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Abstract

In this paper, we compute the distributions of the statistic number of crossings over
permutations avoiding one of the pairs {321, 231}, {123, 132} and {123, 213}. The ob-
tained results are new combinatorial interpretations of two known triangles in terms of
restricted permutations statistic. For some pairs of three length-patterns, we find rela-
tionships between the polynomial distributions of the crossings over permutations that
avoid the pairs containing the pattern 231 on the first hand and the pattern 312 on the
other hand.
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1 Introduction and main results

The statistic number of crossings is among the complicated statistics on permutations. Its
survey arises from the works of A. de Médicis and X.G. Viennot [5], A. Randrianarivony[11,
12], S. Corteel [3], S. Burril et al. [2] to S. Corteel et al. [4]. Recently, the first author of
this paper introduced the study of this statistic on permutations avoiding a single pattern
of length three [10]. This one is devoted on the distribution of crossings on permutations
avoiding a pair of patterns of length three. The technique we use in this paper differs from
that of these known works who generally used other object like paths. Here, we simply
manipulate the structure of our combinatorial objects and use some trivial bijections that we
present in the next section.

A permutation σ of [n] := {1, 2, . . . , n} is a bijection from [n] to itself which can be written
linearly as σ = σ(1)σ(2) . . . σ(n). We shall refer n as the length of σ (i.e. n = |σ|) and we
denote by Sn the set of all permutations of length n. A crossing of a given permutation σ is a
pair of indexes (i, j) such that i < j < σ(i) < σ(j) or σ(i) < σ(j) ≤ i < j. We denote by cr(σ)
the number of crossings of σ. For graphical understanding, we usually draw arc diagrams,
i.e. draw an upper (resp. a lower) arc from i to σ(i) if σ(i) > i (resp. σ(i) < i).
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i σ(i)j σ(j)

Upper crossing

iσ(i) jσ(j)
or ijσ(j)

Lower crossing

Figure 1: Arc diagrams of crossings.

Example: the crossings of the permutation π = 4735126 ∈ S7 drawn in Figure 2 are (1, 2),
(5, 6) and (6, 7). So we have cr(π) = 3.

1 2 3 4 5 6 7

Figure 2: Arc diagrams of π = 4735126 ∈ S7 with cr(π) = 3.

Let σ ∈ Sn and τ ∈ Sk with 1 ≤ k ≤ n. For any given sequence of integers i1 < i2 < . . . <
ik, we say that a subsequence s = σ(i1)σ(i2) . . . σ(ik) of σ is an occurrence of τ if s and τ are
in order isomorphic, i.e. σ(ix) < σ(iy) if and only if τ(x) < τ(y). If there is no occurrence of
the pattern τ in σ, we say that σ is τ-avoiding. Example: the permutation π = 4162375 ∈ S7

is 321-avoiding and it has five occurrences of the pattern 312 namely 312, 423, 623, 625 and
635. We will denote by Sn(τ) the set of all τ-avoiding permutations of [n]. For any subset of
patterns T = {τ1, τ2, . . .}, we usually write Sn(τ1, τ2, . . .) for Sn(T) and S(T) := ∪n≥0Sn(T).
There are three useful trivial involutions on Sn namely reverse r, complement c and inverse i
defined as follows: for any permutation σ ∈ Sn,

• the reverse of σ is r(σ) = σ(n)σ(n − 1) . . . σ(1),

• the complement of σ is c(σ) = (n + 1 − σ(1))(n + 1 − σ(2)) . . . (n + 1 − σ(n)),

• the inverse of σ is i(σ) = p(1)p(2) . . . p(n) where p(i) is the position of i in σ. We often
write i(σ) = σ−1.

Example: for π = 4135762 ∈ S7, we have r(π) = 2675314, c(π) = 4753126, π−1 = 2731465,
r ◦ c(π) = 6213574 and r ◦ c ◦ i(π) = 3247516 where ◦ denotes the composition operation.
Let us denote by fg := f ◦ g for any involution f and g in {r, c, i}. By composition ◦, these
defined involutions generate the dihedral group D = {id, r, c, i, rc, ri, ci, rci} and they greatly
simplify enumeration of pattern-avoiding permutations statistics through the fundamental
property by Simion and Smith [14]

ϕ(Sn(T)) = Sn(ϕ(T)) for any ϕ ∈ D and any subset of patterns T. (1.1)

For any given statistic st, say that two subsets T1 and T2 are st-Wilf-equivalent if and only
if the polynomial distributions of st over the sets Sn(T1) and Sn(T2) are the same for any
integer n. In other word, we have

∑
σ∈Sn(T1)

xst(σ) = ∑
σ∈Sn(T2)

xst(σ) for any integer n.

