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Abstract

A vertex coloring of a graph G is called distinguishing (or symmetry breaking) if no

non-identity automorphism of G preserves it, and the distinguishing number, shown by

D(G), is the smallest number of colors required for such a coloring. This paper is about

counting non-equivalent distinguishing colorings of graphs with k colors. A parameter,

namely Φk(G), which is the number of non-equivalent distinguishing colorings of a graphG

with at most k colors, is shown here to have an application in calculating the distinguishing

number of the lexicographic product andX-join of graphs. We study this index (and some

other similar indices) which is generally difficult to calculate. Then, we show that if one

knows the distinguishing threshold of a graph G, which is the smallest number of colors

θ(G) so that, for k ≥ θ(G), every k-coloring of G is distinguishing, then, in some special

cases, counting the number of distinguishing colorings with k colors is vary easy. We

calculate θ(G) for some classes of graphs including the Kneser graph K(n, 2). We then

turn to vertex partitioning by studying the distinguishing coloring partition of a graph

G; a partition of vertices of G which induces a distinguishing coloring for G. There, we

introduce Ψk(G) as the number of non-equivalent distinguishing coloring partitions with

at most k cells, which is a generalization to its distinguishing coloring counterpart.
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tinguishing coloring partition
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1 Introduction

Breaking symmetries of graphs via vertex coloring is a subject initiated by Babai’s work [3] in

1977. There, he introduced the asymmetric coloring of a graph, and proved that a tree has an

asymmetric coloring with two colors if all vertices have the same degree α ≥ 2, where α can be

an arbitrary finite or infinite cardinal. The concept was later called distinguishing coloring in

the literature, since the appearance of [1] by Albertson and Collins in 1996.

This paper is about counting non-equivalent distinguishing colorings and partitions of a

given graph with k colors. Considering this number in case of 2 colors is as old as symmetry

breaking in graphs; in 1977 Babai [3] tried to count distinguishing colorings of infinite trees,

while in 1991 Polat and Sabidussi [19] tried to count essentially different asymmetrising sets

in finite and infinite trees which are distinguishing (coloring) partitions with 2 cells in our

terminology (see Section 4).

A vertex coloring of a graph G is called distinguishing if it is only preserved by the identity

automorphism; in this case, we say that the coloring breaks all the symmetries of G. By a

k-distinguishing coloring we mean a distinguishing coloring which uses exactly k colors. The

distinguishing number of a graph G, denoted D(G), is the smallest number d such that there

exists a distinguishing vertex coloring of G with d colors. The graphG is called d-distinguishable

if there exists a distinguishing vertex coloring with d colors [1]. The distinguishing number of

some important classes of graphs are as follows: D(Kn) = n, D(Kn,n) = n + 1, D(Pn) = 2 for

n ≥ 2, D(C3) = D(C4) = D(C5) = 3 while D(Cn) = 2 for n ≥ 6 [1].

A whole wealth of results on the subject has already been generated. Among many, we

can only mention a few, only those that have essentially important results, or those that have

introduced new indices based on distinguishing colorings. For a connected finite graph G, it

was independently proved by Collins and Trenk [5] and Klavžar et al. [18] that D(G) ≤ ∆+1,

where ∆ is the largest degree of G. Equality holds if and only if G is a complete graph K∆+1, a

balanced complete bipartite graph K∆,∆, or C5. Collins and Trenk [5] also mixed the concept of

distinguishing colorings with proper vertex colorings to introduce the distinguishing chromatic

number χD(G) of a graph G. It is defined as the minimum number of colors required to properly

color the vertices of G such that this coloring is only preserved by the trivial automorphism.

They also showed that, for a finite connected graph G, we have χD(G) ≤ 2∆(G) and that

equality holds only if G is isomorphic to K∆,∆ or C6.

Symmetry breaking can also happen via other kinds of graph colorings. An analogous index

for an edge coloring, namely the distinguishing index D′(G), has been introduced by Kalinowski

and Piĺsniak in [16] as the minimum number of the required colors in an asymmetric edge-

coloring of a connected graph G 6≃ K2. Moreover, they showed that D′(G) ≤ ∆(G) for a

finite connected graph G, unless G is isomorphic to C3, C4 or C5. Another analogous index is

introduced by Kalinowski, Piĺsniak and Woźniak in [17]; the total distinguishing number D′′(G)

is the minimum number of required colors in an asymmetric total coloring of G.

To generalize some results from the finite case to the infinite ones, Imrich, Klavžar and

Trofimov [15] considered the distinguishing number for infinite graphs. They showed that for
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an infinite connected graph G we have D(G) ≤ n, where n is a cardinal number such that the

degree of any vertex of G is not greater than n. Most symmetry breaking concepts have their

relative counterparts in the infinite case, however, there are some (such as the Infinite Motion

Conjecture) that arise only when we consider infinite graphs. As an instance, one can take

a look at [13] by Imrich et al. which contains comparisons of some distinguishing indices of

connected infinite graphs.

It was also interesting to know the distinguishing number for the product graphs. For

example, Bogstad and Cowen [4] showed that for k ≥ 4, every hypercube Qk of dimension k,

which is the Cartesian product of k copies of K2, is 2-distinguishable. It has also been shown by

Imrich and Klavžar in [14] that the distinguishing number of Cartesian powers of a connected

graph G is equal to two except for K2
2 , K

2
3 , K

3
2 . Meanwhile, Imrich, Jerebic and Klavžar [12]

showed that Cartesian products of relatively prime graphs whose sizes are close to each other

can be distinguished with a small number of colors. Moreover, Estaji et al. in [8] proved that

for every pair of connected graphs G and H with |H| ≤ |G| < 2|H|−|H|, we have D(G✷H) ≤ 2.

Gorzkowska, Kalinowski and Piĺsniak proved a similar result for the distinguishing index of the

Cartesian product [10].

