}, which is already very technical.

We now look at indecomposable R_{n}^{0}-projective modules.
Proposition 5.21. Let $I \subset \llbracket 1, n-1 \rrbracket$ and P_{I}^{H} the associated indecomposable H_{n}^{0}-projective module. Then:

$$
\begin{equation*}
\operatorname{Ind}_{H_{n}^{0}}^{R_{n}^{0}} P_{I}^{H}=P_{I} \oplus P_{I \cup\{0\}} \tag{5.8}
\end{equation*}
$$

Proof. This is a consequence of Proposition 5.20, thanks to Frobenius reciprocity (see e.g. [Curtis and Reiner(1 Indeed, since the simple module S_{J}^{R} is the quotient of the indecomposable projective P_{J}^{R} by its radical, the multiplicity of P_{J}^{R} in a projective module P is equal to $\operatorname{dim} \operatorname{Hom}_{R}\left(P, S_{J}^{R}\right)$. By Frobenius reciprocity,

$$
\begin{equation*}
\operatorname{Mult}_{P_{J}^{R}}\left(\operatorname{Ind}_{H}^{R} P_{I}^{H}\right)=\operatorname{dim} \operatorname{Hom}_{R}\left(\operatorname{Ind}_{H}^{R} P_{I}^{H}, S_{J}^{R}\right)=\operatorname{dim} \operatorname{Hom}_{H}\left(P_{I}^{H}, \operatorname{Res} S_{J}^{R}\right) \tag{5.9}
\end{equation*}
$$

Now, Proposition 5.20 says that this dimension is 1 only if $I=J \backslash\{0\}$, otherwise it is 0 .
The restriction of projective modules from R_{n}^{0} to H_{n}^{0} is much more interesting. We will show that R_{n}^{0}-projective modules are still projective when restricted to H_{n}^{0}, and give a precise combinatorial rule.

Definition 5.22. Let $I \subset\{1, \ldots, n\}$ of size k, and $\sigma=i_{1} \ldots i_{n} \in \mathfrak{S}_{n}$. We define $\varphi_{I}(\sigma)$ to be the rook obtained by removing the first k entries of σ and inserting zeros in positions indexed by the elements of I.

We also denote $\psi: R_{n} \rightarrow \mathfrak{S}_{n}$ the map which takes a rook, put all zeros at the beginning of the word and replace them by the missing letters in decreasing order.

Example 5.23. For instance $\varphi_{\{1,3\}}(14235)=02035$ and $\psi(02410)=53241$.
For the next results, we will consider R_{n}^{0} to be a left H_{n}^{0}-module by left multiplication. Thus the action is on values as in Definition 3.56.
Theorem 5.24. $\mathbb{C} R_{n}^{0}$ is projective over H_{n}^{0}. As a consequence any projective R_{n}^{0}-module remains projective when restricted to H_{n}^{0}.

Proof. The main remark is that according to Definition 3.56, the left action of π_{i} for $i>0$ on any rook does not change the zeros: they remain at the same positions and no one are added.

For any $I \subset \llbracket 0, n-1 \rrbracket$, let C_{I} the set of rooks with zeros in the positions indexed by I. Since the action of H_{n}^{0} does not move zeros, we have the following decomposition in H_{n}^{0}-modules:

$$
\begin{equation*}
\mathbb{C} R_{n}^{0} \simeq \bigoplus_{I \subset \llbracket 0, n-1 \rrbracket} \mathbb{C} C_{I} \tag{5.10}
\end{equation*}
$$

It is enough to prove that each summand $\mathbb{C} C_{J}$ are projective since direct sums of projective modules are projective.

For such a summand where zeros are in positions $i \in I$, the linearization of the map ψ of Definition 5.22 is an injective H_{n}^{0}-module morphism. Its image is the set of permutations which start with $|I|-1$ descents which is a well known projective H_{n}^{0}-module. Indeed, it is the H_{n}^{0}-module generated by the element $i, i-1, \ldots, 2,1, i+1, i+2, \ldots, n$. This element is the zero of the parabolic submonoid generated by $\left\{\pi_{1}, \ldots \pi_{i-1}\right\}$, hence idempotent. Consequently it generates a projective modules. This shows that C_{I} is projective on H_{n}^{0}.

We now describe explicitely the restriction functor. Recall from Equation 2.8 that the induction product of two indecomposable projective H_{m}^{0}-Module (resp. H_{n}^{0}-Module) P_{I} and P_{J} is given by $P_{I} \star P_{J}:=\operatorname{Ind}_{m, n}\left(P_{I} \otimes P_{J}\right) \simeq P_{I \cdot J} \oplus P_{I \triangleright J}$.

Definition 5.25. Let I be an extended composition of n. A zero-filing of I is a ribbon of shape I with boxes either empty, either with 0 inside according to the following rules:

- In the first column, either every box contains 0 if $0 \in \operatorname{Des}(I)$, or none otherwise.
- Outside of the first column, if a box contains 0 then there is no box on its left, and all the boxes below in the same column also contain zeros.

To each of these fillings f we associate a tuple $\operatorname{Split}(f)$ of ribbon as follows

- the first entry of the tuple is a column whose size is the total number of zeros in f
- the other entries of the tuple are the (down-right) connected components of I where the boxes containing a 0 in f are removed.

To each splitting, it therefore makes sense to consider the \star-product $\prod_{r \in \operatorname{Split}(f)} P_{r}$.
Example 5.26. The following picture shows an extended composition followed by some of its 0 -fillings. There are $3 * 3 * 2$ of them.

We now consider two particular 0 -fillings and show the ribbons appearing in the associated respective products (the colors are just to show what happens of each box):

Theorem 5.27. The indecomposable projective R_{n}^{0}-module P_{I}^{R} associated to an extended composition I splits as a H_{n}^{0}-module as

$$
\begin{equation*}
P_{I}^{R} \simeq \bigoplus_{f} \prod_{r \in \operatorname{Split}(f)} P_{r}, \tag{5.11}
\end{equation*}
$$

where the direct sum spans along all the zero-fillings of I, and the product is for the induction product *.

Before giving a proof, we give a full example.

Example 5.28. We decompose restriction of the indecomposable projective R_{4}^{0}-module $P_{\{0,2\}}$ into indecomposable projective H_{4}^{0}-modules. The colors indicate the different products of zerofilling. Figure 5.5 depict the action of the generators.

$$
\square=\square^{0} \square+{ }_{0}^{0}{ }_{0}^{0}=\square+\square=\square+\square+\square+\square+\square+\square=\square+\square+\square+2 \square+\boxminus
$$

Proof. Let P_{I} be an indecomposable projective R_{n}^{0}-module and look at it inside the regular representation. We proceed as in the proof of Theorem 5.24: we cut P_{I} according to the positions of zeros, which comes down to cutting along the zero-fillings. Indeed the conditions of zero-fillings give us only valid fillings, because they still have the good descent set. Moreover, we see all of them appearing in the descent class: for a given zero-filling f, we fill the diagram of I column after column, left to right, down to up, by the entries starting from the number of zeros in the zero-filling plus 1 to n. We get a rook of descent set I with zero in the positions given by f.

Let F be a zero-filling of shape I with i zeros in positions indexed by elements of $D \subset \llbracket 1, n \rrbracket$. Let $M_{D} \subset R_{n}^{0}$ be the associated H_{n}^{0}-projective indecomposable module. We consider the restriction $\psi_{F}:=\psi_{\mid M_{D}}$. We need to describe the image of ψ_{F}. First they start with i descents including zeros. We consider the connected components of $\llbracket 1, n \rrbracket \backslash I$: the letters at these positions are moved to the right by ψ_{F}, but keep their relative order. It is only between the connected components that we can have either a rise or a descent. Then we are getting a subset from a product associated to F. And we get them all: take one of them, and fill it with the same rule as before; one gets a permutation and then apply φ_{I} defined in 5.22 to get an element with the good descent set and positions of zeros which will be sent by ψ_{F} to an element of the product.

Figure 5.5: The decomposition of a R_{4}^{0}-projective module associated to $\{0,2\}$ into H_{4}^{0} projective modules.

In Annex B, we give the decomposition functor from R_{n}^{0} to H_{n}^{0} for $n=1,2,3,4$.

