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SNAKE GRAPHS AND THEIR CHARACTERISTIC POLYNOMIALS

J. P. BRADSHAW, P. LAMPE, D. ZIGA

Abstract. The aim of the article is to understand the combinatorics of snake graphs by
means of linear algebra. In particular, we apply Kasteleyn’s and Temperley–Fisher’s ideas
about spectral properties of weighted adjacency matrices of planar bipartite graphs to snake
graphs. First we focus on snake graphs whose set of turning vertices is monochromatic. We
provide recursive sequences to compute the characteristic polynomials; they are indexed by
the upper or the lower boundary of the graph and are determined by a neighbour count.
As an application, we compute the characteristic polynomials for L-shaped snake graphs
and staircases in terms of Fibonacci product polynomials. Next, we introduce a method
to compute the characteristic polynomials as convergents of continued fractions. Finally,
we show how to transform a snake graph with turning vertices of two colours into a graph
with the same number of perfect matchings to which we can apply the results above.

1. Overview

Snake graphs are planar bipartite graphs. They are created by putting together square
pieces such that each piece is either right or above its predecessor.

Snake graphs are considered in the theory of cluster algebras where they are used to write
down a formula for cluster variables in surface cluster algebras, see Musiker–Schiffler [MS10],
Musiker–Schiffler–Williams [MSW11], and Propp [Pro05]. The summands in the formula
are parametrised by perfect matchings of the given snake graph. Çanakçı–Schiffler [ÇS13,
ÇS15, ÇS17b] have studied snake graphs profoundly and noticed that the enumeration of
perfect matchings is related to convergents of continued fractions.

In physics, perfect matchings are known as dimer models and Kasteleyn’s [Kas61, Kas63]
and Temperley–Fisher’s [TF61] work on dimer statistics has led to useful counting formulas
for perfect matchings. Specifically, we can assign weights to the edges of a planar bipartite
graph and then read off the number of perfect matchings from the determinant of the
weighted adjacency matrix.

Authors often emphasise the importance of spectral properties in graph theory. In par-
ticular, the determinant of a weighted adjacency matrix of a snake graph, and hence the
number of perfect matchings, can be expressed as a product of the eigenvalues.

We are interested in the characteristic polynomials of weighted adjacency matrices of
snake graphs. A special case of a theorem about grid graphs that Temperley–Fisher [TF61]
and Kasteleyn [Kas61, Kas63] discovered in independent work allows us to determine the
characteristic polynomials for horizontal snake graphs. Here, the horizontal snake graph
Hn is created by putting together n square tiles together in horizontal direction. The
polynomials can be expressed in terms of the Fibonacci product polynomials (Pr)r≥1 and
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(Qr)r≥1. Specifically, the characteristic polynomials turn out to be even and if we substitute
x = t2, then we may write XHn

(t) = Pr(x)
2 if n = 2r−1 is odd, and XHn

(t) = (x−1)Qr(x)
2

if n = 2r is even. The first aim of the article is to express the characteristic polynomials for
other interesting classes of snake graphs via Fibonacci product polynomials.

Theorem A (Theorem 5.5, Theorem 5.7). (a) The L-shaped snake graphs Lr,s, which
are created by placing first r tiles to the right of each other and then s tiles on top
of each other, have the characteristic polynomials

X L2m,2n
= [Qm+n−1 −Qm−1Qn−1] [(x− 1)Qm+n + PmPn] ,

X L2m+1,2n+1
= [(x− 1)Qm+n − PmPn] [Qm+n+1 +QmQn] ,

X L2m,2n+1
= [Pm+n −Qm−1Pn] [Pm+n+1 + PmQn] .

(b) The staircases Sm,3, which change direction from horizontal to vertical, or vice versa,
at every other square tile, have characteristic polynomials

XS2k,3
= (x− 2)Qk

(
(x− 3)2

) [
(x− 2)Qk

(
(x− 3)2

)
+ xQk−1

(
(x− 3)2

)]
,

XS2k+1,3
=

[
Qk+1

(
(x− 3)2

)
+ (x− 1)Qk

(
(x− 3)2

)]2
.

Let us colour the vertices of a snake graph in the two sets of the bipartition black and
white. We call a square tile where the graph changes direction from horizontal to vertical,
or vice versa, a turning tile. Every turning tile has a vertex with exactly 2 neighbours and
a vertex with exactly 4 neighbours (opposite to each other) which we call turns.

Every rational number x admits an essentially unique continued fraction expansion.
Namely, we write x as the sum of its integer part ⌊x⌋ and its fractional part x − ⌊x⌋ and
iterate the procedure with the reciprocal of the fractional part. Çanakçı–Schiffler [ÇS17a]
indicate a connection between snake graphs and continued fractions. For instance, the nu-
merator of the rational number whose continued fraction expansion is encoded by the sign
sequence of the snake graph equals the number of perfect matchings of the graph.

The rational number x admits a second continued expansion. Namely, we write x as the
difference between the ceiling ⌈x⌉ and the number ⌈x⌉−x ∈ [0, 1) with whose reciprocal we
iterate the process. The significance of the second method in the context of triangulated
surfaces was first noted by Morier-Genoud–Ovsienko [MGO19].

Theorem B (Theorem 6.4). Let G be a snake graph whose turns are all black. For any
Kasteleyn weighting the characteristic polynomial of the weighted adjacency matrix A can be
written as XA(t) = XB1

(t2)XB2
(t2) where XB1

(x) = p(x) is the numerator of the convergent
of the continued fraction

[[c1(x), . . . , ck(x)]] = c1(x)−
1

c2(x)−
1

c3(x)−
1

. . . −
1

ck(x)

=
p(x)

q(x)
.

Here, 1, 2, . . . , k is an enumeration of the black vertices in the upper boundary of G and for
every l we put cl(x) = x− el where el is the number of (white) vertices adjacent to l. The
polynomial XB2

(x) is constructed similarly using the vertices in the lower boundary.
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The polynomial XB1
(x) is the characteristic polynomial of a matrix B1 that describes

interactions between the black vertices of the upper boundary and the white vertices of
G. Theorem B implies XA(0) = ± det(B1) det(B2). The absolute value of this expression
is equal to the square of the number of perfect matchings of G thanks to the Theorem of
Temperley–Fisher [TF61] and Kasteleyn [Kas61, Kas63]. We prove that it is enough to
consider one of the boundary components to count matchings.

Theorem C (Special case of Theorem 6.15). In the setup of Theorem B the characteristic
polynomials XB1

(x) and XB2
(x) have the same constant term, except for a possibly different

sign. In particular, |det(B1)| = |det(B2)| is equal to the number of perfect matchings of G.

Finally, we show how to transform a snake graph with turns of two colours into a graph
with the same number of perfect matchings to which we can apply the results above. The
transformation is of combinatorial nature and constructed by rotations of subgraphs around
tiles.

2. Snake graphs and their adjacency matrices

2.1. Snake graphs. In this paper, unless stated otherwise, graphs are assumed to be sim-
ple, that is they are finite, undirected, and there is at most one edge between any two
vertices. Recall that a graph is planar if it can be drawn in the plane in such a way that
edges intersect only at endpoints. A planar graph may admit many different embeddings
into the plane; a planar graph together with a fixed embedding is called a plane graph.

Definition 2.1 (Snake graphs). A snake graph is a plane graph consisting of a sequence of
tiles such that each tile is placed to the right or on top of the previous tile, starting from
an initial tile. Here each tile is a square with four vertices and four edges and two adjacent
tiles share exactly one edge.

The procedure described in Definition 2.1 creates a strip of tiles that resembles a snake.

Example 2.2. In this note we are particularly interested in the following classes of snake
graphs. Let m and n be natural numbers.

(i) The horizontal snake graph Hn is created by putting together n square tiles in a
horizontal direction. The example H6 is shown on the left of Figure 1. The graph
Hn is also known as the ladder graph in the literature. The vertical snake graph Vn

is the rotation of Hn by π/2.
(ii) The L-shaped snake graph Lm,n is created by placing first m tiles to the right of each

other and then n − 1 tiles on top of each other. The snake graph L7,5 is shown in
the middle of Figure 1.

(iii) The staircase Sm,n is the snake graph that we obtain by gluing together horizontal
and vertical snake graphs Hn and Vn alternately along their first or last tiles, respec-
tively, using a total number of m pieces. For example, the staircase S4,3 arises by
gluing together four pieces H3, V3, H3, V3; it is shown in the right of Figure 1.

2.2. Special vertices and edges in snake graphs. Let G = (V,E) be a snake graph.

Definition 2.3 (Turns). A vertex of G is called a turn if the following conditions hold.

(i) It is adjacent to exactly 2 other vertices or it is adjacent to exactly 4 other vertices.
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Figure 1. A horizontal snake graph, an L-shaped snake graph and a staircase

(ii) It is neither the lower right, the lower left nor the upper left vertex of the first tile;
and it is neither the upper left, the upper right nor the lower right vertex of the last
tile.

A turn is called a 2-turn if it is adjacent to exactly 2 vertices and a 4-turn otherwise. A tile
of G having exactly two turns as vertices is called a turning tile.

The name turn reflects the fact that the snake changes from horizontal direction to vertical
direction, or vice versa, at tiles having a 2-turn and a 4-turn.

Definition 2.4 (Internal and external edges). An edge of G is called internal if one of the
following conditions holds:

(i) it is shared by two adjacent square tiles;
(ii) it is the lower side of the first tile;
(iii) it is the upper side of the last tile.

The edge is called external otherwise.

Hence, with two exceptions, the external edges are the edges that bound the infinite face
of the graph. Note that every square tile is bounded by exactly 2 internal and 2 external
edges. An example is shown on the left in Figure 2.

We will refer to all edges that bound the infinite face (including two internal edges) as
boundary edges.

Suppose that G has at least two tiles. The start edge of G is the edge of the first square
tile connecting the 2 vertices that do not belong to any other tile. The end edge is defined
similarly for the last tile. The subgraph of G formed by the boundary edges is a circular
graph C(G). We are interested in the following two full subgraphs of the infinite face.

