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A lower bound for Cusick’s conjecture on the digits of n + t
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Abstract

Let s be the sum-of-digits function in base 2, which returns the number of 1s in the base-
2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic
density

ct = lim
N→∞

1

N

∣

∣{0 ≤ n < N : s(n+ t) ≥ s(n)}
∣

∣.

T. W. Cusick conjectured that ct > 1/2. We have the elementary bound 0 < ct < 1;
however, no bound of the form 0 < α ≤ ct or ct ≤ β < 1, valid for all t, is known. In this
paper, we prove that ct > 1/2 − ε as soon as t contains sufficiently many blocks of 1s in
its binary expansion. In the proof, we provide estimates for the moments of an associated
probability distribution; this extends the study initiated by Emme and Prikhod’ko (2017)
and pursued by Emme and Hubert (2018).

1 Introduction and main result

It is an elementary problem of deceptive simplicity to study the behaviour of the base-q digits
of an integer under addition of a constant. For example, it is clear that addition of the constant
1 to an even integer in base 2 replaces the rightmost digit 0 by 1, and addition of 1 to an odd
integer replaces the rightmost block of 1s by a block of 0s and the digit 0 directly adjacent to
this block by 1. Considerations of this kind can be carried out for each given constant t in place
of 1, which gives a complete description of the digits of n and n+ t.

However, due to carry propagation the situation quickly turns into an unwieldy case dis-
tinction for growing t, and a general structural principle describing these cases is out of sight.
We therefore consider a simplification of this problem (which is still difficult) by studying a
parameter associated to the binary expansion: the sum of digits s(n) of n in base 2, which is
just the number of 1s occurring in the binary expansion of n. More precisely, we are interested
in the quantities

δ(j, t) = dens {n ∈ N : s(n+ t)− s(n) = j},
where densA is the asymptotic density of a set A ⊆ N, which exists in our case. (In fact, the set
in question is a finite union of arithmetic progressions, see Bésineau [5] or the proof following (2).)
Cusick’s conjecture on the binary sum-of-digits function (private communication, 2011) concerns
the values

ct = dens {n ∈ N : s(n+ t) ≥ s(n)} = δ(0, t) + δ(1, t) + · · ·
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and states that for all t ≥ 0,
ct > 1/2. (1)

This easy-to-state elementary problem appears to be difficult, despite its apparent simpleness.
Moreover, we think that it is not an artificial conjecture. In our opinion, this combination
of characteristics constitutes the beauty of this problem. The proof below uses interesting
techniques; this highlights the complex structure of the problem and further adds to the interest
of this question.

We note the partial results [8, 10, 11, 12, 20] on Cusick’s conjecture, among which we find
an almost-all result by Drmota, Kauers, and the author [8] and a central limit-type result by
Emme and Hubert [10].

Cusick formulated his conjecture while he was working on the related Tu–Deng conjecture [22,
23], which is relevant in cryptography: assume that k is a positive integer and t ∈ {1, . . . , 2k−2}.
Then this conjecture states that

∣∣∣
{
(a, b) ∈

{
0, . . . , 2k − 2

}2
: a+ b ≡ t mod 2k − 1, s(a) + s(b) < k

}∣∣∣ ≤ 2k−1.

Partial results are known, see [6, 7, 14, 15, 21, 22], but the full conjecture is still open. Besides
an almost-all result on Tu and Deng’s conjecture [21], Wallner and the author proved in that
paper that this conjecture in fact implies Cusick’s conjecture.

We return to Cusick’s conjecture and begin with the case t = 1. From the introductory
observation we obtain s(n + 1) − s(n) = 1 − ν2(n + 1), where ν2(m) = max{k ≥ 0 : 2k | m},
which implies that δ(·, 1) describes a geometric distribution with mean 0: we have

δ(j, 1) =

{
0, j > 1;

2j−2, j ≤ 1,

and therefore c1 = 3/4. In other words, the sum of digits of n + 1 is smaller than the sum of
digits of n if and only if n ≡ 3 mod 4, since only in this case we lose at least one 1 by replacing
the rightmost block 01k by 10k in the binary expansion.

Next, we consider the general case t ∈ N. It follows from a recurrence due to Bésineau [5]
that the values δ(j, t) satisfy the following recurrence for all k ∈ Z and t ≥ 0:

δ(j, 2t) = δ(j, t),

δ(j, 2t+ 1) =
1

2
δ(j − 1, t) +

1

2
δ(j + 1, t+ 1).

(2)

The proof of the first identity is as follows: we have the disjoint union

{n ∈ N : s(n+ 2t)− s(n) = k} = 2{n ∈ N : s(2n+ 2t)− s(2n) = k}
∪ (2{n ∈ N : s(2n+ 1 + 2t)− s(2n+ 1) = k}+ 1) ,

and using the identities s(2n) = s(n) and s(2n+ 1) = s(n) + 1, the first line of the recurrence
follows. In an analogous way, the second line can be proved. This proof also shows inductively
that the sets defining δ(j, t) are finite unions of arithmetic progressions.

Using the recurrence (2), we verified (1) by numerical computation for all t < 230, yielding
the minimal value 18169025645289/245 = 0.516394 . . . at the position
t = (111101111011110111101111011111)2 and at the position tR obtained by reversing the base-
2 expansion of t. (By a result of Morgenbesser and the author [16] we always have δ(j, t) =
δ(j, tR).)
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Using a generating function approach and Chebyshev’s inequality, Drmota, Kauers, and the
author [8] obtained an almost-all result for Cusick’s conjecture: for all ε > 0, we have

|{t < T : 1/2 < ct < 1/2 + ε}| = T −O(T/ logT ).

Moreover, the probability distribution defined by µt : j 7→ δ(j, t) for given t was studied by
Emme and Hubert [10, 11], continuing work by Emme and Prikhod’ko [12]. In [10], Emme and
Hubert considered the moments of µt and proved a central limit law. We introduce the notation
aX(λ) =

∑
0≤i≤λ Xi2

i for X ∈ {0, 1}N and λ ≥ 0, and we write Φ(x) = 1√
2π

∫ x

−∞ e−x2/2 dx.

Then their result states the following. For almost all X with respect to the balanced Bernoulli
measure, we have

lim
λ→∞

dens

{
n ∈ N :

s(n+ aX(λ)) − s(n)√
λ/2

≤ x

}
= Φ(x) for all x ∈ R. (3)

In particular, excluding the negligible case that s(n + aX(k)) − s(n) = 0 and considering
x = 0, this statement implies that

lim
k→∞

caX(k) = 1/2 (4)

almost surely. Note that this latter result does not follow directly from the Drmota–Kauers–
Spiegelhofer result [8], since our error term is not strong enough. On the other hand, the theorem
by Emme and Hubert does not give us a statement of the form ct > 1/2 as in [8].

From (3) we obtain the result that ct > 1/2− ε for almost all t with respect to asymptotic
density. The proof of this fact is by contradiction: assume that ct ≤ 1/2− ε for at least 2λ+1δ
many t < 2λ+1 and infinitely many λ, where δ > 0. Define

Ak = {X ∈ {0, 1}N : caX (λ) > 1/2− ε for all λ ≥ k}.

