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We study the quantum dynamics of a simple translation invariant, center-of-mass (CoM) preserv-
ing model of interacting fermions in one dimension (1D), which arises in multiple experimentally
realizable contexts. We show that this model naturally displays the phenomenology associated with
fractonic systems, wherein single charges can only move by emitting dipoles. This allows us to
demonstrate the rich Krylov fractured structure of this model, whose Hilbert space shatters into
exponentially many dynamically disconnected subspaces. Focusing on exponentially large Krylov
subspaces, we show that these can be either be integrable or non-integrable, thereby establishing
the notion of Krylov-restricted thermalization. We analytically find a tower of integrable Krylov
subspaces of this Hamiltonian, all of which map onto spin-1/2 XX models of various system sizes.
We also discuss the physics of the non-integrable subspaces, where we show evidence for weak Eigen-
state Thermalization Hypothesis (ETH) restricted to each non-integrable Krylov subspace. Further,
we show that constraints in some of the thermal Krylov subspaces cause the long-time expectation
values of local operators to deviate from behaviour typically expected from translation invariant sys-
tems. Finally, we show using a Schrieffer-Wolff transformation that such models naturally appear
as effective Hamiltonians in the large electric field limit of the interacting Wannier-Stark problem,
and comment on connections of our work with the phenomenon of Bloch many-body localization.

I. INTRODUCTION

Rapid advances in the coherent control and manipu-
lation of cold atoms have enabled experiments to study
the non-equilibrium dynamics of closed quantum many-
body systems [1–6]. Consequently, the question of how
(and whether) an arbitrary quantum state evolving un-
der closed system dynamics achieves thermal equilibrium
while evolving under unitary dynamics has moved to
the forefront of contemporary research. An important
theoretical development along these lines is the Eigen-
state Thermalization Hypothesis (ETH) [7–10], which,
in its strong form, states that, as far as expectation val-
ues of local observables are concerned, all eigenstates
of an ergodic system display thermal behaviour [11–
13]. Although lacking a formal proof, it is widely held
that generic interacting systems obey the strong ver-
sion of ETH, as evinced by several numerical stud-
ies [9, 11, 14, 15]. Notable exceptions are integrable mod-
els, which possess extensively many conserved quantities,
and many-body localized (MBL) systems [16–18], where
the emergence of extensively many local integrals of mo-
tion prohibits the system from exploring all allowed con-
figurations in Hilbert space [19, 20]. MBL systems thus
evade ergodicity even at high energy densities and are
able to retain a memory of their initial conditions in local
observables for arbitrarily long times, leading to rich new
physics which has been extensively studied numerically
(see Refs. [21–23] for a review). An important open ques-
tion is whether similar phenomena, e.g. violation of ETH
or memory of initial conditions at long times, can occur

in translation invariant non-integrable systems [24–33].
This has generated much interest in identifying non-

integrable models which violate strong ETH but obey
weak ETH, where the latter consists of a measure zero set
of non-thermal eigenstates and is sufficient for prevent-
ing complete thermalization of the system [34, 35]. One
recent line of attack has been to identify exact excited
eigenstates [36, 37] in the middle of the spectrum of non-
integrable Hamiltonians that could shed significant light
on ETH and its violation, given that the dynamics of a
quantum system is governed by the properties of the full
many-body spectrum and not only its low-lying features.
There has been promising progress in this direction—
Refs. [37, 38] identified and analyzed an infinite tower of
exact eigenstates of the celebrated 1D Affleck-Kennedy-
Lieb-Tasaki (AKLT) models [39, 40], where some states
of the tower are present in the bulk of the energy spec-
trum and are non-thermal, thus representing a novel type
of strong ETH violation. Moreover, Refs. [41–44] have re-
cently found similar exact ETH-violating eigenstates in a
variety of models. In addition, Ref. [45] proposed a gen-
eral construction of “embedding” ETH-violating eigen-
states into a thermal spectrum, which has also been ap-
plied to construct systems with topological eigenstates in
the middle of the spectrum [46].

Concurrently, an experiment on a 1D chain of Ryd-
berg atoms observed persistent revivals upon quench-
ing the system from certain initial conditions, while
other initial conditions led to the system thermalizing
rapidly [47]. This striking dependence on initial con-
ditions was numerically demonstrated to be caused by
a vanishing number of non-thermal states that co-exist
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with an otherwise thermal spectrum [48–52], dubbed
“quantum many-body scars”. Several explanations for
the origin of quantum scars have been proposed: ana-
logues to single-particle scarring [48, 52–54], proximity
to integrability [55], existence of approximate quasiparti-
cle towers of states [41, 56, 57], confinement [58, 59], and
an emergent SU(2) symmetry [51]. Furthermore, recent
works have constructed generalizations of the PXP model
that show similar characteristics [49, 60, 61], studied the
stability of the scars to perturbations [62], and found
quantum scars in Floquet settings [63, 64]. These discov-
eries thus reveal new possibilities for quantum dynamics
which may occur between the extremes of thermalization
and the complete breaking of ergodicity.