Definition 2.5 (Upper and lower boundary). If we further remove the start and the end
edge from the circular graph C(G), then we obtain a disjoint union of two path graphs
which we will call the upper and lower boundary of G. Here, the path graph containing the
lower left vertex of the first tile is the upper boundary if the next tile is above the first tile,
otherwise it is the lower boundary. Vertices in the upper or lower boundary are called upper
and lower vertices, respectively.

We can extend Definition 2.5 to the snake graph with 1 tile by declaring the upper
boundary to be the upper edge and the lower boundary to be the lower edge.

An example is shown on the right in Figure 2.
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Figure 2. The external edges (left) and the upper and lower boundary (right)

n 0 1 2 3 4 5 6 7 8 9 10
Fn 0 1 1 2 3 5 8 13 21 34 55

Figure 3. The Fibonacci numbers

2.3. Perfect matchings and continued fractions. Suppose G = (V,E) is a simple graph
with vertex set V and edge set E.

Definition 2.6 (Perfect matchings). A perfect matching of the graph G is a subset P ⊆ E
of the set of edges such that every vertex of the graph is incident to exactly one edge in P .

Perfect matchings are also known as dimer models in the literature. We denote the
number of perfect matchings of G by M(G).

Definition 2.7 (Fibonacci numbers). The Fibonacci numbers (Fn)n≥0 are given by the
sequence F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

The first Fibonacci numbers are shown in Figure 3.

Example 2.8. It is well-known and easy to show that the horizontal snake graph satisfies
M(Hn) = Fn+2.

More generally, the number of perfect matchings of any snake graph can directly be given
using continued fractions thanks to the work of Çanakçı–Schiffler [ÇS17a]. Given a snake
graph, we place a sign on every internal edge and with the sign sequence we associate a
sequence of natural numbers (a1, a2, . . . , an) by counting consecutive entries in the sequence

(+, . . . ,+︸ ︷︷ ︸
a1

, −, . . . ,−︸ ︷︷ ︸
a2

, +, . . . ,+︸ ︷︷ ︸
a3

, . . .).

We refer the reader to Schiffler’s overview article [Sch19] for precise details of the construc-
tion of the sign sequence. Then we consider the continued fraction

[a1, a2, . . . , an] = a1 +
1

a2 +
1

a3 +
1

.. . +
1

an

. (1)
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Let us write the continued fraction as the rational number

[a1, a2, . . . , an] =
p

q
(2)

with coprime integers p, q ≥ 1. Then the numerator p gives us the number of perfect
matchings of the snake graph. For example, the sign sequence of the horizontal snake graph
Hn is given by a1 = an−1 = 2 and a2 = . . . = an−2 = 1.

Remark 2.9. The continued fraction expansion of the rational number p/q in Equation (2)
is essentially unique. More precisely, given numbers ai ≥ 1 with 1 ≤ i ≤ n and bi ≥ 1 with
1 ≤ i ≤ m such that [a1, a2, . . . , an] = [b1, b2, . . . , bm]. Then exactly one of the two cases
holds.

(i) We have n = m and ai = bi for all 1 ≤ i ≤ n.
(ii) We have |n−m| = 1; without loss of generality let us assume m = n+ 1. Then the

equality ai = bi holds for all 1 ≤ i ≤ n − 1 and the last entries satisfy bn = an − 1
and bn+1 = 1.

It follows that the continued fraction expansion of a rational number as in Equation (1)
becomes unique if we impose the condition n ≡ 0mod 2. Notice that if the sequence (ai)
is constructed from a snake graph G, then the sequence (bi) in case (ii) arises by using the
sign of the right edge of the last tile instead of the sign of the upper edge.

The rational number p/q admits another continued fraction expansion

p

q
= [[c1, c2, . . . , ck]]

def
= c1 −

1

c2 −
1

c3 −
1

. . . −
1

ck

, (3)

which is unique if ci ≥ 2 for all i ≥ 1. Note that

[[c1, c2, . . . , ck]] = [c1,−c2, c3, . . . , (−1)k+1ck].

Morier-Genoud and Ovsienko [MGO19], based on an observation by Hirzebruch [Hir73,
Equation (19)], note that (assuming n is even) both expansions are related by the formula

(c1, . . . , ck) =
(
a1 + 1, 2, . . . , 2︸ ︷︷ ︸

a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, a5 + 2, . . . , an−1 + 2, 2, . . . , 2︸ ︷︷ ︸
an−1

)
. (4)

2.4. Weighted adjacency matrices. As before, let G = (V,E) be a simple graph. We
denote by m = |V | the cardinality of the vertex set.

Definition 2.10 (Weightings). A map w : E → {−1, 1}, which assigns a weight e 7→ w(e)
to every edge e ∈ E, is called a weighting of the graph G.

More generally, some authors consider weightings e : E → R with values in a general set
R. In the context of Kasteleyn’s and Temperley–Fisher’s Theorem, which we will apply to
count perfect matchings in bipartite graphs, weightings with real or complex numbers of
absolute value 1 are considered. In this article, we are mostly interested in real weightings,
so we assume R = {−1, 1}.
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Definition 2.11 (Weighted adjacency matrices). Fix a labelling V = {v0, v1, . . . , vm−1} of
the set of vertices.

(i) The adjacency matrix is the m × m matrix Z = (zij)0≤i,j≤m−1 ∈ Matm×m(Z) with
entries

zij =

{
1, if i and j are connected by an edge;

0, if i and j are not connected by an edge.

(ii) Given a weighting w : E → {±1}, the weighted adjacency matrix is the m×m matrix
A = (aij)0≤i,j≤m−1 ∈ Matm×m(Z) with entries

aij =

{
w(e), if i and j are connected by an edge e;

0, if i and j are not connected by an edge.

By construction, the adjacency matrix and the weighted adjacency matrix are symmetric
matrices for every G and every weighting w. In particular, A will be diagonalisable and all
eigenvalues will be real numbers. The eigenvalues of A do not depend on the choice of the
ordering of the vertices.

2.5. The theorem of Temperley–Fisher and Kasteleyn. Recall the following defini-
tion.

Definition 2.12 (Bipartite graphs). A graph G = (V,E) is called bipartite if we can divide
the vertices into two disjoint sets V1 and V2 such that every edge connects a vertex in V1 to
a vertex in V2.

We often call a vertex in V1 black and a vertex in V2 white. Note that snake graphs are
bipartite, see Figure 4.

Definition 2.13 (Bipartite orders). Given a bipartite graph G = (V1⊔V2, E), we abbreviate
mi = |Vi| for i ∈ {1, 2}. The pair (m1, m2) is called the order of the bipartite graph G.

Let us fix a plane bipartite graphG = (V1⊔V2, E) together with a weighting w : E → {±1}
for the rest of the section. Recall that the embedding of G divides the plane into regions
which are called faces. There is one unbounded face which is called the infinite face.

Definition 2.14 (Kasteleyn weightings). The weighting w is called a Kasteleyn weighting
if each face (including the infinite face) having the shape of a k-gon has. . .

(i) an odd number of negative signs if k ≡ 0mod 4;
(ii) an even number of negative signs if k ≡ 2mod 4.

It can be shown that every plane bipartite graph admits a Kasteleyn weighting. To
construct weightings for snake graphs we distinguish external and internal edges, see Defi-
nition 2.4.

Definition 2.15 (Real weightings for snake graphs). Given a snake graph G = (V,E), we
set w(e) = 1 for every edge e in the upper boundary and every edge in the lower boundary
and we alternate the signs of the remaining edges, starting with +1 on the start edge.

An example is shown in Figure 4.

Proposition 2.16. The weighting w from Definition 2.15 is a Kasteleyn weighting.
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Figure 4. A real Kasteleyn weighting

Proof. By construction, every internal face is bounded by 4 edges and exactly one of the
edges weighs −1. The infinite face has 2n+ 2 edges, if n denotes the number of tiles of the
graph. All of its edges weigh 1, except for the end edge of the last tile when n is odd. �

Given a Kasteleyn weighting w of a plane bipartite graph G = (V,E), we can construct
another weighting w̃ of G using the following procedure. We pick a vertex v ∈ V and change
the weighting on all edges incident with v, that is, we put

w̃(e) =

{
−w(e) if e is incident with v;

w(e) otherwise.
(5)

It is easy to see that w̃ is again a Kasteleyn weighting. Moreover, any two Kasteleyn
weightings of G are related to each other by applying this procedure for a suitable sequence
of vertices, see Kenyon [Ken09, Section 3.3].

Proposition 2.17. Let w, w̃ : E → {±1} be two Kasteleyn weightings of the same bipartite

plane graph G = (V,E), and let A, Ã be their associated weighted adjacency matrices. Then

Ã is unitarily equivalent to A (i.e. Ã = UAU∗ = UAU−1 for some unitary matrix U).

Proof. An application of the procedure described in Equation (5) to a vertex vi corresponds
to multiplying both row and column i of the associated weighted adjacency matrix by a
sign. The full procedure corresponds to a sequence of such operations, and is equivalent
to pre- and post-multiplication of the matrix by a single diagonal matrix D with diagonal

entries in {±1}. Hence Ã = DAD and clearly D is both unitary and self-adjoint. �

Definition 2.18 (Bipartite weighted adjacency matrices). The submatrix B of A on rows
V1 and columns V2 is called the bipartite adjacency matrix of G.

The bipartite weighted adjacency matrix B determines the weighted adjacency matrix A.
Specifically, we can reorder the vertices in such a way that

A =

(
0 B
BT 0

)
(6)

with B ∈ Matm1×m2
(Z) as in Definition 2.18 and zero matrices of size m1 ×m1 and m2 ×

m2. Note that the matrix BBT is symmetric and positive semidefinite. In particular, its
eigenvalues are non-negative real numbers.
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Some authors, for example Kenyon [Ken09], also use the name Kasteleyn matrix for the
matrix B. Moreover, if m1 = m2, then det(A) = det(BBT ) = det(B)2.