Various statistic-Wilf-equivalence classes for subset of patterns of length three are known in
[1, 6, 8, 10, 13]. In [10], Rakotomamonjy particularly provided the Wilf-equivalence classes
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modulo cr for single pattern of length three. He proved bijectively that the only non single-
ton class is {132, 213, 321}, i.e.

∑
σ∈Sn(321)

qcr(σ) = ∑
σ∈Sn(132)

qcr(σ) = ∑
σ∈Sn(213)

qcr(σ). (1.2)

To prove the first identity of (1.2), he exploited the bijection Θ : Sn(321) → Sn(132) ex-
hibited by Elizalde and Pak in [7] and proved that Θ is cr-preserving. The second identity
of (1.2) is simply obtained from the fact that the reverse-complement-inverse rci preserves
the number of crossings (see Lemma 4.2 - [10]). Using the q,p-Catalan numbers defined by
Randrianarivony [12], Rakotomamonjy also proved the following result.

Theorem 1.1. [10] For any pattern τ ∈ {321, 132, 213}, the polynomial Fn(τ; q) := ∑σ∈Sn(τ) qcr(σ)

satisfies

Fn(τ; q) = Fn−1(τ; q) +
n−2

∑
k=0

qkFk(τ; q)Fn−1−k(τ; q).

Moreover, we have

∑
σ∈S(τ)

qcr(σ)z|σ| =
1

1 −
z

1 −
z

1 −
qz

1 −
qz

1 −
q2z

1 −
q2z

. . .

.

Notice that finding ∑σ∈Sn(τ) qcr(σ) or ∑σ∈S(τ) qcr(σ)z|σ| are staying open for any τ ∈

{123, 231, 312}. The first results of this paper is the following.
Theorem 1.2. We have the following identities

∑
σ∈S(231,321)

qcr(σ)z|σ| =
1 − qz

1 − (1 + q)z − (1 − q)z2
(1.3)

∑
σ∈S(123,τ)

qcr(σ)z|σ| = 1 +
(1 − qz)z

(1 − z)(1 − (1 + q)z)
for any τ ∈ {132, 213}. (1.4)

We observe throughout the paper of Bukata et al. [1] that identities (1.3) and (1.4)
are respectively new combinatorial interpretations of the triangles A076791 and A299927
of the On-line Encyclopedia of Integer Sequences OEIS [15]. Bukata et al. interpreted
these triangles in terms of number of double descents (ddes) and number of double as-
cents(dasc) over permutations avoiding some pairs of patterns of length 3 (see Proposi-
tion 7 and Proposition 11 in [1]). The statistics ddes and dasc are respectively defined by
ddes(σ) := |{i|σ(i) > σ(i + 1) > σ(i + 2)}| and dasc(σ) := |{i|σ(i) < σ(i + 1) < σ(i + 2)}|
for any permutation σ. Notice that the triangle A299927 is new in OEIS and it was first
discovered by Bukata et al..

Let τ ∈ {132, 213}. For any integer n ≥ 1 and k ≥ 0, as direct consequence of identity
(1.4), we have

|{σ ∈ Sn(123, τ)|cr(σ) = k}| = δk,0 +

(

n − 1

k + 1

)

.

https://oeis.org/A076791
https://oeis.org/A299927
https://oeis.org/A299927
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The next result of this paper concerns various relationships between the distributions
of the number of crossing over permutations that avoid the pattern 231 on the first hand
and permutations that avoid the pattern 312 on the second hand. For that, we denote by

F(T; q, z) := ∑σ∈S(T) qcr(σ)z|σ| for any subset of patterns T.
Theorem 1.3. We have the following identities

F(312; q, z) =
1

1 − zF(231; q, z)
,

F(312, 123; q, z) = 1 +

(

z

1 − z

)2

+ zF(231, 123; q, z),

and F(312, τ; q, z) = 1 +

(

z

1 − z

)

F(231, τ′; q, z) for any (τ, τ′) ∈ {132, 213}2.

The aim of this paper is to find the polynomial distributions of the number of crossings
over permutations avoiding any pair of patterns in S3. The tool that we use is not sufficient
to treat all cases. However, these relationships we found will obviously reduce the number
of the remain cases to be processed.

We organize the rest of this paper in three sections. Section 2 is for notations and prelim-
inaries in which we will prove one fundamental proposition that will play a central role in
the proof of our results. In Section 3, we provide the proof of our main results. In Section 4,
we end this paper with two additional results.