Although it remains largely unclear what the gen-
eral desiderata are for the presence of scar states, sys-
tems with constrained dynamics, such as kinetically con-
strained models [65–67] and the PXP model [68–70], offer
a promising platform for exploring ergodicity breaking.
Fractonic systems, whose defining feature is the presence
of excitations with restricted mobility, are natural candi-
dates displaying constrained dynamics (see Ref. [71] for a
review). Indeed, alongside their novel ground-state fea-
tures, 3D gapped fracton models have garnered attention
also for their slow quantum dynamics in the absence of
spatial disorder [72–74]. As first observed in Ref. [75],
the conservation of higher (e.g., dipole or angular) mo-
ments in U(1) symmetric systems places stringent con-
straints on the mobility of excitations, rendering isolated
charges completely immobile. This insight has allowed
the characteristic physics of fractons to be realized away
from their initial conception in exactly solvable 3D lattice
models, potentially even in 1D1 (see e.g. Refs. [76, 77]).
This perspective was recently taken in Ref. [78], where
random unitary dynamics in 1D with conserved dipole
moment were shown to localize for reasons beyond usual
locator-expansion techniques.

In this paper, we investigate the quantum dynamics
of a translation invariant, non-integrable 1D fermionic
chain with conserved center-of-mass (CoM). Rather than
imposing constraints by hand, we show that the CoM
conserving model we study has a natural origin in two
distinct physical settings: in the thin-torus limit of the
fractional quantum Hall effect and in the strong electric
field limit of the interacting Wannier-Stark problem, a
regime accessible to current cold-atom experiments2 [79].
Focusing on systems close to half-filling, we define com-
posite degrees of freedom in terms of which CoM conser-
vation maps onto dipole moment conservation, revealing

1 For our purposes, fractonic behaviour refers to the strict im-
mobility of isolated charges and (possibly) restricted mobility
of bound charges (e.g., dipoles). It remains an open ques-
tion whether the non-trivial topological features, such as a sub-
extensive ground state degeneracy, associated with 3D gapped
fracton models are possible in spatial dimension less than three.

2 For example, tilting an optical lattice subjects the trapped ul-
tracold atoms to a linear field.

the underlying fractonic nature of the model.

Once we resolve the Hamiltonian into its disparate
symmetry sectors, we find that the Hilbert space fur-
ther shatters into exponentially many dynamically dis-
connected sectors or Krylov subspaces, which have pre-
viously been studied under various settings [61, 80–83].
This shattering is a consequence of charge and center-
of-mass conservation and, as discussed in Refs. [82, 83],
the presence of exponentially many small (finite size in
the thermodynamic limit) closed Krylov subspaces can
lead to effectively localized dynamics. Here, we instead
focus on a new phenomenon within exponentially large
Krylov subspaces, which are of infinite size in the ther-
modynamic limit, and unveil a rich structure within these
sectors, leading to new notions of Krylov-restricted inte-
grability and thermalization.

Specifically, we find that several such large Krylov
subspaces are integrable, thereby establishing the phe-
nomenon of emergent integrability and further breaking
of ergodicity within closed Krylov sectors. Meanwhile,
other large sectors remain non-integrable. To bring this
distinction into focus, we propose that a modified version
of ETH applies to Krylov fractured systems, wherein con-
ventional diagnostics of non-integrability, such as level
statistics, are defined with respect to a symmetry sec-
tor and a Krylov subspace. Using our modified defini-
tion, we conclude that the problem ‘thermalizes’ within
each non-integrable Krylov subspace, in that the long-
time behaviour of a state belonging to a particular Krylov
subspace coincides with the Gibbs ensemble restricted to
that subspace. Remarkably, we find that this restricted
thermalization within some of the Krylov subspaces leads
to the ‘infinite temperature’ state within the Krylov sec-
tors showing atypical behaviour, in that the late-time
charge density deviates from that expected from uncon-
strained translation invariant systems. Violations of this
modified or ‘Krylov-restricted ETH’ require either inte-
grability, conventional ‘disorder induced’ many-body lo-
calization, or existence of further symmetries within the
Krylov subspace. Armed with this understanding, we
also revisit the problem of interacting Wannier-Stark lo-
calization [84, 85], which we argue requires the ideas in-
troduced in this paper for a more complete understand-
ing.

This paper is organized as follows: we introduce the
pair-hopping model, also studied in Ref. [61], in Sec. II
and show that it conserves center-of-mass. We then
briefly discuss its origins in the thin torus limit of the
fractional quantum Hall effect (FQHE) and in the limit
of strong electric field in the interacting Wannier-Stark
problem. In Sec. III, we introduce a convenient formal-
ism to study this model at half-filling, and show that it
exhibits fractonic phenomenology. In Sec. IV, we dis-
cuss the notion of Krylov fracture i.e., the phenomenon
where systems exhibit several closed subspaces that are
dynamically disconnected with respect to product states.
We show examples of integrable and non-integrable dy-
namically disconnected Krylov subspaces in Secs. V and
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VI respectively. The integrable subspaces we study ex-
actly map onto XX models of various sizes, and the non-
integrable subspaces show features that are typically not
expected in non-integrable models, which we discuss in
Sec. VII. Finally, we make connections to Bloch MBL
in Sec. VIII and conclude in Sec. IX. Various details are
relegated to appendices.