We can be a little more precise:
Proposition 5.29. Let P^{R} be an indecomposable projective module of R_{n}^{0}. Write $P^{R}=\oplus P_{I}^{H}$ its decomposition into indecomposable H_{n}^{0}-projective modules. Then the isomorphism of $H_{n}^{0}-$ module $\tilde{\varphi}: \oplus P_{I}^{H} \rightarrow P^{R}$ is triangular: $\tilde{\varphi}(e)=\varphi_{I}(e)+\sum_{e^{\prime}<e} e^{\prime}$, with φ_{I} defined in 5.22 and I the zero-set linked to P_{I}^{H}.

Proof. We consider a R_{n}^{0} indecomposable projective P^{R}, pick a $D \subset \llbracket 1, n \rrbracket$ and denote as in the proof of Theorem 5.27 the H_{n}^{0} submodule M_{D} of rooks whose zeros are in positions indexed by the elements of D. The setwise map $\psi_{\mid M_{D}}$ extends linearly to an isomorphism to the projective but not necessarily indecomposable permutation module $\prod_{r \in \operatorname{Split}(f)} P_{r}$. Using [Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry, Theorem 3.11 and Corollary 3.19], we know that the basis change decomposing this module to its indecomposable component is uni-triangular. The statement follows by inverting this map.

Example 5.30. We know from Example 5.28 that there is a module \square inside the Figure 5.5, coming from the zero-filling ${ }^{0}{ }^{0} \square$. This H_{n}^{0}-module is well-known to have the elements 3214, 4213 and 4312. So ours must contains $\varphi_{\{0,2\}}(3214)=0104, \varphi_{\{0,2\}}(4213)=0103$ and $\varphi_{\{0,2\}}(4312)=0102$. See Figure 5.5.

5.5 Tower of monoids

The goal of this section is to investigate if the chain of submonoids

$$
\begin{equation*}
R_{1}^{0} \subset R_{2}^{0} \subset R_{3}^{0} \subset \cdots \subset R_{n-1}^{0} \subset R_{n}^{0} \subset R_{n+1}^{0} \subset \cdots \tag{5.12}
\end{equation*}
$$

can be endowed with a structure of a tower of monoids [Bergeron and Li(2009)].
Recall that an associative tower of monoids is a sequence $\left(M_{i}\right)_{i \in \mathbb{N}}$ where $M_{0}=\{1\}$ together with a collection of monoid morphisms $\rho_{n, m}: M_{n} \times M_{m} \rightarrow M_{n+m}$ such that the product $a \cdot b:=\rho_{n, m}(a, b)$ defined on the disjoint union $\sqcup_{i \in \mathbb{N}} M_{i}$ is associative.

Proposition 5.31. The maps

$$
\begin{array}{rlll}
\rho_{n, m}: & R_{n}^{0} & \times & R_{m}^{0} \tag{5.13}\\
\pi_{0}, \ldots \pi_{n-1} & & & R_{n+m}^{0} \\
P_{i} & & \longmapsto & \pi_{0}, \ldots \pi_{n-1} \\
& & P_{i} \\
& \pi_{1}, \ldots \pi_{n-1} & \longmapsto & \pi_{n+1}, \ldots \pi_{n+m-1} \\
& P_{i} & \longmapsto & P_{i+n}
\end{array}
$$

defines an associative tower of monoids.
Notation 5.32. If $a \in R_{n}^{0}$ and $b \in R_{m}^{0}$ we denote $a \cdot b:=\rho_{n, m}(a, b)$.
Furthermore, if w is a word on nonnegative integers, \bar{w}^{n} denotes the word w where all nonzero entries have been increased by n.

Proof. We first show that $\rho_{n, m}$ are morphisms. Let $a \in R_{n}^{0}$ et $b \in R_{m}^{0}$. Then, by relation of commutation and absorption we get $\rho(a, b)=\rho(a, 1) \cdot \rho(1, b)=\rho(1, b) \cdot \rho(a, 1)$.

The proof of the associativity rely on the following lemma:

Lemma 5.33. Let $a \in R_{n}^{0}$ and $b \in R_{m}^{0}$. Then

$$
a \cdot b= \begin{cases}\mathbf{a} \overline{\mathbf{b}}^{n} & \text { if } 0 \notin \mathbf{b} \tag{5.14}\\ 0 \ldots 0 \overline{\mathbf{b}}^{n} & \text { otherwise } .\end{cases}
$$

Proof. Indeed $\rho(a, b)=\rho(a, 1) \rho(1, b)$. If $0 \notin b$ then π_{0} does not appear in any reduced expression of b, thus the reduced expressions of a and b contain generators which do not act on 1_{n+m} on the same positions. Otherwise P_{n+1} appear in $\rho(1, b)$, and since all elements of $\rho(1, a)$ commute with those of $\rho(1, b), P_{n+1}$ absorbs all the $\rho(a)$.

We now can compute explicitely the products $(a \cdot b) \cdot c$ and $a \cdot(b \cdot c)$, do the four cases whether $0 \in B$ or not and $0 \in C$ and check associativity.

Remark 5.34. The embedding ρ is not injective since $\forall a, a^{\prime} \in R_{n}^{0}$, and $b \in R_{m}^{0}$ with $0 \in b: a \cdot b=a^{\prime} \cdot b$ by Lemma 5.33. So we do not have a tower of monoid in the sense of [Bergeron and $\mathrm{Li}(2009)]$.

Remark 5.35. To map $R_{n}^{0} \times R_{m}^{0}$ to R_{n+m}^{0}, Remark 3.10 prevents us to use the trivial map $(a, b) \mapsto \mathbf{a} \overline{\mathbf{b}}^{\mathrm{n}}$: it is not a monoid morphism.

5.5.1 Restriction and induction of simple modules

The goal of this section is to describe the restriction and induction rule of the tower of the 0 rook monoids. Recall that for H_{n}^{0}, this gives the multiplication and comultiplication rule of the Hopf algebra of quasi-symmetric functions in the fundamental basis [Krob and Thibon(1997)].

Restriction of simples modules

Theorem 5.36. Let $J \subset \llbracket 0, n+m-1 \rrbracket$ a parabolic of R_{n+m}^{0}. Then:

$$
\operatorname{Res}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n+m}^{0}} S_{J}= \begin{cases}S_{J \cap \llbracket 0, n-1 \rrbracket} \otimes S_{\overline{J \cap \llbracket n+1, n+m-1 \rrbracket}} & \text { if } J \cap \llbracket 0, n \rrbracket \neq \llbracket 0, n \rrbracket, \tag{5.15}\\ S_{\llbracket 0, n-1 \rrbracket} \otimes S_{\{0\} \cup \overline{J \backslash \llbracket 0, n \rrbracket}} & \text { otherwise. }\end{cases}
$$

where $\bar{X}:=\{x-n \mid x \in X\}$.
Proof. We know that $S_{J}=\left\langle\varepsilon_{J}\right\rangle$, and that $\varepsilon_{J} \cdot \pi_{i}=\varepsilon_{J}$ if $i \in J$, and 0 otherwise. The action of $R_{n}^{0} \otimes 1_{m}$ on S_{J} gives us $S_{J \cap \llbracket 0, n-1 \rrbracket}$. The generators $1_{n} \otimes \pi_{1}, \ldots, 1_{n} \otimes \pi_{m-1}$ of $1_{n} \otimes R_{m}^{0}$ act as $\pi_{n+1}, \ldots, \pi_{n+m-1}$. It remains only to see how $1_{n} \otimes \pi_{0}=P_{n+1}$ acts on S_{J}. By Lemma 3.4 we have that $P_{n+1}=\pi_{0} \pi_{1} \pi_{0} \pi_{2} \pi_{1} \pi_{0} \ldots \pi_{n} \ldots \pi_{2} \pi_{1} \pi_{0}$. So if there is $0 \leq i \leq n$ with $i \notin J$, $\varepsilon_{J} \cdot \pi_{i}=0$ thus $\varepsilon_{J} \cdot P_{n+1}=0$. Otherwise, for all $i \in \llbracket 0, n \rrbracket, \varepsilon_{J} \cdot \pi_{i}=\varepsilon_{J}$ and so $\varepsilon_{J} \cdot P_{n+1}=\varepsilon_{J}$.

Induction of simple modules We can compute the induction of simple module thanks to Virmaux [Virmaux(2014), Theorem 4.3], which we reformulate in our context here. The comparisons are done with the \mathcal{R}-order in R_{n}^{0}, which we described in Theorem 4.16.
Theorem 5.37 ([Virmaux(2014), Theorem 4.3]). If $e \in E\left(R_{n}^{0}\right)$ and $f \in E\left(R_{m}^{0}\right)$, then

$$
\begin{equation*}
\operatorname{Ind}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n+m}^{0}} S_{e} \otimes S_{f}=(e \cdot f) R_{n+m}^{0} /\left[\left(R_{<e} \cdot f\right)+\left(e \cdot R_{<f}\right)\right] R_{n+m}^{0} \tag{5.16}
\end{equation*}
$$

where $R_{<e}$ is the set of elements of R_{n}^{0} strictly smaller than e, and $R_{<f}$ those of R_{m}^{0} strictly smaller than f.