2 Notations and preliminaries

Let n be a positive integer. For any k ∈ [n], we denote by Sk
n := {σ ∈ Sn|σ(k) = 1}

and Sn,k := {σ ∈ Sn|σ(n) = k}. Let us also denote respectively by Fn(T; q), Fk
n(T; q) and

Fn,k(T; q) the polynomial distributions of cr over the set Sn(T) and Sk
n(T) and Sn,k(T), for any

subset of patterns T and any integer k ∈ [n]. We particularly denote by Fn(q) := Fn(ø; q),
Fk

n(q) := Fk
n(ø; q) and Fn,k(q) = Fn,k(ø; q)

Let m and n be two integers such that m > 1. Let T ⊂ Sm and k ∈ [n]. We also denote
by T−1 = {τ−1|τ ∈ T} and T(i) := {τ(i)|τ ∈ T} for i ∈ [m]. In this section, we will prove
the following fundamental proposition that will help us to solve our problems in the next
sections.
Proposition 2.1. For all integer n ≥ 1, the following properties hold

If min T−1(1) > 1, we have F1
n (T; q) = Fn−1(T; q). (2.1)

If min T−1(1) > 2, we have F2
n (T; q) = qFn−1(T; q) + (1 − q)Fn−2(T; q). (2.2)

If maxT−1(1)<m−1, we have Fn−1
n (T; q) = qFn−1(T

−1; q)+(1−q)Fn−1,n−1(T
−1; q).(2.3)

If max T−1(1) < m, we have Fn
n (T; q) = Fn−1(T

−1; q). (2.4)

For that, we need some notations to be defined and some lemmas to be proved. So we
let σ ∈ Sn. We say that i is an upper transient (resp. lower transient) of σ if and only if
σ−1(i) < i < σ(i) (resp. σ(i) < i < σ−1(i)). We denote respectively by ut(σ) and lt(σ)
the numbers of upper and lower transients of a given permutation σ. By this definition, we
have the following remark.
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Remark 2.2. For any permutation σ, the index i is a lower transient of σ if and only if (i, σ−1(i)) is
a lower crossing of σ.

For any given integer k, we also denote respectively by Utk(σ) := {i < k/σ−1(i) < i <
σ(i)} and Ltk(σ) := {i < k/σ(i) < i < σ−1(i)} the sets of upper and lower transients of σ
less than k. Define also

ut−k (σ) := |Utk(σ)| and ut+k (σ) := ut(σ)− ut−k (σ),

lt−k (σ) := |Ltk(σ)| and lt+k (σ) := lt(σ)− lt−k (σ),

αk(σ) := |{i ≥ k/σ(i) < k}|.

Observe that we particularly have ut−n (σ) = ut−n+1(σ) = ut(σ) and lt−n (σ) = lt−n+1(σ) =
lt(σ), αn(σ) = 1 − δn,σ(n) and αn+1(σ) = 0 where δ is the usual Kronecker symbol. Now, let
us recall some needed notations introduced in [10]. Given a permutation σ and two integers

a and b, we denote by σ(a,b) the obtained permutation from σ by the following way:

• add by 1 each number in σ which is greater or equal to b,

• then, insert b at the a-th position of the modified σ.

We can simply write σ−(a,b) for (σ−1)(a,b). Example: we have 3142(2,3) = 43152 and

3142−(2,3) = 23514. Now, we prove here a fundamental lemma which is a particular case
of Lemma 3.7 in [10].
Lemma 2.3. Let σ ∈ Sn and k ∈ [n + 1]. We have

cr(σ(k,1)) = cr(σ) + ut−k (σ)− lt−k (σ) + αk(σ).

Proof. Let σ ∈ Sn and k ∈ [n + 1]. Firstly, we denote by Ak(σ) (resp. Bk(σ), Ck(σ)) the
set of all crossings (i, j) of σ such that j < k (resp. i < k ≤ j, k ≤ i). We obviously have

cr(σ) = |Ak(σ)| + |Bk(σ)|+ |Ck(σ)|. Let us assume that π = σ(k,1). By definition, we have

π(i) = σ(i) + 1 if i < k, π(k) = 1 and π(i + 1) = σ(i) + 1 if i ≥ k.

Let (i, j) be a pair of integer such that i < j. Based on this definition of π, we will examine
the following three cases:

Case 1: Suppose that j < k. So we have π(i) = σ(i) + 1 and π(j) = σ(j) + 1.

• Assume that (i, j) ∈ Ak(σ).

– If i < j < σ(i) < σ(j), then i < j < π(i) < π(j) and (i, j) ∈ Ak(π),

– If σ(i) < σ(j) ≤ i < j, then

{

π(i) < π(j) ≤ i < j if σ(j) < i;

π(i) ≤ i < π(j) = i + 1 ≤ j if σ(j) = i.

Thus, we have

{

(i, j) ∈ Ak(π) if σ(j) < i;

(i, j) /∈ Ak(π) if σ(j) = i.