Theorem 2.19 (Kasteleyn [Kas61, Kas63], Temperley–Fisher [TF61]). Let w : E → {±1}
be a Kasteleyn weighting of a plane bipartite graph G = (V1 ⊔ V2, E) with |V1| = |V2|, and
let A be the associated weigthed adjacency matrix. Then

|det(A)| = M(G)2 and |det(B)| = M(G). (7)

Sketch of the proof. Let us abbreviate n = m1 = m2 and label the black vertices by
{v0, . . . , vn−1} and the white vertices {w0, . . . , wn−1}. We expand the determinant as

det(B) =
∑

π∈Sn

sgn(π)b0,π(0)b1,π(1) · . . . · bn−1,π(n−1).

By construction the summand associated with a permutation π vanishes unless (vi, wπ(i)) is
an edge in G for every i ∈ [0, n − 1]. In this case those edges form a perfect matching of
G. The corresponding summand is equal to +1 or −1, and the conditions that a Kasteleyn
weighting must fulfill (see Definition 2.14) imply that all summands have the same sign. �

2.6. Weighted adjacency matrices of bipartite graphs. Suppose we are given a bi-
partite graph G = (V,E) with bipartition V = V1 ⊔ V2 of order (m1, m2) together with a
weighting w : E → R.

Proposition 2.20. Let t 6= 0 be real number. A vector v ∈ Rm1 is an eigenvector of BBT

of eigenvalue t2 if and only if
(

tv
BTv

)
,

(
−tv
BTv

)
∈ Rm1+m2

are eigenvectors of A of eigenvalues t and −t.

Proof. Every v ∈ Rm1\{0} satisfies
(

0 B
BT 0

)(
±tv
BTv

)
=

(
BBT v
±tBTv

)
.

This vector agrees with the (nonzero) vector
(

t2v
±tBT v

)
= ±t

(
±tv
BTv

)

if and only if BBTv = t2v, that is, v is an eigenvector of BBT with eigenvalue t2. �

In particular, Proposition 2.20 implies that if the determinants of A and BBT are non-
zero, then they have the same absolute value, since they can be expressed as products of
their eigenvalues.

Proposition 2.21. Suppose that |V1| = |V2|. The characteristic polynomials of A and BBT

are related to each other by the relation XA(t) = XBBT (t2).

Proof. A block matrix with 2× 2 blocks of size m1 ×m1 satisfies the identity

det

(
X1 X2

X3 X4

)
= det

(
X1 −X2X

−1
4 X3

)
det(X4),
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provided X4 is invertible. Now suppose that t is a nonzero real number. We plug in
X1 = X4 = tIm1

, X2 = −B, and X3 = −BT . We obtain

XA(t) = det (tIm1
− A) = det

(
tIm1

− t−1BBT
)
tm1 = det

(
t2Im1

−BBT
)
= XBBT

(
t2
)
.

Since the identity holds for all t ∈ R\{0}, both polynomials must agree. �

2.7. On the bipartite structure of snake graphs. Now we assume that G = (V,E) is a
snake graph with a bipartition V = V1⊔V2 of the vertices into black and white. Furthermore,
we equip G with a Kasteleyn weighting w : E → {±1}. In this case BBT is a square matrix
whose rows and columns are both indexed by the black vertices of G. By construction, there
are as many black as white vertices.

Remark 2.22. Every snake graph admits at least one perfect matching. So the bipartite
matrix B is invertible by Equation (7). It follows that det(BBT ) = det(B)2 6= 0. Hence, all
eigenvalues of BBT are positive and BBT is positive definite.

Proposition 2.23. Given a black vertex i ∈ V1. The diagonal entry of BBT at position i
is equal to the number of white vertices that are adjacent to i.

Proof. For all white vertices k ∈ V2, we have

b2ik =

{
1 if there is an edge from k to i;

0 otherwise.

Hence, the diagonal entry is given by
(
BBT

)
ii
=

∑

k∈V2

bikb
T
ki =

∑

k∈V2

b2ik = |{k ∈ V2 : k is adjacent to i}|

by the nature of matrix multiplication. �

Recall that turns are vertices in a snake graph with 2 or 4 neighbours that do not lie at
the beginning or the end, see Definition 2.3. We are particularly interested in snake graph
for which all turns have the same colour. Equivalently, except at the beginning and the end,
the length of any maximal sequence of consecutive tiles propagating in the same direction
must be odd. For example, the graph in Figure 4 satisfies this property.

Given a graph with this property, we assume that the turns are coloured black without
loss of generality.

Proposition 2.24. Assume that G is a snake graph such that all turns are black. Let i be
a black vertex on the upper boundary of G and let j be a black vertex on the lower boundary
of G. Then (BBT )ij = 0.

Proof. First, suppose that i and j are opposite vertices of a square tile. Then there are
exactly two white vertices k and l which are adjacent to both i and j. We have bikbjkbilbjl =
−1, since the weighting w is assumed to be a Kasteleyn weighting. We conclude that

(
BBT

)
ij
= bikbjk + bilbjl = 0.

Second, if i and j are not opposite vertices of a square tile, then (BBT )ij = 0, since i and
j do not have any common neighbours. �
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Proposition 2.25. Assume that G is a snake graph such that all turns are black. We endow
the graph with the Kasteleyn weighting from Definition 2.15 Then we can reorder the black
vertices V such that BBT becomes a 2× 2 block matrix

BBT =

(
B1 0
0 B2

)

with blocks indexed by the upper and lower boundary. The matrices B1 and B2 are tridiagonal
matrices such that the entries on the first diagonal above and below the main diagonal are
all 1.

Proof. Proposition 2.24 implies that we can reorder the black vertices so that BBT is a 2×2
block matrix as above, with blocks indexed by the black vertices in the upper and lower
boundary. The upper and the lower boundary are path graphs with vertices alternating in
colour. By construction of the weighting we have w(e) = 1 for all edges e in the upper and
lower boundary.

Let i and j be black vertices in the same boundary component such that the only white
vertex in G adjacent to both of them, say k, lies in the same boundary component between
them. If e1 = (i, k) and e2 = (j, k), then (BBT )ij = w(e1)w(e2) = 1 · 1 = 1. �

For the particular case of horizontal snake graphs, the characteristic polynomials XA(t) =
XBBT (t2), as well as the eigenvalues and eigenvectors, have been determined independently
by Kasteleyn [Kas61, Kas63] and Temperley–Fisher [TF61].

Theorem 2.26 (Kasteleyn, Temperley–Fisher). Suppose that G = Hn. The eigenvalues of
BBT are given by

4 cos2
(

lπ

n + 2

)
+ 1 (l = 1, . . . , n+ 1).

Notice that in Theorem 2.26 the indices l and n+1−l yield the same eigenvalue. Especially,
all eigenvalues occur with multiplicity 2, except possibly for the eigenvalue 1, which occurs
with multiplicity 1 in the case when n is even for the choice l = (n+ 2)/2.

Corollary 2.27. Combining Example 2.8 and Theorem 2.26 we obtain

Fn+2 =

⌊n+1

2
⌋∏

l=1

(
4 cos2

(
lπ

n + 2

)
+ 1

)
.

The polynomials having the factors of the product on the right hand side in Corollary 2.27
as roots are called Fibonacci product polynomials. They will be studied in Section 4.3.

2.8. Equivalence of Kasteleyn weightings and Pfaffian orientations. There is an al-
ternative version of Kasteleyn’s Theorem using Pfaffians of skew-symmetric matrices instead
of determinants of symmetric matrices. In this subsection we will see that both approaches
are equivalent.

Definition 2.28 (Pfaffian orientations). Given the weighting w : E → {±1} from Defini-
tion 2.15 of G, we can construct an orientation as follows.

(i) An edge e with w(e) = 1 is oriented from black to white.
(ii) An edge e with w(e) = −1 is oriented from white to black.
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Remark 2.29. It follows immediately that the orientation is Pfaffian, see Aigner [Aig07,
Section 10.1].

The oriented adjacency matrix Ã is a square matrix of size m = |V | with entries in {±1}

such that Ãij = −Ãji = 1 for every arrow e : i → j in the oriented graph and Ãij = 0 if

there is no arrow between i and j. By construction Ã is skew-symmetric, and if we reorder
the vertices as in Equation (6), then

Ã =

(
0 B

−BT 0

)
∈ Matm×m(Z).

The determinant of the m ×m skew-symmetric matrix Ã is the square of an integer poly-

nomial in the entries called the Pfaffian Pf(Ã). In short, Pf(Ã)2 = det(Ã). In particular,
Equation (7) implies that

∣∣∣Pf(Ã)
∣∣∣ = M(G)

is equal to the number of perfect matchings of G.
The next statement is a variation of Proposition 2.20 and the proof carries over mutatis

mutandis to our setting.

Proposition 2.30. Let t 6= 0 be real number. A vector v ∈ Rm1 is an eigenvector of BBT

of eigenvalue t2 if and only if
(

itv
BTv

)
,

(
−itv
BTv

)
∈ Rm1+m2

are eigenvectors of Ã of eigenvalues it and −it.

We conclude that the knowledge about spectral properties of the matrix BBT is sufficient

to determine spectral properties of the skew-symmetric matrix Ã.

3. Chebyshev polynomials and orthogonal polynomials

In this section we recall some basic facts about Chebyshev polynomials and orthogonal
polynomials. Both notions will become crucial when studying the characteristic polynomials
we have encountered in Section 4.

3.1. Chebyshev polynomials.

Definition 3.1 (Chebyshev polynomials of the first kind). The sequence (Tn)n≥0 of poly-
nomials in Z[y] is defined by T0(y) = 1, T1(y) = y and Tn+1(y) = 2yTn(y)− Tn−1(y).

Definition 3.2 (Chebyshev polynomials of the second kind). The sequence (Un)n≥0 of
polynomials in Z[y] is defined by U0(y) = 1, U1(y) = 2y and Un+1(y) = 2yUn(y)− Un−1(y).