By the almost sure convergence to 1/2 and since the sequence of sets Ak is ascending, we have
µ(AN ) > 1 − δ for some N . Then for all X ∈ AN and λ > N we have caX (λ) > 1/2 − ε. By

definition of the balanced Bernoulli measure, there exist at least (1 − δ)2λ+1 many t < 2λ+1

such that ct > 1/2− ε. This is a contradiction to our assumption, by which there exists λ > N
such that ct ≤ 1/2− ε for at least 2λ+1δ many t < 2λ+1.

While this result clearly also follows from the theorem by Drmota, Kauers, and the author,
it is this particular formulation that we want to sharpen. Our main theorem gives a lower bound
for Cusick’s conjecture for all t not contained in a very small exceptional set having a simple
structure. In this theorem and in the following, we will be concerned with blocks of 0s or 1s
in the binary expansion of t; by this, we will always mean contiguous blocks of maximal size,
where we omit the lowest block of 0s for even integers t. In particular, if we have the binary
expansion t = (1m00n01m10n1 · · · 1mℓ−10nℓ−11mℓ0nℓ)2 with positive integers mi and ni (with the
exception of nℓ, which may be zero), then t contains ℓ blocks of 0s and ℓ+ 1 blocks of 1s.

Our main result is the following lower bound for ct for many values t.

Theorem 1.1. For all ε > 0 there exists an L ≥ 0 such that the following holds: if the binary
expansion of t ∈ N contains at least L blocks of 1s, then

ct > 1/2− ε.

In particular, for all ε > 0 there exist δ > 0 and C > 0 such that for T ≥ 2,

|{0 ≤ t < T : ct ≤ 1/2− ε}| ≤ C logδ T.
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The “in particular”-part results from counting the number of integers with less than L blocks
of 1s in its binary expansion. A rough upper bound is given as follows: up to 2λ, there are not
more than λ2L−2 many such natural numbers, since the length of each block of 1s as well as the
position of the least significant 1 in each block is bounded by λ.

The error term logδ T should be compared to Drmota–Kauers–Spiegelhofer’s [8] much weaker
error term T/ logT . Certainly, the statement ct > 1/2 − ε in Theorem 1.1 is weaker than the
bound ct > 1/2 in [8], but the constant 1/2 is optimal: for all ε > 0, we have ct < 1/2 + ε for
almost all t with respect to asymptotic density (this follows, as above, from [10], or from [8,
Theorem 1]).

From Theorem 1.1 we also obtain (4) almost surely, since the measure of the set of X ∈
{0, 1}N having only finitely many blocks of 1s is zero.

Moreover, we note that Theorem 1.1 significantly sharpens the main theorem in the recent
paper [20] by the author: in that paper, it was proved that ct + ct′ > 1 − ε if t contains many
blocks of 1s; here t′ = 3 · 2λ − t, where 2λ ≤ t < 2λ+1. The new Theorem 1.1 gives a bound for
individual values ct.

Finally, we note that the proof presented below allows to explicitly compute a bound L =
L(ε) for Theorem 1.1. This is the case since all of the implied constants appearing in the proof
are effective.

Notation. In this paper, 0 ∈ N. For an integer n > 0, we use the notation ν2(n) to denote the
largest k such that 2k | n. We will use Big O notation, employing the symbol O. For an integer
t ≥ 1, the number of blocks in t is the number of blocks of 1s in the binary expansion of t plus
the number of blocks of 0s in the proper binary expansion of t/2ν2(t). Clearly, if ℓ is the number
of blocks of 1s in the binary expansion of t, then 2ℓ − 1 is the number of blocks in t. We also
define the number of blocks in 0 to be 0. The variable r is used to denote the number of blocks
in t. We let e(x) denote e2πix for real x, and ‖x‖ = mink∈Z|x− k| is the distance to the nearest
integer. For convenience, we define the maximum over an empty index set to be 0.

The remainder of this paper is dedicated to the proof of Theorem 1.1.

2 Proof of the main theorem

The proof consists of several steps. We consider the characteristic function γt of a certain
probability distribution. Using the link between γt and ct expressed by (7), we see that we
have to find upper bounds for Im γt. We do so in two stages: for ϑ not close to Z, we estimate
the absolute value of γt(ϑ) using a matrix identity from [16]. For ϑ close to Z, we estimate the
imaginary part of γt(ϑ) using the link (20) to themoments mk(t). The principal part of the proof
is concerned with finding upper bounds for these moments (captured in Proposition 2.6), thus
extending the study performed by Emme and Prikhod’ko [12], and Emme and Hubert [10, 11].

2.1 Relating ct to a characteristic function

For ϑ ∈ R and t ≥ 0, we define

γt(ϑ) = lim
N→∞

1

N

∑

0≤n<N

e
(
ϑs(n+ t)− ϑs(n)

)
.

These limits exist, see Bésineau [5], and we have

γt(ϑ) =
∑

−∞≤j<m

δ(j, t) e(jϑ) (5)
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for some m (which can be shown by induction easily). We have

δ(j, t) =

∫ 1

0

γt(ϑ) e(−ϑj) dϑ (6)

(see [16]); using these identities and a geometric sum, we will prove the following identity.

Proposition 2.1. Let t ≥ 0. We have

ct =
1

2
+

δ(0, t)

2
+

1

2

∫ 1

0

Im γt(ϑ) cot(πϑ) dϑ, (7)

where the integrand is a bounded function.

In the proof of this statement, we are also going to use the following fact.

Lemma 2.2. For k ≥ 1 we have

∫ 1

0

sin(2πkϑ) cot(πϑ) dϑ = 1, (8)

where the integrand is bounded on (0, 1).

Proof. For k ≥ 1 and ϑ ∈ (0, 1), we have

sin(2πkϑ) cot(πϑ)

= sin
(
2π(k − 1)ϑ

)
cos(2πϑ) cot(πϑ) + cos

(
2π(k − 1)ϑ

)
sin(2πϑ) cot(πϑ)

= sin
(
2π(k − 1)ϑ

)(
1− 2 sin2(πϑ)

)cos(πϑ)
sin(πϑ)

+ 2 cos
(
2π(k − 1)ϑ

)
sin(πϑ) cos(πϑ)

cos(πϑ)

sin(πϑ)

= sin
(
2π(k − 1)ϑ

)
cot(πϑ)− sin

(
2π(k − 1)ϑ

)
sin(2πϑ) + cos

(
2π(k − 1)ϑ

)(
cos(2πϑ) + 1

)

= sin
(
2π(k − 1)ϑ

)
cot(πϑ) + cos(2πkϑ) + cos

(
2π(k − 1)ϑ

)
.

Assume first that k = 1. The first summand is identically zero on (0, 1), the integral from 0
to 1 of the second summand equals zero, and the third summand is identically 1. For k ≥ 2 the
first summand is bounded by the induction hypothesis and its contribution to the integral is 1.
The other summands contribute nothing to the integral. The statement is therefore proved.