The lexicographic product was a subject of symmetry breaking via vertex and edge coloring

by Alikhani and Soltani in [2], where they showed that under some conditions on the auto-

morphism group of a graph G, we have D(G) ≤ D(Gk) ≤ D(G) + k − 1, where Gk is the kth

lexicographic power of G, for any natural number k. As well, they showed that if G and H are

connected graphs, then D(H) ≤ D(G ◦H) ≤ |V (G)| ·D(H).

Coloring is not the only mean of symmetry breaking in graphs. For example, one might

break the symmetries of a graph via a more general tool such as vertex partitioning. Ellingham

and Schroeder introduced distinguishing partition of a graph as a partition of the vertex set

that is preserved by no nontrivial automorphism [7]. Here, unlike coloring, some graphs have

no distinguishing partition. Anyhow, for a graph G that admits a distinguishing partition, one

may think of the minimum number of required cells in a distinguishing partition of the vertex

set. Here, we show this index by DP(G).

In this paper, we introduce some further indices related to symmetry breaking of graphs by

studying the number of non-equivalent distinguishing colorings of a graph with k colors and

some other similar quantities. This is motivated by the problem of evaluating the distinguishing

number of a lexicographic product or an X-join of some graphs, which we consider in Section 5.

The paper is organized as follows. In Section 2, we consider the number of non-equivalent

distinguishing colorings of a graphG with (exactly) k colors, namely Φk(G) (and ϕk(G)) and, we

calculate these indices for some simple types of graphs. Afterwards in Section 3, we introduce

the distinguishing threshold as a dual index to the distinguishing number. It is shown that

calculations of some indices introduced in Sections 2 and 4 are easier, in some cases, when

we know the distinguishing threshold. Moreover, in Section 4, we consider the number of

non-equivalent distinguishing coloring partitions of a graph G with (exactly) k cells, namely

Ψk(G) (and ψk(G)) and, we calculate them in some special cases. Additionally in Section 4,

some other auxiliary indices are also introduced. Then, we present an application of one of
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the indices introduced here, namely Φk(G), in Section 5. We, finally, conclude the paper by

shedding some lights on the future investigations in Section 6.

Here, we use the standard notation and terminology of graph theory, which can be found

in [6]. We only remind that the set of neighbors of a vertex v in G is denoted by N(v), while

N [v] stands for the set N(v) ∪ {v}.

2 Non-equivalent Distinguishing Colorings

Two colorings c1 and c2 of a graph G are called equivalent if there is an automorphism α of G

such that c1(v) = c2(α(v)) for all v ∈ V (G).

The number of non-equivalent distinguishing colorings of a graph G with {1, . . . , k} as the

set of admissible colors is shown by Φk(G), while the number of non-equivalent k-distinguishing

colorings of a graph G with {1, . . . , k} as the set of colors is shown by ϕk(G). When G has

no distinguishing colorings with exactly k colors, we put ϕk(G) = 0. It is also clear that

ΦD(G)(G) = ϕD(G)(G). Moreover, it is straightforward to show that

Φk(G) =

k
∑

i=D(G)

(

k

i

)

ϕi(G).

Note,aslo, that ϕk(Kn) is nonzero only when k = n, for which we know ϕn(Kn) = 1. It is easy

to prove that for n ≥ 2 and k ≥ n,

Φk(Kn) =

(

k

n

)

.

In the following two theorems, we give some recursive formulas for Φk(Pn) and ϕk(Pn). An

interested reader can find some explicit formulas for these indices (and Φk(Cn) and ϕk(Cn)

as well), in the Online Encyclopedia of Integer Sequences under the relevant sequence number

(see Appendix A).

Theorem 2.1. For n = 4, 5, . . ., we have

Φk(Pn) =

(

k

2

)

kn−2 + kΦk(Pn−2),

while Φk(P2) =
(

k
2

)

and Φk(P3) = k
(

k
2

)

.

Proof. The proof is clear for n = 2, 3. For n ≥ 4, we know that the two end-vertices of Pn

either have different colors or the same color. If they are different in colors, we can pick the two

colors in
(

k
2

)

different ways, and, the internal vertices can have any possible kn−2 combinations,

because the only non-trivial automorphism of Pn has to map its end vertices onto one another.

When the two end-vertices have the same color, we can choose their color in k different ways,

but to be sure that the coloring is distinguishing, the remaining path of length n− 2 must be

distinguishingly colored in Φk(Pn−2) ways.
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In the next result, we make use of the well-known fact that the number of surjective functions

from a set of n elements to a set of k elements is k!
{

n
k

}

where
{

n
k

}

is the Stirling number of the

second type.

Theorem 2.2. For n = 4, 5, . . ., we have

ϕk(Pn) = k
(

ϕk(Pn−2)+ϕk−1(Pn−2)
)

+

(

k

2

)

(

(k−2)!

{

n− 2

k − 2

}

+2(k−1)!

{

n− 2

k − 1

}

+k!

{

n− 2

k

}

)

.

Proof. With the same method of counting to the proof of Theorem 2.1, we know that either

the colors of the two ends of Pn are the same or they are different. If they are the same, we can

pick this color in k different ways. Since the coloring has to be distinguishing, the internal path

of length n−2 has to be colored distinguishingly with either all k colors or the remaining k−1

colors. Therefore in this case we have k
(

ϕk(Pn−2) + ϕk−1(Pn−2)
)

non-equivalent distinguishing

colorings for Pn.

When the two end-vertices of Pn have different colors, any arbitrary coloring of internal

vertices makes the resulting coloring a distinguishing one. We can pick the two colors for the

end vertices in
(

k
2

)

ways while the rest of colors must be presented on the internal vertices.

Thus, there are four different possibilities; either only the rest of k − 2 colors are used to

color the internal vertices of Pn, or these k − 2 colors are used along with one of the two

colors of the end vertices (two different possibilities), or all the k colors are presented on

the internal vertices of Pn. In each case we must count the number of surjective functions

from the set of available colors to the set of internal vertices. Therefore in this case we have
(

k
2

)

(

(k − 2)!
{

n−2
k−2

}

+ 2(k − 1)!
{

n−2
k−1

}

+ k!
{

n−2
k

}

)

non-equivalent distinguishing colorings for Pn

with exactly k colors.