• Inversely, if (i, j) ∈ Ak(π), the following properties hold:

– if i < j < π(i) < π(j), then i < j ≤ σ(i) < σ(j). So, we have
{

(i, j) ∈ Ak(σ) if π(i) > j + 1 (i.e. σ(i) > j);

(i, j) /∈ Ak(σ) if π(i) = j + 1 (i.e. σ(i) = j).
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– if π(i) < π(j) ≤ i < j then σ(i) < σ(j) < i < j, i.e. (i, j) ∈ Ak(σ).

Consequently, we obtain the following identity

|Ak(σ)|− |{i|σ(i) < i < σ−1(i) < k}| = |Ak(π)|− |{(i, j) ∈ Ak(π)|i < j < π(i) = j+ 1}|.
(2.5)

Case 2: Suppose that i < k ≤ j. We have π(i) = σ(i) + 1 and π(j + 1) = σ(j) + 1.

• Assume that (i, j) ∈ Bk(σ).

– If i < j < σ(i) < σ(j) then (i, j + 1) ∈ Bk(π),

– If σ(i) < σ(j) ≤ i < j then

{

(i, j + 1) ∈ Bk(π) if σ(j) < i;

(i, j + 1) /∈ Bk(π) if σ(j) = i.

• Inversely, if (i, j) ∈ Bk(π),

– if i < j < π(i) < π(j), then j > k since π(k) = 1. Thus, we have i < j − 1 <

σ(i) < σ(j − 1), i.e. (i, j − 1) ∈ Bk(σ),
– if π(i) < π(j) ≤ i < j, then σ(i) < σ(j − 1) < i < j − 1, i.e. (i, j − 1) ∈ Bk(σ).

Consequently, we obtain the following identity

|Bk(σ)| − |{i|σ(i) < i < k ≤ σ−1(i)}| = |Bk(π)|. (2.6)

Case 3: Suppose now that k ≤ i < j. We have π(i + 1) = σ(i) + 1 and π(j + 1) = σ(j) + 1.

• If (i, j) ∈ Ck(σ), then we have

– if i < j < σ(i) < σ(j), then (i + 1, j + 1) ∈ Ck(π),

– if σ(i) < σ(j) ≤ i < j then (i + 1, j + 1) ∈ Ck(π).

• Inversely, if (i, j) ∈ Ck(π), we have

– if i < j < π(i) < π(j), then k > i since π(k) = 1. Thus, we have k ≤ i − 1 <

j − 1 < σ(i − 1) < σ(j − 1), i.e. (i − 1, j − 1) ∈ Ck(σ),

– if π(i) < π(j) ≤ i < j, then σ(i − 1) < σ(j − 1) ≤ i − 1 < j − 1. So, we get
{

(i − 1, j − 1) ∈ Ck(σ) if i > k;

(i − 1, j − 1) /∈ Ck(σ) if i = k.

Similarly to the previous cases, we obtain

|Ck(σ)| = |Ck(π)| − |{j > k|π(j) ≤ k}|. (2.7)

By summing equations (2.5), (2.6) and (2.7), using the facts that |{i|σ(i) < i < σ−1(i) <

k}| + |{i|σ(i) < i < k ≤ σ−1(i)}| = lt−k (σ), |{(i, j) ∈ Ak(π)|i < j < π(i) = j + 1}| = |{j <

k|σ−1(j) < j < σ(j)}| = ut−k (σ) and |{j > k|π(j) ≤ k}| = |{j ≥ k|σ(j) < k}| = αk(σ), we
get

cr(σ)− lt−k (σ) = cr(π)− ut−k (σ)− αk(σ). (2.8)

We deduce from (2.8) the desired identity of our lemma.
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Lemma 2.4. Let σ be a given permutation. If π = σ−1 or rc(σ) then we have

cr(π) = cr(σ) + ut(σ)− lt(σ).

Proof. Let σ ∈ Sn. We have the following equivalences

i < σ(i) ⇔ n + 1 − σ(i) < n + 1 − i ⇔ rc(σ)(n + 1 − i) < n + 1 − i.

This implies that inverse and reverse-complement exchanges lower and upper arcs includ-
ing of course transients, i.e. ut(π) = lt(σ) and lt(π) = ut(σ). By this fact, Remark 2.2
explains how we get cr(π) = cr(σ) + ut(σ) − lt(σ) and we complete the proof of our
lemma.

Let n be an integer and k ∈ [n]. Let us now define a bijection Φn,k as follows

Φn,k : Sn−1 −→ Sk
n

σ 7−→ σ−(k,1).