Proof of Proposition 2.1. Let m be so large that (5) holds. Necessarily we have δ(j, t) = 0 for
j ≥ m. It follows from (6) that

ct =
∑

0≤j<m

δ(j, t) =

∫ 1

0

γt(ϑ)
∑

0≤j<m

e(−jϑ) dϑ =

∫ 1

0

Re γt(ϑ)
1 − e(−mϑ)

1− e(−ϑ)
dϑ; (9)

we have the formulas

Re
1

1− e(−ϑ)
=

1

2
and Im

1

1− e(−ϑ)
=

1

2
cot(−πϑ). (10)

Since δ(j, t) = O
(
2−|j|) for j → ∞ (where the implied constant depends on t), we have

Im γt(ϑ) =
∑

k∈Z δ(j, t) sin(2πkϑ) = O(ϑ) for ϑ → 0; also, cot(−πϑ) = O(1/ϑ). Equations (9)



2 PROOF OF THE MAIN THEOREM 6

and (10) imply

ct =

∫ 1

0

Re
γt(ϑ)

1− e(−ϑ)
− Re

γt(ϑ) e(−mϑ)

1− e(−ϑ)
dϑ

=

∫ 1

0

Re
γt(ϑ)

1− e(−ϑ)
− 1

2
Re

(
γt(ϑ) e(−mϑ)

)

+
1

2
Im

(
γt(ϑ) e(−mϑ)

)
cot(−πϑ) dϑ,

(11)

where all occurring summands are bounded functions. Since
∑

j<m δ(j, t) = 1, it follows that

γt(ϑ) e(−mϑ) =
∑

ℓ≥1

aℓ e(−ℓϑ)

for some nonnegative aℓ such that
∑

ℓ≥1 aℓ = 1. Since m is large enough, the integral over the
second summand in the second line of (11) is zero. We obtain

ct =

∫ 1

0

Re
γt(ϑ)

1− e(−ϑ)
+

1

2

∑

ℓ≥1

aℓ sin(−2πℓϑ) cot(−πϑ) dϑ.

The partial sums
∑

1≤ℓ<L aℓ sin(−2πℓϑ) cot(−πϑ) dϑ are bounded, uniformly in L, by an inte-
grable function on [0, 1], therefore the statement follows by interchanging the summation and
the integral, an application of the identity (8), and another application of (10).

2.2 Moments of µt

Define
m̃k(t) =

∑

j∈Z

δ(j, t)jk.

The moment generating function is

Mt(x) =
∑

k≥0

m̃k(t)

k!
xk.

The moments exist and the moment generating function is convergent for t = 1 and |x| < log 2;
this is just a geometric distribution and we obtain

M1(x) =
ex

2− e−x
= 1 + x2 − x3 +

19

12
x4 − · · · (12)

(see entry A052841 in Sloane’s OEIS1 ). By basic analytic combinatorics [13], we obtain

mk(t) ∼ c(log 2)−k (13)

for some absolute c, as k → ∞.
For t ≥ 2, we note that the recurrence relation (2) implies that δ(j, t) = c2j for j < −λ,

where 2λ ≤ t < 2λ+1. This implies that m̃k(t) exists for all k and |m̃k(t)| ≪ λk + m̃k(1).
Considering also the series for the exponential function and the asymptotic estimate (13), we
see that the series for Mt(x) is convergent as long as |x| < log 2.

1http://oeis.org
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From (2) we wish to derive a recurrence for the moment generating functions. We define

mk(t) =
m̃k(t)

k!
,

such that Mk(x) =
∑

k≥0 mk(t)x
k.

Lemma 2.3. Assume that |x| < log 2 and t ≥ 0. We have

M2t(x) = Mt(x) and

M2t+1(x) =
ex

2
Mt(x) +

e−x

2
Mt+1(x).

(14)

In particular,
mk(2t) = mk(t) and

mk(2t+ 1) =
1

2

∑

0≤ℓ≤k

1

ℓ!

(
mk−ℓ(t) + (−1)ℓmk−ℓ(t+ 1)

)
. (15)

Note that setting t = 0, we obtain (12).

Proof. The first line of (14) is trivial since δ(j, 2t) = δ(j, t). Concerning the second line, we have

Mt(x) =
∑

j∈Z

δ(j, t)ejx,

therefore by (2)

M2t+1(x) =
∑

j∈Z

δ(j, 2t+ 1)ejx =
1

2

∑

j∈Z

δ(j − 1, t)ejx +
1

2

∑

j∈Z

δ(j + 1, t+ 1)ejx

=
ex

2
Mt(x) +

e−x

2
Mt+1(x)

after a shift of indices. The “in particular”-part follows from expanding Cauchy products.

The first few moments are as follows: m0(t) = 1, m1(t) = 0, andm2(t) satisfies the recurrence

m2(0) = 0, m2(1) = 1, m2(2t) = m2(t), m2(2t+ 1) =
m2(t) +m2(t+ 1) + 1

2
.

This particular sequence also arises in a different context: it is the star-discrepancy of the Van
der Corput sequence in base 2 [9, 19]. It is known that

m2(t) ≤
log t

3 log 2
+ 1 (16)

for all t ≥ 1 (see Bejian and Faure [4]). The following interesting exact representation of m2(t)
follows from Prŏınov and Atanassov [17], and Beck [3] (as was pointed out to the author by the
anonymous referee of the article [19]); see the remark after [19, Corollary 2.5]: if t =

∑
0≤i≤ν εi2

i

with εi ∈ {0, 1}, we have

m2(t) =
∑

0≤i≤ν

εi −
∑

0≤i<j≤ν

εiεj2
i−j . (17)

At this point we wish to emphasize the usefulness of the moments as opposed to δ(j, t). In order
to compute δ(j, t), we need to consider values δ(j + ℓ, t′) for large ℓ (depending on the number
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of 1s and 0s in the binary expansion of t/2ν2(t)); for computing mk(t) we only need to consider
moments mi(t

′) for i ≤ k. In particular, mk is a 2-regular sequence [1], while this is not so clear
and perhaps wrong for δ(j, ·).

Using Chebyshev’s inequality and the bound (16) for m2(t) we can already find a nontrivial
bound related to Cusick’s conjecture: with σ =

√
(log t)/(3 log 2) + 1 we have

∑
|j|≤Kσ δ(j, t) ≥

1− 1/K2. In particular, choosing K close to
√
2, we obtain

∑

j≥−
√
log t−1

δ(j, t) ≥
∑

j≥−
√
log t+2

δ(j, t) > 1/2 (18)

for t ≥ 1.
We are going to establish recurrences for the values

ak(t) = mk(t) +mk(t+ 1),

bk(t) = mk(t)−mk(t+ 1),

and the corresponding generating functions

Ft(x) =
∑

k≥0

ak(t)x
k and Gt(x) =

∑

k≥0

bk(t)x
k.

By (15), we have

2ak(2t) = 2mk(t) +mk(t) +mk(t+ 1) +
∑

2≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t) +

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t)

= ak(t) +
∑

0≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t) + bk(t) +

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t)

and

2bk(2t) = 2mk(t)−mk(t)−mk(t+ 1)−
∑

2≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t)−

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t)

= ak(t)−
∑

0≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t) + bk(t)−

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t).

We want to write this as a matrix recurrence; we define

C(x) = cosh(x) =
1

2

(
ex + e−x

)
=

∑

j≥0

x2j

(2j)!
;

S(x) = sinh(x) =
1

2

(
ex − e−x

)
=

∑

j≥0

x2j+1

(2j + 1)!
.