We, additionally, calculate these indices for the complete bipartite graph Kn,n. Note that

D(Kn,n) = n+ 1.

Theorem 2.3. For n = 2, 3, . . . we have

Φk(Kn,n) =
1

2

(

k

n

)

(

(

k

n

)

− 1
)

,

and for n+ 1 ≤ k ≤ 2n we have

ϕk(Kn,n) =
1

2

(

k

n

)(

n

k − n

)

.

Proof. The proof is easy for the first assertion since to color Kn,n distinguishingly, one should

color the vertices of each part different from other vertices within that part and the two parts

of Kn,n have to be colored differently. Since we have chosen n colors out of k colors to color

the vertices of a part of Kn,n, we cannot color the other part by the same pallet of colors.

Moreover, transposing the first and the second part makes the two resulting colorings equivalent.

Therefore, we arrive at a conclusion for the first assertion.
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For the second assertion, like the first one, we color the vertices of one part by choosing n

colors out of k ones, then we use the remaining k − n colors for the vertices of the other part.

For the rest of the vertices, i.e. the 2n − k vertices in the other part, we must choose colors

from the first set of n colors in
(

n
2n−k

)

=
(

n
n−2n+k

)

=
(

n
k−n

)

ways. Again, by transposing the

first and the second part, the two resulting colorings are equivalent. This makes the second

assertion evident.

In Appendix A, we have presented the parameters Φk and ϕk for the graphs Pn and Cn, for

n, k = 2, . . . , 10.

It might seem easy to calculate Φk(G) and ϕk(G) when G is a path or a cycle. However,

the calculations are not easy in the general case. Even for a computer algebra system, it might

take very long to count the number of non-equivalent distinguishing colorings of a symmetric

graph G on n vertices when n ≥ 10. Anyhow, even when n is large, for some k the calculations

are much easier.

Let G be a graph on n vertices. Assume that we desire to distinguishingly color the vertices

of G with exactly n colors. Then every vertex must receive a color different from the others

which gives rise to n! colorings. However, in order to count non-equivalent colorings, we should

consider the colorings modulo the automorphism group of G. Therefore, we have the following

result, which coincides with Theorem 3.5 in the next section.

Proposition 2.4. For any graph G on n vertices, we have

ϕn(G) =
n!

|Aut(G)|
.

This result motivates us to ask whether there are numbers k ≤ n such that any k-coloring

of a graph on n vertices is distinguishing. We will consider this problem in Section 3.

3 Distinguishing Threshold

For any graph G, we define the distinguishing threshold θ(G) to be the minimum number t such

that for any k ≥ t, any arbitrary coloring of G with k colors is distinguishing. For example

θ(Kn) = θ(Kn) = n and θ(Km,n) = m + n. Note, also, that for an asymmetric graph G, we

have θ(G) = D(G) = 1.

Let G be a graph on n vertices. If any pair of vertices of G have different neighborhoods

from each other, then any (n−1)-coloring of G has to be distinguishing because in this case, no

two vertices with the same color can be mapped to each other by a non-trivial color-preserving

automorphism. Conversely, if there are two vertices of G whose neighborhoods are the same,

then any (n − 1)-coloring of G which assigns the same color to these two vertices, is not

distinguishing. From this, we observe the following.

Lemma 3.1. For any graph G on n vertices, θ(G) ≤ n − 1 if and only if N(v) 6= N(u), for

any pair v, u ∈ V (G).
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For the cases of paths and cycles we can calculate the distinguishing threshold.

Proposition 3.2. For any n ≥ 2 we have

θ(Pn) = ⌈
n

2
⌉ + 1.

Proof. The automorphism group of Pn induces ⌈n
2
⌉ orbits on its vertices, while each orbit

contains at most two vertices. By the pigeonhole principle, any combination of ⌈n
2
⌉ + 1 colors

on n vertices of Pn breaks at least one orbit. Since with ⌈n
2
⌉ colors, there is a non-distinguishing

coloring, we must have θ(Pn) = ⌈n
2
⌉+ 1.

Proposition 3.3. For any n ≥ 3 we have

θ(Cn) = ⌊
n

2
⌋ + 2

Proof. To show that θ(Cn) ≥ ⌊n
2
⌋ + 2, we present an (⌊n

2
⌋ + 1)-coloring of an n-cycle with

the vertex set {v1, . . . , vn} which is not a distinguishing coloring. If n is even, then color the

vertices v1, . . . , v⌊n

2
⌋+1 by colors 1, . . . , ⌊n

2
⌋+1, and color the vertices v⌊n

2
⌋+2, . . . , n by ⌊n

2
⌋, . . . , 2,

respectively. Similarly, if n is odd, color the vertices v1, . . . , v⌊n

2
⌋+1 by colors 1, . . . , ⌊n

2
⌋+1, and

color v⌊n

2
⌋+2, . . . , n by ⌊n

2
⌋ + 1, . . . , 2, respectively. This coloring is not distinguishing as it

cannot break the reflection symmetry that fixes v1 and maps v2 on vn. Figure 1 illustrates this

coloring for C8 and C9.

It remains to show that for k ≥ ⌊n
2
⌋+2, every k-coloring of Cn is distinguishing. When n is

odd, coloring the vertices of Cn with k colors results in at least three colors that are used only

once. Similarly, when n is even, coloring the vertices of Cn with k colors results in at least four

colors that are used only once. Hence, in any case, for any coloring of Cn, with k colors, there

are at least three colors which are used only once. Now consider vertices v1, v2 and v3 whose

colors appeared only once in a k-coloring and suppose that P is the only path in Cn from v1
to v2 that does not contain v3. Any color-preserving automorphism α of Cn must map P onto

itself, which means that α is the identity. This completes the proof.