The properties of this bijection allow us to get some relations between Fn−1
n , Fn

n and Fn (see
Proposition 2.5) and use its restricted version to prove Proposition 2.1.
Proposition 2.5. The bijection Φn,n preserves the number of crossings and the bijection Φn,n−1

satisfies

cr(Φn,n−1(σ)) =

{

cr(σ) if σ(n − 1) = n − 1;

cr(σ) + 1 if σ(n − 1) < n − 1.
for any σ ∈ Sn−1.

Proof. Combining Lemma 2.3 and Lemma 2.4, it is not difficult to see that, for any σ ∈ Sn−1,
we have

cr(σ−(n,1)) = cr(σ) and cr(σ−(n−1,1)) = cr(σ) + 1 − δn−1,σ(n−1). (2.9)

The proposition comes from (2.9).

Let us denote by α ⊕ β the direct sum of the two given permutations α and β defined as
follows

α ⊕ β(i) =

{

α(i), if i ≤ |α|;

|α|+ β(i − |α|) if i > |α|.

Example: 1432 ⊕ 4231 = 14328675. An obvious property of the direct sum that we need is
cr(α ⊕ β) = cr(α) + cr(β) for any permutations α and β.
Proposition 2.6. Let n be a non-negative integer. The following recurrences hold

Fn
n (q) = Fn−1(q) for n ≥ 1

and Fn−1
n (q) = qFn−1(q) + (1 − q)Fn−2(q) for n ≥ 2.

Proof. Since the bijection Φn,n is cr-preserving, we have Fn
n (q) = Fn−1(q). Now, using the

property of the bijection Φn,n−1, we get

Fn−1
n (q) = q × ∑

σ∈Sn−1,σ(n−1) 6=n−1

qcr(σ) + ∑
σ∈Sn−1,σ(n−1)=n−1

qcr(σ)

= q (Fn−1(q)− Fn−1,n−1(q)) + Fn−1,n−1(q)
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Since Fn,n(q) = ∑σ⊕1∈Sn
qcr(σ⊕1) = ∑σ∈Sn

qcr(σ) = Fn−1(q) for all n ≥ 1, we consequently
obtain

Fn−1
n (q) = qFn−1(q) + (1 − q)Fn−2(q) for all n ≥ 1.

This ends the proof of the proposition.

We may observe that combination of relations (2.3) and (2.4) of Proposition 2.1 is re-
stricted version of Proposition 2.6. The effect of the restriction totally changes the obtained
relations. For example, we have Fn

n (321; q) = 1 6= Fn−1(321; q). We are now able to provide
the proof of Proposition 2.1.

Proof of Proposition 2.1. Our proof is simply based on the following obvious fact. Let T
be a subset of Sm for any integer m > 1. For any integer n ≥ m, we have

(i) If k < min T−1(1), we have σ(k,1) ∈ Sk
n(T) if and only if σ ∈ Sn−1(T).

(ii) If n − m + max T−1(1) < k ≤ n, we have σ−(k,1) ∈ Sk
n(T) if and only if σ ∈ Sn−1(T

−1).

The two first relations (2.1) and (2.2) of Proposition 2.1 use the (i) of the fact. If min T−1(1) 6=
1, then we have 1⊕ σ ∈ S1

n(T) if and only if σ ∈ Sn−1(T) for any n ≥ 1. Thus we get relation
(2.1) as follows

F1
n (T; q) = ∑

1⊕σ∈S1
n(T)

qcr(1⊕σ) = ∑
σ∈Sn−1(T)

qcr(σ) = Fn−1(T; q).

By the same way, if min T−1(1) > 2, we have σ(2,1) ∈ S2
n(T) if and only if σ ∈ Sn−1(T) for

any n ≥ 1. Moreover, we have cr(σ(2,1)) = cr(σ) + 1 − δ1,σ(1) for any permutation σ (see
Lemma 2.3). By applying (2.1), we also get (2.2) as follows

F2
n (T; q) = q × ∑

σ∈Sn−1(T),σ(1) 6=1

qcr(σ) + ∑
σ∈Sn−1(T),σ(1)=1

= q
(

Fn−1(T; q)− F1
n−1(T; q)

)

+ F1
n−1(T; q)

= qFn−1(T; q) + (1 − q)Fn−2(T; q).

For the two last relations (2.3) and (2.4) of the proposition, we obviously use (ii) of the fact
and we also exploit the bijections Φn,n and Φn,n−1. If max T−1(1) < m − 1 (i.e. n − m +

max T−1(1) < n − 1), we have σ−(n−1,1) ∈ Sn−1
n (T) if and only if σ ∈ Sn−1(T

−1). This
implies that we have Φn,n−1(Sn−1(T

−1)) = Sn−1
n (T). Using the property of the bijection

Φn,n−1 described in Theorem 2.5, we get (2.3) as follows

Fn−1
n (T; q) = q × ∑

σ∈Sn−1(T−1),σ(n−1) 6=n−1

qcr(σ) + ∑
σ∈Sn−1(T−1),σ(n−1)=n−1

= q
(

Fn−1(T
−1; q)− Fn−1,n−1(T

−1; q)
)

+ Fn−1,n−1(T
−1; q)

= qFn−1(T
−1; q) + (1 − q)Fn−1,n−1(T

−1; q).