Notation 5.38. In Equation 5.16, we will denote by $Q(e, f)$ the right hand side of the equality. It is a R_{n+m}^{0}-module. It is also a quotient which is compatible with the canonical basis. By abuse of language, we will say that an element $r \in R_{n+m}^{0}$ remains in $Q(e, f)$ and write $r \in Q(e, f)$ if r is not mapped to zero in the quotient.

Our first goal is to rephrase Theorem 5.37 in a more combinatorial way.
Notation 5.39. Until now, we used the notation π_{I} to design the idempotent of the parabolic submonoid associated to I in R_{n}^{0}. In order to avoid confusion, we will now denote it by $\pi_{I, n}$. Note that as long as $n, m \geq \max I+1$, then $\pi_{I, n}$ and $\pi_{I, m}$ have the same reduced expressions and thus the same action of the first $\min (n, m)$-letters on the identity of size $\max (n, m)$.

In the sequel of this section, we fix $I \subseteq \llbracket 0, n-1 \rrbracket$ and $J \subseteq \llbracket 0, m-1 \rrbracket$. They encode the data of two simple modules of R_{n}^{0} and R_{m}^{0} respectively, or equivalently of two idempotents. We denote $e:=\pi_{I, n}$ and $f:=\pi_{J, m}$ these two idempotents.

Before giving the induction of the simple modules, we go for a serie of lemmas.
Lemma 5.40. The image of $(e, f) \in R_{n}^{0} \times R_{m}^{0}$ in R_{n+m}^{0} is the element of R_{n+m}^{0} associated to $\mathbf{e} \overline{\mathbf{f}}^{n}$ if $0 \notin J$ and to $0 \ldots 0 \overline{\mathbf{f}}^{n}$ otherwise. In particular we have the following cases:

- If $J=\emptyset$ then $e \cdot f=\mathbf{e} \overline{12 \ldots m}^{n}=\pi_{I, n+m}$.
- If $I=\emptyset$ and $0 \notin J$ then $e \cdot f=1 \ldots n \overline{\mathbf{f}}^{n}=\pi_{\bar{J}^{n}, n+m}$.
- If $I=\llbracket 0, n-1 \rrbracket$ and $0 \in J$ then $\left.e \cdot f=0 \ldots 0 \overline{\mathbf{f}}^{n}=\pi_{(\llbracket 0, n \rrbracket \cup J \backslash\{0\}}{ }^{n}\right), n+m$.

Proof. It is straightforward application of Lemma 5.33.
Remark 5.41. Note that because of the form of idempotents, $0 \notin I \Leftrightarrow 0 \notin \mathbf{e}$.
Lemma 5.42. Assume that $0 \in J$ and $I \neq \llbracket 0, n-1 \rrbracket$. Then $Q(e, f)=0$.
Proof. Since $0 \in J$ then $e \cdot f=0 \ldots$ f according to Lemma 5.40. On the other hand, let $j \in \llbracket 0, n-1 \rrbracket \backslash I$. Then in $Q(e, f)$ we are doing a quotient by $\left(e \cdot \pi_{j}\right) \cdot 1_{m}$ which is above $e \cdot f$ by Theorem 4.16. Hence $Q(e, f)=0$.

We are now considering cases where $0 \notin J$, writing $\mathbf{f}=f_{0} \ldots f_{m}$.
Lemma 5.43. Assume $0 \notin J$. Let r be an element of R_{n+m}^{0} which does not vanish in the quotient $Q(e, f)$. Let a and b be two letters of \mathbf{r}, not both zero. If a and b appear both in \mathbf{e} (resp. $a-n$ and $b-n$ appear both in \mathbf{f}) then they appear in \mathbf{r} in the same order as in \mathbf{e} (resp. $\mathbf{f})$. Furthermore, all the nonzero letters of \mathbf{e} appear in \mathbf{r}. Finally, if $f_{i}+n$ is not in \mathbf{r} then $f_{j}+n$ is not in \mathbf{r}, for all $j<i$.

Example 5.44. If $\mathbf{e}=\mathbf{0 2 3}$ and $\mathbf{f}=\mathbf{2 1 3}$ then neither $\mathbf{0 4 2 3 5 6}$, or $\mathbf{0 0 5 4 6 3}$, or 025306 remain in $Q(e, f)$, respectively because of the first, second and third rule.

Proof. For the first point, it is sufficient to do the proof when the two letters are consecutive in \mathbf{e}. Let $\mathbf{r} \in Q(e, f)$. So $r \leq \mathbf{e f}^{\mathrm{n}}$. Assume $\mathbf{e}=\underline{L} a b \underline{R}$ with a and b non both zero, and both present in \mathbf{r}.

Suppose first that $a>b$, so that $a \neq 0$ and $b \neq 0$ since $0 \notin J$. Since $r<\mathbf{e} \bar{f}^{\mathrm{n}}$ we deduce that a is before b in \mathbf{r}.

Otherwise, $a<b$. Let $i:=\ell(\underline{L})$ be the position of a in \mathbf{e}. So $i \notin I$. Then $e \cdot \pi_{i}<e$. Also $\operatorname{Inv}\left(e \cdot \pi_{i}\right)=\operatorname{Inv}(e) \cup\{(b, a)\}$. Thus, $\operatorname{Inv}\left(\left(\mathbf{e} \cdot \pi_{i}\right) \overline{\mathbf{f}}^{\mathrm{n}}\right)=\operatorname{Inv}\left(\mathbf{e f}^{\mathrm{n}}\right) \cup\{(b, a)\}$ while $(b, a) \notin \operatorname{Inv}\left(\mathbf{e} \overline{\mathbf{f}}^{\mathrm{n}}\right)$. Since $r<\mathbf{e f}^{\mathrm{n}}$ we get $\left\{\left(r_{i}, r_{j}\right) \in \operatorname{Inv}\left(\mathbf{e f}^{\mathrm{n}}\right) \mid r_{i} \in \mathbf{r}\right\} \subseteq \operatorname{Inv}(r)$. Assume that b is left to a in \mathbf{r}. In this case we have $\left\{\left(r_{i}, r_{j}\right) \in \operatorname{Inv}\left(\mathbf{e} \overline{\mathbf{f}}^{\mathrm{n}}\right) \cup\{(b, a)\} \mid r_{i} \in \mathbf{r}\right\} \subseteq \operatorname{Inv}(r)$, so $r<\left(\mathbf{e} \cdot \pi_{i}\right) \overline{\mathbf{f}}^{\mathrm{n}}$, the latter being an element by which we quotient in $Q(e, f)$. It is a contradiction.

The proof is the same when a and b both come from \mathbf{f} once decreased. The only change are that both letter are nonzero, and that we have to decrease by n.

Let us prove the second point by contradiction, assuming that a nonzero letter b in \mathbf{e} is not in \mathbf{r}. We first show that the first nonzero letter of \mathbf{e}, say a, is not in \mathbf{r} either. By contradiction, assume that $a \in \mathbf{r}$. If $a>b$ then e has descent (a, b). So r must also have it since $r<\mathbf{e} \bar{f}^{\mathrm{n}}$ and $a \in \mathbf{r}$, but it is not the case since $b \notin \mathbf{r}$, which is a contradiction. Otherwise $a<b$. Since $a \in \mathbf{r}$ and $b \notin \mathbf{r}$, and that the generator π_{0} can only delete the first letter, r is in the \mathcal{R}-order between $\mathbf{e} \overline{\mathbf{f}}^{\mathrm{n}}$ and a rook r^{\prime} in which a is there and b is in first position. Because of the first point, this element r^{\prime} has been sent to 0 in the quotient, and thus r which is below as well. So $r=0$, again this is a contradiction.

The same argument also apply to the third case, with some minor adaptation.
Thus if there is a nonzero letter of e lacking in \mathbf{r}, the first one at least is lacking. We now look at \mathbf{e}. If $0 \notin I$, e begins with a. Then $\mathbf{q}:=\left(\mathbf{e} \cdot \pi_{0}\right) \overline{\mathbf{f}}^{\mathrm{n}}$ is an element by which we quotient. We have $r<\mathbf{e} \overline{\mathbf{f}}^{\mathrm{n}}$ and $a \notin \mathbf{r}$ so $r<q$, thus $r=0$, and we get a contradiction.