•

•

•

•

••

•

•
•

•

•

•
••

•

•

•❘❘❘❘

✱✱
✱✱

✒✒
✒✒

❧❧❧❧
❘❘❘❘

✱✱✱✱

✒✒✒✒

❧❧❧❧ ❙❙❙

✶✶
✶

✙✙
✙

③③③
❉❉❉

✪✪✪

✌✌✌

❦❦❦

Figure 1: Non-distinguishing colorings for C8 and C9 with 5 distinct colors.

It, therefore, seems an interesting problem on its own to calculate the distinguishing thresh-

old of various families of graphs. As an example, one might ask this question for the Petersen

graph P . In fact, this graph is a member of a well-known family of graphs, namely, the Kneser

graphs. Let 0 ≤ k ≤ n/2. Then, the Kneser graph K(n, k) is a graph whose vertex set is
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the set of all k-subsets of {1, . . . , n} where two vertices are adjacent if and only if their corre-

sponding sets do not intersect. It is easy to see that K(n, k) is a vertex-transitive graph on
(

n
k

)

vertices with valency
(

n−k
k

)

, and that P = K(5, 2). To study more on Kneser graphs see, for

instance, [9].

We now evaluate the distinguishing threshold of the Kneser graphs K(n, 2).

Proposition 3.4. For any n ≥ 5, we have θ(K(n, 2)) = 1
2
(n2 − 3n+ 6). In particular, if P is

the Petersen graph, then θ(P ) = 8.

Proof. Assume that k ≥ 1
2
(n2 − 3n + 6) and, to get a contradiction, suppose that there is a

k-coloring of K(n, 2) which is not distinguishing. This implies that there is a color-preserving

automorphism α such that α(u) = v, for some distinct vertices u and v. Let R be the set of

common neighbors of u and v. Thus

r = |R| =

(

n− 4 + i

2

)

,

where i ∈ {0, 1} is the possible size of the intersection of the corresponding 2-sets of u and v.

Furthermore, let S = N(u) \N [v] and S ′ = N(v) \N [u]. Therefore, we have

s = |S| = |S ′| =

(

n− 2

2

)

− r + i− 1.

Moreover, let

X = V (K(n, 2)) \ ({u, v} ∪R ∪ S ∪ S ′) .

Hence

x = |X| =

(

n

2

)

− (2 + r + 2s).

Note that, since we have α(N(u)) = N(v), the color-pallet of N(u) must be the same as that

of N(v). Thus, the number of colors used for coloring the vertices in {u, v} ∪ R ∪ S ∪ S ′ is at

most 1 + r + s. Consequently, we have to color the vertices in X with k − (1 + r + s) colors.

But this is impossible because k − (1 + r + s) > x. The reason is as follows:

k − (1 + r + s)− x = k − 1− r − s−

(

n

2

)

+ 2 + r + 2s

= k −

(

n

2

)

+ 1 + s

≥
1

2
(n2 − 3n+ 6)−

(

n

2

)

+ 1 +

(

n− 2

2

)

−

(

n− 4 + i

2

)

+ i− 1

≥
1

2
(n2 − 3n+ 6)−

(

n

2

)

+ 1 +

(

n− 2

2

)

−

(

n− 3

2

)

> 0

Now, suppose that k = 1
2
(n2 − 3n + 4) = 1

2
(n2 − 3n + 6) − 1. We show that there is a

k-coloring of K(n, 2) which is not distinguishing. Color the vertices {3, 1} and {3, 2} by the
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color 1, the vertices {4, 1} and {4, 2} by the color 2, . . ., and the vertices {n, 1} and {n, 2} by

the color n − 2, while the other
(

n
2

)

− 2n + 4 vertices receive the remaining k − n + 2 colors.

Note that
(

n

2

)

− 2n+ 4 = k − n+ 2.

Now, consider the mapping ({3, 1}, {3, 2})({4, 1}, {4, 2})({5, 1}, {5, 2}) · · · ({n, 1}, {n, 2}) which

is a nontrivial color-preserving automorphism of K(n, 2).

The next result reveals the importance of the distinguishing threshold in counting the num-

ber of non-equivalent distinguishing colorings.

Theorem 3.5. Let G be a graph on n vertices. For any k ≥ θ(G) we have

ϕk(G) = k!

{

n

k

}

/|Aut(G)|.

Proof. When k ≥ θ(G), any k-coloring of G is distinguishing. Therefore, to calculate ϕk(G),

we must only count the number of non-equivalent k-colorings. We know that the total number

of k-colorings of G is equal to the number of surjective functions from the set of vertices to

the set of colors. As it is noted just before Theorem 2.2, this number is k!
{

n
k

}

. Furthermore,

for any automorphism α ∈ Aut(G), the image of a k-coloring f under α is equivalent to f .

Consequently, the result holds.

Using Theorem 3.5 and Propositions 3.2 and 3.3 the following results follow immediately.

Corollary 3.6. Let n ≥ 2. For any k ≥ ⌈n
2
⌉ + 1 we have

ϕk(Pn) = k!

{

n

k

}

/2.

Corollary 3.7. Let n ≥ 3. For any k ≥ ⌊n
2
⌋ + 2 we have

ϕk(Cn) = k!

{

n

k

}

/2n.

Furthermore, it is immediate to observe that, for any n ≥ 4, ϕn−1(Pn) = 1
4
(n − 1)n! and

that for any n ≥ 5, ϕn−1(Cn) =
1
4
(n− 1)(n− 1)!, which agree with the tables in Appendix A.

4 Non-equivalent Distinguishing Partitions

In this section, we turn our attention to the case of different distinguishing partitions of graphs.

Let G be a graph and let P1 and P2 be two partitions of the vertices of G. We say P1 and P2

are equivalent if there is a non-trivial automorphism of G which maps P1 onto P2. The number
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of non-equivalent partitions of G, with at most k cells, is called the partition number of G and

is denoted by Πk(G).