II. MODEL AND ITS SYMMETRIES

The “pair-hopping model” we study is a one-
dimensional chain of interacting spinless fermions with
translation and inversion symmetry, with the Hamilto-
nian [61, 86]

H =

Lb∑
j=1

Hj =

Lb∑
j=1

(
c†jc
†
j+3cj+2cj+1 + h.c.

)
, (1)

where Lb = L− 3 for open boundary conditions (OBC),
Lb = L for periodic boundary conditions (PBC), and the
subscripts are defined modulo L for PBC. Note that we
have set the overall energy scale equal to one for con-
venience. Each term Hj of Eq. (1) vanishes on all spin
configurations on sites j to j + 3 except for

Hj

j j+3

|0 1 1 0〉 =
j j+3

|1 0 0 1〉 ,

Hj

j j+3

|1 0 0 1〉 =
j j+3

|0 1 1 0〉 , (2)

where |a b c d〉 represents the occupation of sites j to
j + 3. In the rest of the paper, we will use the following
shorthand notation

|1 0 0 1〉 ↔ |0 1 1 0〉 (3)

to represent Eq. (2) i.e., the action of individual terms
of the Hamiltonian Eq. (1). This pair-hopping model
preserves the center-of-mass position i.e., the center-of-
mass position operator [86]

Ĉ ≡


L∑
j=1

jn̂j if OBC

exp

(
2πi
L

L∑
j=1

jn̂j

)
if PBC

, (4)

where the number operator n̂j ≡ c†jcj commutes with the

Hamiltonian of Eq. (2). Hamiltonians with such conser-
vation laws, including the model given by Eq. (1), were
first discussed in Ref. [86] in the quest to build featureless
Mott insulators.

As emphasized by Ref. [86], the spectra of center-of-
mass preserving Hamiltonians have some unusual fea-
tures. For example, at a filling ν = p/q (with p and
q coprime), the full spectrum is q-fold degenerate, which
stems from the fact that the center-of-mass position oper-

ator Ĉ, and the translation operator T̂ do not commute.

More precisely, consider a 1D chain of length L with pe-
riodic boundary conditions. As shown in Ref. [86],

ĈT̂ = e2πiν T̂ Ĉ , (5)

where ν is the the filling fraction ν = p/q. This results
in a q-fold degeneracy of the spectrum with PBC.

The pair-hopping model Eq. (1), with even system size
L = 2N and with PBC, has an additional symmetry:
sublattice particle number conservation. That is, the op-
erators

n̂e =

N∑
j=1

n̂2j , n̂o =

N−1∑
j=1

n̂2j+1 , (6)

both commute with Eq. (1). This can be seen by writing
the action of the terms of the pair-hopping Hamiltonian
as

e o e o

|1 0 0 1〉 ↔
e o e o

|0 1 1 0〉,
o e o e

|1 0 0 1〉 ↔
o e o e

|0 1 1 0〉, (7)

where the superscripts o and e label the parity of the
sites. The actions of Eq. (7) conserve the particle num-
ber on the odd and even sites separately. Sublattice
number conservation of Eq. (6) trivially implies the con-
servation of total particle number (ne + no). Note that
the sublattice number conservation is a special prop-
erty of the truncated Hamiltonian Eq. (1), and does not
hold in general for center-of-mass preserving Hamilto-
nians. For example, the extended pair-hopping Hamil-

tonian
∑
j

(
c†jc
†
j+3cj+2cj+1 + c†jc

†
j+4cj+3cj+1 + h.c.

)
pre-

serves the center-of-mass position but does not conserve
sublattice particle number.

Experimental Relevance

An especially appealing feature of center-of-mass pre-
serving terms, including the pair-hopping term Eq. (1), is
their natural appearance in multiple experimentally rel-
evant systems. The first setting in which such models
appear is in the quantum Hall effect, when translation
invariant interactions are projected onto a single Landau
level [61, 87, 88]. We refer the reader to Ref. [61] for
a derivation, but summarize the general idea here: one
works in the Landau gauge, such that the single parti-
cle orbitals in a Landau level can be written as eigen-
states of the magnetic translation operators in the ŷ di-
rection, in which case the position in the x̂ direction is
the momentum quantum number in the ŷ direction. The
matrix elements of a translation invariant interaction be-
tween the single particle orbitals are hence momentum
conserving in the ŷ direction, which translates to center-
of-mass conservation in the x̂ direction of the effective
one-dimensional model [87]. A general interaction oper-
ator projected to a Landau level of an Lx ×Ly quantum
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Hall system has the form

H =

NΦ∑
j=1

∑
k,m

Vkm

(
c†jc
†
j+k+mcj+kcj+m + h.c.

)
, (8)

where NΦ = LxLy/ (2π) is the number of flux quanta
and Vkm ∼ exp

(
−2π2

(
k2 +m2

)
/L2

y

)
with the mag-

netic length set to unity. Thus, in the “thin-torus” limit
(Ly → 0), one of the dominant terms is the pair-hopping
Hamiltonian Eq. (1). We note that such Hamiltonians
also appear in the thin torus limit of the pseudopoten-
tial Hamitonians for several Fractional Quantum Hall
states [61, 89–92].