Otherwise $0 \in I$ so $\mathbf{e}=0 \ldots 0 a \ldots$. We denote by i the position of the last 0 and $q:=\left(\mathbf{e} \cdot \pi_{i}\right) \overline{\mathbf{f}}^{\mathrm{n}}$ is an element by which we quotient. Since $a \notin \mathbf{r}, r$ is in the \mathcal{R}-order between $\mathbf{e} \bar{f}^{\mathrm{n}}$ and a rook r^{\prime} in which a is there in first position. In particular in \mathbf{r}, we have a 0 right to a. So $r<r^{\prime}<\mathbf{e} \overline{\mathbf{f}}^{\mathrm{n}}$ and $(a, 0) \in \operatorname{Inv}\left(r^{\prime}\right)$, so $r^{\prime}<q$ and thus $r=0$, for a final contradiction.

Remark 5.45. Let $K \subset \llbracket 1, n-1 \rrbracket$ and $g \in R_{n}^{0}$ the associated idempotent (hence $0 \notin g$). We write $\mathbf{g}=g_{1} g_{2} \ldots g_{n}$. Because of Proposition 5.13 we have that if $g_{1}=\ell$ then $g_{2}=$ $\ell-1, g_{3}=\ell-2, \ldots, g_{\ell-1}=2$ and $g_{\ell}=1$. Furthermore $\ell \notin K\left(\right.$ since $\left.g_{\ell+1}>g_{\ell}\right)$ and $\ell=\min (\llbracket 1, n-1 \rrbracket \backslash I)$.

We are now in position to state the formula giving the induction of simple modules. Recall that \amalg denote the so-called shuffle product introduced in Definition 4.30 . We also denote 0^{i} the word $00 \ldots 0$ with i letters 0 .

Theorem 5.46. For $n, m \in \mathbb{N}$, we fix $I \subseteq \llbracket 0, n-1 \rrbracket$ and $J \subseteq \llbracket 0, m-1 \rrbracket$. Denoting $e:=\pi_{I, n}$ and $f:=\pi_{J, m}$, the induction of simple modules $S_{I}=S_{e}$ and $S_{J}=S_{f}$ is given by

1. If $0 \in J$ and $I \neq \llbracket 0, n-1 \rrbracket$ then $\operatorname{Ind}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n+m}^{0}} S_{I} \otimes S_{J}=0$.

2. If $0 \notin J$ and $I=\llbracket 0, n-1 \rrbracket$ then $\operatorname{Ind}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n+m}^{0}} S_{I} \otimes S_{J}=\left\langle 0^{n} ш \overline{\mathbf{f}}^{n}\right\rangle$.
3. If $0 \notin J$ and $0 \in I, I \neq \llbracket 0, n-1 \rrbracket$, let $\ell:=f_{1}$ be the first letter of $\mathbf{f}=f_{1} \ldots f_{m}$. Then:

$$
\begin{equation*}
\operatorname{Ind}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n}^{0}} S_{I} \otimes S_{J}=\left\langle 0^{i} \mathbf{e} ш{\overline{f_{i+1} \ldots f_{m}}}^{n} \mid i=0, \ldots, \ell\right\rangle \tag{5.17}
\end{equation*}
$$

5. If $0 \notin J$ and $0 \notin I$, let $\ell:=f_{1}$ be the first letter of $\mathbf{f}=f_{1} \ldots f_{m}$. Then

$$
\begin{equation*}
\operatorname{Ind}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n+m}^{0}} S_{I} \otimes S_{J}=\left\langle 0^{i} ш \mathbf{e} ш{\overline{f_{i+1} \ldots f_{m}}}^{n} \mid i=0, \ldots, \ell\right\rangle \tag{5.18}
\end{equation*}
$$

Proof. 1. This case follows directly from Lemma 5.42.
2. Let $K:=\llbracket 0, n \rrbracket \cup \overline{J \backslash\{0\}}^{\mathrm{n}}$. Then by Lemma 5.40,e $\cdot f=\pi_{K, n+m}$. Since $I=\llbracket 0, n-1 \rrbracket$ then

$$
\begin{equation*}
Q(e, f)=\pi_{K, n+m} R_{n+m}^{0} /\left[\left(0 \ldots 0 \cdot R_{<f}\right)\right] R_{n+m}^{0} \tag{5.19}
\end{equation*}
$$

On the other hand, let $g:=\pi_{K, n+m}$ be the idempotent associated to K in R_{n+m}^{0}. By Theorem 5.37,

$$
\begin{equation*}
S_{g}=\operatorname{Ind}_{1 \times R_{n+m}^{0}}^{R_{n+m}^{0}} 1 \otimes S_{g}=g R_{n+m}^{0} /\left[R_{<g}\right] R_{n+m}^{0} \tag{5.20}
\end{equation*}
$$

But since $I=\llbracket 0, n-1 \rrbracket$ on has $R_{<g}=0 \ldots 0 \cdot R_{<f}$, so that $Q(e, f) \simeq S_{g}$.
3. Since $I=\llbracket 0, n-1 \rrbracket$ then $\mathbf{e}=0 \ldots 0$ and $e \cdot f=0 \ldots 0 \underline{\mathbf{f}}$. Let $\mathbf{r} \in 0 \ldots 0 \amalg \overline{\mathbf{f}}^{\mathrm{n}}$. Clearly $r<e \cdot f$. We know that \mathbf{r} has the same number of zeros than $\mathbf{e} \cdot \mathbf{f}$ and also that its inversions are those of f increased by n. We deduce that r is not below $\mathbf{e}{\overline{\left(\mathbf{f} \cdot \pi_{j}\right)}}^{\mathrm{n}}$ in the \mathcal{R}-order for $j \in \llbracket 0, m-1 \rrbracket \backslash J$. Thus $r \in Q(e, f)$.
Conversely let $r \in Q(e, f)$. Since $0 \notin J$ then $r \nless \mathbf{e (f \cdot \pi _ { 0 })}{ }^{\mathrm{n}}$. So the first letter of \mathbf{f} increased by n is in \mathbf{r}. By Lemma 5.43 all the letters of \mathbf{f} increased by n are in \mathbf{r}. Again by Lemma 5.43 they are in the same order, and so $\mathbf{r} \in 0 \ldots 0 \amalg \overline{\mathbf{f}}^{\mathrm{n}}$.
4. Denote $S_{e f}:=\mathbf{e} \amalg \overline{\mathbf{f}}^{\mathrm{n}}+0 \mathbf{e} \amalg{\overline{f_{2} \ldots f_{m}}}^{\mathrm{n}}+\cdots+0 \ldots 0 \mathbf{e} \amalg{\overline{f_{\ell+1} \ldots f_{m}}}^{\mathrm{n}}$ and let $\mathbf{r} \in S_{e f}$. The same argument than the third point shows that $r \in Q(e, f)$.

Conversely, let $r \in Q(e, f)$. Since $0 \in I$ (or equivalently, $0 \in \mathbf{e}$) Lemma 5.43 tells us that the eventual new zeros of \mathbf{r} are before the nonzero letters of \mathbf{e}. By the same lemma, the letters of \mathbf{f} disappear in the same order than in \mathbf{f}. So that we have proven:

$$
\begin{equation*}
\mathbf{r} \in T_{e f}:=\mathbf{e} \amalg \overline{\mathbf{f}}^{\mathrm{n}}+0 \mathbf{e} \amalg{\overline{f_{2} \ldots f_{m}}}^{\mathrm{n}}+\cdots+0 \ldots 0 \mathbf{e} \amalg{\overline{f_{m}}}^{\mathrm{n}}+0 \ldots 0 \mathbf{e} . \tag{5.21}
\end{equation*}
$$