Meanwhile, a distinguishing coloring partition of a graph G is a partition of the vertices

of G such that it induces a distinguishing coloring for G. Note that the minimum number

of cells required for such a partition equals the distinguishing number D(G). The number of

non-equivalent distinguishing coloring partitions of a graph G with at most k cells is shown by

Ψk(G), while the number of non-equivalent distinguishing coloring partitions of a graph G with

exactly k cells is shown by ψk(G). It is not difficult to observe that

Ψk(G) =
∑

j≤k

ψj(G),

and that ψn(G) = 1, for any graph G on n vertices. In what follows, we deal with ψk(G) and

present some calculations where G is a path or a cycle. We start with the following observation

which states how ψ2(Pn) is related to ϕ2(Pn).

Proposition 4.1. For any n ≥ 1, ψ2(P2n+1) =
1
2
ϕ2(P2n+1) and ψ2(P2n) =

1
2
ϕ2(P2n) + 2n−2.

Proof. First we consider the path P2n+1. It is evident that any distinguishing coloring partition

with two cells induces two distinguishing colorings. Furthermore, since only one of the two cells

contains the middle vertex of P2n+1, these two colorings are non-equivalent; this proves the first

part.

To see the next part, we note that ϕ2(P2n) counts two different types of distinguishing

coloring partitions: it counts type 1, which consists of the partitions in which swapping the two

colors makes the resulting colorings equivalent, only once, while it counts type 2, which are the

remaining partitions, twice. Hence, if we add the number of distinguishing coloring partitions

of type 1 to ϕ2(P2n), then every distinguishing coloring partitions of P2n is counted twice. On

the other hand, it is not hard to see that the number of distinguishing coloring partitions of

type 1 is equal to 2n/2 = 2n−1. Therefore,

ψ2(P2n) =
ϕ2(P2n) + 2n−1

2
,

which completes the proof.

An immediate consequence of Proposition 4.1 is that ϕ2(Pn) is always an even number. We

can, furthermore, calculate ψk(Pn) in the case k = n− 1.

Proposition 4.2. Let n ≥ 2. We have ψn−1(Pn) = ⌊n2

4
⌋.

Proof. As there are n − 1 different cells, any partition of the vertices of Pn = v1v2 · · · vn will

result in exactly one pair of vertices in the same part of the partition. So it suffices to count

the number of different ways to choose two vertices such that including them in one cell and

all the other vertices in singleton cells, results in a distinguishing coloring partition such that

no two such partitions are mapped to each other using the non-trivial automorphism of Pn.

10



First, assume n is even. We split Pn to two halves: A = {v1, . . . , vn

2
} and B = {vn

2
+1, . . . , vn}.

There are two non-equivalent cases: (a) the two vertices are chosen from A, and (b) one is

chosen from A and the other one is chosen from B. The case (a) contains
(

n/2
2

)

ways. On the

other hand, case (b), in turn, contains the following subcases: if one chooses v1, then there

are |B| = n
2
choices for the second vertex; if one chooses v2, then there are n

2
− 1 choices for

the second vertex (note that the case (v2, vn) is equivalent to (v1, vn−1) which has already been

counted). Continuing this argument, we will have

n

2
+ (

n

2
− 1) + · · ·+ 1 =

n2

8
+
n

4

choices in case (b). Hence, the total number of ways is n2/4 and the result follows.

In the case where n is odd, we set A = {v1, . . . , vn−1

2

} and B = {vn+1

2
+1, . . . , vn}. Similar

to the even case above, there are (n−1)2

4
choices for the pairs to belong to the same cell of

the partition, where either the pair is chosen from A or one vertex from A and the other one

from B. In addition, there are n−1
2

further non-equivalent partitions in this case, in which the

2-vertex cell consists of a vertex of A along with the middle vertex vn+1

2

. We conclude that the

total number of choices is (n2 − 1)/4, which completes the proof.

In the next proposition, we consider the same problem as in Proposition 4.2 for the case of

cycles in which we make use of the distinguishing threshold of Cn.

Proposition 4.3. Let n ≥ 3. We have ψn−1(Cn) = 0, 1, if n = 3 and n = 4, respectively, and

ψn−1(Cn) = ⌊n
2
⌋, if n ≥ 5.

Proof. It is easy to check the result in the small cases n = 3, 4 directly. We, therefore, consider

the case n ≥ 5. In this case, n− 1 ≥ ⌊n/2⌋+2 = θ(Cn) and, according to Proposition 3.2, any

coloring of Cn with n− 1 colors is a distinguishing coloring. Thus, it is sufficient to count the

number of non-equivalent partitions of the vertices {v1, v2, · · · , vn} of Cn into n− 1 cells, such

that no two such partitions are mapped to each other using an automorphism of Cn. It is not

hard to see that there is a one-to-one correspondence between the family of such partitions and

the set of all possible distances in Cn. In other words, the only such partitions are the ones

including the cells {v1, v2}, {v1, v3}, . . ., {v1, v⌊n+1

2
⌋}. Therefore the result follows.

We note that ψk(G) = Ψk(G) − Ψk−1(G), for any graph G; in other words, in order to

calculate ψk(G), we can use Ψk(G) if we already know the latter index of G. In the next

theorem, we calculate Ψk(Pn). To do so, we need the following notation. Recall that, for a

given graph G, a distinguishing partition is a partition of the vertex set of G such that no

nontrivial automorphism of G can preserve it (see [7]) and that DP(G) is the minimum number

of cells in a distinguishing partition of G. It is evident that if G admits a distinguishing

partition, then DP(G) ≥ D(G). For n ≥ 3, the path Pn admits a distinguishing partition and

DP(Pn) = 2.

11



We define Ξk(G) to be the number of non-equivalent distinguishing partitions of G with

at most k cells. Correspondingly, ξk(G) denotes the number of non-equivalent distinguishing

partitions of G with exactly k cells. It is not hard to see that

Ξk(G) =
∑

j≤k

ξj(G).

Note that, if G does not admit a distinguishing partition with exactly k cells, then ξk(G) = 0

and that ξk(G) = Ξk(G)− Ξk−1(G).