We are concerned with the matrix

M0 =
1

2
(A0 +B0),
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where

A0 =

(
C(x) S(x)
−C(x) −S(x)

)
and B0 =

(
1 1
1 1

)
.

We also study appending 1 to the binary expansion.

2ak(2t+ 1) = mk(t) +mk(t+ 1) + 2mk(t+ 1) +
∑

2≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t) +

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t)

= ak(t) +
∑

0≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t)− bk(t) +

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t)

and

2bk(2t+ 1) = mk(t) +mk(t+ 1)− 2mk(t+ 1) +
∑

2≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t) +

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t)

= −ak(t) +
∑

0≤ℓ≤k
2|ℓ

1

ℓ!
ak−ℓ(t) + bk(t) +

∑

1≤ℓ≤k
2∤ℓ

1

ℓ!
bk−ℓ(t).

Clearly, we are interested in the matrix

M1 =
1

2
(A1 +B1),

where

A1 =

(
C(x) S(x)
C(x) S(x)

)
and B1 =

(
1 −1
−1 1

)
.

Using Cauchy products and the recurrence formula (15), we see that

(
F2t(x)
G2t(x)

)
= M0

(
Ft(x)
Gt(x)

)
and

(
F2t+1(x)
G2t+1(x)

)
= M1

(
Ft(x)
Gt(x)

)
. (19)

Note that these identities are also valid for t = 0 (since (15) is also valid for t = 0).

2.3 Estimating the characteristic function using moments

For ϑ ≤ ϑ0, where ϑ0 is defined later, we will use a representation of Im γt(ϑ) in terms of
moments. For this, we use Taylor approximation of the sine function and (5): for all j ∈ Z there
exists ξj between 0 and 2πϑ such that

Im γt(ϑ) = Im
∑

j∈Z

δ(j, t) e(jϑ) =
∑

j∈Z

δ(j, t) sin(2πjϑ)

=
∑

j∈Z

δ(j, t)
∑

0≤k<K

(−1)k

(2k + 1)!
(2πϑ)2k+1j2k+1 +

∑

j∈Z

δ(j, t)(−1)K

(2K + 1)!
j2K+1ξ2K+1

j

and therefore

|Im γt(ϑ)| ≤
∑

0≤k<K

(2πϑ)2k+1 |m2k+1(t)|+
(2πϑ)2K+1

(2K + 1)!

∑

j∈Z

δ(j, t)|j|2K+1.
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Applying the Cauchy–Schwarz inequality to the sum

∑

j∈Z

δ(j, t)|j|2K+1 =
∑

j∈Z

√
δ(j, t)|j|K

√
δ(j, t)|j|K+1,

we obtain ∣∣Im γt(ϑ)
∣∣ ≤

∑

0≤k<K

(2πϑ)2k+1 |m2k+1(t)|

+ (2πϑ)2K+1

√
(2K)!(2K + 2)!

(2K + 1)!
m2K(t)1/2m2K+2(t)

1/2.

(20)

The moments m2K and m2K+2 will give us a factor (K!(K + 1)!)1/2 ≥ K! in the denominator,
which we will see later; this gain will enable us to prove that for all ε > 0, we have ct > 1/2− ε
for most t (the exceptional set depending on ε).

2.4 Upper bounds for the moments of µt

We wish to study repeated application of the recurrence (15), corresponding to appending a
block of 0s or 1s to the binary expansion of t.

Using an elementary proof by induction, we obtain

Am
0 =

(
C(x) − S(x)

)m−1
A0 = e−(m−1)xA0

and
Bm

0 = 2m−1B0

for m ≥ 1. Moreover, B0A0 = ( 0 0
0 0 ) and A0B0 =

(
C(x) + S(x)

)
D0 = exD0, where D0 =(

1 1
−1 −1

)
. Appending a block of 0s of length m corresponds to the matrix power Mm

0 .
Noting that A0 and B0 do not commute, we consider all ordered products of A0 and B0 of

length m0; since B0A0 vanishes, we are only interested in the products Am0−ℓ
0 Bℓ

0. This yields

2m0Mm0

0 =
∑

0≤ℓ≤m0

Am0−ℓ
0 Bℓ

0 = e−(m0−1)xA0 + 2m0−1B0 +
∑

1≤ℓ≤m0−1

Am1−ℓ
0 Bℓ

0.

We have
∑

1≤ℓ≤m1−1

Am0−ℓ
0 Bℓ

0 =
∑

1≤ℓ≤m0−1

e−(m0−ℓ−1)x A02
ℓ−1B0

= e(3−m0)xD0

∑

0≤ℓ≤m1−2

(2ex)
ℓ
= ex

2m0−1 − e(1−m0)x

2− e−x
D0,

which is also valid for m = 1, and therefore

2Mm0

0 =

(
e−x

2

)m0−1

A0 +B0 +
ex

2− e−x

(
1−

(
e−x

2

)m0−1)
D0. (21)

Also, we study appending a block of 1s. By induction, we obtain

Am
1 =

(
C(x) + S(x)

)m−1
A1 = e(m−1)xA1

and
Bm

1 = 2m−1B1
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for m ≥ 1. Moreover, B1A1 = ( 0 0
0 0 ) and A1B1 =

(
C(x) − S(x)

)
D1 = e−xD1, where D1 =(

1 −1
1 −1

)
. Appending a block of 1s of length m corresponds to the matrix power Mm

1 . Again, the
matrices A1 and B1 do not commute, but B1A1 vanishes. This yields

2m1Mm1

1 =
∑

0≤ℓ≤m1

Am1−ℓ
1 Bℓ

1 = e(m1−1)xA1 + 2m1−1B1 +
∑

1≤ℓ≤m1−1

Am1−ℓ
1 Bℓ

1.

We have
∑

1≤ℓ≤m1−1

Am−ℓ
1 Bℓ

1 =
∑

1≤ℓ≤m1−1

e(m1−ℓ−1)xA12
ℓ−1B1

= e(m1−3)xD1

∑

0≤ℓ≤m1−2

(
2

ex

)ℓ

=
1

ex
2m1−1 − e(m1−1)x

2− ex
D1,

which is also valid for m = 1, and therefore

2Mm1

1 =

(
ex

2

)m1−1

A1 +B1 +
e−x

2− ex

(
1−

(
ex

2

)m1−1)
D1. (22)

We are interested in the entries of these matrix powers; they are generating functions in the
variable x, convergent in the whole of C, and we consider their coefficients. First, we prove a
statement on the low powers of x.

Lemma 2.4. Assume that m ≥ 1. Let

Mm
0 =

(
a0(x) b0(x)
c0(x) d0(x)

)
.

Then as x → 0,

a0(x) = 1 +
2m − 1

2m+1
x2 +O(x3); b0(x) =

2m − 1

2m
+O(x);

c0(x) = −2m − 1

2m+1
x2 +O(x3); d0(x) =

1

2m
+O(x).

(23)

Let

Mm
1 =

(
a1(x) b1(x)
c1(x) d1(x)

)
.