We recall that $\ell=f_{1}$. We have to show that elements of $T_{e f} \backslash S_{e f}$ are not in $Q(e, f)$. A first immediate remark is that all these elements are below $t=0 \ldots 0 \mathbf{e} \overline{f_{\ell+2} \ldots f_{m}}{ }^{n}$. But $t<\mathbf{e} f_{1} \ldots f_{\ell-1} f_{\ell+1} f_{\ell} f_{\ell+2} \ldots f_{m}=\left(\mathbf{e} \cdot\left(\mathbf{f} \cdot \pi_{\ell}\right)\right)$. Thus, since $\ell \notin J$ (by Remark 5.45), $t=0$ in $Q(e, f)$, and so all $T_{e f} \backslash S_{e f}$ also, hence the result.
5. Denote $S_{e f}:=\mathbf{e} \amalg \overline{\mathbf{f}}^{\mathrm{n}}+0 \amalg \mathbf{e} \amalg{\overline{f_{2} \ldots f_{m}}}^{\mathrm{n}}+\cdots+0 \ldots 0 ш \mathbf{e} \amalg{\overline{f_{\ell+1} \ldots f_{m}}}^{\mathrm{n}}$. Let $\mathbf{r} \in S_{e f}$. The argument of the third point proves that $r \in Q(e, f)$.
Conversely, for $r \in Q(e, f)$, the argument of the fourth point shows that $\mathbf{r} \in S_{e f}$.
Recall that the corresponding rule for H_{n}^{0} is the multiplication of the fundamental basis $\left(F_{I}\right)$ of quasi-symmetric function [Krob and Thibon(1997)]. This rule can be computed as follows [Gessel(1984), Duchamp et al.(2002)Duchamp, Hivert, and Thibon]. Let I and J be two compositions. Choose any permutation $\sigma \in \mathfrak{S}_{n}$ whose descent composition is $\mathrm{C}(\sigma)=I$, for example π_{I} whose corresponding H_{n}^{0} element is idempotent, and μ such that $\mathrm{C}(\mu)=J$. Then

$$
\begin{equation*}
F_{I} F_{j}=\sum_{\nu \in \sigma \amalg \bar{\mu}^{\mathrm{n}}} F_{\mathrm{C}(\nu)} \tag{5.22}
\end{equation*}
$$

As explained by Virmaux [Virmaux(2014)] this is a direct consequence of Theorem 5.37.
To get the analogue of the product of quasi-symmetric functions, one has to use the Theorem 5.46 and then get the projection of the induced module in the Grothendieck ring. This amounts to compute the R-descent of every rook vector appearing in the sum $Q(e, f)$ according to Jordan-Hölder's theorem.

Example 5.47. If $n=2, m=3, I=\{0,1\}$ and $J=\{1\}$. Then $\mathbf{e}=00$ and $\mathbf{f}=213$. Theorem 5.46 says that
$Q(e, f)=\langle 00$ Ш 435$\rangle=\langle\mathbf{0 0 4 3 5}, \mathbf{0 4 0 3 5}, \mathbf{0 4 3 0 5}, \mathbf{0 4 3 5 0}, \mathbf{4 0 0 3 5}, \mathbf{4 0 3 0 5}, \mathbf{4 0 3 5 0}, \mathbf{4 3 0 0 5}, \mathbf{4 3 0 5 0}, \mathbf{4 3 5 0 0}\rangle$.
This gives the following R-descent classes:

Element	$\mathbf{0 0 4 3 5}$	$\mathbf{0 4 0 3 5}$	$\mathbf{0 4 3 0 5}$	$\mathbf{0 4 3 5 0}$	$\mathbf{4 0 0 3 5}$	$\mathbf{4 0 3 0 5}$	$\mathbf{4 0 3 5 0}$	$\mathbf{4 3 0 0 5}$	$\mathbf{4 3 0 5 0}$	$\mathbf{4 3 5 0 0}$
Descents	$0,1,3$	0,2	$0,2,3$	$0,2,4$	1,2	1,3	1,4	$1,2,3$	$1,2,4$	$1,3,4$

Finally: Ind $S_{\{0,1\}}^{2} \times S_{\{1\}}^{3}=S_{\{0,1,3\}}^{5}+S_{\{0,2\}}^{5}+S_{\{0,2,3\}}^{5}+S_{\{0,2,4\}}^{5}+S_{\{1,2\}}^{5}+S_{\{1,3\}}^{5}$

$$
+S_{\{1,4\}}^{5}+S_{\{1,2,3\}}^{5}+S_{\{1,2,4\}}^{5}+S_{\{1,3,4\}}^{5}
$$

Example 5.48. If $n=3, m=2, I=\{0,1\}$ and $J=\{1\}$. Then $\mathbf{e}=003$ and $\mathbf{f}=21$. Theorem 5.46 says that

$$
\begin{aligned}
Q(e, f)= & \langle 003 \amalg 21+0003 \amalg 1+00003\rangle \\
= & \langle\{\mathbf{0 0 3 2 1}, \mathbf{0 0 2 3 1}, \mathbf{0 0 2 1 3}, \mathbf{0 2 0 3 1}, \mathbf{0 2 0 1 3}, \mathbf{0 2 1 0 3}, \mathbf{2 0 0 3 1}, \mathbf{2 0 0 1 3}, \mathbf{2 0 1 0 3}, \mathbf{2 1 0 0 3}\} \\
& \cup\{\mathbf{0 0 0 3 1}, \mathbf{0 0 0 1 3}, \mathbf{0 0 1 0 3}, \mathbf{0 1 0 0 3}, \mathbf{1 0 0 0 3}\} \cup\{\mathbf{0 0 0 0 3}\}\rangle
\end{aligned}
$$

Then:

Element	$\mathbf{0 0 3 2 1}$	$\mathbf{0 0 2 3 1}$	$\mathbf{0 0 2 1 3}$	$\mathbf{0 2 0 3 1}$	$\mathbf{0 2 0 1 3}$	$\mathbf{0 2 1 0 3}$	$\mathbf{2 0 0 3 1}$	$\mathbf{2 0 0 1 3}$
Descents	$0,1,3,4$	$0,1,4$	$0,1,3$	$0,2,4$	0,2	$0,2,3$	$1,2,4$	1,2
Element	$\mathbf{2 0 1 0 3}$	$\mathbf{2 1 0 0 3}$	$\mathbf{0 0 0 3 1}$	$\mathbf{0 0 0 1 3}$	$\mathbf{0 0 1 0 3}$	$\mathbf{0 1 0 0 3}$	$\mathbf{1 0 0 0 3}$	$\mathbf{0 0 0 0 3}$
Descents	1,3	$1,2,3$	$0,1,2,4$	$0,1,2$	$0,1,3$	$0,2,3$	$1,2,3$	$0,1,2,3$

$$
\begin{aligned}
\operatorname{Ind} S_{\{0,1\}}^{3} \times S_{\{1\}}^{2}= & S_{\{0,1,3,4\}}^{5}+S_{\{0,1,4\}}^{5}+2 S_{\{0,1,3\}}^{5}+S_{\{0,2,4\}}^{5}+S_{\{0,2\}}^{5}+2 S_{\{0,2,3\}}^{5}+S_{\{1,2,4\}}^{5} \\
& +S_{\{1,2\}}^{5}+S_{\{1,3\}}^{5}+S_{\{1,2\}}^{5}+S_{\{0,1,2,4\}}^{5}+S_{\{0,1,2\}}^{5}+2 S_{\{1,2,3\}}^{5}+S_{\{0,1,2,3\}}^{5}
\end{aligned}
$$

This defines the left (resp. right) dual branching graph, where the arrows $I \mapsto J$ are labelled by the multiplicity of S_{J} in the induction of S_{I} along the morphism $\rho_{1, n}$ (resp. $\rho_{n, 1}$). The beginning of those two graphs are illustrated in Figures 5.6 and 5.7.

Hopf algebra On the contrary to H_{n}^{0}, we do not get a Hopf algebra. Indeed, the following diagram that express the compatibility of the product with the co-product does not commute:

$$
\begin{aligned}
& R_{a+b}^{0} \times R_{c+d}^{0} \quad \xrightarrow{\text { Ind }} \quad R_{a+b+c+d}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& R_{a}^{0} \times R_{b}^{0} \times R_{c}^{0} \times R_{d}^{0} \quad \xrightarrow{\text { Ind } \times \operatorname{Ind}} \quad R_{a+c}^{0} \times R_{b+d}^{0}
\end{aligned}
$$

Figure 5.6: The left dual branching graph of R_{n}^{0}.