Theorem 4.4. Let n ≥ 2. For any k ≥ 2 we have

Ψk(Pn) = Πk(Pn)− Πk(P⌈n

2
⌉)− Ξk(P⌈n

2
⌉)

Proof. In order to count Ψk(Pn), the number of non-equivalent distinguishing coloring partitions

of Pn with at most k cells, we should subtract the number of non-distinguishing partitions from

the total number of non-equivalent partitions of Pn with at most k cells, i.e. Πk(Pn). Note

that if a partition of Pn is non-distinguishing, then its restriction to P⌈n

2
⌉, is either a non-

distinguishing or a distinguishing partition. The number of the partitions of the former type is

Πk(P⌈n

2
⌉)− Ξk(P⌈n

2
⌉), while the number of the partitions of the latter type is Ξk(P⌈n

2
⌉)

Let α and β be the non-trivial automorphisms of Pn and P⌈n

2
⌉, respectively. If a partition

π = {π1, . . . , πr} (r ≤ k) of P⌈n

2
⌉ is non-distinguishing, i.e. β(π) = π, then the lifted partition

π′ = {π1 ∪ α(π1), . . . , πr ∪ α(πr)}

of Pn is non-distinguishing. However, if a partition σ = {σ1, . . . , σr} (r ≤ k) of P⌈n

2
⌉ is distin-

guishing, i.e. β(σ) 6= σ, then the two lifted partitions

σ′ = {σ1 ∪ α(σ1), . . . , σr ∪ α(σr)} and σ′′ = {β(σ1) ∪ α(β(σ1)), . . . , β(σr) ∪ α(β(σr))}

of Pn are non-equivalent non-distinguishing partitions. On the other hand, by the definition,

the number of partitions σ is equal to Ξk(P⌈n

2
⌉). Therefore the total number of non-equivalent

non-distinguishing partitions of Pn equals to

Πk(P⌈n

2
⌉)− Ξk(P⌈n

2
⌉) + 2Ξk(P⌈n

2
⌉) = Πk(P⌈n

2
⌉) + Ξk(P⌈n

2
⌉),

which completes the proof.

Theorem 4.4 provides a nice connection among Ψk(Pn), Πk(Pn) and Ξk(Pn). See Appendix B

for tables of these indices.

5 Distinguishing Lexicographic Products

In this section we provide an important application of one of the indices introduced in this

paper, namely Φk(G). We start by recalling some preliminaries to the topic of lexicographic

product of graphs.
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Let X be a graph. The X-join of {Yx|x ∈ V (X)}, is the graph Z with

V (Z) = {(x, y) : x ∈ X, y ∈ Yx}

and

E(Z) = {[(x, y), (x′, y′)] : [x, x′] ∈ E(X) or else x = x′ and [y, y′] ∈ E(Yx)}.

Whenever, for all x ∈ X , we have Yx ≃ Y , for a fixed graph Y , the graph Z is called the

lexicographic product of X and Y and we write Z = X ◦ Y .

We remind the reader that in [2], some bounds on the distinguishing number of the lexico-

graphic product of graphs have been presented. In this section, we calculate the distinguishing

number of a lexicographic product whenever this calculation is possible.

Automorphism groups of the X-join of {Y }x and lexicographic products were studied by

Hemminger [11] and Sabidussi [20]. Hemminger defined natural isomorphisms of an X1-join

graph onto X2-join graph as follows: let Zi be an Xi-join of {Yix}x∈Xi
, i = 1, 2. Then a graph

isomorphism µ of Z1 onto Z2 is called natural if for each x1 ∈ X1 there is an x2 ∈ X2 such

that µ(Y1x1
) = Y2x2

. Otherwise µ is called unnatural. He then characterized all the X-join

graphs whose automorphism groups consists of all their natural automorphisms [11]. When the

automorphisms of an X-join graph (or a lexicographic product) are all natural ones, it is easier

to break them, as we do it here.

Theorem 5.1. Suppose that X ◦ Y represents the lexicographic product of the two graphs X

and Y . Then D(X ◦ Y ) = k where k is the least integer that Φk(Y ) ≥ D(X), provided that all

the automorphisms of X ◦ Y be the natural ones.

Proof. When all the automorphisms of G = X ◦Y are natural ones, any distinguishing coloring

of G has to break symmetries inside Yx for all x ∈ V (X) and for each automorphism α of X

that maps u on v (u 6= v), colorings of Yu and Yv must be non-equivalent. Therefore, whenever

G has a distinguishing coloring with k colors, we must have Φk(Y ) ≥ D(X).

By a similar argument, we find an upper bound for the distinguishing number of the X-join

of a set of graphs {Yx}x∈X . To do so, we need some notation in our argument. Let f be a

distinguishing coloring of X with D(X) colors. For x ∈ X let

C(x) = {w ∈ X : f(x) 6= f(w) and Yx ≃ Yw} ∪ {x}

and

Dx = min{k : Φk(Yx) ≥ |C(x)|}.

For each x ∈ X , we obviously have |C(x)| ≥ 1 and Dx ≥ D(Yx). Moreover, put

df = max{Dx : x ∈ X}.

Theorem 5.2. Let Z be the X-join of {Yx}x∈X whose automorphism group is the set of natural

automorphisms. Let S be the set of all (non-equivalent) distinguishing colorings of X with D(X)

colors. Then D(Z) ≤ min{df : f ∈ S}.
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Proof. Let f ∈ S and suppose that for each x ∈ X , we colored Yx distinguishingly. For each

w ∈ C(x) \ {x}, if Yx and Yw are colored non-equivalently, then we can guarantee that the

resulting coloring of Z is distinguishing. For such a coloring we do not need more than df
colors. Consequently, D(Z) ≤ df .

We must point this out to the reader that some times it is possible that D(Z) becomes strictly

less than min{df : f ∈ S}. For example, suppose thatX is a large cycle on {v1, v2, . . . , vn} as its

set of vertices. Let Y1 be an asymmetric tree on m1 ≥ 7 vertices and Y3 be another asymmetric

tree on m3 ≥ 7 vertices, and Y1 6≃ Y3. Suppose also that for i = 2, 4, 5, . . . , n, all Yis are

isomorphic to K1. Then, the X-join of {Yi}
n
i=1 is an asymmetric graph (whose distinguishing

number equals to 1), while min{df : f ∈ S} = 2. However, the stated bound in Theorem 5.2 is

the best that can be generally found about D(Z), because it is attainable by the lexicographic

product of two graphs (e. g. Cn ◦K1).