The recursion for (Un) is consistent with the convention U−1(y) = 0. Notice that Tn(y)
and Un(y) are polynomials of degree n for every n ≥ 1. The leading coefficient of Tn(y) is
2n−1, the leading coefficient of Un(y) is 2

n.
In the article we will need some identities for Chebyshev polynomials. Before we state

those identities, let us recall some trigonometric identities on which our calculations are
built.
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Remark 3.3 (Product to sum formula). Let θ and η be real numbers. Then

(i) 2 cos(θ) cos(η) = cos(θ − η) + cos(θ + η),

(ii) 2 sin(θ) cos(η) = sin(θ − η) + sin(θ + η),

(iii) 2 sin(θ) sin(η) = cos(θ − η)− cos(θ + η).

Especially, if we plug in θ = η in the first and second equation of the previous remark,
then we obtain the double angle formulae cos(2θ) = 2 cos2(θ) − 1 = 1 − 2 sin2(θ) and
sin(2θ) = 2 cos(θ) sin(θ).

Chebyshev polynomials arise in mathematics in many contexts and in particular, they
are related to trigonometry. Equations (i) and (ii) in Remark 3.3 imply that, for any θ ∈ R

and n ∈ N, we may write

Tn (cos(θ)) = cos (nθ) , Un (cos(θ)) =
sin ((n + 1)θ)

sin (θ)
. (8)

Remark 3.4. Equation (8) allows us read off the roots of the Chebyshev polynomials of
the first and second kind. Specifically, Tn(y) vanishes for

yl = cos

(
π(2l + 1)

2n

)
(l = 0, 1, . . . , n− 1);

since deg(Tn) = n, these are all the roots of Tn. Similarly, the roots of Un are

yl = cos

(
πl

n+ 1

)
(l = 1, 2, . . . , n).

Proposition 3.5. For every n ≥ 0 we have

(i) U2n+1(y) = 2Un(y)Tn+1 (y) , (ii) U2n(y) = Un(y)
2 − Un−1(y)

2.

Proof. The first statement follows from the double angle identity for sin((2n+ 2)θ).
To prove the second statement, we use Equation (8), the identity (iii) from Remark 3.3

and the double angle formula for cosine. We get, for all θ ∈ (0, π), that

2 sin2(θ)U2n(cos(θ)) = 2 sin(θ) sin ((2n+ 1)θ)

= cos(2nθ)− cos ((2n+ 2)θ)

=
[
1− 2 sin2(nθ)

]
−
[
1− 2 sin2 ((n + 1)θ)

]

= 2 sin2 ((n + 1)θ)− 2 sin2(nθ)

= 2 sin2(θ)Un(cos(θ))
2 − 2 sin2(θ)Un−1(cos(θ))

2.

This clearly proves that the statement holds for all y ∈ (−1, 1). This is enough to show that
the statement holds in Z[y], since the polynomials on both sides agree for infinitely many
real numbers. �

3.2. Orthogonal polynomial sequences.

Definition 3.6 (Orthogonal polynomial sequence). Given a monic polynomial sequence
(Pn)n≥0 with deg(Pn) = n and real coefficients, we say that (Pn) is an orthogonal polynomial
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sequence (OPS) if and only if it satisfies a recurrence of the form

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1

P0(x) = 1, P1(x) = x− β0

for some real coefficients (βn)n≥0 and (γn)n≥1 with γn 6= 0 for n ≥ 1.

Given instead a polynomial sequence (P̃n)n≥0 with deg(P̃n) = n and real coefficients, we

say that (P̃n) is an OPS if and only if the corresponding monic polynomial sequence (Pn),
given by dividing each polynomial by its leading coefficient, satisfies a recurrence relation
of the form given above.

Example 3.7. The sequences (Tn)n≥0 and (Un)n≥0 of Chebyshev polynomials are OPS.

Other equivalent definitions to Definition 3.6 exist involving linear functionals, in partic-
ular the polynomials in an OPS are pairwise orthogonal with respect to a suitable inner
product.

Theorem 3.8 (Christoffel–Darboux). Given (Pn)n≥0 a monic OPS with recurrence as in
Definition 3.6, we have the following identity

Pn+1(x)Pn(y)− Pn(x)Pn+1(y)

x− y
=

n∑

k=0

γk+1...γnPk(x)Pk(y)

Taking limy→x gives the confluent Christoffel–Darboux identity

P ′
n+1(x)Pn(x)− Pn+1(x)P

′
n(x) =

n∑

k=0

γk+1...γn(Pk(x))
2.

Remark 3.9. In particular, if γn > 0 for all n ≥ 1 then

P ′
n+1(x)Pn(x)− Pn+1(x)P

′
n(x) > 0

Theorem 3.10. The real zeros of any Pn in a monic OPS (Pn)n≥0 with recurrence as in
Definition 3.6 and γn > 0 for all n ≥ 1 are all simple.

Proof. Let x0 be a real root of Pn+1, then with x = x0 Remark 3.9 becomes

P ′
n+1(x0)Pn(x0) > 0,

therefore P ′
n+1(x0) 6= 0, which proves the theorem. �

Remark 3.11. A more complicated proof involving linear functionals can show that any
OPS as in Theorem 3.10 has only real zeros. This is not included here.

4. Tridiagonal matrices and characteristic polynomials

4.1. Tridiagonal matrices. Each of the matrices B1 and B2 in Proposition 2.25 can be
written as 



e0 1
1 e1 1

1 e2 1
. . .

. . .
. . .

1 en−2 1
1 en−1




(9)
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for some integers e0, . . . , en−1 (which will be different for B1 or B2 in general). By Proposi-
tion 2.23, the number ei is the number of white vertices that are adjacent to a black vertex
i. In this section we wish to study characteristic polynomials of tridiagonal matrices as
in Equation (9). The knowledge of the eigenvectors and eigenvalues makes it possible to
determine the number of perfect matchings of the graph as a product of the eigenvalues
thanks to Kasteleyn’s Theorem 2.19.

Let us fix an infinite sequence of integers e = (ek)k≥0.

Definition 4.1 (Tridiagonal matrices). For a natural number n, we denote the tridiag-
onal n × n matrix with sub- and super-diagonal entries (1, 1, . . . , 1) and diagonal entries
(e0, e1, . . . , en−1) in Formula (9) by Mn. We adopt the convention that M0 is the empty
matrix.

In the next lemma we use the convention XM0
(x) = 1.

Lemma 4.2. For every n ≥ 1 we have

XMn+1
(x) = (x− en)XMn

(x)−XMn−1
(x). (10)

Lemma 4.2 is well-known and can be proved by expanding XMn+1
(x) = det(xIn+1−Mn+1)

along the last column. It provides a recursion to compute the characteristic polynomials.
Notice that Equation (10) is coherent with the choice XM−1

(x) = 0.

Proposition 4.3. For any zero x0 of XMn
(x) (i.e. x0 any eigenvalue of Mn), the vector

v =




XM0
(x0)

XM1
(x0)
...

XMn−2
(x0)

XMn−1
(x0)




is an eigenvector of Mn with eigenvalue x0 and ker(x0In−Mn) = span{v} is the eigenspace
of Mn for this eigenvalue.

Proof. We can rearrange the recurrence from Lemma 4.2 to get for every k ≥ 0

xXMk
(x) = XMk−1

(x) + ekXMk
(x) + XMk+1

(x)

with the choice XM−1
(x) = 0. We then have

Mn




XM0
(x0)

XM1
(x0)
...

XMn−2
(x0)

XMn−1
(x0)




=




0 + e0XM0
(x0) + XM1

(x0)
XM0

(x0) + e1XM1
(x0) + XM2

(x0)
...

XMn−3
(x0)+ en−2XMn−2

(x0)+XMn−1
(x0)

XMn−2
(x0)+ en−1XMn−1

(x0)




=




XM−1
(x0) + e0XM0

(x0) + XM1
(x0)

XM0
(x0) + e1XM1

(x0) + XM2
(x0)

...
XMn−3

(x0)+ en−2XMn−2
(x0)+XMn−1

(x0)
XMn−2

(x0)+ en−1XMn−1
(x0)+ XMn

(x0)




−XMn
(x0)




0
0
...
0
1




= x0v − 0 = x0v



16 J. P. BRADSHAW, P. LAMPE, D. ZIGA

and v is non-zero since XM0
(x) = 1, hence v is an eigenvector of Mn with eigenvalue x0.

Finally the eigenspace ker(x0In−Mn) can only have dimension 1 since all roots of XMn
(x)

are simple by Theorem 3.10. �

4.2. Characteristic polynomials via Chebyshev polynomials. In this subsection we
relate the characteristic polynomials describing entries of eigenvectors to the Chebyshev
polynomials of the second kind from Section 3.1. Recall that the sequence (Un) satisfies the
recursion Un+1 = 2yUn − Un−1 for n ≥ 0 and has initial values U−1 = 0 and U0 = 1.

Let µ be a parameter.

Definition 4.4 (Shifted characteristic polynomials). We put fn(y) = XMn
(2y + µ).

Remark 4.5. We can rewrite Lemma 4.2 as

fn+1(y) = (2y + µ− en)fn(y)− fn−1(y)

= [2yfn(y)− fn−1(y)] + (µ− en)fn(y).

Lemma 4.6. For every n ≥ 0 we have

fn = Un +

n−1∑

k=0

(µ− ek)fkUn−k−1.