A second origin of such center-of-mass preserving mod-
els is in the well-known Wannier-Stark problem [93]:
spinless fermions hopping on a finite one-dimensional lat-
tice, subject to an electric field. While localization at
the single-particle level has been long established [94],
an interacting version of the problem has recently been
studied and found to display behaviour associated with
MBL systems at strong fields [84, 85]; this phenomenon
goes under the name Bloch (or Stark) MBL. In Sec. VIII,
we show that the dynamics of the Bloch MBL model in
the limit of an infinitely strong electric field is governed
by an effective center-of-mass preserving Hamiltonian,
with the lowest order “hopping” term given precisely by
Eq. (1). Specifically, the resulting Hamiltonian is again
of the form Eq. (8), with NΦ replaced by the system size3.
This mapping hence allows us to present a new perspec-
tive on the phenomenon of Bloch MBL (see Sec. VIII),
in addition to providing a natural experimental setting,
accessible to current cold-atom experiments, for realizing
the model studied here.

III. HAMILTONIAN AT 1/2 FILLING

We now proceed to study the spectrum of the pair hop-
ping Hamiltonian Eq. (1). In this work, we will be focus-
ing on systems at, or close to, half filling, and will restrict
ourselves to even system sizes L = 2N . For the study of
this Hamiltonian at other filling factors, see Refs. [61, 95].

A. Composite degrees of freedom

To study this model, and to elucidate its relation to the
physics of fractons, we define composite degrees of free-
dom formed by grouping neighboring sites of the original
model. Assuming an even number of sites, we group sites

3 Note that for both the FQHE and the Bloch MBL case, the
dominant center-of-mass conserving terms are nearest neigh-
bor (n̂j n̂j+1) and next nearest neighbor electrostatic terms
(n̂j n̂j+2), but the lowest order “hopping” is the pair-hopping
Hamiltonian of Eq. (1).

2j − 1, 2j of the original lattice into a new site j so as
to form a new chain with N = L/2 sites. We define new
degrees of freedom for these composite sites as follows:

|↑〉 ≡ |0 1〉 , |↓〉 ≡ |1 0〉 ,
|+〉 ≡ |1 1〉 , |−〉 ≡ |0 0〉 . (9)

The choice of grouping is unambiguously defined for
OBC, and we stick to it for most of this paper. Writ-
ing the action of the Hamiltonian Eq. (2) in terms of
these composite degrees of freedom, we find∣∣∣ 01 10

〉
↔
∣∣∣ 10 01

〉
⇐⇒ |↑↓〉 ↔ |↓↑〉 , (10)∣∣∣ 10 11 00

〉
↔
∣∣∣ 11 00 10

〉
⇐⇒ |↓ +−〉 ↔ |+− ↓〉 , (11)∣∣∣ 00 11 01

〉
↔
∣∣∣ 01 00 11

〉
⇐⇒ |−+ ↑〉 ↔ |↑ −+〉 , (12)∣∣∣ 10 11 01

〉
↔
∣∣∣ 11 00 11

〉
⇐⇒ |↓ + ↑〉 ↔ |+−+〉 , (13)∣∣∣ 01 00 10

〉
↔
∣∣∣ 00 11 00

〉
⇐⇒ |↑ − ↓〉 ↔ |−+−〉 , (14)

where · · · represents a grouping of some sites 2j − 1
and 2j, and |a〉 ↔ |b〉 represents the action of a single
term of the Hamiltonian on |a〉 resulting in |b〉 and vice
versa (see Eqs. (2) and (3)). For reasons that will become
clear forthwith, we set the nomenclature of the composite
degrees of freedom as follows:

|+〉, |−〉: Fractons
|+−〉, |−+〉: Dipoles
|↑〉, |↓〉: Spins

Here, Eqs. (11)-(14) resemble the rules restricting the
mobility of fractons, and are similar to those discussed
in Ref. [78] (see Ref. [71] for a review on fractons).

In particular, Eqs. (11) and (12) represent the free
propagation of dipoles when separated by spins, and
Eqs. (13) and (14) encode the characteristic movement
of a fracton through the emission or absorption of a
dipole, i.e. dipole assisted hopping. However, in con-
trast to usual fracton phenomenology, here the move-
ment of fractons is also sensitive to the background spin
configuration. For example, the fracton in the configu-
ration |· · · ↓ + ↑ · · · 〉 can move by emitting a dipole (see
Eq. (13)) while that in the configuration |· · · ↑ + ↓ · · · 〉
cannot. In our convention, the fractons |+〉 and |−〉 have
spin 0 and charges +1 and −1 respectively, while the
spins |↑〉 and |↓〉 have charge 0 and spins +1 and −1 re-
spectively. Thus the unit cell charge and spin operators
in terms of the original fermionic degrees of freedom read

Q̂j ≡ n̂2j−1 + n̂2j − 1, Ŝzj ≡ −n̂2j−1 + n̂2j , (15)
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where j is the unit cell index, and 2j − 1, 2j are the
site indices of the original configuration. We represent
the total number of +, −, ↑, and ↓ by N+, N−, N↑, N↓
respectively. Thus, the total charge is N+ −N− and the
total spin is N↑ −N↓.