Then

a1(x) = 1 +
2m − 1

2m+1
x2 +O(x3); b1(x) = −2m − 1

2m
+O(x);

c1(x) =
2m − 1

2m+1
x2 +O(x3); d1(x) =

1

2m
+O(x).

(24)

Proof. The proof of this statement is easy, using (21) and (22), and the expansions of (e±x)m,
e±x/(2 − e∓x), C(x), and S(x). We leave the details of this straightforward calculation to the
reader.

We also prove bounds for the error terms occurring in Lemma 2.4. That is, we need upper
bounds for the coefficients [xs] ai(x) and [xs] ci(x) for s ≥ 3, and for the coefficients [xs] bi(x)
and [xs] di(x) for s ≥ 1.
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Lemma 2.5. Let f ∈ {a0, b0, c0, d0, a1, b1, c1, d1}. Then for k ≥ 1,

[
xk

]
f(x) ≤ 2

(log 2)k
.

Proof. We first note that
[
xk

]
(ex/2)m =

mk

2mk!
.

This function in m attains its maximum at m = k/ log 2, yielding

[
xk

]
(ex/2)

m ≤
(
k

e

)k
1

k!

1

(log 2)k
≤ 1√

2πk

1

(log 2)k
,

using Robbins [18]. Also, the third summands in (21) and (22) can be estimated by resorting
to an asymptotic formula for the Fubini numbers (the coefficients of the exponential generating
function for 1/(2− ex)). Such an estimate follows easily from basic analytic combinatorics [13]:
as k → ∞, we have

[
xk

] 1

2− ex
=

1

2(log 2)k+1
(1 + o(1)).

Taking all singularities of 1/(2− ex) into account, we obtain the exact formula [2]

[
xk

] 1

2− ex
=

1

2

∞∑

n=−∞

(
log(2) + 2πin

)−k−1
, (25)

valid for k ≥ 1. The contribution of the terms |k| ≥ 1 can be estimated using an integral: for
n ≥ 1 we have ∑

k≥1

k−n−1 ≤ 1 +

∫ ∞

1

x−n−1 dx = 1 +
1

n
≤ 2.

Therefore [
xk

] 1

2− ex
≤ 1

2(log 2)k+1
+

2

(2π)k+1
≤ 1

(log 2)k
(26)

for k ≥ 1, the outer estimate also being valid for k = 0.
For the estimation of coefficients of Mm

i , we are also interested in partial sums. We show
the statements for M1. The case M0 can be obtained replacing ±x by ∓x, noting that for a
generating function H(x), the generating functions H(x) and H(−x) differ only by the sign of
their respective coefficients. We first show that k 7→

[
xk

]
1/(2−ex) is nondecreasing, using (25).

Passing from k to k + 1, the summand in (25) corresponding to n = 0 increases by a quantity
bounded below by 0.6. The other terms, in total, change by less, as we show now. For an integer
n ≥ 1, we have

∣∣∣
(
log 2 + 2πin

)−k−2 −
(
log 2 + 2πin

)−k−1
∣∣∣ ≤

∣∣(log 2 + 2πin
)−k−1∣∣∣∣(log 2 + 2πin

)−1 − 1
∣∣

≤ 2 · (6n)−k−1,

and since ζ(2) = π2/6, it is clear that the total contribution of n 6= 0 is bounded above by 0.6.
Also, we have [x1]1/(2− ex) = [x0]1/(2− ex) = 1, and therefore monotonicity for k ≥ 0 follows.

Next, this monotonicity implies that
[
xk

]
e−x/(2 − ex) is nonnegative and bounded by[

xk
]
1/(2− ex): expanding the Cauchy product e−x · (2− ex)−1, we see that the coefficients are

given by an alternating sum of nonincreasing values, which immediately implies the claim.
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Using this nonnegativity property, and also the fact that ex has nonnegative coefficients, we
obtain

∣∣∣∣∣
[
xk

] e−x

2− ex

(
1−

(
ex

2

)m0−1)∣∣∣∣∣ ≤
[
xk

] e−x

2− ex
≤

[
xk

] 1

2− ex
≤ 1

(log 2)k
.

Moreover, since C has nonnegative coefficients bounded by the coefficients of ex, we have

∣∣∣
[
xk

]
(ex/2)

m0−1
C(x)

∣∣∣ ≤ 2
[
xk

]
(ex/2)

m0 ≤ 2√
2πk

1

(log 2)k
.

The same is true for S in place of C. It follows that the coefficients of the entries of Mm
0 and

Mm
1 are bounded by

1

2
+

1√
2πk(log 2)k

+
1

2(log 2)k
≤ 2

(log 2)k

for k ≥ 1. This finishes the proof of Lemma 2.5.

In particular, using (12), it follows from this proof that

ak(0) ≤ (log 2)−k and |bk(0)| ≤ (log 2)−k for k ≥ 1. (27)

We are now prepared to prove upper bounds for the moments mk(t).

Proposition 2.6. Set Ak = 2 · (3/2)k−1/k! for k ≥ 1. There exist constants Bk, Ck, and Ek

(for k ≥ 1) and Dk (for k ≥ 2) such that for all r ≥ 1, and all t ≥ 1 having r blocks we have

k = 0 k = 1 k ≥ 2

|a0(t)| = 2; |a2(t)| ≤ A1r +B1; |a2k(t)| ≤ Akr
k +Bkr

k−1;

|a1(t)| = 0; |a3(t)| ≤ C1r; |a2k+1(t)| ≤ Ckr
k;

|b0(t)| = 0; |b2(t)| ≤ 1; |b2k(t)| ≤ Ak−1r
k−1 +Dkr

k−2;

|b1(t)| = 0; |b3(t)| ≤ E1; |b2k+1(t)| ≤ Ekr
k−1.

Proof. We proceed by induction on k, using Lemmas 2.4 and 2.5. Clearly, the statement is true
for k = 0, since m0(t) = 1 and m1(t) = 0 for all t ≥ 0.

We begin with the treatment of the even moments. The first step is to verify the following
identities for the case k = 1:

a2(2
mt) = a2(t) +

2m − 1

2m
+

2m − 1

2m
b2(t);

b2(2
mt) = − 2m − 1

2m
+

1

2m
b2(t);

a2(2
mt+ 2m − 1) = a2(t) +

2m − 1

2m
− 2m − 1

2m
b2(t);

b2(2
mt+ 2m − 1) =

2m − 1

2m
+

1

2m
b2(t).

(28)
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In the induction step, we will make use of the following identities, valid for k ≥ 2: we have

a2k(2
mt) = a2k(t) +

2m − 1

2m+1
a2k−2(t) +

2m − 1

2m
b2k(t) + O(rk−2);

b2k(2
mt) = − 2m − 1

2m+1
a2k−2(t) +

1

2m
b2k(t) + O(rk−2);

a2k(2
mt+ 2m − 1) = a2k(t) +

2m − 1

2m+1
a2k−2(t) −

2m − 1

2m
b2k(t) + O(rk−2);

b2k(2
mt+ 2m − 1) =

2m − 1

2m+1
a2k−2(t) +

1

2m
b2k(t) + O(rk−2),

(29)

where the implied constants only depend on k. It is notable that only even moments are involved
in these identities!
Proof of (28) and (29). We begin with the first and third lines of (28) and (29). Appending
a block of 0s or 1s of length m to t, we obtain t′; by (19) we have

(
Ft′ (x)
Gt′(x)

)
= Mm

i

(
Ft(x)
Gt(x)

)
,

where i ∈ {0, 1}. Using Lemma 2.4 and expanding Cauchy products, we obtain

a2k(t
′) = a2k(t) +

2m − 1

2m+1
a2k−2 +

∑

3≤ℓ≤2k

a2k−ℓ(t)
[
xℓ
]
a0(x)

± 2m − 1

2m
b2k(t) +

∑

1≤ℓ≤2k

b2k−ℓ(t)
[
xℓ
]
b0(x).