Proof. We prove the lemma by induction on n. Notice that, by definition f0 = 1 and
f1 = 2y + (µ − e0), so that the statement is true for n = 0 and n = 1. For the induction
step, we assume that this formula holds for both fn and fn−1. Using Un−(n−1)−2 = U−1 = 0
we may rephrase the induction hypothesis as

fn−1 = Un−1 +
n−2∑

k=0

(µ− ek)fkUn−k−2 = Un−1 +
n−1∑

k=0

(µ− ek)fkUn−k−2

fn = Un +
n−1∑

k=0

(µ− ek)fkUn−k−1

which can be used with Remark 4.5 to get

fn+1 = [2yfn − fn−1] + (µ− en)fn

=

[
2yUn + 2y

n−1∑

k=0

(µ− ek)fkUn−k−1 − Un−1 −

n−1∑

k=0

(µ− ek)fkUn−k−2

]
+ (µ− en)fnUn−n

=

[
2yUn − Un−1 +

n−1∑

k=0

(µ− ek)fk(2yUn−k−1 − Un−k−2)

]
+ (µ− en)fnUn−n

= Un+1 +

n−1∑

k=0

(µ− ek)fkUn−k + (µ− en)fnUn−n. �

4.3. Fibonacci product polynomials.

Definition 4.7 (Fibonacci product polynomials). The Fibonacci product polynomials are
two monic polynomial sequences (Pn)n≥0 and (Qn)n≥0 defined in terms of characteristic
polynomials. For any n ≥ 1,
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(i) Pn(x) is the characteristic polynomials of the n× n matrix



2 1
1 3 1

1 3 1

1 3
. . .

. . .
. . .




; (11)

(ii) Qn(x) is the characteristic polynomial of the n× n matrix



3 1
1 3 1

1 3 1

1 3
. . .

. . .
. . .




. (12)

We put P0(x) = Q0(x) = 1.

The polynomials in Definition 4.7 are well-known in the literature. Information about
them can be found for example in the On-Line Encyclopedia of Integers Sequences, see
entry A152063 [Slo]. The name reflects a property that we will see later in Proposition 4.13,
namely that the product of the roots of any of these polynomials is a Fibonacci number.
This property is related to Corollary 2.27.

Notice that some authors define the Fibonacci product polynomials using tridiagonal
matrices with entries −1 on the sub- and superdiagonal. Both definitions are equivalent by
the next Lemma 4.8; its proof is straightforward.

Lemma 4.8. With n× n matrices

D =




1
−1

1
−1

. . .




, M̃n =




e0 −1
−1 e1 −1

−1 e2 −1

−1 e3
. . .

. . .
. . .




we have, with Mn as in Lemma 4.2, that

DM̃nD
−1 =




e0 1
1 e1 1

1 e2 1

1 e3
. . .

. . .
. . .




= Mn.

So M̃n and Mn are similar, especially X
M̃n

(x) = XMn
(x), meaning Lemma 4.2 and the

results that follow can be used for X
M̃n

(x).

Remark 4.9. Each matrix in Definition 4.7 is equal to an Mn from Definition 4.1. Specif-
ically, we have en = 3 for all n ≥ 1 and e0 = 2 (in the case of Equation (11)) or e0 = 3 (in

https://oeis.org/A152063
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the case of Equation (12)) respectively. The recursion in Lemma 4.2 implies that, for n ≥ 1,

Pn+1(x) = (x− 3)Pn(x)− Pn−1(x),

Qn+1(x) = (x− 3)Qn(x)−Qn−1(x)

with P0(x) = Q0(x) = 1 and P1(x) = x− 2, Q1(x) = x− 3.

Proposition 4.10. Let n ≥ 0 be a natural number. Then

Pn(2y + 3) = Un(y) + Un−1(y),

Qn(2y + 3) = Un(y).

Proof. We use Lemma 4.6, with parameter µ = 3, on the matrices in Definition 4.7 to get

Pn(2y + 3) = Un(y) +

n−1∑

k=1

(3− 3)Pk(2y + 3)Un−k−1(y) + (3− 2)P0(2y + 3)Un−1(y),

Qn(2y + 3) = Un(y) +
n−1∑

k=0

(3− 3)Qk(2y + 3)Un−k−1(y).

We get the required identities by removing zero terms and using P0(2y + 3) = 1. �

Lemma 4.11. For every n ≥ 0 we have

Pn = Qn +Qn−1,

(x− 1)Qn = Pn+1 + Pn.

Proof. The first statement follows immediately from the identities in Proposition 4.10.
For the second statement, we can rearrange the recurrence in Remark 4.9 to get

Qn+1(x) + 2Qn(x) +Qn−1(x) = (x− 1)Qn(x)

and we can use the first statement to also get

(Qn+1(x) +Qn(x)) + (Qn(x) +Qn−1(x)) = Pn+1(x) + Pn(x). �

Lemma 4.12. For every n ≥ 0 we have

XMn
= Qn +

n−1∑

k=0

(3− ek)XMk
Qn−k−1.

Proof. In Lemma 4.6 we may replace each U with a Q as given in Proposition 4.10 then
substitute µ = 3 to get the expression. �

4.4. Roots of Fibonacci product polynomials. In this subsection we determine the
spectrum of the matrices in Equations (11) and (12); in other words, we determine the
roots of the Fibonacci product polynomials.

Proposition 4.13 (Folklore). Let n ≥ 0.

(i) The roots of the Fibonacci product polynomial Pn are

xl = 4 cos2
(

πl

2n+ 1

)
+ 1 (l = 1, 2, . . . , n).
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(ii) The roots of the Fibonacci product polynomial Qn are

xl = 4 cos2
(

πl

2(n+ 1)

)
+ 1 (l = 1, 2, . . . , n).

Proof. In both parts we use the identity 2 cos(θ) + 3 = 4 cos2(θ/2) + 1 for all θ ∈ R which
follows from the double angle formula.

(i) For every θ we have

Pn(2 cos (θ) + 3) sin (θ) = [Un(cos (θ)) + Un−1(cos (θ))] sin (θ) = sin ((n+ 1)θ) + sin (nθ) .

Let l ∈ [1, n]. To show that xl is a root of Pn, we substitute θ = 2πl
2n+1

, for which sin(θ) 6= 0,
in the previous equation and obtain

Pn

(
2 cos

(
2πl

2n+ 1

)
+ 3

)
sin

(
2πl

2n+ 1

)
= sin

(
2(n+ 1)πl

2n+ 1

)
+ sin

(
2nπl

2n+ 1

)

= sin

(
πl +

πl

2n+ 1

)
+ sin

(
πl −

πl

2n+ 1

)
= 0.

Notice that the xl with l ∈ [1, n] are pairwise distinct. There cannot exist other roots since
deg(Pn) = n.

(ii) We use the relation Qn(2y + 3) = Un(y). By Remark 3.4 the real numbers yl =
cos

(
πl

n+1

)
with l = 1, 2, . . . , n are the roots of Un(y). The double angle implies 2yl + 3 =

4 cos2
(

πl
2n+2

)
+ 1. �

Remark 4.14. The determinant of a matrix is equal to the product of the eigenvalues.
Combining Proposition 4.13 with Corollary 2.27 we see that the determinant of the matrix
(11) is equal to F2n+1 and that the determinant of the matrix (12) is equal to F2n+2.

4.5. Divisibility properties of Fibonacci product polynomials.

Proposition 4.15. We have Qr | Q2r+1 and Pr | Q2r in Z[x] for all integers r ≥ 0.

Proof. We plug y = (x− 3)/2 in Proposition 3.5. The first equation yields

Q2r+1(x) = 2Qr(x)Tr+1

(
x−3
2

)
.

Using its recursive definition it is easy to see that 2Tr(y) is a polynomial in x with integer
coefficients when we plug in y = (x− 3)/2.

The second equation in Proposition 3.5 yields

Q2r(x) = Qr(x)
2 −Qr−1(x)

2 = [Qr(x)−Qr−1(x)] [Qr(x) +Qr−1(x)] ;

this implies the claim because Qr(x) +Qr−1(x) = Pr(x). �

5. Applications

5.1. Recursions for graphs with black turns. Suppose that G is a snake graph coloured
such that all turns are black. By Proposition 2.25 the matrix BBT is a 2 × 2 block diag-
onal matrix whose diagonal blocks B1 and B2 are tridiagonal matrices. The matrix B1 is
parametrised by the upper boundary and B2 is parametrised by the lower boundary. We
denote the sizes of the blocks by m1 and m2. Recall each diagonal entry is equal to the
number of edges incident to the corresponding black vertex.
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For a moment we focus on one of the two boundaries, say B1, and label its black vertices
by 0, 1, . . . , m1 − 1 in order.

Definition 5.1 (Neighbour counting). For an integer l with 0 ≤ l ≤ m1 − 1 we denote by
el the number of neighbours of the black vertex l.

Definition 5.2 (Principal characteristic polynomials). For an integer l with 1 ≤ l ≤ m1

we denote by Xl = Xl(x) the characteristic polynomial of the principal submatrix of B1 on
rows and columns indexed by vertices 0, 1, . . . , l − 1. We use the convention X0 = 1.

The following statement follows immediately from Lemma 4.2.

Remark 5.3. For any l with 1 ≤ l ≤ m1 − 1 we have

Xl+1 = (x− el)Xl − Xl−1.

If x0 is an eigenvalue of B1, then (Xl(x0))0≤l≤m1−1 becomes an eigenvector of B1 by
Proposition 4.3. Remark 5.3 yields recursions for the entries of the eigenvector.

5.2. Horizontal snake graphs. Now we would like to apply the results from Section 4
to various classes of snake graphs. As our first application, we reprove Kasteleyn and
Temperley–Fisher’s Theorem 2.26 about the eigenvalues of horizontal snake graphs Hn be-
fore giving more original results in the subsequent subsections.

Let n ≥ 1. Recall that the horizontal snake graph Hn is formed from n square tiles aligned
in horizontal direction. It contains 2n+ 2 vertices, n+ 1 on the upper boundary and n+ 1
on the lower boundary.

Corollary 5.4. Suppose that G = Hn. Then the characteristic polynomial of BBT equals

XHn
(x) =

{
(x− 1)Qr(x)

2 if n = 2r is even;

Pr+1(x)
2 if n = 2r + 1 is odd.

Proof. The graph Hn has no turns, see Definition 2.3, because every vertex has exactly 3
neighbours unless it is incident with the first or the last vertical edge. In particular, if we
use any of the two ways to colour the graph in a bipartite fashion, every turn is black. So
the matrix BBT is a 2× 2 block diagonal matrix with blocks indexed by the black vertices
in the upper and lower boundary, respectively, according to Proposition 2.25.