B. Symmetries in terms of the composite degrees

We now study the symmetries of the Hamiltonian
whose terms act on the composite degrees of freedom
through Eqs. (10)-(14). As discussed in Sec. III, the pair-
hopping model Eq. (1) has several symmetries: sublattice
charge conservation, center-of-mass conservation, inver-
sion, and translation (for PBC). Using Eqs. (10)-(14), we
now interpret these symmetries in terms of the composite
degrees of freedom defined in Eq. (9).

The model in terms of the composite degrees of free-
dom conserves the total spin and the total charge, as is
evident from Eqs. (10)-(14). In other words, N↑ − N↓
and N+ − N− are separately conserved. Indeed, using
the definitions of spin and charge in Eq. (15), the total

spin operator Ŝz and total charge operator Q̂ can be ex-
pressed in terms of the operators in the original Hilbert
space as follows:

Q̂ ≡
N∑
j=1

Q̂j = n̂e+n̂o−N, Ŝz ≡
N∑
j=1

Ŝzj = n̂o−n̂e, (16)

where n̂e and n̂o are the sublattice particle numbers de-
fined in Eq. (6). Thus, the conservation of total charge
and total spin in the fracton model is a direct conse-
quence of the sublattice number conservation of the pair-
hopping model.

Moreover, the fractonic behavior inherent in the rules
specified by Eqs. (10)-(14) suggests that the dipole mo-
ment of the composite degrees of freedom is a conserved
quantity [75]. This operator is defined similarly to the
center-of-mass operator Eq. (4) as:

D̂ ≡


N∑
j=1

jQ̂j if OBC

exp

(
i 2π
N

N∑
j=1

jQ̂j

)
if PBC

. (17)

To explicitly show that D̂ is in fact a conserved quantity
of the composite fractonic model, we observe that

N∑
j=1

jQ̂j =

N∑
j=1

j (n̂2j−1 + n̂2j − 1)

=

N∑
j=1

(2j − 1)n̂2j−1 + 2jn̂2j

2
+

N∑
j=1

n̂2j−1

2
−

N∑
j=1

j

=
1

2

L∑
j=1

jn̂j +
n̂o
2
− N(N + 1)

2
. (18)

Then, using Eqs. (4), (6), and (18), in terms of the origi-

nal operators in the pair-hopping model, the operator D̂
can be expressed as

D̂ =

{
1
2 Ĉ + 1

2 n̂o −
N(N+1)

2 if OBC

Ĉ
1
2 ei

π
L n̂oe−i

πN(N+1)
L if PBC

. (19)

Since Ĉ and n̂o are conserved operators of the pair-
hopping Hamiltonian, as discussed in Sec. II, it fol-

lows from Eq. (19) that D̂ is conserved in the compos-
ite model. To complete our discussion, we note that
the composite model also preserves inversion as well as
translation symmetry (with PBC), neither of which com-

mute with D̂. Details of the symmetries are relegated to
App. A.

IV. KRYLOV FRACTURE

We now study the dynamics of H, and show that it ex-
hibits exponentially many dynamically disconnected sub-
spaces. More precisely, we construct Krylov subspaces of
the form

K (H, |ψ0〉) ≡ span{|ψ0〉 , H |ψ0〉 , H2 |ψ0〉 , · · · } (20)

that are by definition closed under the action of the
Hamiltonian H. While |ψ0〉 in Eq. (20) can in princi-
ple be an arbitrary state, we are interested in the dy-
namics of initial product states, which are more easily
accessible to experiments. Hence, we focus on Krylov
subspaces generated by product states |ψ0〉, which we
dub root states of the Krylov subspace K (H, |ψ0〉). For a
generic non-integrable Hamiltonian H without any sym-
metries, one expects that K (H, |ψ0〉) for any initial prod-
uct state |ψ0〉 is the full Hilbert space of the system. For
a non-integrable Hamiltonian with some symmetry, and
with |ψ0〉 an eigenstate of the symmetry, one typically
expects that K (H, |ψ0〉) spans all states with the same
symmetry quantum number as |ψ0〉.

Surprisingly, however, we show that the pair-hopping
Hamiltonian (1) exhibits Krylov fracture i.e., even after
resolving the charge and center-of-mass symmetries, we
find generically that K (H, |ψ0〉) does not span all states
with the same symmetry quantum numbers as |ψ0〉. Thus
the full Hilbert space of the system H is of the form

H =
⊕
s

H(s), H(s) =

K(s)⊕
i=1

K
(
H,
∣∣∣ψ(s)
i

〉)
, (21)

where s labels the distinct symmetry quantum numbers,
such as charge and center-of-mass, K(s) denotes the num-
ber of disjoint Krylov subspaces generated from prod-
uct states with the same symmetry quantum numbers,

and
∣∣∣ψ(s)
i

〉
are the root states generating the Krylov sub-

spaces. Note that the root states in Eq. (21) are cho-
sen such that they generate distinct disconnected Krylov
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subspaces, since the same subspace can be generated by
different root states. Stated symbolically,

K
(
H,
∣∣∣ψ(s)
i

〉)
∩K

(
H,
∣∣∣ψ(s′)
i′

〉)
= δs,s′δi,i′K

(
H,
∣∣∣ψ(s)
i

〉)
.