Here is a counter example: Using Theorem 5.46, we get $\operatorname{Res}_{R_{1}^{0} \times R_{2}^{0}}^{R_{3}^{0}} S_{\{0,1\}}^{3}=S_{\{0\}}^{1} \otimes S_{\{0\}}^{2}$ and $\operatorname{Res}_{R_{1}^{0} \times R_{1}^{0}}^{R_{2}^{0}} S_{\{1\}}^{2}=S_{\{ \}}^{1} \otimes S_{\{ \}}^{1}$. Then

$$
\begin{align*}
\text { Ind } \times \operatorname{Ind}\left(\operatorname{Res} \times \operatorname{Res} S_{\{0,1\}}^{3} \otimes S_{\{1\}}^{2}\right) & =\operatorname{Ind}\left(S_{\{0\}}^{1} \otimes S_{\{ \}}^{1}\right) \otimes \operatorname{Ind}\left(S_{\{0\}}^{2} \otimes S_{\{ \}}^{1}\right) \\
& =\left(S_{\{0\}}^{2}+S_{\{1\}}^{2}\right) \otimes\left(S_{\{0\}}^{3}+S_{\{0,1\}}^{3}+S_{\{0,2\}}^{3}+S_{\{1\}}^{3}\right) \tag{5.23}
\end{align*}
$$

Hence this sum has 8 elements, with multiplicity. On the other hand, we saw in Example 5.48 that Ind $S_{\{0,1\}}^{3} \times S_{\{1\}}^{2}$ is a sum of 16 elements (with multiplicity) and Theorem 5.36 shows that the multiplicity does not change by restriction. Hence the result is false.

Induction with H_{n}^{0} One can wonder what would happen if we rather consider the induction and restriction along the inclusion $R_{n}^{0} \times H_{m}^{0} \rightarrow R_{n+m}^{m}$. It is not a tower of monoids, but the morphisms $\tilde{\rho}_{n, m}:=\left(\rho_{n, m}\right)_{\mid R_{n}^{0} \times H_{m}^{0}}$ are injective. We just give the result of the induction of simple modules:

Theorem 5.49. For $n, m \in \mathbb{N}$, let $I \subseteq \llbracket 0, n-1 \rrbracket$ and $J \subseteq \llbracket 1, m-1 \rrbracket$. Denoting e $:=\pi_{I, n} \in R_{n}^{0}$ and $f:=\pi_{J, m} \in H_{m}^{0}$, the induction of simple modules $S_{I}=S_{e}$ and $S_{J}=S_{f}$ is given by

1. If $0 \in I$, let ℓ be the first letter of $\mathbf{f}=f_{1} \ldots f_{m}$. Then:

$$
\begin{align*}
\operatorname{Ind}_{R_{n}^{0} \times H_{m}^{0}}^{R_{n+m}^{0}} S_{I} \otimes S_{J}=\left\langle\mathbf{e} \amalg \overline{\mathbf{f}}^{n}+0 \mathbf{e} \amalg{\overline{f_{2} \ldots f_{m}}}^{n}+00 \mathbf{e} \amalg{\overline{f_{3} \ldots f_{m}}}^{n}+\right. \\
\left.\ldots \quad+0 \ldots 0 \mathbf{e} \amalg{\overline{f_{\ell+1} \ldots f_{m}}}^{n}\right\rangle \tag{5.24}
\end{align*}
$$

where the last term begins with ℓ letters 0 .
2. If $0 \notin I$, let ℓ be the first letter of $\mathbf{f}=f_{1} \ldots f_{m}$. Then

$$
\operatorname{Ind}{\underset{R}{n} \times H_{m}^{0}}_{R_{n+m}^{0}}^{0} S_{I} \otimes S_{J}=\left\langle\mathbf{e} \amalg \overline{\mathbf{f}}^{n}+0 \amalg \mathbf{e} \amalg{\overline{f_{2} \ldots f_{m}}}^{n}+00 \amalg \mathbf{e} \amalg{\overline{f_{3} \ldots f_{m}}}^{n}+\right.
$$

Figure 5.7: The right dual branching graph of R_{n}^{0}.

$$
\begin{equation*}
\left.\ldots \quad+0 \ldots 0 \text { ш } \quad{\overline{f_{\ell+1} \ldots f_{m}}}^{n}\right\rangle \tag{5.25}
\end{equation*}
$$

where the last term begins with ℓ letters 0 .
Proof. This is a consequence of Theorem 5.46.

5.5.2 Projective indecomposable modules

Restriction of indecomposable projective modules In order to get a co-product on the Grothendieck ring of projective modules, \mathcal{K}_{0}, we need that R_{m+n}^{0} is projective over $R_{m}^{0} \times R_{n}^{0}$. Unfortunately, this is not the case. We will moreover give counterexamples to the fact that R_{n}^{0} is projective over R_{n-1}^{0} for both embedding $\rho_{n-1,1}$ and $\rho_{1, n-1}$. This forbids to have any analogues of Bratelli diagrams for projective modules.

Let us take $P_{\{0,2,3\}}$. We want to restrict this projective indecomposable module of R_{4}^{0} to $R_{2}^{0} \times R_{2}^{0}$. In Figure 5.8 we have on the left the module $P_{\{0,2,3\}}^{4}$ where we deleted the arrows of π_{2} and showed the action of P_{3}. Here we see that P_{3} has a stable subspace of dimension 1. On the right we represent what would be a necessary part of the decomposition of $P_{\{0,2,3\}}^{4}$, that is $P_{\{0\}}^{2} \otimes P_{\{1\}}^{2}$. Here we see that P_{3} (that is the π_{0} of the right R_{2}^{0} according to the embedding 5.31) as a stable subspace of dimension 2. Hence it is impossible to cut the left one to get a sum of projective indecomposable modules since the right one must be there and can not be.

We give now two counterexamples which show that it does not work also for the restriction along both embeddings $\rho_{n-1,1}$ and $\rho_{1, n-1}$. On the left of Figure 5.9 we have the projective module $P_{\{2\}}^{4}$. We see that no element of this module has two zeros, hence P_{2} send every element to zero. In the middle of the figure we have the same module where we forgot the action of π_{3}, that is we are looking at the restriction $R_{4}^{0} \rightarrow R_{3}^{0} \otimes R_{1}^{0}$. In the left one we forgot the action of both π_{0} and π_{1} but put the action of P_{2} (none here): we are looking at the restriction along $R_{4}^{0} \rightarrow R_{1}^{0} \otimes R_{3}^{0}$. If the middle and right modules were projective, these figures could be cut as projective modules of R_{3}^{0}. We proceed step by step on the middle one. First we recognise the first chain of five elements which is $P_{\{2\}}^{3}$. Then the element 1423 is $P_{\{ \}}^{3}$. All the cycles below with element on top 2413 is $P_{\{1\}}^{3}$. The element 1203 is again $P_{\{ \}}^{3}$. But the

Figure 5.8: First counterexample for the restriction of projective modules.

Figure 5.9: Second counterexample for the restriction of projective modules.
last two elements do not correspond to any projective modules of R_{3}^{0} (it should correspond to $P_{\{2\}}^{3}$ since 1302 only has the loop of π_{2}, which is not the case).

We proceed the same way for the right module. We immediatly have a contradiction with the first element which should generate $P_{\{1\}}^{3}$ (be careful of the labels!) which is not the case.

As a conclusion of this paragraph, since we do not have the restriction of indecomposable projective modules, we will not be able to have a tower of monoids as for the case of H_{n}^{0} to get NCSF and QSym [Krob and Thibon(1997)].

Induction of indecomposable projective modules For this one we can use Frobenius reciprocity as we did in Proposition 5.21, using Theorem 5.36:

Theorem 5.50. Let $I \subset \llbracket 0, n-1 \rrbracket$ and $J \subset \llbracket 0, m-1 \rrbracket$. Then

$$
\operatorname{Ind}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n}^{0}} P_{I} \otimes P_{J}= \begin{cases}P_{I \cup \bar{J}^{n}} \oplus P_{I \cup\{n\} \cup \bar{J}^{n}} & \text { if } 0 \notin J \\ P_{\llbracket\left[0, n \rrbracket \cup J \backslash\left\{\overline{J 0\}}^{n}\right.\right.} & \text { if } 0 \in J \text { and } I=\llbracket 0, n-1 \rrbracket . \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. We reason as in the proof of Proposition 5.21, using Frobenius reciprocity:

$$
\begin{equation*}
\operatorname{Hom}_{R_{n+m}^{0}}\left(\operatorname{Ind}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n+m}^{0}} P_{I} \otimes P_{J}, S_{K}\right)=\operatorname{Hom}_{R_{n}^{0} \otimes R_{m}^{0}}\left(P_{I} \otimes P_{J}, \operatorname{Res}_{R_{n}^{0} \times R_{m}^{0}}^{R_{n+m}^{0}} S_{K}\right) . \tag{5.26}
\end{equation*}
$$

We are looking for sets $K \subset \llbracket 0, n+m-1 \rrbracket$ such that the simple R_{n+m}^{0}-module S_{K} restricts to $S_{I} \otimes S_{J}$ over $R_{n}^{0} \times R_{m}^{0}$. If $0 \notin J$ then $K \cap \llbracket 0, n-1 \rrbracket=I$ and $K \cap \llbracket n+1, n+m-1 \rrbracket=\bar{J}^{\mathrm{n}}$. We conclude considering the two cases whether $n \in K$ or not. On the contrary, if $0 \in J$ then we are in the second case of Theorem 5.36. So either $K \cap \llbracket 0, n \rrbracket=\llbracket 0, n \rrbracket$ that is $I=\llbracket 0, n-1 \rrbracket$, and we have the second case, either it is wrong and in this case no restriction can be obtained.