(30)

Here, the “+”-part corresponds to appending a block of 0s and the “−”-part to appending a
block of 1s. . Clearly, for k = 1 we have

∑

3≤ℓ≤2k

a2k−ℓ(t)
[
xℓ
]
a0(x) =

∑

1≤ℓ≤2k

b2k−ℓ(t)
[
xℓ
]
b0(x) = 0,

which implies the statements concerning a2 in (28).
Inserting the estimates for the coefficients of Mm

i (Lemma 2.5) and the induction hypothesis,
we obtain for k ≥ 2, using a0(t) = 2,

S1 :=
∑

3≤ℓ≤2k

a2k−ℓ(t)
[
xℓ
]
a0(x) ≤

∑

4≤ℓ≤2k
2|ℓ

a2k−ℓ(t)
2

(log 2)ℓ
+

∑

3≤ℓ≤2k−1
2∤ℓ

a2k−ℓ(t)
2

(log 2)ℓ

≤ 4
(
log 2

)−2k
+

∑

2≤j<k

(
Ak−jr

k−j +Bk−jr
k−j−1

) 2

(log 2)2j
+

∑

2≤j<k

Ck−j
2rk−j

(log 2)2j−1
.

The sums are identically zero if r = 0 or k < 3; for the other cases, we note that for all integers
m ≥ 1,

∑

0≤j<m

(log 2)−2j =
(log 2)−2m − 1

(log 2)−2 − 1
≤ (log 2)−2m (31)

since the appearing denominator is greater than 1. Therefore

∑

2≤j<k

Ak−j
rk−j

(log 2)2j
≤ max

1≤j≤k−2
Aj

rk−2

(log 2)4

∑

0≤ℓ<k−2

1

(log 2)2ℓ
≤ rk−2

(log 2)2k
max

1≤j≤k−2
Aj ,
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which is also valid for A replaced by B resp. C. We obtain for k ≥ 2

S1 ≤ d
(1)
1 (k)rk−2,

where

d
(1)
1 (k) = 2

(
log 2

)−2k
(
2 + max

1≤j≤k−2
Aj + max

1≤j≤k−2
Bj + max

1≤j≤k−2
Cj

)
.

Here and in the following the maximum over the empty index set is defined as 0.
In an analogous fashion, we treat the second sum in (30), which is nonzero only if k ≥ 2.

We use the hypothesis |b2(t)| ≤ 1, and obtain for k ≥ 2

S2 :=
∑

1≤ℓ≤2k

b2k−ℓ(t)
[
xℓ
]
b0(x) ≤

∑

2≤ℓ≤2k
2|ℓ

b2k−ℓ(t)
2

(log 2)ℓ
+

∑

1≤ℓ≤2k−1
2∤ℓ

b2k−ℓ(t)
2

(log 2)ℓ

≤
∑

1≤j≤k−2

(
Ak−j−1r

k−j−1 +Dk−jr
k−j−2

) 2

(log 2)2j
+ 2

(
log 2

)−2k+2

+
∑

1≤j≤k−1

Ek−jr
k−j−1 2

(log 2)2j−1
.

Similarly to the treatment of S1, using (31), we have for k ≥ 2

S2 ≤ d
(2)
1 (k)rk−2,

where

d
(2)
1 (k) = 2(log 2)−2k

(
1 + max

1≤j≤k−2
Aj + max

2≤j≤k−1
Dj + max

1≤j≤k−1
Ej

)
.

This implies the statements for a2k in (29). We proceed to b2k and obtain

b2k(t
′) =∓ 2m − 1

2m+1
a2k−2(t) +

∑

3≤ℓ≤2k

a2k−ℓ(t)
[
xℓ
]
c0(x)

+
1

2m
b2k(t) +

∑

1≤ℓ≤2k

b2k−ℓ(t)
[
xℓ
]
d0(x).

(32)

Again, for k = 1, the sums vanish, and we obtain the second and fourth lines of (28).

For k ≥ 2, the two sums occurring in (32) can be estimated by d
(1)
1 (k)rk−2 and d

(2)
2 (k)rk−2

respectively. This follows by replacing a by c and b by d and recycling the argument from above.
This implies lines two and four of (29).

It follows that d1(k) = d
(1)
1 (k) + d

(2)
1 (k) is an admissible constant for all of the four formulas

in (29).
Deriving bounds for the even moments. We apply the eight equations in (28) and (29)
successively in order to obtain the “even part” of the statement, that is, the estimates for a2k(t)
and b2k(t).

We begin with b2 and show |b2(t)| ≤ 1 by induction: we have b2(0) = m2(0)−m2(1) = −1,
and by (28) we obtain

|b2(t′)| ≤
2m − 1

2m
+

1

2m
≤ 1

for both t′ = 2mt and t′ = 2mt+ 2m − 1. Moreover, a2(0) = 1 and

a2(t
′) = a2(t) +

2m − 1

2m
± 2m − 1

2m
b2(t) ≤ a2(t) + 2,
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which implies a2(t) ≤ 2r+1 for all t ≥ 0 having r blocks. We therefore set A1 = 2 and B1 = 1.
Clearly |a2(t)| ≤ A1r

1 +B1r
0, and the estimates for a2 and b2 in the proposition are proved.

We assume now that k ≥ 2 and we consider b2k: we have

|b2k(t′)| ≤
∣∣∣∣∓

2m − 1

2m+1
a2k−2(t) +

1

2m
b2k

∣∣∣∣+ d1(k)r
k−2 ≤ |b2k(t)|+ a2k−2(t)

2
+ d1(k)r

k−2,

where t′ results from t by appending 0s (if t is odd) or by appending 1s (if t is even).
Here r is the number of blocks in t. By iteration, exploiting the denominator 2 (geometric

series!), and by applying the induction hypothesis and

|b2k(0)| ≤
1

(log 2)2k
,

we obtain

|b2k(t)| ≤ Ak−1r
k−1 +Bk−1r

k−2 + 2d1(k)r
k−2 +

1

(log 2)2k

if t has r blocks. We therefore set Dk = Bk−1 + 2d1(k) + (log 2)−2k and this case is completed.
We proceed to the case a2k, where k ≥ 2: each time we append a block of 0s or 1s to t, we add
at most

|a2k(t′)− a2k(t)| ≤
2m − 1

2m+1
a2k−2(t) +

2m − 1

2m
|b2k(t)|+ d1(k)r

k−2

≤ 1

2
a2k−2(t) + |b2k(t)|+ d1(k)r

k−2

≤ 3

2
Ak−1r

k−1 + (Bk−1 +Dk + d1(k)) r
k−2.