(22)
Fracture of the form Eq. (21), where the total num-

ber of Krylov subspaces K(s) is exponentially large in
the system size, was recently shown to always exist in
Hamiltonians and random-circuit-models with center-of-
mass conservation [82, 83] (alternatively referred to as
“dipole moment” conservation). While the presence of
these symmetries guarantees fracture, one can distin-
guish between “strong” and “weak” fracture [82, 83], de-
pending respectively on whether or not the ratio of the
largest Krylov subspace to the Hilbert space within a
given global symmetry sector vanishes in the thermo-
dynamic limit. Strong (resp. weak) fracture is asso-
ciated with the violation of weak (resp. strong) ETH
with respect to the full Hilbert space. The pair-hopping
model Eq. (1) (which is equivalent to the Hamiltonian
H4 in Ref. [82] with spin-1/2) numerically appears to
exhibit strong fracture within several symmetry sectors.
However, the addition of longer-range CoM preserving
terms numerically appears to cause the Hilbert space to
fracture only weakly [82], with the fracture disappearing
with the addition of infinite-range CoM preserving terms,
even if the interaction strength decays exponentially with
range [96].

By definition, distinct Krylov subspaces are dynam-
ically disconnected i.e., no state initialized completely
within one of the Krylov subspaces can evolve out to a
different Krylov subspace. Indeed, exponentially many
of these Krylov subspaces are one-dimensional static
configurations—product states that are eigenstates of H.
For instance, the Hamiltonian vanishes on any product
state that does not contain the patterns “ · · · 0110 · · · ”
or “ · · · 1001 · · · ”, since those are the only configurations
on which terms of H act non-trivially (see Eq. (2)). The
charge-density-wave (CDW) state

|1111000011110000 . . . . . . 1111000011110000〉

is one example of a static configuration that is an eigen-
state. In terms of the composite degrees of freedom we
can equivalently consider configurations with only +, −,
and no spins, such as

|· · ·+ +−−+ +−− · · · 〉 ,

with a pattern that alternates between + and − with
‘domain walls’ that are at least 2 sites apart. Accord-
ing to Eqs. (10)-(14), all terms of the Hamiltonian van-
ish on these configurations: since there are exponen-
tially many such patterns, there are equally many one-
dimensional Krylov subspaces. We can also construct
small Krylov subspaces by embedding finite non-trivial
blocks, on which the Hamiltonian acts non-trivially, into
the static configurations, thereby leading to exponen-
tially many Krylov subspaces of every size [82, 83]. For

example, the following configurations |ψ±〉

|ψ±〉 = 1√
2

(|+ +−− · · ·+ +−− ↑↓ + +−− · · ·+ +−−〉
± |+ +−− · · ·+ +−− ↓↑ + +−− · · ·+ +−−〉) (23)

are composed of one non-trivial block ↑↓ sandwiched
within a frozen configuration, and they thus have ener-
gies E± = ±1. Exponentially many configurations with
energies E = ±1 can be constructed by changing the
frozen configuration around the non-trivial block.

The presence of exponentially many static states
(within each symmetry sector) in the the Hilbert space
leaves an imprint on the dynamical behaviour of such
systems. Specifically, time-evolution starting from ran-
domly chosen product states looks highly non-generic
from the perspective of the full Hilbert space. For ex-
ample, in the absence of Krylov fracture one typically
expects that the bipartite entanglement entropy evolves
to the Page value [97], the average bipartite entangle-
ment entropy of states in the Hilbert space. For a system
of Hilbert space dimension D [L] = 2L, the Page value
is logD [L/2] ≈ L/2 log 2. However, in the presence of
Krylov fracture, we expect that the late-time bipartite
entanglement entropy of product states |ψ0〉 is smaller
and typically ∼ logDK [L/2], where DK [L] is the dimen-
sion of the Krylov subspace K (H, |ψ0〉) for a system size
L. The phenomenon of Krylov fracture can thus be re-
garded as a breaking of ergodicity with respect to the full
Hilbert space, resulting in (at the very least) violation of
strong ETH.

However, what remains unclear is whether, for systems
exhibiting Krylov fracture, thermalization occurs within
each of the Krylov subspaces. Of course, thermaliza-
tion or ETH-violation are only well-posed concepts for
large Krylov subspaces K (with dimension DK[L] → ∞
as L → ∞)4 and do not have a clear meaning when the
Krylov subspace has a finite dimension in the thermo-
dynamic limit, as is the case for the exponentially many
static configurations discussed above. Indeed, there ex-
ist exponentially large Krylov subspaces of the Hamilto-
nian Eq. (1) at filling ν = p/(2p + 1) for which Krylov-
restricted thermalization appears to hold for most initial
states, as recently demonstrated by some of the present
authors [61]. There, we demonstrated the existence
of Krylov subspaces with Wigner-Dyson level statistics,
despite such Krylov subspaces hosting quantum scars
i.e., evenly spaced towers of anomalous states in the
spectrum that lead to revivals in the fidelity of time
evolution from particular initial states. Those Krylov
subspaces are examples of ones that violated Krylov-
restricted strong ETH, although Krylov-restricted weak
ETH is satisfied. However, it has not yet been established
if Krylov-restricted weak ETH is necessarily satisfied for