Notice that we generally have Fn,n(T; q) 6= Fn−1(T; q) since the set Sn,n(T) depends on T. By
the same way we obtain the last relation (2.4) using the cr-preserving of the bijection Φn,n.
This ends the proof of Proposition 2.1.
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Let us end this preliminaries section with illustration examples of Proposition 2.1. Since
max{321}−1(1) = 3 > 2, we get by applying (2.2)

F2
n (321; q) = qFn−1(321; q) + (1 − q)Fn−2(321; q) for n ≥ 2.

Since 123−1 = 123 and max{123}−1(1) = 1 < 2, we can also apply (2.3) and get

Fn−1
n (123; q) = qFn−1(123; q) + (1 − q).Fn−1,n−1(321; q).

Since Sn,n(123) = {(n − 1) . . . 21n}, then we have Fn,n(123; q) = 1 and we consequently
obtain

Fn−1
n (123; q) = qFn−1(123; q) + (1 − q).

3 Proof of the main results

In this section, we will establish the proof of our results presented in Section 1 by using

Proposition 2.1 as fundamental tool. For that, we denote by F(T; q, z) := ∑σ∈S(T) qcr(σ)z|σ| for
any pattern T.

3.1 Proof of Theorem 1.2

Proof. It is obvious to see that we have Sn(321, 231) = S1
n(321, 231) ∪ S2

n(321, 231) for all n.
So we get

Fn(321, 231; q) = F1
n (321, 231; q) + F2

n (321, 231; q).

Since min{321, 231}−1(1) = 3 > 2, we can apply the relations (2.1) and (2.2) of proposition
2.1 and we get

Fn(321, 231; q) = (1 + q)Fn−1(321, 231; q) + (1 − q)Fn−2(321, 231; q), for n ≥ 2. (3.1)

Recurrence (3.1) is associated with the following functional equation

F(321, 231; q, z) = 1 + z + (1 + q)z(F(321, 231; q, z) − 1) + (1 − q)z2F(321, 231; q, z).

Solving it by F(321, 231; q, z), we obtain the following identity equivalent to identity 1.3 of
Proposition 2.1

F(321, 231; q, z) =
1 − qz

1 − (1 + q)z − (1 − q)z2
.

As structure, we have Sn(123, 132) = Sn−1
n (123, 132) ∪ Sn

n(123, 132). Since
max{123, 132}−1(1) = 1 < 2, we can also apply the relations (2.3) and (2.4) of Proposition
2.1. Thus, since {123, 132}−1 = {123, 132}, we get

Fn
n (123, 132; q) = Fn−1(123, 132; q). (3.2)

Moreover, since Fn,n(123, 132; q) = 1, we get from (2.4)

Fn−1
n (123, 132; q) = qFn−1(123, 132; q) + 1 − q. (3.3)
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Summing (3.2) and (3.3), we obtain the following recurrence

Fn(123, 132; q) = (1 + q)Fn−1(123, 132; q) + 1 − q for n ≥ 2. (3.4)

Recurrence (3.4) corresponds to the functional equation

F(123, 132; q, z) = 1 + z + (1 + q)z(F(123, 132; q) − 1) + z

(

1

1 − z
− 1 − z

)

.

When solving this functional equation by F(123, 132; q, z), we obtain

F(123, 132; q, z) = 1 +
z(1 − qz)

(1 − z)(1 − (1 + q)z)
.

Finally, since {123, 213} = rci({123, 132}), we also have F(123, 132; q, z) = F(123, 213; q, z).
This completes the proof of identity (1.4) of Theorem 1.2 and Theorem 1.2 itself.

Notice that when we solve the recurrence (3.4) with the initial condition F1(123, 132; q) =
1, we obtain the closed form

∑
σ∈Sn(123,τ)

qcr(σ) =
(1 + q)n−1 − 1 + q

q
for n ≥ 1 and τ ∈ {132, 213}.

Furthermore, when we substitute Fn−1(123, 132; q) by
(1+q)n−2−1+q

q for n ≥ 2, we also get

from (3.3)

∑
σ∈Sn−1

n (123,132)

qcr(σ) = (1 + q)n−2 for n ≥ 2.

Since rci(Sn−1
n (123, 132)) = Sn,2(123, 213), we also have

∑
σ∈Sn,2(123,213)

qcr(σ) = (1 + q)n−2 for n ≥ 2.