6 Conclusion

We have seen in Section 5 that counting the number of non-equivalent distinguishing color-

ings, Φ, has an application in finding the distinguishing number of lexicographic products.

Moreover, other indices have shown to have deep interactions with each other and also with Φ.

It should be noted that calculating these indices are not always easy. Even when the auto-

morphism group is very small and simple, counting non-equivalent distinguishing colorings or

distinguishing (coloring) partitions faces with several calculation obstacles.

In the appendices, there are tables of the indices introduced in this paper for small paths

and cycles. Considering these tables suggests that most of these indices are new generators of

integer sequences.

To make calculations more comfortable, in some special cases, we introduced the notion of

distinguishing threshold in Section 3, which enables us to reduce the required calculations in

a computer algebra system to an acceptable level. However, this index has the importance to

be considered separately, as it is a dual to the distinguishing number; there is a distinguishing

coloring with a number of colors greater than or equal to the distinguishing number while there

is a non-distinguishing coloring with a number of colors less than the distinguishing threshold.

Among many good questions, one might consider this index for some families of graphs, or,

study the distinguishing threshold for the Cartesian product.

We, finally, point out that one might consider infinite graphs or some notions other than

distinguishing coloring for defining the parameters that we have introduced in this paper; e. g.

distinguishing edge coloring, distinguishing total coloring, etc.

Acknowledgment

We owe a great debt to professor Wilfried Imrich, who proposed several problems, which led to

this paper, during his visit to Shiraz University.

14



References

[1] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin. 3

(1996), #R18. 1

[2] S. Alikhani and S. Soltani, The distinguishing number and distinguishing index of the

lexicographic product of two graphs, Discuss. Math. Graph Theory 38 (2018), 853–865. 1,

5

[3] L. Babai, Asymmetric trees with two prescribed degrees, Acta Math. Acad. Sci. Hung.

29:1-2 (1977), 193–200. 1

[4] B. Bogstad and L. Cowen, The distinguishing number of hypercubes, Discrete Math. 283

(2004), 29–35. 1

[5] K. L. Collins and A. N. Trenk, The Distinguishing Chromatic Number, Electron. J. Com-

bin. 13 (2006), #R16. 1

[6] R. Diestel, Graph Theory, Fifth edition, Springer, 2017. 1

[7] M. N. Ellingham and J. Z. Schroeder, Distinguishing partitions and asymmetric uniform

hypergraphs, Ars Math. Contemp. 4 (2011), 111–123. 1, 4

[8] E. Estaji, W. Imrich, R. Kalinowski, M. Piĺsniak, T. Tucker, Distinguishing Cartesian
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Appendix A

Tables of Φk and ϕk for small paths and cycles

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

2 1 3 6 10 15 21 28 36 45

3 2 9 24 50 90 147 224 324 450

4 6 36 120 300 630 1176 2016 3240 4950

5 12 108 480 1500 3780 8232 16128 29160 49500

6 28 351 2016 7750 23220 58653 130816 265356 499500

7 56 1053 8064 38750 139320 410571 1046528 2388204 4995000

8 120 3240 32640 195000 839160 2881200 8386560 21520080 49995000

9 240 9720 130560 975000 5034960 20168400 67092480 193680720 499950000

10 496 29403 523776 4881250 30229200 141229221 536854528 1743362676 4999950000

Table 1: Some different values of Φk(Pn) (Sequence A293500)

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

3 0 1 4 10 20 35 56 84 120

4 0 3 15 45 105 210 378 630 990

5 0 12 72 252 672 1512 3024 5544 9504

6 1 37 266 1120 3515 9121 20692 42456 80565

7 2 117 1044 5270 19350 57627 147752 338364 709290

8 6 333 3788 23475 102690 355446 1039248 2673810 6222150

9 14 975 14056 106950 555990 2233469 7440160 21493836 55505550

10 30 2712 51132 483504 3009426 14089488 53611992 174189024 499720518

Table 2: Some different values of Φk(Cn) (Sequence A309528)
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❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

2 1 0 0 0 0 0 0 0 0

3 2 3 0 0 0 0 0 0 0

4 6 18 12 0 0 0 0 0 0

5 12 72 120 60 0 0 0 0 0

6 28 267 780 900 360 0 0 0 0

7 56 885 4188 8400 7560 2520 0 0 0

8 120 2880 20400 63000 95760 70560 20160 0 0

9 240 9000 93120 417000 952560 1164240 725760 181440 0

10 496 27915 409140 2551440 8217720 14817600 15120000 8164800 1814400

Table 3: Some different values of ϕk(Pn) (Sequence A309785)

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

3 0 1 0 0 0 0 0 0 0

4 0 3 3 0 0 0 0 0 0

5 0 12 24 12 0 0 0 0 0

6 1 34 124 150 60 0 0 0 0

7 2 111 588 1200 1080 360 0 0 0

8 6 315 2484 7845 11970 8820 2520 0 0

9 14 933 10240 46280 105840 129360 80640 20160 0

10 30 2622 40464 254664 821592 1481760 1512000 816480 181440

Table 4: Some different values of ϕk(Cn) (Sequence A309651)
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Appendix B

Tables of Ψk, ψk, Πk, πk, Ξk and ξk for small paths and cycles

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1

3 1 2 2 2 2 2 2 2 2

4 4 8 9 9 9 9 9 9 9

5 6 20 26 27 27 27 27 27 27

6 16 65 102 111 112 112 112 112 112

7 28 182 364 440 452 453 453 453 453

8 64 560 1436 1978 2120 2136 2137 2137 2137

9 120 1640 5560 9082 10428 10670 10690 10691 10691

10 256 4961 22136 43528 55039 58019 58409 58434 58435

Table 5: Some different values of Ψk(Pn) (Sequence A309635)