4 Note that the dimension of the Krylov subspace DK[L] could in
principle scale polynomially with L; however, we are not aware
of any such example in the pair-hopping model Eq. (1).
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large dimensional Krylov subspaces, or if there are ex-
amples of semi-integrable systems with both integrable
and non-integrable Krylov subspaces, opening the door
to further violations of ergodicity within Krylov sectors.

Thus, in what follows we will focus on high dimensional
irreducible Krylov subspaces K (H, |ψ〉), defined as those
with exponentially large dimension DK [L] ∼ αL as L→
∞ (α > 1), and which satisfy

K (H, |ψ〉) 6= K (H, |ψ1〉)⊕K (H, |ψ2〉) (24)

for any product states |ψ1〉 and |ψ2〉, after resolving
charge and center-of-mass symmetries. Remarkably,
we find several examples of both integrable and non-
integrable subspaces in the model Eq. (1), demonstrat-
ing the rich dynamical structure inherent in systems with
fractured Hilbert spaces. Studying the dynamics of root
states that generate large irreducible Krylov subspaces
thus allows us to establish that integrability or non-
integrability of a system is correctly defined only within
each Krylov subspace.

V. INTEGRABLE SUBSPACES

In this section, we illustrate several integrable irre-
ducible Krylov subspaces with exponentially large dimen-
sion present in the pair-hopping model Eq. (1).

A. Spin subspace

The simplest example of a large integrable Krylov sub-
space can be generated by a root state |ψ0〉 (see Eq. (20))
which is any product state of only spin degrees of free-
dom: ↑ and ↓ as defined in Eq. (9). From Eq. (10), we
find that the Hamiltonian restricted to this subspace can
be written as a nearest neighbor Hamiltonian with ac-
tions:

|↑↑〉 → 0, |↓↓〉 → 0, |↑↓〉 ↔ |↓↑〉 , (25)

where |a〉 → 0 and |a〉 ↔ |b〉 represent the action of a
single term of the Hamiltonian. Thus, starting from a
root state with N↑ spin ↑’s (and hence (N − N↑) spin
↓’s), such as

|↑↓↑↑↓〉 , (N,N↑) = (5, 3),

the action of the Hamiltonian only rearranges the spins.
In particular, note that: (i) The number of ↑’s and

↓’s in the root state N↑ and N − N↑ respectively are
preserved upon the action of the Hamiltonian, (ii) no
fractons (i.e. +’s or −’s) are created, and (iii) all product
configurations with N spins and a fixed value of N↑ are
part of the Krylov subspace K (H, |ψ0〉) associated with
the root state |ψ0〉. Furthermore, since the Hamiltonian
restricted to this subspace only interchanges the spins

(see Eq. (25)), it maps exactly onto that of the spin-1/2
XX model:

HXX [N ] ≡
N∑
j=1

(
σ+
j σ
−
j+1 + σ−j σ

+
j+1

)
, (26)

where {σ+
j } and {σ−j } are onsite Pauli matrices. This

mapping was first noted in earlier works on half-filled
Landau levels [87, 88, 98], and is formally illustrated
in App. B. As is well known, the Hamiltonian Eq. (26)
can be solved using a Jordan-Wigner transformation [99],
upon which it maps onto a non-interacting problem. We
numerically observe that the full ground state of the
Hamiltonian Eq. (1) belongs this Krylov subspace with
(N,N↑) =

(
N,
⌊
N
2

⌋)
. We refer to App. C for a complete

discussion of the structure of the eigenstates within this
Krylov subspace.

An important note regarding symmetries: each Krylov
subspace generated from a root state with only spins and
with a fixed N↑ (dubbed the spin Krylov subspace) only
generates one symmetry sector of the XX model with a
fixed Sz. All symmetry sectors of the XX model can be
generated by starting from root states with different N↑,
so that the full spectrum of the XX model of N sites
is embedded within the spectrum of the pair-hopping
Hamiltonian H (1), both for OBC and PBC.

With respect to the symmetries of H, these Krylov
subspaces lie within the sector (Q,D, Sz) = (0, 0, 2N↑ −
N), where Q, D, and Sz are the total charge, dipole mo-
ment, and spin respectively, discussed in Sec. III B. How-
ever, these are not the only states within that (Q,D, Sz)
symmetry sector, providing evidence for the Krylov frac-
ture in the pair-hopping Hamiltonian H. For example,
the product state

|∗ · · · ∗+−−+ ∗ · · · ∗〉 , (27)

where ∗ = ↑, ↓ and with (N↑ − 1) ↑’s (and hence (N −
N↑−1) ↓’s) lies within the symmetry sector (Q,D, Sz) =
(0, 0, 2N↑−N) but outside the spin Krylov subspace con-
structed above.