Suppose that n = 2r with r ≥ 1. One of the diagonal blocks, say B1, is associated to a
boundary component having exactly r black vertices each of which has exactly 3 neighbours
in G. So XB1

(x) = Qr(x) by Definition 4.7. The other block, B2, is associated to a
boundary component with exactly r + 1 black vertices. The first and the last black vertex
have 2 neighbours each, whereas the other vertices have 3 neighbours each. Lemma 4.2
implies XB2

(x) = (x− 2)Pr(x)− Pr−1(x) = Pr+1(x) + Pr(x), which is equal to (x− 1)Qr(x)
by Lemma 4.11. Hence XHn

(x) = XB1
(x)XB2

(x) = (x− 1)Qr(x)
2.

Now suppose that n = 2r+1 with r ≥ 0. Both diagonal blocks, B1 and B2, are associated
to boundary components with exactly r + 1 black vertices. On each boundary component
there is one black vertex with 2 neighbours, located at the beginning or at the end. The
other vertices have 3 neighbours each. It follows that XB1

(x) = XB2
(x) = Pr+1(x) which

implies the claim. �
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Especially, the roots of the characteristic polynomial XHn
, except for the root 1 in the case

when n is even, are equal to the roots of the Fibonacci product polynomials given in Propo-
sition 4.13. Their multiplicities are twice as large. Hence, Corollary 5.4 yields another proof
of Kasteleyn and Temperley–Fisher’s Theorem 2.26 and, together with Proposition 4.13, it
yields another proof of the Fibonacci product formula in Corollary 2.27.

5.3. L-shaped snake graphs. In this subsection are interested in L-shaped snake graphs.
In every such graph there is exactly one turning tile having a 2-turn and a 4-turn. We colour
the vertices of G such that both turns are black. The matrix BBT is a block diagonal matrix,
and specifically, the first and last diagonal entries in B1 and B2 will be either 2 or 3, and
the entry at the index corresponding to the turn will be 2 for the upper boundary and 4 for
the lower boundary.

Theorem 5.5. The characteristic polynomials of BBT for the L-shaped snake graphs are
given by the expressions

X L2m,2n
= [Qm+n−1 −Qm−1Qn−1] [(x− 1)Qm+n + PmPn] ,

X L2m+1,2n+1
= [(x− 1)Qm+n − PmPn] [Qm+n+1 +QmQn] ,

X L2m,2n+1
= [Pm+n −Qm−1Pn] [Pm+n+1 + PmQn] .

Proof. We consider an L-shaped graph Lwidth,height. Notice that height and width can be
equal to 1 in which case G becomes a horizontal or a vertical snake graph, respectively.

We consider either the upper or the lower boundary of the graph Lwidth,height, say the
one corresponding to B1 in the notation of Subsection 5.1. This boundary component is a
path graph which is naturally divided into a first (horizontal) leg and a second (vertical)
leg. After reordering, we may assume that the black vertices on the horizontal leg are
0, 1, . . . , r− 1 and that the black vertices on the vertical leg are r− 1, . . . , r+ s− 2 for some
r, s ≥ 1. Here, the vertex r − 1 is a turn unless r = 1 or s = 1 in which case the graph is
horizontal or vertical and the vertex r − 1 is the first or last black vertex in the boundary
component.

We define

S =

{
+1 if on upper boundary;

−1 if on lower boundary;

p =

(
width +

1− S

2

)
mod 2 ∈ {0, 1};

q =

(
height +

1− S

2

)
mod 2 ∈ {0, 1}.

We then also have

r =

⌈
width + 1−S

2

2

⌉
, s =

⌈
height + 1−S

2

2

⌉
.

We follow the notation of Subsection 5.1 so that e0 and er+s−2 are the number of white
vertices in G neighbouring the first and the last black vertex, respectively, and er−1 is the
number of white vertices in G neighbouring the turn (if it exists). It should be clear that

ek = 3− pδk,0 + Sδk,r−1 − qδk,r+s−2.
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Lemma 4.12 gives that the characteristic polynomial of B1 is

Xr+s−1 = Qr+s−1 +
r+s−2∑

k=0

(3− ek)XkQr+s−2−k

= Qr+s−1 + pX0Qr+s−2 − SXr−1Qs−1 + qXr+s−2Q0.

Then we may repeat the use of Lemma 4.12 to get the following (provided we take Q−1 = 0
so that the formula works for r = 1 and/or s = 1)

Xr−1 = Qr−1 + pX0Qr−2 = Qr−1 + pQr−2,

Xr+s−2 = Qr+s−2 + pX0Qr+s−3 − SXr−1Qs−2

= Qr+s−2 + pQr+s−3 − S(Qr−1 + pQr−2)Qs−2.

We then substitute these into the full characteristic polynomial to get

Xr+s−1 = Qr+s−1 + (p+ q)Qr+s−2 + pqQr+s−3 − S(Qr−1 + pQr−2)(Qs−1 + qQs−2).

The results from Lemma 4.11 give for k ≥ 0 that Pk = Qk +Qk−1 and

(x− 1)Qk = Pk+1 + Pk = Qk+1 + 2Qk +Qk−1,

thus

Qr+s−1 + (p+ q)Qr+s−2 + pqQr+s−3 =





Qr+s−1 if p = q = 0;

Pr+s−1 if {p, q} = {0, 1};

(x− 1)Qr+s−2 if p = q = 1;

Qr−1 + pQr−2 =

{
Qr−1 if p = 0;

Pr−1 if p = 1;

Qs−1 + qQs−2 =

{
Qs−1 if q = 0;

Ps−1 if q = 1.

Therefore

Xr+s−1 =





Qr+s−1 − SQr−1Qs−1 if p = q = 0;

Pr+s−1 − SPr−1Qs−1 if p = 1, q = 0;

Pr+s−1 − SQr−1Ps−1 if p = 0, q = 1;

(x− 1)Qr+s−2 − SPr−1Ps−1 if p = q = 1.

This expression yields one of the two factors on the right hand side of each equation. The
other factor is constructed similarly using the other boundary component of G. �

Corollary 5.6. For every n we have PnQn−1 | X L2n,2n
and PnQn | X L2n+1,2n+1

.

Proof. If we set n = m in Theorem 5.5, we get

X L2n,2n
=

[
Q2n−1 −Q2

n−1

] [
(x− 1)Q2n + P 2

n

]
,

X L2n+1,2n+1
=

[
(x− 1)Q2n − P 2

n

] [
Q2n+1 +Q2

n

]
.

Proposition 4.15 establishes the claim. �
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5.4. Staircases. This subsection concerns the staircase Sm,3 with m ≥ 2 as introduced in
Example 2.2.

Theorem 5.7. The characteristic polynomials of BBT for the staircase snake graphs Sm,3

for m ≥ 2 are given by the expressions

XS2k,3
= (x− 2)Qk

(
(x− 3)2

) [
(x− 2)Qk

(
(x− 3)2

)
+ xQk−1

(
(x− 3)2

)]
,

XS2k+1,3
=

[
Qk+1

(
(x− 3)2

)
+ (x− 1)Qk

(
(x− 3)2

)]2
.

Proof. We define two infinite sequences of polynomials, (an)n≥0 and (bn)n≥0, such that an
is the characteristic polynomial of the n × n tridiagonal matrix as in Definition 4.1 with
alternating diagonal entries (2, 4, 2, 4, . . .), and bn is the same but with diagonal entries
(3, 2, 4, 2, 4 . . .) (where the 2, 4 part repeats).

We have a0 = 1, a1 = x − 2, b0 = 1, b1 = x− 3 and by Lemma 4.2 we have for k ≥ 1 the
recursions

a2k = (x− 4)a2k−1 − a2k−2, b2k = (x− 2)b2k−1 − b2k−2,

a2k+1 = (x− 2)a2k − a2k−1, b2k+1 = (x− 4)b2k − b2k−1.

For k ≥ 1 we can combine the two recursions for an as follows

a2k+2 = (x− 4)a2k+1 − a2k

= (x− 4) [(x− 2)a2k − a2k−1]− a2k

= [(x− 2)(x− 4)− 1] a2k − (x− 4)a2k−1

=
[
(x− 3)2 − 12 − 1

]
a2k − (a2k + a2k−2)

=
(
(x− 3)2 − 3

)
a2k − a2k−2.

Then with u(x) = (x− 3)2 = x2 − 6x+ 9 we have a2k+2 = (u(x)− 3)a2k − a2k−2. Since we
also have a0 = 1 = P0(u(x)) and a2 = x2 − 6x + 7 = u(x) − 2 = P1(u(x)), we can use the
recursion in Remark 4.9 to see that

a2k = Pk (u(x)) = Pk

(
(x− 3)2

)
.

We then use the recursion, the above result, and the results from Lemma 4.11 to get

(x− 4)a2k+1 = a2k+2 + a2k

= Pk+1(u(x)) + Pk(u(x))

= (u(x)− 1)Qk(u(x))

= (x− 4)(x− 2)Qk(u(x))

therefore we get

a2k+1 = (x− 2)Qk(u(x)) = (x− 2)Qk

(
(x− 3)2

)
.

Next, notice that b2k+2 is also the characteristic polynomial of the (2k + 2) × (2k + 2)
tridiagonal matrix as in Definition 4.1 with diagonal entries (2,4,2,4,. . . ,2,3), hence for k ≥ 0

b2k+2 = (x− 3)a2k+1 − a2k

= (x− 3)(x− 2)Qk(u(x))− Pk(u(x)).
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So for k ≥ 1 we get

b2k = (x− 3)(x− 2)Qk−1(u(x))− Pk−1(u(x))

=
(
(x− 3)2 + (x− 3)

)
Qk−1(u(x))−Qk−1(u(x))−Qk−2(u(x))

= (u(x)− 3)Qk−1(u(x))−Qk−2(u(x)) + (x− 1)Qk−1(u(x))

= Qk(u(x)) + (x− 1)Qk−1(u(x)),

Then, seperately verifying at k = 0, we have for k ≥ 0 that

b2k = Qk(u(x)) + (x− 1)Qk−1(u(x)).