Corollary 3.1. For n ≥ 2 and k ≥ 0, we have

|{σ ∈ Sn−1
n (123, 132)|cr(σ) = k}| = |{σ ∈ Sn,2(123, 213)|cr(σ) = k}| =

(

n − 2

k

)

.

We observe that Corollary 3.1 is a new combinatorial interpretation of the Pascal triangle
A007318 in terms of crossings over restricted permutations.

3.2 Proof of Theorem 1.3

In this subsection, we will establish the proof of the result concerning some relationships
between the distributions of crossings over the sets Sn(312, T) and Sn(231, T), where T is
empty or a singleton of {123, 132, 213}. As we did in the preceding subsection, we will first
find recurrences and we then compute the corresponding generating functions to get the
desired relations.

https://oeis.org/A007318
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Proposition 3.2. For all integer n ≥ 1, we have

Fn(312; q) =
n−1

∑
j=0

Fj(231; q)Fn−1−j(312; q). (3.5)

Proof. We have S
j
n(312) = {σ1 ⊕ σ2|σ1 ∈ S

j
j(312), σ2 ∈ Sn−j(312)} for all j ≥ 1. So, we get

using (2.4) the following identities

F
j
n(312; q) = F

j
j (312; q)Fn−j(312; q) = Fj−1(231; q)Fn−j(312; q) for 1 ≤ j ≤ n.

By summing F
j
n(312; q) over j ∈ [n], we obtain the desired relationship for Fn(312; q).

Proposition 3.3. For all integer n ≥ 2, we have

Fn(123, 312; q) = n − 1 + Fn−1(123, 231; q). (3.6)

Proof. We have Sn(123, 312) = {π1, π2, . . . πn−1} ∪ Sn
n(123, 312) with πj = j . . . 21n(n −

1) . . . (j + 1) for all j ∈ [n]. So we get

Fn(123, 312; q) =
n−1

∑
j=1

qcr(πj) + Fn
n (123, 312; q).

It is not difficult to see that we have cr(πj) = 0 for all j ∈ [n]. Thus, we immediately obtain
the proposition using again (2.4).

Proposition 3.4. For any τ1, τ2 and τ3 ∈ {132, 213} and for all n ≥ 2, we have

Fn(312, τ1; q) = Fn−1(312, τ2; q) + Fn−1(231, τ3; q). (3.7)

Proof. Since Sn(312, 213) = S1
n(312, 213)∪ Sn

n(312, 213), we get

Fn(312, 213; q) = F1
n (312, 213; q) + Fn

n (231, 213; q).

So for all n ≥ 2 we get from (2.1) and (2.2) the following identity

Fn(312, 213; q) = Fn−1(312, 213; q) + Fn−1(231, 213; q).

To complete the proof of the proposition, we just use the facts that rci({312, 132}) =
{312, 213} and rci({231, 132}) = {231, 213}.

Now, to prove Theorem 1.3, we just compute the corresponding generating functions of
the three recurrences (3.5), (3.6) and (3.7) and deduce the desired relations.

From (3.5), we obtain the functional equation

F(312; q, z) = 1 + zF(312; q, z).F(231; q, z)

which leads to

F(312; q, z) =
1

1 − zF(231; q, z)
. (3.8)
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The associated generating function with (3.6) is

F(123, 312; q, z) = 1 + z +

(

z

1 − z

)2

+ z(F(123, 231; q, z)− 1).

This functional equation is equivalent to the following one

F(312, 123; q, z)1 +

(

z

1 − z

)2

+ zF(231, 123; q, z). (3.9)

From (3.7), when we set τ = τ1 = τ2 and τ′ = τ3 we get the functional equation

F(312, τ; q, z) = 1 + z + z
(

F(312, τ; q, z) + F(231, τ′; q, z)− 2
)

.

Solving it for F(312, τ; q, z), we obtain

F(312, τ; q, z) = 1 +

(

z

1 − z

)

F(231, τ′; q, z) for any (τ, τ′) ∈ {132, 213}2. (3.10)

This completes the proof of Theorem 1.3.

4 Additional results

We end this paper with two additional results. The first one is about Fn(321, 213; q) and
Fn(321, 132; q). The second one is inspired from the first section and is about a cr-preserving
bijection between Sk

n and Sn+1−k
n .