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

3 0 1 1 1 1 1 1 1 1

4 0 1 2 2 2 2 2 2 2

5 0 4 6 7 7 7 7 7 7

6 1 9 19 22 23 23 23 23 23

7 1 26 58 74 77 78 78 78 78

8 4 66 195 279 306 310 311 311 311

9 7 183 651 1084 1255 1292 1296 1297 1297

10 18 488 2294 4554 5803 6141 6195 6200 6201

Table 6: Some different values of Ψk(Cn) (Sequence A309785)
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❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

2 1 0 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 0 0

4 4 4 1 0 0 0 0 0 0

5 6 14 6 1 0 0 0 0 0

6 16 49 37 9 1 0 0 0 0

7 28 154 182 76 12 1 0 0 0

8 64 496 876 542 142 16 1 0 0

9 120 1520 3920 3522 1346 242 20 1 0

10 256 4705 17175 21392 11511 2980 390 25 1

Table 7: Some different values of ψk(Pn) (Sequence A309748)

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

3 0 1 0 0 0 0 0 0 0

4 0 1 1 0 0 0 0 0 0

5 0 4 2 1 0 0 0 0 0

6 1 8 10 3 1 0 0 0 0

7 1 25 32 16 3 1 0 0 0

8 4 62 129 84 27 4 1 0 0

9 7 176 468 433 171 37 4 1 0

10 18 470 1806 2260 1248 338 54 5 1

Table 8: Some different values of ψk(Cn) (Sequence A309784)

❍
❍
❍
❍
❍
❍

n

k
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2 2

3 1 3 4 4 4 4 4 4 4 4

4 1 6 10 11 11 11 11 11 11 11

5 1 10 25 31 32 32 32 32 32 32

6 1 20 70 107 116 117 117 117 117 117

7 1 36 196 379 455 467 468 468 468 468

8 1 72 574 1451 1993 2135 2151 2152 2152 2152

9 1 136 1681 5611 9134 10480 10722 10742 10743 10743

10 1 272 5002 22187 43580 55091 58071 58461 58486 58487

Table 9: Some different values of Πk(Pn) (Sequence A320750)
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❍
❍
❍
❍
❍
❍

n

k
1 2 3 4 5 6 7 8 9 10

3 1 2 3 3 3 3 3 3 3 3

4 1 4 6 7 7 7 7 7 7 7

5 1 4 9 11 12 12 12 12 12 12

6 1 8 22 33 36 37 37 37 37 37

7 1 9 40 73 89 92 93 93 93 93

8 1 18 100 237 322 349 353 354 354 354

9 1 23 225 703 1137 1308 1345 1349 1350 1350

10 1 44 582 2433 4704 5953 6291 6345 6350 6351

Table 10: Some different values of Πk(Cn) (Sequence A320748)

❍
❍
❍
❍
❍
❍

n

k
1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0

3 1 2 1 0 0 0 0 0 0 0

4 1 5 4 1 0 0 0 0 0 0

5 1 9 15 6 1 0 0 0 0 0

6 1 19 50 37 9 1 0 0 0 0

7 1 35 160 183 76 12 1 0 0 0

8 1 71 502 877 542 142 16 1 0 0

9 1 135 1545 3930 3523 1346 242 20 1 0

10 1 271 4730 17185 21393 11511 2980 390 25 1

Table 11: Some different values of πk(Pn) (Sequence A284949)

❍
❍
❍
❍

❍
❍

n

k
1 2 3 4 5 6 7 8 9 10

3 1 1 1 0 0 0 0 0 0 0

4 1 3 2 1 0 0 0 0 0 0

5 1 3 5 2 1 0 0 0 0 0

6 1 7 14 11 3 1 0 0 0 0

7 1 8 31 33 16 3 1 0 0 0

8 1 17 82 137 85 27 4 1 0 0

9 1 22 202 478 434 171 37 4 1 0

10 1 43 538 1851 2271 1249 338 54 5 1

Table 12: Some different values of πk(Cn) (Sequence A152176)
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❍
❍
❍
❍
❍
❍

n

k
1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0 0 0 0

3 0 1 1 1 1 1 1 1 1 1

4 0 2 4 4 4 4 4 4 4 4

5 0 6 16 20 20 20 20 20 20 20

6 0 12 52 80 86 86 86 86 86 86

7 0 28 169 336 400 409 409 409 409 409

8 0 56 520 1344 1852 1976 1988 1988 1988 1988

9 0 120 1600 5440 8868 10168 10388 10404 10404 10404

10 0 240 4840 21760 42892 54208 57108 57468 57488 57488

Table 13: Some different values of Ξk(Pn) (Sequence A320751)

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 4 6 6 6 6 6 6 6

7 1 13 30 34 34 34 34 34 34

8 2 45 127 176 185 185 185 185 185

9 7 144 532 871 996 1011 1011 1011 1011

10 12 416 1988 3982 5026 5280 5304 5304 5304

Table 14: Some different values of Ξk(Cn) (Sequence A324803)

❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

2 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0

4 2 2 0 0 0 0 0 0 0

5 6 10 4 0 0 0 0 0 0

6 12 40 28 6 0 0 0 0 0

7 28 141 167 64 9 0 0 0 0

8 56 464 824 508 124 12 0 0 0

9 120 1480 3840 3428 1300 220 16 0 0

10 240 4600 16920 21132 11316 2900 360 20 0

Table 15: Some different values of ξk(Pn) (Sequence A320525)
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❍
❍
❍
❍
❍
❍

n

k
2 3 4 5 6 7 8 9 10

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 4 2 0 0 0 0 0 0

7 1 12 17 4 0 0 0 0 0

8 2 43 82 49 9 0 0 0 0

9 7 137 388 339 125 15 0 0 0

10 12 404 1572 1994 1044 254 24 0 0

Table 16: Some different values of ξk(Cn) (Sequence A324802)
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