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Abstract

We consider the positive divisors of a natural number that do not
exceed its square root, to which we refer as the small divisors of the
natural number. We determine the asymptotic behavior of the arith-
metic function that adds the small divisors of a natural number, and
we consider its Dirichlet generating series.

1 Introduction

By the small divisors of a natural number n, we mean the set of integers
{d:d|n,1<d<+/n}.

The phrase “small divisors,” as defined here, is not to be confused with clas-
sical small divisors problems of mathematical physics (see, e.g., Yoccoz [5]).
Aside from an earlier paper by the author [3], our definition of this phrase
seems absent from the literature. Define the arithmetic function a by

a(n) = Z d,
d

n
d</n

the sum taken over natural numbers. Thus a(n) adds the small divisors of n.
The sequence a(n) appears as sequence A066839 in the OFIS [4]. We have
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the trivial bound,

[
a(n) < k=

B

(VA (Vi) +1) < & (n+ Vi) <.

1
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A. W. Walker has pointed out that

a(n) =Y d<vn) 1=+nr(n),
dg‘;ﬁ din
where 7(n) denotes the sum of all the positive divisors of n. As

lim L?) =0
n—oo N

for all § > 0 (see Apostol [I, Theorem 13.12]), it follows that

lim a(ln) =0
n—00 n§+5

for all 6 > 0. Thus, it seems that a(n) compares with /n. In § 2 we in fact
prove that a(n) has average order y/n. In § Bl we obtain some properties of
the Dirichlet generating series for a(n).

We observe here that the function a(n) is not multiplicative. It is, how-
ever, supermultiplicative:

Lemma 1. If m and n are relatively prime natural numbers, then a(mn) >
a(m)a(n).

Proof. Suppose d; and dy are small divisors of m, and d] and dj, are small
divisors of n. Since ged(m,n) = 1, we have dyd} = dad), if and only if d; = d»
and d| = d,. Therefore the product

a(m)a(n) = ( Z d)( 3 d') (1)

d'|n

d</m d'<ym

gives a sum, all of whose addends are distinct small divisors of mn. Therefore
a(m)a(n) < a(mn). O

Note that a(24) = 10 and a(36) = 16. Yet, 26 - 36 = 864 and a(864) =
130 < 160. Hence a(n) is not completely supermultiplicative.
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2 Asymptotic behavior of a(n)

Two functions f(x) and g(z) are said to be asymptotic when

lim @:1,

z—=00 g()

and we denote this by f(z) ~ g(x). We shall use the notation of Bachmann
and Landau, viz.,

f(x) =0 (g(x)),

whenever |f(x)| < Clg(z)| as  — oo for some positive constant C' indepen-
dent of z.
If f(n) and g(n) are arithmetic functions, we say f(n) is of average order

g(n) whenever § §
D k)~ (k)

(e.g., see Hardy and Wright [2], § 18.2]).

Theorem 2. The function a(n) is of average order \/n. More precisely,

n

Z a(k) = gn\/ﬁ + O(nlnn). (2)

k=1

Proof. Equation (2)) proves the theorem, for, by elementary calculus,

Z Vk = %n\/ﬁjL O(v/n).

Note that N
)= Y d= Syt T 3)
k=1 k=1 di\\k/_ (z,y)eA (z,y)eB

where the ordered pairs (z,y) range over all lattice points (that is, where x,
y € Z) of two regions, A C R? and B C R?, which are defined as follows,

A={(z,y): 0<y <z <Vn}
B={(z,y):vVn<z, 0<y<n/z},



Figure 1: Lattice points in regions A and B
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and which are depicted in Figure [Il
Then,
[Val @ 1 vl
> u=Y S u=y > alat) ZfH Zfﬂ
(z,y)€A r=1 y=1 =1

The first of these two sums yields

1%:& _ Wil(lval+ 1)@Vl +1) _ (Vr+0@1))*(2vn+0(1))
2

12 N 12 ’

while the second sum yields

1%93: Wal(Val +1) _ (Vai+0(1))
2 4 4 ’

r=1
where we have applied [z] = x + O(1) for all real x. Therefore

n+ 0(1))%(2¢/n + O(1 n+ 0(1))?
Zy:(f+ ())1(2f+ ())+(\f+4())

