
ar
X

iv
:1

91
0.

11
83

5v
1 

 [
m

at
h.

N
T

] 
 2

5 
O

ct
 2

01
9 On sums of the small divisors of a natural

number

Douglas E. Iannucci

University of the Virgin Islands

2 John Brewers Bay

St. Thomas VI 00802

diannuc@uvi.edu

Abstract

We consider the positive divisors of a natural number that do not

exceed its square root, to which we refer as the small divisors of the

natural number. We determine the asymptotic behavior of the arith-

metic function that adds the small divisors of a natural number, and

we consider its Dirichlet generating series.

1 Introduction

By the small divisors of a natural number n, we mean the set of integers

{d : d | n, 1 ≤ d ≤
√
n}.

The phrase “small divisors,” as defined here, is not to be confused with clas-
sical small divisors problems of mathematical physics (see, e.g., Yoccoz [5]).
Aside from an earlier paper by the author [3], our definition of this phrase
seems absent from the literature. Define the arithmetic function a by

a(n) =
∑

d|n
d≤√

n

d,

the sum taken over natural numbers. Thus a(n) adds the small divisors of n.
The sequence a(n) appears as sequence A066839 in the OEIS [4]. We have
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the trivial bound,

a(n) ≤
[
√
n]

∑

k=1

k =
1

2

[√
n
] ([√

n
]

+ 1
)

≤ 1

2

(

n +
√
n
)

≤ n.

A. W. Walker has pointed out that

a(n) =
∑

d|n
d≤√

n

d ≤
√
n
∑

d|n
1 =

√
n τ(n),

where τ(n) denotes the sum of all the positive divisors of n. As

lim
n→∞

τ(n)

nδ
= 0

for all δ > 0 (see Apostol [1, Theorem 13.12]), it follows that

lim
n→∞

a(n)

n
1

2
+δ

= 0

for all δ > 0. Thus, it seems that a(n) compares with
√
n. In § 2, we in fact

prove that a(n) has average order
√
n. In § 3 we obtain some properties of

the Dirichlet generating series for a(n).
We observe here that the function a(n) is not multiplicative. It is, how-

ever, supermultiplicative:

Lemma 1. If m and n are relatively prime natural numbers, then a(mn) ≥
a(m)a(n).

Proof. Suppose d1 and d2 are small divisors of m, and d′1 and d′2 are small
divisors of n. Since gcd(m,n) = 1, we have d1d

′
1 = d2d

′
2 if and only if d1 = d2

and d′1 = d′2. Therefore the product

a(m)a(n) =
(

∑

d|m
d≤√

m

d
)(

∑

d′|n
d′≤√

n

d′
)

(1)

gives a sum, all of whose addends are distinct small divisors of mn. Therefore
a(m)a(n) ≤ a(mn).

Note that a(24) = 10 and a(36) = 16. Yet, 26 · 36 = 864 and a(864) =
130 < 160. Hence a(n) is not completely supermultiplicative.
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2 Asymptotic behavior of a(n)

Two functions f(x) and g(x) are said to be asymptotic when

lim
x→∞

f(x)

g(x)
= 1,

and we denote this by f(x) ∼ g(x). We shall use the notation of Bachmann
and Landau, viz.,

f(x) = O (g(x)) ,

whenever |f(x)| ≤ C|g(x)| as x → ∞ for some positive constant C indepen-
dent of x.

If f(n) and g(n) are arithmetic functions, we say f(n) is of average order

g(n) whenever
n

∑

k=1

f(k) ∼
n

∑

k=1

g(k)

(e.g., see Hardy and Wright [2, § 18.2]).

Theorem 2. The function a(n) is of average order
√
n. More precisely,

n
∑

k=1

a(k) =
2

3
n
√
n+O(n lnn). (2)

Proof. Equation (2) proves the theorem, for, by elementary calculus,

n
∑

k=1

√
k =

2

3
n
√
n +O(

√
n).