As we have seen, the natural tower of monoids structure of $\left(R_{n}^{0}\right)_{n \in \mathbb{N}}$ described here does not have a very nice representation theory. However, this is not the only tower structure, and they may be nice tower structure on their algebras involving linear combination.

A Implementation

A large part of the algorithms here are implemented in Sagemath [Stein et al.(2018)]. The representation theory where computed using sage_semigroups [Hivert et al.(2012-2018)Hivert, Saliola, and Thie from the second author, F. Saliola and N. Thiéry. The code is freely accessible at

```
https://github.com/hivert/Jupyter-Notebooks
```

Thanks to the binder technology, one can experiment with it online at
https://mybinder.org/v2/gh/hivert/Jupyter-Notebooks/master?filepath=rook-0.ipynb

B Tables

Decomposition functor We give the decomposition functor from projective R_{n}^{0}-modules into H_{n}^{0}-modules. They where computed according to Theorem 5.27.

$$
\begin{aligned}
P_{(1)}^{R} & \simeq P_{(1)} & P_{(0,1)}^{R} & \simeq P_{(1)} \\
P_{(2)}^{R} & \simeq P_{(2)} & P_{(0,2)}^{R} & \simeq P_{(1,1)}+P_{(2)} \\
P_{(1,1)}^{R} & \simeq 2 P_{(1,1)}+P_{(2)} & P_{(0,1,1)}^{R} & \simeq P_{(1,1)} \\
P_{(3)}^{R} & \simeq P_{(3)} & P_{(0,3)}^{R} & \simeq P_{(1,2)}+P_{(3)} \\
P_{(2,1)}^{R} & \simeq P_{(1,2)}+P_{(2,1)}+P_{(3)} & P_{(0,2)}^{R} & \simeq 2 P_{(1,1,1)}+P_{(1,2)}+P_{(2,1)} \\
P_{(1,2)}^{R} & \simeq P_{(1,1,1)}+2 P_{(1,2)}+P_{(2,1)}+P_{(3)} & P_{(0,1,2)}^{R} & \simeq P_{(1,1,1)}+P_{(1,2)} \\
P_{(1,1,1)}^{R} & \simeq 3 P_{(1,1,1)}+P_{(1,2)}+P_{(2,1)} & P_{(0,1,1,1)}^{R} & \simeq P_{(1,1,1)}
\end{aligned}
$$

$$
\begin{aligned}
P_{(4)}^{R} & \simeq P_{(4)} \\
P_{(0,4)}^{R} & \simeq P_{(1,3)}+P_{(4)} \\
P_{(3,1)}^{R} & \simeq P_{(1,3)}+P_{(3,1)}+P_{(4)} \\
P_{(0,3,1)}^{R} & \simeq P_{(1,1,2)}+P_{(1,2,1)}+P_{(1,3)}+P_{(3,1)} \\
P_{(2,2)}^{R} & \simeq P_{(1,2,1)}+P_{(1,3)}+P_{(2,2)}+P_{(3,1)}+P_{(4)} \\
P_{(0,2,2)}^{R} & \simeq P_{(1,1,1,1)}+2 P_{(1,1,2)}+P_{(1,2,1)}+P_{(1,3)}+P_{(2,2)} \\
P_{(2,1,1)}^{R} & \simeq P_{(1,1,2)}+P_{(1,2,1)}+P_{(1,3)}+P_{(2,1,1)}+P_{(3,1)} \\
P_{(0,2,1,1)}^{R} & \simeq 3 P_{(1,1,1,1)}+P_{(1,1,2)}+P_{(1,2,1)}+P_{(2,1,1)} \\
P_{(1,3)}^{R} & \simeq P_{(1,1,2)}+2 P_{(1,3)}+P_{(2,2)}+P_{(4)} \\
P_{(0,1,3)}^{R} & \simeq P_{(1,1,2)}+P_{(1,3)} \\
P_{(1,2,1)}^{R} & \simeq 2 P_{(1,1,1,1)}+2 P_{(1,1,2)}+3 P_{(1,2,1)}+P_{(1,3)}+P_{(2,1,1)}+P_{(2,2)}+P_{(3,1)} \\
P_{(0,1,2,1)}^{R} & \simeq 2 P_{(1,1,1,1)}+P_{(1,1,2)}+P_{(1,2,1)} \\
P_{(1,1,2)}^{R} & \simeq 2 P_{(1,1,1,1)}+3 P_{(1,1,2)}+P_{(1,2,1)}+P_{(1,3)}+P_{(2,1,1)}+P_{(2,2)} \\
P_{(0,1,1,2)}^{R} & \simeq P_{(1,1,1,1)}+P_{(1,1,2)} \\
P_{(1,1,1,1)}^{R} & \simeq 4 P_{(1,1,1,1)}+P_{(1,1,2)}+P_{(1,2,1)}+P_{(2,1,1)} \\
P_{(0,1,1,1,1)}^{R} & \simeq P_{(1,1,1,1)}
\end{aligned}
$$

Cartan matrices We show below the first Cartan matrices of the 0-rook monoids R_{n} for $n=2,3,4,5$. The column on the left shows the associated idempotents.