For the first result, we remark that the distribution of cr over the set of permutations
avoiding one of the pairs {321, 213} and {321, 132} can be computed. One of the tools that
we may use is an interesting relationship proved by Randrianarivony [12]. He showed how
the statistic cr is related to other usual statistics through the following identity

cr(σ) = inv(σ)− exc(σ)− 2nes(σ), (4.1)

where inv(σ) = {(i, j)|i < j and σ(i) > σ(j)} is the number of inversions of σ, exc(σ) =
{i|σ(i) > i} is the number of excedances of σ and nes(σ) = {(i, j)|i < j < σ(j) <

σ(i) or σ(j) < σ(i) < i < j} is the number of nestings of σ, for any permutation σ. Let us
end this paper with the following result in which we try to use identity (4.1) to get the proof.
Theorem 4.1. Let us denote by [n]q = 1 + q + . . . + qn−1 for any integer n ≥ 1. For any τ ∈
{132, 213}, we have

∑
σ∈Sn(321,τ)

qcr(σ) = 1 +
n−1

∑
k=1

[n − k]qk .

Proof. It is easy to see that we have Sn(321, 213) = S1
n(321, 213) ∪ {α2, α3, . . . , αn} where

αj = (n − j + 2) . . . (n − 1)n12 . . . (n + 1 − j) for all j ∈ [n]. From this structure, we get

Fn(321, 213; q) = F1
n(321, 213; q) +

n

∑
j=2

qcr(αj).
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Since every 321-avoiding permutations are nonesting (see [10]), we have cr(αj) = inv(αj)−

exc(αj) = (j − 1)(n − j) for all j. Using the fact that F1
n (321, 213; q) = Fn−1(321, 213; q), we

obtain

Fn(321, 213; q) = Fn−1(321, 213; q) +
n

∑
j=2

q(j−1)(n−j).

When we solve this recurrence with the initial condition F1(321, 213; q) = 1, we obtain

Fn(321, 213; q) = 1 +
n−1

∑
k=1

k

∑
j=1

qj(k−j) = 1 +
n−1

∑
k=1

[n − k]qk .

From the fact that Fn(321, 213; q) = Fn(321, 132; q) since {321, 132} = rci({321, 213}), we
complete the proof of the theorem.

For the last additional result, we notice first that we have Sk
n = {σ(k,1)|σ ∈ Sn−1}. We will

show that the following well defined and bijective map preserves the number of crossings:

Ψn,k : Sk
n −→ Sn+1−k

n

σ(k,1) 7−→ rc(σ)(n+1−k,1).

Theorem 4.2. The bijection Ψn,k preserves the number of crossings for 1 ≤ k ≤ n.

Proof. Let σ(k,1) ∈ Sk
n and π(n+1−k,1) = Ψn,k(σ

(k,1)) for σ ∈ Sn−1. Knowing that rc exchanges
lower and upper arcs, it is not difficult to see that we have

ut−n+1−k(π) = lt+k (σ) and lt−n+1−k(π) = ut+k (σ). (4.2)

Moreover, since |{i < k/σ(i) ≥ k}| = |{i ≥ k/σ(i) < k}|, we get

αn+1−k(π) = αk(σ). (4.3)

Indeed, we have

αn+1−k(π) = |{n − i ≥ n + 1 − k/π(n − i) < n + 1 − k}|,

= |{i ≤ k − 1/n − σ(i) < n + 1 − k}|,

= |{i < k/σ(i) > k − 1}|,

= |{i < k/σ(i) ≥ k}|,

= αk(σ).

Consequently, combining (4.2) and (4.3) with Lemma 2.3 and Lemma 2.4, we get

cr(π(n+1−k,1)) = cr(π) + ut−n+1−k(π)− lt−n+1−k(π) + αn+1−k(π),

= cr(σ) + ut(σ)− lt(σ) + lt+k (σ)− ut+k (σ) + αk(σ),

= cr(σ) +
(

ut(σ)− ut+k (σ)
)

−
(

lt(σ)− lt+k (σ)
)

+ αk(σ),

= cr(σ) + ut−k (σ)− lt−k (σ) + αk(σ),

= cr(σ(k,1)).

This proves the cr-preserving of the bijection Ψn,k and also ends the proof of Theorem 4.2.
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Corollary 4.3. For any integers n and k ∈ [n], we have the following equidistributions

∑
σ∈Sn,k

qcr(σ) = ∑
σ∈Sn+1−k

n

qcr(σ) = ∑
σ∈Sk

n

qcr(σ) = ∑
σ∈Sn,n+1−k

qcr(σ).

Proof. We have Sn+1−k
n = Ψn,k(S

k
n) and Sn,n+1−k = rci(Sk

n) for any k ∈ [n]. So we get these
identities from the facts that the bijections Ψn,k and rci are cr-preserving.

Corollary 4.4. The number of permutations of [2n] having r crossings is always even for all integers
n ≥ 1 and r ≥ 0.

Proof. The number of permutations of [2n] having r crossings is [qr]F2n(q) (the coefficient of
the polynomial F2n(q)) where F2n(q) = ∑

2n
k=1 Fk

2n(q) = 2 ∑
n
k=1 Fk

2n(q).
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