For the odd index bn terms we get for k ≥ 1

(x− 2)b2k+1 = b2k+2 + b2k

= (x− 3)(x− 2)Qk(u(x))− Pk(u(x))

+ (x− 3)(x− 2)Qk−1(u(x))− Pk−1(u(x))

= (x− 3)(x− 2)(Qk(u(x)) +Qk−1(u(x)))− (u(x)− 1)Qk−1(u(x))

= (x− 3)(x− 2)(Qk(u(x)) +Qk−1(u(x)))− (x− 4)(x− 2)Qk−1(u(x))

= (x− 2)[(x− 3)Qk(u(x)) +Qk−1(u(x))].

Therefore, again separately verifying at k = 0, we have for k ≥ 0 that

b2k+1 = (x− 3)Qk(u(x)) +Qk−1(u(x)).

We now consider a staircase graph of the form Sm,3. In the notation of Subsection 5.1
we suppose that B1 is the block of BBT parametrised by the upper boundary and denote
by X+

l = X+
l (x) the characteristic polynomials of its submatrices as in Definition 5.2. We

denote by X−
l the corresponding characteristic polynomials of submatrices of B2. There are

m + 1 black vertices on each of the upper and lower boundaries, so B1 and B2 are both
(m + 1) × (m + 1) matrices. In fact B1 and B2 are both tridiagonal matrices of the form
given in Definition 4.1.

All diagonal entries of B1 except for the last follow the alternating pattern (2, 4, 2, 4, . . .),
and for B2 the pattern is (3, 2, 4, 2, 4, . . .) (where the 2, 4 part repeats), so for 0 ≤ n ≤ m
we have the following

X+
n = an =

{
Pk

(
(x− 3)2

)
if n = 2k even;

(x− 2)Qk

(
(x− 3)2

)
if n = 2k + 1 odd;

X−
n = bn =

{
Qk

(
(x− 3)2

)
+ (x− 1)Qk−1

(
(x− 3)2

)
if n = 2k even;

(x− 3)Qk

(
(x− 3)2

)
+Qk−1

(
(x− 3)2

)
if n = 2k + 1 odd.

The last diagonal entry of B1 is 2 if m is even (hence the staircase Sm,3 ends with a vertical
segment) and 3 if m is odd (Sm,3 ends with a horizontal segment), and similarly the last
diagonal entry of B2 is 3 if m is even and 2 if m is odd. We use this and the recursion from
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Remark 5.3 (or Lemma 4.2) to get

X+
m+1 =

{
(x− 2)a2k − a2k−1 = a2k+1 if m = 2k even;

(x− 3)a2k+1 − a2k = b2k+2 if m = 2k + 1 odd;

X−
m+1 =

{
(x− 3)b2k − b2k−1 = b2k+1 + b2k if m = 2k even;

(x− 2)b2k+1 − b2k = b2k+2 if m = 2k + 1 odd;

thus, using the expressions we found for the an and bn terms, we get

X+
m+1 =

{
(x− 2)Qk

(
(x− 3)2

)
if m = 2k even;

Qk+1

(
(x− 3)2

)
+ (x− 1)Qk

(
(x− 3)2

)
if m = 2k + 1 odd;

X−
m+1 =

{
(x− 2)Qk

(
(x− 3)2

)
+ xQk−1

(
(x− 3)2

)
if m = 2k even;

Qk+1

(
(x− 3)2

)
+ (x− 1)Qk

(
(x− 3)2

)
if m = 2k + 1 odd.

Finally, the full characteristic polynomial is given by the product X+
m+1X

−
m+1. �

6. Characteristic polynomials via continued fractions

6.1. Convergents of continued fractions. In this section we use a continued fraction
expansion as in Equation (3) to construct the characteristic polynomial of BBT .

Suppose that (a1, . . . , ak) is a sequence of positive integers or a sequence of non-constant
polynomials in the ring Q[x].

Definition 6.1 (Convergents). We define two sequences (p0, . . . , pk) and (q0, . . . , qk) by
the recursions p0 = 1, p1 = a1 and pl = alpl−1 + pl−2 for l ∈ [2, k] and q0 = 0, q1 = 1
and ql = alql−1 + ql−2 for l ∈ [2, k]. The quotients pl/ql are called the convergents of the
continued fraction [a1, . . . , ak].

Note that the elements pl and ql in Definition 6.1 are non-zero thanks to our assumptions
on the sequence (al)1≤l≤k. The following proposition is well-known.

Proposition 6.2. Let l ∈ [1, k]. The convergents satisfy

[a1, a2, . . . , al] = a1 +
1

a2 +
1

a3 +
1

. . . +
1

al

=
pl
ql
.

Here, the quotient pl/ql is a positive rational number or an element in the field of fractions
Q(x). Moreover, using the recursion it is easy to show that plql−1 − qlpl−1 = ±1 for every l.
This equation implies that the numerator pl and the denominator ql are coprime.

6.2. Characteristic polynomials as numerators of continued fractions. Suppose
that G is a snake graph coloured such that all turns are black. We equip the graph with the
Kasteleyn weighting from Proposition 2.25. So the matrix BBT is a 2 × 2 block diagonal
matrix whose diagonal blocks B1 and B2 are indexed by the upper and lower boundary. We
pick one of the boundaries, say the one corresponding to B1, and label its black vertices by
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1, 2, . . . , k in order. (Notice that in contrast to previous sections we begin the indexing with
1 for technical reasons.)

Definition 6.3 (Linear constituents). For an integer l ∈ [1, k] we put cl(x) = x− el ∈ Z[x]
where, as before, el is the number of neighbours of the black vertex l in G.

Theorem 6.4. Let G be a snake graph whose turns are all black. For any Kasteleyn
weighting the characteristic polynomial of the weighted adjacency matrix A can be written
as XA(t) = XB1

(t2)XB2
(t2) where XB1

(x) = p(x) is the numerator of the continued fraction

[[c1(x), . . . , ck(x)]] = c1(x)−
1

c2(x)−
1

c3(x)−
1

. . . −
1

ck(x)

=
p(x)

q(x)

and the polynomial XB2
(x) is constructed similarly using the second boundary graph.

Proof. Let l ∈ [1, k]. We consider the characteristic polynomial Xl = Xl(x) of the principal
submatrix of B1 on rows [1, l], see Defintion 5.2. We claim that Xl(x) = ε(l)pl(x) where pl
is the numerator of the continued fraction

[[c1(x), c2(x), . . . , cl(x)]] = [c1(x),−c2(x), c3(x), . . . , (−1)l+1cl(x)]

and ε(l) ∈ {±1} is a sign. More precisely, we claim that ε : N → {±1} is 4-periodic with
initial values (ε(0), ε(1), ε(2), ε(3)) = (1, 1,−1,−1); in other words, ε(l) = (−1)σ(l) with
σ(l) = 1

4
[2l + (−1)l − 1] for all l ≥ 0. Note that ε(l) = −ε(l− 2) and ε(l) = (−1)l+1ε(l− 1)

for all l ≥ 2.
We prove the claim by induction. The claim is true for l = 1 since X1(x) = x − e1

and for l = 2 since X2(x) = x2 − (e1 + e2)x + e1e2 − 1. Remark 5.3 asserts that Xl(x) =
cl(x)Xl−1(x) − Xl−2(x) for l ∈ [2, k]. The right hand side of the last expression becomes
ε(l)[(−1)l+1cl(x)pl−1(x)+pl−2] if we apply the induction hypothesis. This is equal to ε(l)pl(x)
by Definition 6.1.

An application of Proposition 2.21 finishes the proof of the statement. �

Example 6.5. The lower boundary of the graph in Figure 5 has a continued fraction

x− 3−
1

x− 2−
1

x− 4−
1

x− 3

=
x4 − 12x3 + 50x2 − 84x+ 46

x3 − 9x2 + 24x− 19
;

the numerator generates

XB1
(t) =

(
x4 − 12x3 + 50x2 − 84x+ 46

)∣∣∣∣
x=t2

= t8 − 12t6 + 50t4 − 84t2 + 46.
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Figure 5. The neighbour count on the lower boundary

6.3. Generalised snake graphs via rotations. In Subsection 6.2 we have given a method
to construct the characteristic polynomial when all turns of the given snake graph are
black. In this subsection we present a way to transform a snake graph with white turns
into a generalised snake graph and explain how to apply the results from Subsection 6.2 to
generalised snake graphs.

Definition 6.6 (Rotation at squares). Let G = (V,E) be a bipartite graph whose vertices
can be partitioned in V = V0 ⊔ V1 ⊔ V2 such that the following conditions hold.

(i) The full subgraph T of G on vertices V0 is a square with vertices A,B,C,D.
(ii) There are vertices S1, . . . , Sn ∈ V2 and R1, . . . , Rm ∈ V2 such that the edges (D,Si)

for i ∈ [1, n] and (C,Rj) for j ∈ [1, m] are the only edges in G connecting a vertex
in V2 to a vertex in V \V2.

(iii) A condition analogous to (ii) holds for the full subgraph G1 of G on vertices V1, see
Figure 6.

The rotation of G at T is the graph rT (G) = G′ = (V,E ′) with the same vertices and

E ′ = (E\ {(D,Si), (C,Rj) : i ∈ [1, n], j ∈ [1, m]}) ∪ {(B, Si), (A,Rj) : i ∈ [1, n], j ∈ [1, m]} .

Lemma 6.7. In the setup of Definition 6.6 the graphs G = (V,E) and rT (G) = (V,E ′)
have the same number of perfect matchings.

Proof. Let Match(G) denote the set of perfect matchings of G. We define a map

Φ: Match(G) → Match(G′)

as follows. Consider a perfect matching m ∈ M(G). Note that the vertex A can be matched
in two ways.

(i) The first way is (A,D) ∈ m. In this case (D,Si) /∈ m for all i ∈ [1, n]. Moreover,
(C,Rj) /∈ m for any j ∈ [1, m] for parity reasons. Hence, m ⊆ E ′ is a perfect
matching of G′ and we put Φ(m) = m.