References

[Bergeron and Li(2009)] Nantel Bergeron and Huilan Li. Algebraic structures on Grothendieck groups of a tower of algebras. J. Algebra, 321(8):2068-2084, 2009. ISSN 0021-8693. URL https://doi.org/10.1016/j.jalgebra.2008.12.005.
[Björner and Brenti(2005)] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005. ISBN 978-3540-442387; 3-540-44238-3.
[Butler et al.(2010)Butler, Haglund, Can, and Remmel] Fred Butler, Jim Haglund, Mahir Can, and Jeffrey B. Remmel. Rook theory notes, 2010.
[Can and Renner(2012)] Mahir Bilen Can and Lex E. Renner. Bruhat-Chevalley order on the rook monoid. Turk J. Math, 36(2):499-519, 2012.
[Carter(1986)] R. W. Carter. Representation theory of the 0-Hecke algebra. J. Algebra, 104 (1):89-103, 1986. ISSN 0021-8693. URL https://doi.org/10.1016/0021-8693(86) 90238-3.
[Curtis and Reiner(1990)] Charles W. Curtis and Irving Reiner. Methods of representation theory. Vol. I. Wiley Classics Library. John Wiley \& Sons, Inc., New York, 1990. ISBN 0-471-52367-4. With applications to finite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication.
[Demazure(1974)] Michel Demazure. Désingularisation des variétés de Schubert qénéralisées. Ann. Sci. Ecole Norm. Sup. (4), 7:53-88, 1974. ISSN 0012-9593. Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I.
[Denton(2010)] Tom Denton. A combinatorial formula for orthogonal idempotents in the 0 -Hecke algebra of the symmetric group. 2010. preprint arXiv:1008.2401v1 [math.RT].
[Denton et al.(2010/11)Denton, Hivert, Schilling, and Thiéry] Tom Denton, Florent Hivert, Anne Schilling, and Nicolas M. Thiéry. On the representation theory of finite \mathcal{J}-trivial monoids. Sém. Lothar. Combin., 64:Art. B64d, 44, 2010/11. ISSN 1286-4889.
[Duchamp et al.(2002)Duchamp, Hivert, and Thibon] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon. Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput., 12(5):671-717, 2002. ISSN 0218-1967.
[Fayers(2005)] Matthew Fayers. 0-Hecke algebras of finite Coxeter groups. J. Pure Appl. Algebra, 199(1-3):27-41, 2005. ISSN 0022-4049. URL https://doi.org/10.1016/j. jpaa.2004.12.001.
[Flajolet and Sedgewick(2009)] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. ISBN 978-0-521-89806-5. doi: 10.1017/CBO9780511801655. URL http://dx.doi.org/10.1017/CB09780511801655.
[Ganyushkin and Mazorchuk(2006)] Olexandr Ganyushkin and Volodymyr Mazorchuk. Combinatorics and distributions of partial injections. Australasian J. of Comb., 34:161-186, 2006. ISSN 2202-3518.
[Gay and Hivert(2018)] Joël Gay and Florent Hivert. The 0-Renner monoids. page 60, 2018.
[Gelfand et al.(1995)Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thibon] I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, and J.Y. Thibon. Noncommutative symmetrical functions. Advances in Mathematics, 112(2):218 - 348, 1995. ISSN 0001-8708. doi: https://doi.org/10.1006/aima.1995.1032. URL http://www.sciencedirect.com/science/article/pii/S0001870885710328.
[Gelfand et al.(2008)Gelfand, Kapranov, and Zelevinsky] Israel Gelfand, Mikhail M. Kapranov, and Andrei Zelevinsky. Discriminants, resultants and multidimensional determinants. Mod. Birkhäuser Class. Birkhäuser Boston, 2008.
[Gessel(1984)] Ira M. Gessel. Multipartite P-partitions and inner products of skew Schur functions. In Combinatorics and algebra (Boulder, Colo., 1983), volume 34 of Contemp. Math., pages 289-317. Amer. Math. Soc., Providence, RI, 1984.
[Green(1951)] J. A. Green. On the structure of semigroups. Ann. of Math. (2), 54:163-172, 1951. ISSN 0003-486X.
[Guilbaud and Rosenstiehl(1963)] Georges Th. Guilbaud and Pierre Rosenstiehl. Analyse algébrique d'un scrutin. Math. Sci. Hum., 4:9-33, 1963.
[Halverson(2004)] Tom Halverson. Representations of the q-rook monoid. J. Algebra, 273(1): 227-251, 2004.
[Hivert et al.(2012-2018)Hivert, Saliola, and Thiéry] Florent Hivert, Franco Saliola, and Nicolas M. et al. Thiéry. sage-semigroup: A semigroup (representation) theory library for sagemath. https://github.com/nthiery/sage-semigroups/, 2012-2018.
[Hohlweg and Lange(2007)] Christophe Hohlweg and Carsten E. M. C. Lange. Realizations of the associahedron and cyclohedron. Discrete Comput. Geom., 37(4):517-543, 2007. ISSN 0179-5376. URL https://doi.org/10.1007/s00454-007-1319-6.
[Hohlweg et al.(2011)Hohlweg, Lange, and Thomas] Christophe Hohlweg, Carsten E. M. C. Lange, and Hugh Thomas. Permutahedra and generalized associahedra. Adv. Math., 226 (1):608-640, 2011. ISSN 0001-8708. URL https://doi.org/10.1016/j.aim. 2010.07. 005.
[Iwahori(1964)] Nagayoshi Iwahori. On the structure of a Hecke ring of a Chevalley group over a finite field. J. Fac. Sci. Univ. Tokyo Sect. I, 10:215-236 (1964), 1964.
[Josuat-Vergès(2011)] Matthieu Josuat-Vergès. Rook placements in young diagrams and permutation enumeration. Advances in Applied Mathematics, 47(1):1 - 22, 2011. ISSN 0196-8858. doi: https://doi.org/10.1016/j.aam.2010.04.003. URL http://www. sciencedirect.com/science/article/pii/S0196885810000515.
[Krob and Thibon(1997)] Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at $q=0$. J. Algebraic Combin., 6(4):339-376, 1997. ISSN 0925-9899. URL https://doi.org/10.1023/A: 1008673127310.
[Labbé and Lange(2018)] Jean-Philippe Labbé and Carsten Lange. Cambrian acyclic domains: counting c-singletons, 2018.
[Lam et al.(2010)Lam, Schilling, and Shimozono] Thomas Lam, Anne Schilling, and Mark Shimozono. K-theory Schubert calculus of the affine Grassmannian. Compos. Math., 146(4):811-852, 2010. ISSN 0010-437X. doi: 10.1112/S0010437X09004539.
[Lascoux(2001)] A. Lascoux. Transition on Grothendieck polynomials. In Physics and combinatorics, 2000 (Nagoya), pages 164-179. World Sci. Publ., River Edge, NJ, 2001.
[Lascoux(2003)] A. Lascoux. Symmetric Functions and Combinatorial Operators on Polynomials. Number 99 in Conference board of the Mathematical Sciences regional conference series in mathematics. American Mathematical Society, 2003. ISBN 9780821828717. URL https://books.google.de/books?id=RVj6MAAACAAJ.
[Lascoux and Schützenberger(1987)] A. Lascoux and M. P. Schützenberger. Symmetrization operators on polynomial rings. Functional Analysis and Its Applications, 21(4):324-326, 1987. ISSN 1573-8485. doi: 10.1007/BF01077811. URL https://doi.org/10.1007/ BF01077811.
[Lascoux(2003/04)] Alain Lascoux. Schubert \& Grothendieck: un bilan bidécennal. Sém. Lothar. Combin., 50:Art. B50i, 32 pp. (electronic), 2003/04. ISSN 1286-4889.
[Lothaire(2002)] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2002. doi: 10.1017/ CBO9781107326019.
[Macdonald(1995)] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York,
second edition, 1995. ISBN 0-19-853489-2. With contributions by A. Zelevinsky, Oxford Science Publications.
[Manneville and Pilaud(2017)] Thibault Manneville and Vincent Pilaud. Compatibility fans for graphical nested complexes. Journal of Combinatorial Theory, Series A, 150:36 107, 2017. ISSN 0097-3165. doi: https://doi.org/10.1016/j.jcta.2017.02.004. URL http: //www.sciencedirect.com/science/article/pii/S009731651730016X.
[Miller(2005)] Ezra Miller. Alternating formulas for K-theoretic quiver polynomials. Duke Math. J., 128(1):1-17, 2005. ISSN 0012-7094. doi: 10.1215/S0012-7094-04-12811-8.
[Mitchell and Torpey(2018)] James d. Mitchell and Michael Torpey. LibSemigroup: A library for semigroups and monoids - version 0.6.3. https://james-d-mitchell.github.io/ libsemigroups/, 2018.
[Norton(1979)] P. N. Norton. 0-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27(3):337-357, 1979. ISSN 0263-6115.
[Pin(2010)] Jean-Eric Pin. Mathematical Foundations of Automata Theory. 2010. URL http: //www.liafa.jussieu.fr/~jep/MPRI/MPRI.html.
[Renner(1995)] Lex E. Renner. Analogue of the Bruhat decomposition for algebraic monoids. II. The length function and the trichotomy. J. Algebra, 175(2):697-714, 1995.
[Riordan(2002)] J. Riordan. Introduction to Combinatorial Analysis. Dover Books on Mathematics. Dover Publications, 2002. ISBN 9780486425368. URL https://books.google. fr/books?id=zWgIPlds29UC.
[Sloane(2015)] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences Foundation Inc, 2015. URL http://oeis.org.
[Solomon(1990)] Louis Solomon. The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom. Dedicata, 36(1):15-49, 1990.
[Solomon(2004)] Louis Solomon. The Iwahori algebra of $\mathbf{M}_{n}\left(\mathbf{F}_{q}\right)$. A presentation and a representation on tensor space. J. Algebra, 273(1):206-226, 2004.
[Stein et al.(2018)] W. A. Stein et al. Sage Mathematics Software. The Sage Development Team, 2018. URL http://www. sagemath.org.
[Steinberg(2016)] Benjamin Steinberg. Representation Theory of Finite Monoids. Universitext. Springer, New York, 2016. ISBN 978-3-319-43930-3.
[Tamari(1962)] Dov Tamari. The algebra of bracketings and their enumeration. Nieuw Arch. Wisk, 3(10):131-146, 1962.
[Virmaux(2014)] Aladin Virmaux. Partial categorification of hopf algebras and representation theory of towers of \mathcal{J}-trivial monoids. Proceeding of FPSAC 2014 in DMTCS proc. AT, pages 741-752, 2014.
[yves Thibon(1998)] Jean yves Thibon. Lectures on noncommutative symmetric functions. 39-94, Math. Soc. Japan Memoirs, 11:39-94, 1998.
[Ziegler(1995)] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. ISBN 0-387-94365-X. URL https: //doi.org/10.1007/978-1-4613-8431-1.

Joël Gay: E-mail address: joel.gay@lri.fr
Florent Hivert: E-mail address: florent.hivert@lri.fr
Laboratoire de Recherche en Informatique (LRI, UMR CNRS 8623), Université Paris Sud, Université Paris-Saclay, CNRS,
Bâtiment 650, Université Paris Sud 11, 91405 ORSAY CEDEX, FRANCE.