This follows from (29) and line three of the induction statement. We wish to successively append
a block of 0s or 1s; this corresponds to summing this inequality in r. For ℓ ≥ 1 and N ≥ 0 we
have

∑

1≤n<N

nℓ−1 ≤
∫ N

1

nℓ−1 dn ≤ N ℓ

ℓ
.

Noting that a2k(0) = m2k(1) ≤ (log 2)−2k for k ≥ 1 by (27), we obtain therefore

a2k(t) ≤ Akr
k +Bkr

k−1

with

Ak =
3

2k
Ak−1 and

Bk =
1

k − 1

(
Bk−1 +Dk + d1(k)

)
+

1

(log 2)2k

=
1

k − 1

(
2Bk−1 + 3d1(k)

)
+

2

(log 2)2k
,

(33)

which proves the part of the induction statement concerning the even moments.
Deriving bounds for the odd moments. For the odd case, concerning a2k+1 and b2k+1, we
proceed similarly. Suppose that k ≥ 1. Using (19), Lemma 2.4 and expanding Cauchy products,
we obtain

a2k+1(t
′) = a2k+1(t) +

∑

2≤ℓ≤2k+1

a2k+1−ℓ(t)
[
xℓ
]
a0(x)

± 2m − 1

2m
b2k+1(t) +

∑

1≤ℓ≤2k+1

b2k+1−ℓ(t)
[
xℓ
]
b0(x),
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where “+” corresponds to appending a block of 0s. By Lemma 2.5 and the induction hypothesis,
using a1(t) = 0 and a0(t) = 2, we have for k ≥ 1

∑

2≤ℓ≤2k+1

a2k+1−ℓ(t)
[
xℓ
]
a0(x) ≤

∑

2≤ℓ≤2k
2|ℓ

a2k+1−ℓ(t)
2

(log 2)ℓ
+

∑

3≤ℓ≤2k+1
2∤ℓ

a2k+1−ℓ(t)
2

(log 2)ℓ

≤
∑

1≤j<k

Ck−jr
k−j 2

(log 2)2j
+

∑

1≤j<k

(
Ak−jr

k−j +Bk−jr
k−j−1

) 2

(log 2)2j+1

+
4

(log 2)2k+1
≤ d

(1)
2 (k)rk−1,

where

d
(1)
2 (k) = 2 (log 2)−2k−1

(
2 + max

1≤j≤k−1
Aj + max

1≤j≤k−1
Bj + max

1≤j≤k−1
Cj

)
.

Moreover, using also the even case proved above and |b2(t)| ≤ 1, we get

∑

1≤ℓ≤2k+1

b2k+1−ℓ(t)
[
xℓ
]
b0(x) ≤

∑

2≤ℓ≤2k
2|ℓ

b2k+1−ℓ(t)
2

(log 2)ℓ
+

∑

1≤ℓ≤2k+1
2∤ℓ

b2k+1−ℓ(t)
2

(log 2)ℓ

≤
∑

1≤j<k

Ek−jr
k−j−1 2

(log 2)2j

+
∑

1≤j<k

(
Ak−jr

k−j +Dk−j+1r
k−j−1

) 2

(log 2)2j−1
+

2

(log 2)2k−1

≤ d
(2)
2 (k)rk−1,

where

d
(2)
2 (k) = 2 (log 2)−2k−1

(
1 + max

1≤j≤k−1
Aj + max

2≤j≤k
Dj + max

1≤j≤k−1
Ej

)
.

This estimate is valid for k ≥ 1. Therefore

a2k+1(t
′) = a2k+1(t)±

2m − 1

2m
b2k+1(t) +O1

(
d2(k)r

k−1
)
, (34)

where r is the number of blocks in t and d2(k) = d
(1)
2 (k)+ d

(2)
2 (k), and where we use the symbol

O1 to indicate that the implied constant is bounded by 1.
Concerning b2k+1, we obtain from Lemma 2.4

b2k+1(t
′) =

∑

2≤ℓ≤2k+1

a2k+1−ℓ(t)
[
xℓ
]
c0(x) +

1

2m
b2k+1(t) +

∑

1≤ℓ≤2k+1

b2k+1−ℓ(t)
[
xℓ
]
d0(x),

and therefore by the above argument (replacing a and b by c and d respectively)

b2k+1(t
′) =

1

2m
b2k+1(t) +O1

(
d2(k)r

k−1
)
. (35)

By repeated application of this identity, using (27), we obtain

|b2k+1(t)| ≤
1

2
|b2k+1(0)|+ 2d2(k)r

k−1 ≤ Ekr
k−1
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for all t, where Ek = 2d2(k) + (log 2)−2k−1 for k ≥ 1. Inserting this into (34), we obtain

|a2k+1(t
′)| ≤ |a2k+1(t)| +

(
3d2(k) + (log 2)−2k−1

)
rk−1

and therefore by summation, using (27) again,

a2k+1(t) ≤ Ckr
k,

where Ck = 3d2(k)/k + 2(log 2)−2k−1. This is valid for all k ≥ 1. The proof is complete.

Summarizing, the recurrence for the quantities Aj through Ej , used in the proof, is as follows:

k = 1 k ≥ 2

A1 = 2; Ak = 3Ak−1/(2k);

B1 = 0; Bk =
(
2Bk−1 + 3d1(k)

)
/(k − 1) + 2(log 2)−2k;

C1 = 3d2(1); Ck = 3d2(k)/k + 2(log 2)−2k−1;

Dk = Bk−1 + 2d1(k) + (log 2)−2k;

E1 = 2d2(1); Ek = 2d2(k) + (log 2)−2k−1,

where

d1(k) =
2

(log 2)2k

(
3 + 2 max

1≤j≤k−2
Aj + max

1≤j≤k−2
Bj

+ max
1≤j≤k−2

Cj + max
2≤j≤k−1

Dj + max
1≤j≤k−1

Ej

)

for k ≥ 2 and

d2(k) =
2

(log 2)2k+1

(
3 + 2 max

1≤j≤k−1
Aj + max

1≤j≤k−1
Bj

+ max
1≤j≤k−1

Cj + max
2≤j≤k

Dj + max
1≤j≤k−1

Ej

)

for k ≥ 1. Using this recurrence, it is easy to compute explicit bounds for the values Aj through
Ej , in particular, choosing ε < 1/4, this leads to an effective bound r0 such that ct > 1/4 as
soon as t has at least r0 blocks. However, we do not believe that these numerical values are
particularly enlightening (and fairly large). We therefore limit ourselves to a short summary: for
k = 1, we see that d2(1) = 6(log 2)−4, from which we obtain C1 and E1. In the step k − 1 → k,
we have to compute d1(k) first; then Bk and Dk can be obtained, and d2(k) as the next step
(note that for the maximum max2≤j≤k Dj we need Dk). Finally, Ck and Ek can be computed.

2.5 Bounding the characteristic function using a matrix product

The correlations γt(ϑ) satisfy the following recurrence (see Bésineau [5]): for all t ≥ 0,

γ0(ϑ) = 1, γ2t(ϑ) = γt(ϑ), γ2t+1(ϑ) =
e(ϑ)

2
γt(ϑ) +

e(−ϑ)

2
γt+1(ϑ).