(z,y)EA

_ 1_12(\/5 +0(1))*(2v/n + O(1)),



which yields

(z,y)EA
Next, we have
n  [n/a]
y= >y
(z.y)eB z=[vn]+1 y=1
1 u n n
_ - AN 1)
2 Z |::L'} ([1’] *
a=[y/n]+1
1 u n 2
=3 (z+om) .
a=[y/n]+1
yielding

Z y:% Z %Jr()(nlnn),

which follows because chza% = O(Inb) for all a, b € N, a < b. By elemen-

tary calculus,
n

Lo Lio(l)
hence
Z yznT\/ﬁ—l—O(nlnn). (5)
(z,y)eB
As (2) follows immediately from (3]), (@), and (&), the proof is complete. [

It is thus natural to consider the behavior of the sequence a(n)//n. Per-
haps unsurprisingly, this behavior is irregular. For instance, it is clear that

a(n)

liminf —= =0,

N4
as a(p) = 1 for all primes p. On the other hand, it is easy to see that

lim sup m = 00.

vn
)



For, we need only consider the sequence s, = p?p3---p?, where the primes
are enumerated as p; = 2, po = 3, and so on. Every number of the form
pi'ps - psr, where ¢, = 0 or 1 for 1 < k < n, is a small divisor of s,.

Therefore .

a(sn) > pips - pir = [ [ + 1),
k=1

where the sum ranges over all n-tuples (€1, €, ..., €,) where ¢, = 0 or 1 for
1 <k <n. Hence

alsy) LT 1
o) S | | — | =
Jm == 2 lim (1 + ) oo

n k=1 Pk

The average order of a(n) is interesting when compared to that of the
function o(n), which adds all the positive divisors of n,

o(n)=> d.

din

The sequence o(n) appears as A000203 in the OFEIS. The average order

of o(n) is %Zn (see Hardy and Wright [2, § 18.3, Theorem 324]), i.e., we have

a nonunit multiple of n (%2 ~~ 1.645), as compared to Theorem [2 (merely /n

for the average order of a(n)).

3 The Dirichlet series of a(n)

An arithmetic function f(n) is said to have a Dirichlet generating series,
defined by

Lsf)=Y fls).
n=1
Following Riemann, we let s be a complex variable and write
s =0+ 1it,

where ¢ and ¢ are real; in particular o = Re(s). Hence |n®| = n?, therefore
n=1 ne .

n=1
6

a(n)

nS



Since a(n) > 1 for all n € N, it follows that

> ©)

n=1

diverges for all o < 1; similarly, as a(n) < n for all n, it follows that the
series ([B)) converges for all o > 2 (see Apostol [1, Theorem 11.8]). There-
fore, there exists & € R, 1 < o < 2, such that the Dirichlet series L(s,a)
converges on the half-plane ¢ > «a;, but does not converge on the half-plane
o < a. Here, ais called the abscissa of convergence of L(s, a) (see Apostol [1]
Theorem 11.9]).

Recall that the Dirichlet series L(s, 1) is the Riemann zeta function when
o > 1, and that L(s,1) has a = 1 as its abscissa of convergence. We write
C(s) = L(s,1).

Thus it follows that L(s,\/n) = ((s—3), and has as its abscissa of
convergence « = 3/2. Therefore, in light of Theorem [2, we expect the same
abscissa of convergence for a(n).

Theorem 3. The abscissa of convergence for the Dirichet series L(s,a) is
given by o = 3/2.