(ii) The second way is (A,B) ∈ m.
(iia) If (C,D) ∈ m, then m ⊆ E ′ and we put Φ(m) = m.
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Figure 6. A rotation

(iib) If (C,D) /∈ m, then (D,Si) ∈ m for some i ∈ [1, n] because D must be matched.
Furthermore, (C,Rj) ∈ m for some j ∈ [1, m] for parity reasons. We define

Φ(m) = (m\ {(A,B), (D,Si), (C,Rj)}) ∪ {(C,D), (A,Rj), (B, Si)} .

It is easy to see that Φ is bijective. �

Definition 6.8 (Generalised snake graphs). A generalised snake graph is a graph that can
be obtained from a snake graph by applying a sequence of rotations.

Remark 6.9. Every generalised snake graph is a concatenation of a sequence of square tiles
such that each tile is glued to the previous tile along an edge. Moreover, every generalised
snake graph is planar.

Let us generalise the notions from Subsection 2.2.

Definition 6.10 (Turns). Let G be a generalised snake graph. A vertex of G is called a
turn if one of the following conditions holds.

(i) It is a vertex of at least 3 tiles.
(ii) It is diagonally opposite (across a tile) a turn as defined in (i), is a vertex of exactly

one tile, and is neither a vertex of the first tile nor a vertex of the last tile.

A turn is called an n-turn if it is adjacent to exactly n vertices (so that n ∈ {2, 4} if G is a
snake graph). A tile of G with exactly two turns as vertices is called a turning tile.

Note that 2 is the maximum number of turns a tile can have, that a turn defined by
condition (ii) is always a 2-turn, and that a turn defined by condition (i) is never a 2-turn.
No turn is ever a 3-turn, and for n > 3 any n-turn is diagonally opposite exactly n − 3
2-turns.

The proof of the following proposition is straightforward.

Proposition 6.11. Given a snake graph G, then there exists a sequence of rotations that
transforms G into a generalised snake graph whose turns are all black.

Example 6.12. Figure 7 shows the staircase S6,2 and a generalised snake graph whose turns
are all black that can be obtained from S6,2 by a sequence of rotations.

The generalised snake graph from Proposition 6.11 is unique and we denote it by black(G).
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Figure 7. Transformation into a graph with black turns

6.4. Continued fractions for graphs with white turns. To generalise Theorem 6.4 we
refine the notion of upper and lower boundary. Suppose that G is a generalised snake graph.

Suppose that G has at least two tiles. As in Subsection 2.2, we will refer to the edges
that bound the infinite face as boundary edges. The start edge of G is the edge of the first
square tile connecting the 2 vertices that do not belong to any other tile. The end edge is
defined similarly for the last tile. The subgraph of G formed by the boundary edges is a
circular graph C(G).

If we further remove the start and the end edge from the circular graph C(G), then we
obtain a disjoint union of two path graphs which we will call the upper and lower boundary
of G as in Definition 2.5. Here, the path graph containing the lower left vertex of the first
tile is the upper boundary if the next tile is above the first tile, otherwise it is the lower
boundary. Vertices in the upper or lower boundary are called upper and lower vertices,
respectively.

Musiker, Schiffler and Williams [MS10, MSW11] construct snake graphs from triangulated
surfaces. In this article we consider triangulated polygons since every snake graph can be
realised as the snake graph of a diagonal inside a triangulated polygon. Here, a triangulation
of a convex polygon is a maximal set of diagonals that do not intersect except possibly at
endpoints.

We fix a convex polygon Σ̃ and a triangulation T̃ of Σ̃. Let γ be a diagonal in Σ̃ that is

not part of the triangulation. Let Σ ⊆ Σ̃ be the union of the triangles of T̃ that intersect
γ. Then Σ is again a polygon, and it is naturally triangulated by a set T ⊆ T̃ . We label
the vertices of Σ in clockwise order by 0, 1, . . . , m− 1 for some m ≥ 3, and we will let k ≥ 1
denote the natural number such that γ connects vertex 0 to vertex k + 1. Let G = Gγ be
the snake graph associated with γ.

Let (a1, . . . , an) be the sign sequence of G. Without loss of generality we may assume
that n is even after applying the procedure in Remark 2.9 if necessary. (This procedure
corresponds to reversing the choice of the internal edge in the last tile.) We use Morier-
Genoud and Ovsienko’s formula [MGO19, Equation (1.2)] to define a sequence

(e1, . . . , ek′) =
(
a1 + 1, 2, . . . , 2︸ ︷︷ ︸

a2−1

, a3 + 2, 2, . . . , 2︸ ︷︷ ︸
a4−1

, . . . , an−1 + 2, 2, . . . , 2︸ ︷︷ ︸
an−1

)
.
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Lemma 6.13 (Morier-Genoud–Ovsienko). We have k = k′. Moreover, for any l ∈ [1, k]
the number el is equal to the number of triangles in T incident to vertex l.

The proof of the previous statement can be found in [MGO19, Proposition 2.1], after we
have convinced ourselves that the combinatorial description of the sequence (ai)1≤i≤n, see
[MGO19, Section 1.2, (1)], agrees with the sign sequence, compare Çanakçı–Schiffler [ÇS13,
Proof of Theorem 5.3 and Figure 18].

There is a similar statement about vertices on the boundary of Σ if we go from 0 to
k + 1 in counterclockwise direction. These numbers are related to the sign sequence after
reversing the choice of the internal edge in the first tile.

Note that, by construction of the snake graph G and the associated generalised snake
graph black(G), the upper boundary of black(G) contains exactly k black vertices. For
l ∈ [1, k] the number of triangles in T incident to l is equal to the number of (white) vertices
in G adjacent to l. Lemma 6.13 implies the following corollary.

Corollary 6.14. Let l ∈ [1, k]. Then el is equal to the number of neighbours of the black
vertex l in black(G).

The results of Subsections 2.5, 2.6 and 2.7 generalise to generalised snake graphs. Espe-
cially, any generalised snake graph admits a Kasteleyn weighting and all Kasteleyn weight-
ings are equivalent. With the terms just redefined the proof of Proposition 2.25 can be
easily modified to apply to generalised snake graphs G where all turns are black, as can var-
ious results that follow from this Proposition. In particular, if B is the weighted bipartite
adjacency matrix of G, then BBT is a 2× 2 block diagonal matrices whose diagonal blocks
are triadiagonal matrices. Hence, we can compute the characteristic polynomial of BBT

with the recursions from Section 4 or as the numerator of a continued fraction. As before,
the data required for this is given by the numbers of neighbours of the black vertices on one
of the two boundary path graphs.

6.5. Perfect matchings.

Theorem 6.15. Suppose that H is a generalised snake graph whose turns are all black,
equipped with a Kasteleyn weighting w. Let B be the weighted bipartite adjacency matrix of
H and let B1 and B2 be the diagonal blocks of the matrix BBT indexed by the black vertices
on the upper and lower boundary. Then |det(B1)| = |det(B2)| is equal to the number of
perfect matchings of H.

Proof. There is a snake graph G such that H is obtained from G by a sequence of rota-
tions. We consider the sign sequence (a1, . . . , an) of G and, without loss of generality, we
may assume that n is even after applying the procedure in Remark 2.9 if necessary. The
numerator in Çanakçı–Schiffler’s Formula

[a1, a2, . . . , an] =
p

q
,

see Equation (2), is equal to the number of perfect matchings of G, that is, M(G) = p.
Hirzebruch and Morier-Genoud–Ovsienko’s Formula, see Equation (4), implies

[[e1, e2, . . . , ek]] =
p

q
.
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By Corollary 6.14, k is equal to the number of black vertices in one of the boundary compo-
nents of H = black(G), say the one corresponding to B1, and for any l ∈ [1, k] the number
el is equal to the number of (white) vertices adjacent to the (black) vertex l in G. The
substitution x = 0 allows us to conclude from Theorem 6.4 that XB1

(0) = ±p; this implies
|det(B1)| = |XB1

(0)| = p.
Notice that p = M(G) = M(H) as a consequence of Lemma 6.7. If A denotes the

weighted adjacenct matrix of H , then Proposition 2.21 implies det(A) = ± det(B1) det(B2).
Thanks to Temperley–Fisher and Kasteleyn’s Theorem 2.19 we may rewrite the previous
equations as p2 = ± det(B1) det(B2); this implies |det(B2)| = p. �

Example 6.16. The graph in Figure 5 has the sign sequence (+,+,−,−,+,+,−,+,−)
which translates into a continued fraction [2, 2, 2, 1, 1, 1] = 46

19
. On the other hand, the lower

boundary of the graph has 4 black vertices which have 3, 2, 4 and 3 neighbours, respectively,
yielding the continued fraction [[3, 2, 4, 3]] = 46

19
. The numerator 46 gives us the number of

perfect matchings of the graph.
On the other hand, [[2, 4, 2, 3, 2]] = [1, 1, 2, 2, 1, 2] = 46

27
. The first expression arises when

we apply Theorem 6.15 to the the upper boundary. The second expression arises when we
construct the sign sequence but declare the left edge of the first tile to be internal instead
of the lower edge.

Remark 6.17. Let us revisit Theorem 6.15. Suppose that the matrix B1 is indexed by
the lower boundary without loss of generality. Let G′ = (V ′, E ′) be the full subgraph of
G obtained by removing the black vertices on the upper boundary and all edges incident
to them. Then the restriction of the weighting w to E ′ is a Kasteleyn weighting for G′

because G′ only has one face (the infinite face). The weighted adjacency matrix A′ of G′ is
a symmetric 2 × 2 block matrix whose blocks are indexed by the black and white vertices
of G′. Let B′ be the upper right block of A′, that is, B′ describes the adjacency between
black and white vertices in G′. By construction B1 = B′(B′)T . It is possible to show that
|det(B1)| is the square of the number of perfect matchings of G′. To be more precise, notice
that a perfect matching of G′ is a matching of G that covers all the black vertices. Then it is
possible to show that every such matching can be extended uniquely to a perfect matching
of G.
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