In order to capture this using a matrix product, we define

A(0) =

(
1 0

e(ϑ)/2 e(−ϑ)/2

)
, A(1) =

(
e(ϑ)/2 e(−ϑ)/2

0 1

)
.
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In [16] we used the representation

γt(ϑ) =
(
1 0

)
A(ε0) · · ·A(εν)

(
1
u

)
,

where t = (εν . . . ε0)2 and u = γ1(ϑ) = e(ϑ)/(2− e(−ϑ)).
Using this matrix identity, we proved [20, Lemma 2] an upper bound for γt(ϑ) depending

on the number r of blocks of 1s occurring in t. By a slight variation (we handled the values
ωt(ϑ) = γt(ϑ)/u, where u is bounded by 1 in absolute value) we obtain the following statement.

Lemma 2.7. Assume that t ≥ 1 contains at least 4M + 1 blocks. Then

|γt(ϑ)| ≤
(
1− 1

2
‖ϑ‖2

)M

.

2.6 Splitting the integral

We are interested in bounding the integral

∫ 1/2

0

Im γt(ϑ) cot(πϑ) dϑ

by ε. (Note that the integrand is an even function and therefore the integrals over [0, 1/2] and
[1/2, 1] yield the same value.) We split the integration at the point ϑ0 = r−1/2R, where the
integer R is chosen in a moment and r is the number of blocks in t.

We begin with the estimation of the right part of the integral. Let M be maximal such that
4M + 1 ≤ r. Then by Lemma 2.7, we have

∣∣γt(ϑ)
∣∣ ≤

(
1− 1

2
‖ϑ‖2

)M

≤ exp

(
−M

2
‖ϑ‖2

)
.

We have (r−4)/4 ≤ M ≤ (r−1)/4 (because (r−5)/4 ≥ M is impossible due to the maximality
of M , therefore 4M + 5 > r, which implies 4M + 4 ≥ r). Also, for 0 ≤ x ≤ π/2, we have the
elementary inequality

cotx ≤ 1/x. (36)

We obtain

∫ 1/2

ϑ0

Im γt(ϑ) cot(πϑ) dϑ ≤
∫ 1/2

ϑ0

1

ϑ
exp

(
−M

2
‖ϑ‖2

)
dϑ

≤
∞∑

m=R

∫ (m+1)r−1/2

mr−1/2

1

ϑ
exp

(
−M

2
ϑ2

)
dϑ ≤ r−1/2

∞∑

m=R

1

mr−1/2
exp

(
−M

2
m2/r

)

≤
∞∑

m=R

1

m
exp

(
−m2

8

(
1− 4

r

))
≤

∞∑

m=R

1

m
exp

(
−m2

16

)
.

This is valid for r ≥ 8. Since exp(−m2/16) = O(1/m) for m → ∞, this infinite sum is bounded
by c/R for some absolute (effective) constant c. We therefore choose the integer R = R(ε) large
enough such that c/R ≤ ε/3, and we obtain

∫ 1/2

ϑ0

Im γt(ϑ) cot(πϑ) dϑ ≤ ε

3
. (37)
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The left part of the integral will be estimated using upper bounds for the odd moments,
which is Proposition 2.6.

From the estimate of a2k+1(t) and b2k+1 in Proposition 2.6 we get by the triangle inequality

|m2k+1(t)| ≤ E′
kr

k

for some constant E′
k only depending on k. Moreover, from the estimate for a2k(t) we obtain

by nonnegativity of the even moments

m2K(t) ≤ AKrK +BK−1r
K−1

and
m2K+2(t) ≤ AK+1r

K+1 +BKrK .

For r greater than some r0(K) we therefore have

m2K(t) ≤ 2AKrK and m2K+2(t) ≤ 2AK+1r
K+1 (38)

for all t having at least r blocks. Let K be large enough so that

LK = 2

√
(2K)!(2K + 2)!AKAK+1(2π)

2K+1

(2K + 1)!
≤ ε/3

R2K+1
. (39)

Note that for this inequality, we use the factor k! in the denominator of Ak in an essential way!
By (20) and (38) we obtain for r ≥ r0(K)

∣∣Im γt(ϑ)
∣∣ ≤

∑

0≤k<K

(2πϑ)2k+1E′
kr

k + LKϑ2K+1rK+1/2.

Using (36), we obtain for ϑ ≤ ϑ0

∣∣Im γt(ϑ) cot(πϑ)
∣∣ ≤

∑

0≤k<K

(2π)2k+1E′
kϑ

2k
0 rk + LKϑ2K

0 rK+1/2

=
∑

0≤k<K

(2π)2k+1E′
kR

2k + LKR2Kr1/2.

Integrating from 0 to ϑ0 yields for r ≥ r0(K)

∫ ϑ0

0

Im γt(ϑ) cot(πϑ) dϑ ≤ r−1/2
∑

0≤k<K

(2πR)2k+1E′
k + LKR2K+1.

The second summand is bounded by ε/3, using (39). The sum over k does not depend on r.
For r ≥ r1(K), we therefore have

∫ ϑ0

0

Im γt(ϑ) cot(πϑ) dϑ ≤ 2ε

3

and the theorem is proved.

Remark. We plan to prove more detailed estimates for the moments mk in the future. For
example, it is known [10] that m2k(t) is usually of size rk/(2kk!), where r is the number of
blocks in t (we skip the precise formulation of the property proved in [10]). We wish to sharpen

this estimate, and consequently prove a lower bound for the values δ(0, t) =
∫ 1

0 Re γt(ϑ) dϑ for

T − O
(
T 1−ε

)
many t < T . Using (7), and also improving the estimates of the odd moments,

we hope to obtain ct > 1/2 for these t in this way, thus significantly improving the error term
in the result [8] by Drmota, Kauers, and the author.
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[17] P. D. Prŏınov and E. Y. Atanassov. On the distribution of the van der Corput gen-
eralized sequences. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988) 895–900.

[18] H. Robbins. A remark on Stirling’s formula. Amer. Math. Monthly 62 (1955) 26–29.

[19] L. Spiegelhofer. Discrepancy results for the van der Corput sequence. Unif. Distrib.
Theory 13 (2018) 57–69.

[20] L. Spiegelhofer. Approaching Cusick’s conjecture on the sum-of-digits function. To
appear in Integers ; https://arxiv.org/abs/1904.08646.

[21] L. Spiegelhofer and M. Wallner. The Tu–Deng conjecture holds almost surely. Elec-
tron. J. Combin. 26 (2019)

[22] Z. Tu and Y. Deng. A conjecture about binary strings and its applications on constructing
Boolean functions with optimal algebraic immunity. Des. Codes Cryptogr. 60 (2011) 1–14.

[23] Z. Tu and Y. Deng. Boolean functions optimizing most of the cryptographic criteria.
Discrete Appl. Math. 160 (2012) 427–435.


	1 Introduction and main result
	2 Proof of the main theorem
	2.1 Relating ct to a characteristic function
	2.2 Moments of t
	2.3 Estimating the characteristic function using moments
	2.4 Upper bounds for the moments of t
	2.5 Bounding the characteristic function using a matrix product
	2.6 Splitting the integral