Proof. We need only show that the series (@) diverges at ¢ = 3/2, and
converges for 3/2 < o < 2 (for, L(o, a) decreases as o € R increases).
First we consider

dlk

d<Vvk
B P
_k_l - (k/d)3/2 d1/2
B d<Vk
1 1 1 1
=2 mE ogEt X pn g
(z,y)€eA (z,y)€B

where A and B are defined as in the proof of Theorem [2 (see Figure [I]).
By elementary calculus,

xT

1 “dy 1/2
R Ak
y=1



hence

T
> W'W:Zx:&pz 1/2 —QZ——2ZW
(z,y)eA z=1 y=1

> 2log [v/n] — 2((3/2),

where we applied > | 1/x > logm for all m € N. Clearly,

(z,y)€B
hence
" a(k) 1 1 1 1
st/zz Z WW"' Z W-ym_?log[f]—?w/?),
k=1 (z,y)€A (z,y)eB

which diverges to infinity as n — oo; thus the series (@) diverges at o = 3/2.
Next we consider % < 0 < 2. We remark that for M € N we have

M M 2—0
1 d M
Z o—1 S 1+/ 4 < . (7)
1

Here,

I
S
=
| -
N—
3
QU
Al =
AN

k=1 dlk
d<vk
1 1 1 1
:ZE.ya—l_l_ZE ya—l
(z,y)€A (z,y)€B



Applying (), we have both

o o—1 _o o—1
(z,y)eA vy a=1 " y=1 Y
[vn] 9_
1 x°
< _
- ; » 2—0
[vn]
1 1
T 2-o Z_; z2e=1)’
and
11 n oy
; ycr—l = ; ycr—l
(z,y)eB z=[y/n]+1 y=1
_o L [nfa
- x° 2—0
z=[y/n]+1
n?-c - 1
< _
z=[y/n]+1
hence e
n [ n 2 n
a(k) 1 1 n*=e 1
Yo Sy =Y me it X =
k=1 =1 z=[v/n]+1
Clearly
[vn] 1
Z 2-1) <((2(c—1))
r=1
We remark that
1
<
ot T \/ﬁ
because
~ 1 1 +/ dx<1+/dx_1
iy 2_([\f]+1)2 WA 2 T S met Vo



Thus by (&), (@), and (I0), we have

ia;i]j) - ¢(2(c — 1)) N 7 1

2—0 2—0 n

1 1
- 5 (st -+ —)
< 5o (o= 1) +1)

for all n € N. Hence the series (@) converges for all o such that $ <o <2. O

We may define the arithmetic function b(n) by b(1) = 1, and, when n has

unique prime factorization n = plﬁ SRRy

b(n) = a(py")a(ps?) - - - a(py).

Thus b(n) is multiplicative, and b(n) < a(n) for all n € N by Lemma [Il
Note, then, that for all o > 3/2 we have L(o,b) < L(o,a). Furthermore,
as b(n) is multiplicative, then L(s, b) has an Euler product representation on
its half-plane of convergence (see Apostol [I, Theorem 11.6]), given by

b b(p?)  b(p?
<1+ (Jz)+ (JZS)+ (JZS)JF,_.)
D % D
1 p+1 p+1 pPP4+p+1 p*P+p+1
_s 25 3s + 4s _I— 5s _I—
P P P P D

1 1 1 1
1+F+W+"' 1_'_?_'_%4_"'

L(s,b) =

where the products are taken over all the primes p. Note that the second
line follows because

for all primes p and integers n > 0.
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On the other hand, as a(n) < n for all natural numbers n, we have for

all o0 > 2,
<32,
“—~ n?

Hence for all o > 2,

((20 = 1)¢(0) < L(o,a) < ((o = 1). (11)

In light of Theorem 2 this is unsurprising, as, recalling L(o, v/n) = ¢ (a — %),

we see that the same bounds as in (II]) hold for all o > 2:

¢(20 = 1)¢(0) < L(o,v/n) < (o - 1).

The latter inequality is immediate, while the former follows because

1 ! - 1 ! _1< 1 1 -
p20—1 pa — po’—%

for all primes p and all o > 2.
Note that

hence ((2s — 1) = L(s, f), where

n, if n is a square;
Fln) = {f

0, otherwise.

As L(s,b) = ((2s — 1)((s), then (see Apostol [I, Theorem 11.5])

= f(d)

din

Thus b(n) adds the square roots of the square divisors of n. For example,
b(72) = 14+2+3+6 = 12; this compares to a(72) = 14+2+34+4+6+8 = 24.
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