Note that
n

∑

k=1

a(k) =

n
∑

k=1

∑

d|k
d≤

√
k

d =
∑

(x,y)∈A
y +

∑

(x,y)∈B
y, (3)

where the ordered pairs (x, y) range over all lattice points (that is, where x,
y ∈ Z) of two regions, A ⊂ R

2 and B ⊂ R
2, which are defined as follows,

A = {(x, y) : 0 < y ≤ x ≤
√
n},

B = {(x, y) :
√
n < x, 0 < y ≤ n/x },
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Figure 1: Lattice points in regions A and B
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and which are depicted in Figure 1.
Then,

∑

(x,y)∈A
y =

[
√
n]

∑

x=1

x
∑

y=1

y =
1

2

[
√
n]

∑

x=1

x(x+ 1) =
1

2

[
√
n]

∑

x=1

x2 +
1

2

[
√
n]

∑

x=1

x.

The first of these two sums yields

1

2

[
√
n]

∑

x=1

x2 =
[
√
n]([

√
n] + 1)(2[

√
n] + 1)

12
=

(
√
n+O(1))2(2

√
n+O(1))

12
,

while the second sum yields

1

2

[
√
n]

∑

x=1

x =
[
√
n]([

√
n] + 1)

4
=

(
√
n +O(1))2

4
,

where we have applied [x] = x+O(1) for all real x. Therefore

∑

(x,y)∈A
y =

(
√
n +O(1))2(2

√
n+O(1))

12
+

(
√
n+O(1))2

4

=
1

12
(
√
n+O(1))2(2

√
n+O(1)),
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which yields
∑

(x,y)∈A
y =

n
√
n

6
+O(n). (4)

Next, we have

∑

(x,y)∈B
y =

n
∑

x=[
√
n]+1

[n/x]
∑

y=1

y

=
1

2

n
∑

x=[
√
n]+1

[n

x

] ([n

x

]

+ 1
)

=
1

2

n
∑

x=[
√
n]+1

(n

x
+O(1)

)2

,

yielding
∑

(x,y)∈B
y =

n2

2

n
∑

x=[
√
n]+1

1

x2
+O(n lnn),

which follows because
∑b

x=a
1
x
= O(ln b) for all a, b ∈ N, a < b. By elemen-

tary calculus,
n

∑

x=[
√
n]+1

1

x2
=

1√
n
+O

(

1

n

)

,

hence
∑

(x,y)∈B
y =

n
√
n

2
+O(n lnn). (5)

As (2) follows immediately from (3), (4), and (5), the proof is complete.

It is thus natural to consider the behavior of the sequence a(n)/
√
n. Per-

haps unsurprisingly, this behavior is irregular. For instance, it is clear that

lim inf
a(n)√

n
= 0,

as a(p) = 1 for all primes p. On the other hand, it is easy to see that

lim sup
a(n)√

n
= ∞.
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For, we need only consider the sequence sn = p21p
2
2 · · · p2n, where the primes

are enumerated as p1 = 2, p2 = 3, and so on. Every number of the form
pǫ11 p

ǫ2
2 · · · pǫnn , where ǫk = 0 or 1 for 1 ≤ k ≤ n, is a small divisor of sn.

Therefore

a(sn) ≥
∑

pǫ11 p
ǫ2
2 · · · pǫnn =

n
∏

k=1

(pk + 1),

where the sum ranges over all n-tuples (ǫ1, ǫ2, . . . , ǫn) where ǫk = 0 or 1 for
1 ≤ k ≤ n. Hence

lim
n→∞

a(sn)√
sn

≥ lim
n→∞

n
∏

k=1

(

1 +
1

pk

)

= ∞.

The average order of a(n) is interesting when compared to that of the
function σ(n), which adds all the positive divisors of n,

σ(n) =
∑

d|n
d.

The sequence σ(n) appears as A000203 in the OEIS . The average order
of σ(n) is π2

6
n (see Hardy and Wright [2, § 18.3, Theorem 324]), i.e., we have

a nonunit multiple of n (π
2

6
≈ 1.645), as compared to Theorem 2 (merely

√
n

for the average order of a(n)).

3 The Dirichlet series of a(n)

An arithmetic function f(n) is said to have a Dirichlet generating series ,
defined by

L(s, f) =

∞
∑

n=1

f(n)

ns
.

Following Riemann, we let s be a complex variable and write

s = σ + it,

where σ and t are real; in particular σ = Re(s). Hence |ns| = nσ, therefore

∞
∑

n=1

∣

∣

∣

∣

a(n)

ns

∣

∣

∣

∣

=
∞
∑

n=1

a(n)

nσ
.
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Since a(n) ≥ 1 for all n ∈ N, it follows that

∞
∑

n=1

a(n)

nσ
(6)

diverges for all σ ≤ 1; similarly, as a(n) ≤ n for all n, it follows that the
series (6) converges for all σ > 2 (see Apostol [1, Theorem 11.8]). There-
fore, there exists α ∈ R, 1 < α ≤ 2, such that the Dirichlet series L(s, a)
converges on the half-plane σ > α, but does not converge on the half-plane
σ < α. Here, α is called the abscissa of convergence of L(s, a) (see Apostol [1,
Theorem 11.9]).

Recall that the Dirichlet series L(s, 1) is the Riemann zeta function when
σ > 1, and that L(s, 1) has α = 1 as its abscissa of convergence. We write
ζ(s) = L(s, 1).

Thus it follows that L(s,
√
n) = ζ

(

s− 1
2

)

, and has as its abscissa of
convergence α = 3/2. Therefore, in light of Theorem 2, we expect the same
abscissa of convergence for a(n).

Theorem 3. The abscissa of convergence for the Dirichet series L(s, a) is

given by α = 3/2.

Proof. We need only show that the series (6) diverges at σ = 3/2, and
converges for 3/2 < σ < 2 (for, L(σ, a) decreases as σ ∈ R increases).

First we consider

n
∑

k=1

a(k)

k3/2
=

n
∑

k=1

1

k3/2

∑

d|k
d≤

√
k

d

=

n
∑

k=1

∑

d|k
d≤

√
k

1

(k/d)3/2
· 1

d1/2

=
∑

(x,y)∈A

1

x3/2
· 1

y1/2
+

∑

(x,y)∈B

1

x3/2
· 1

y1/2
,

where A and B are defined as in the proof of Theorem 2 (see Figure 1).
By elementary calculus,

x
∑

y=1

1

y1/2
≥

∫ x

1

dy

y1/2
= 2x1/2 − 2,

7



hence

∑

(x,y)∈A

1

x3/2
· 1

y1/2
=

[
√
n]

∑

x=1

1

x3/2

x
∑

y=1

1

y1/2
≥ 2

[
√
n]

∑

x=1

1

x
− 2

[
√
n]

∑

x=1

1

x3/2

≥ 2 log
[√

n
]

− 2ζ(3/2),

where we applied
∑m

x=1 1/x ≥ logm for all m ∈ N. Clearly,

∑

(x,y)∈B

1

x3/2
· 1

y1/2
≥ 0,

hence

n
∑

k=1

a(k)

k3/2
=

∑

(x,y)∈A

1

x3/2
· 1

y1/2
+

∑

(x,y)∈B

1

x3/2
· 1

y1/2
≥ 2 log

[√
n
]

− 2ζ(3/2),

which diverges to infinity as n → ∞; thus the series (6) diverges at σ = 3/2.
Next we consider 3

2
< σ < 2. We remark that for M ∈ N we have

M
∑

y=1

1

yσ−1
≤ 1 +

∫ M

1

dy

yσ−1
≤ M2−σ

2− σ
. (7)

Here,

n
∑

k=1

a(k)

kσ
=

n
∑

k=1

1

kσ

∑

d|k
d≤

√
k

d

=
n

∑

k=1

∑

d|k
d≤

√
k

1

(k/d)σ
· 1

dσ−1

=
∑

(x,y)∈A

1

xσ
· 1

yσ−1
+

∑

(x,y)∈B

1

xσ
· 1

yσ−1
.
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Applying (7), we have both

∑

(x,y)∈A

1

xσ
· 1

yσ−1
=

[
√
n]

∑

x=1

1

xσ

x
∑

y=1

1

yσ−1

≤
[
√
n]

∑

x=1

1

xσ
· x2−σ

2− σ

=
1

2− σ

[
√
n]

∑

x=1

1

x2(σ−1)
,

and

∑

(x,y)∈B

1

xσ
· 1

yσ−1
=

n
∑

x=[
√
n]+1

1

xσ

[n/x]
∑

y=1

1

yσ−1

≤
n

∑

x=[
√
n]+1

1

xσ
· [n/x]

2−σ

2− σ

≤ n2−σ

2− σ

n
∑

x=[
√
n]+1

1

x2
,

hence
n

∑

k=1

a(k)

kσ
≤ 1

2− σ

[
√
n]

∑

x=1

1

x2(σ−1)
+

n2−σ

2− σ

n
∑

x=[
√
n]+1

1

x2
. (8)

Clearly
[
√
n]

∑

x=1

1

x2(σ−1)
≤ ζ(2(σ − 1)). (9)

We remark that
n

∑

x=[
√
n]+1

1

x2
≤ 1√

n
, (10)

because

n
∑

x=[
√
n]+1

1

x2
≤ 1

([
√
n] + 1)2

+

∫ n

[
√
n]+1

dx

x2
≤ 1

n
+

∫ n

√
n

dx

x2
=

1√
n
.

9



Thus by (8), (9), and (10), we have

n
∑

k=1

a(k)

kσ
≤ ζ(2(σ − 1))

2− σ
+

n2−σ

2− σ
· 1√

n

=
1

2− σ

(

ζ(2(σ − 1)) +
1

nσ− 3

2

)

≤ 1

2− σ
(ζ(2(σ − 1)) + 1)

for all n ∈ N. Hence the series (6) converges for all σ such that 3
2
< σ < 2.

We may define the arithmetic function b(n) by b(1) = 1, and, when n has
unique prime factorization n = pβ1

1 pβ2

2 · · · pβk

k ,

b(n) = a(pβ1

1 )a(pβ2

2 ) · · · a(pβk

k ).

Thus b(n) is multiplicative, and b(n) ≤ a(n) for all n ∈ N by Lemma 1.
Note, then, that for all σ > 3/2 we have L(σ, b) ≤ L(σ, a). Furthermore,
as b(n) is multiplicative, then L(s, b) has an Euler product representation on
its half-plane of convergence (see Apostol [1, Theorem 11.6]), given by

L(s, b) =
∏

p

(

1 +
b(p)

ps
+

b(p2)

p2s
+

b(p3)

p3s
+ · · ·

)

=
∏

p

(

1 +
1

ps
+

p + 1

p2s
+

p+ 1

p3s
+

p2 + p+ 1

p4s
+

p2 + p+ 1

p5s
+ · · ·

)

=
∏

p

(

1 +
1

p2s−1
+

1

p4s−2
+ · · ·

)(

1 +
1

ps
+

1

p2s
+ · · ·

)

=
∏

p

(

1− 1

p2s−1

)−1(

1− 1

ps

)−1

= ζ(2s− 1)ζ(s),

where the products are taken over all the primes p. Note that the second
line follows because

b(pn) = a(pn) = 1 + p+ · · ·+ p[n/2]

for all primes p and integers n ≥ 0.

10



On the other hand, as a(n) ≤ n for all natural numbers n, we have for
all σ > 2,

L(σ, a) ≤
∞
∑

n=1

n

nσ
= ζ(σ − 1).

Hence for all σ > 2,

ζ(2σ − 1)ζ(σ) ≤ L(σ, a) ≤ ζ(σ − 1). (11)

In light of Theorem 2, this is unsurprising, as, recalling L(σ,
√
n) = ζ

(

σ − 1
2

)

,
we see that the same bounds as in (11) hold for all σ > 2:

ζ(2σ − 1)ζ(σ) ≤ L(σ,
√
n) ≤ ζ(σ − 1).

The latter inequality is immediate, while the former follows because

(

1− 1

p2σ−1

)−1(

1− 1

pσ

)−1

≤
(

1− 1

pσ−
1

2

)−1

for all primes p and all σ > 2.
Note that

ζ(2s− 1) =
∞
∑

n=1

n

n2s
,

hence ζ(2s− 1) = L(s, f), where

f(n) =

{√
n, if n is a square;

0, otherwise.

As L(s, b) = ζ(2s− 1)ζ(s), then (see Apostol [1, Theorem 11.5])

b(n) =
∑

d|n
f(d).

Thus b(n) adds the square roots of the square divisors of n. For example,
b(72) = 1+2+3+6 = 12; this compares to a(72) = 1+2+3+4+6+8 = 24.
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