B. Single dipole subspace

Restricting our attention to OBC, we now demonstrate
the existence of another set of integrable Krylov sub-
spaces K (H, |ψ0〉), which are generated from root states
containing only a single dipole. Such root states are of
the form

|ψ0〉 = |∗ · · · ∗+− ∗ · · · ∗〉 , |ψ0〉 = |∗ · · · ∗ −+ ∗ · · · ∗〉 ,
(28)

where ∗ = ↑, ↓. The action of the Hamiltonian Eq. (1)
on configurations of the form Eq. (28) is given by

|↓ +−〉 ↔ |+− ↓〉 , |↑ −+〉 ↔ |−+ ↑〉
|↑ +−〉 → 0, |+− ↑〉 → 0

|↓ −+〉 → 0, |−+ ↓〉 → 0. (29)
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Krylov Subspace Root Configuration Quantum Numbers Restricted Hamiltonian

Spin |↑↓ · · · ↓↑〉 N↑ HXX [N ]

Single +− dipole |↑ · · · ↓ +− ↑ · · · ↓〉 N
(1)
↑ , N

(2)
↑ HXX [N − 1]

Two separated +− dipoles |↑ · · · ↓ +− ↑ · · · ↓ +− ↑ · · · ↓〉 N
(1)
↑ , N

(2)
↑ ≥ 1, N

(3)
↑ HXX [N − 2]

Two adjacent +− dipoles |↑ · · · ↓ +−+− ↑ · · · ↓〉 N
(1)
↑ , N

(2)
↑ = 0, N

(3)
↑ HXX [N − 1]

X separated +− dipoles |↑ · · · ↓ +− ↑ · · ·+− · · · ↓ +− ↑ · · · ↓〉 N (1)
↑ , {N (2)

↑ , · · · , N (X−1)
↑ } ≥ 1, N

(X)
↑ HXX [N − (X − 1)]

X adjacent +− dipoles |↑ · · · ↓ +−+− · · ·+− ↑ · · · ↓〉 N
(1)
↑ , {N (2)

↑ , · · · , N (X−1)
↑ } = 0, N

(X)
↑ HXX [N − 1]

TABLE I. Table of integrable Krylov subspaces (by no means an exhaustive list) of the pair-hopping model for system size
L = 2N , with OBC at half-filling. For each type of Krylov subspace, we provide the root configuration generating it, the
associated quantum numbers, and the Hamiltonian restricted to that subspace. Dipole subspaces for the oppositely oriented
−+ dipoles can be constructed analogously (see main text for discussion).

Since dipole moment is conserved, the dipole does
not “disintegrate” under the action of the Hamiltonian
Eq. (29), i.e. the dipole does not separate into its con-
stituent + and − fractons. As it turns out, Krylov sub-
spaces generated by root states of the form (28) with
N sites are isomorphic to Hilbert spaces of (N − 1)
spin-1/2’s, with the effective Hamiltonians within these
Krylov subspaces given by XX models of (N − 1) sites.
In the following, we focus on the Krylov subspace corre-
sponding to a +− dipole. As we discuss later, the gener-
alization to −+ dipoles follows similarly.

To show this, we first observe that as a consequence of
Eq. (29), a dipole +− in the root state can never cross
an ↑ spin to its left or to its right. In other words, the
dipole +− can only hop left (right) if there is a ↓ spin im-
mediately to its left (right). Hence, all product states in
the Krylov subspace generated by a root state |ψ0〉 with
one dipole +− preserve the number of ↑ spins to the left
and right of the dipole separately. Denoting these con-

served quantities by N
(1)
↑ and N

(2)
↑ respectively, we see

that product states in the Krylov subspace K (H, |ψ0〉)
always have the form

|∗ · · · ∗+− ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(2)
↑

, (30)

where ∗ = ↑, ↓. This Krylov subspace can thus be

uniquely labelled by the tuple (N,N
(1)
↑ , N

(2)
↑ ). For ex-

ample, the Krylov subspace K (H, |ψ0〉) generated by the
configuration |ψ0〉 = |↑↓ +− ↑↓〉 with OBC consists of
the following basis states:

|↑↓ +− ↑↓〉 , |↓↑ +− ↑↓〉 , |↑↓ +− ↓↑〉 , |↓↑ +− ↓↑〉
|↑ +− ↓↑↓〉 , |↑ +− ↑↓↓〉 , |↑ +− ↓↓↑〉
|↑↓↓ +− ↑〉 , |↓↑↓ +− ↑〉 , |↓↓↑ +− ↑〉 . (31)

Note that all the states in K (H, |ψ0〉) are labelled by

(N,N
(1)
↑ , N

(2)
↑ ) = (6, 1, 1). In order to map configu-

rations of the form Eq. (30) onto an effective spin-1/2
Hilbert space, note that the rules of Eq. (29) are identi-
cal to those of Eq. (10) when the dipole +− is replaced
by an ↑ spin. This observation allows us to establish

two crucial results on the single-dipole Krylov subspace
K (H, |ψ0〉).

Firstly, product states in the single dipole Krylov
subspace consisting of a +− dipole can be uniquely
mapped onto product states of (N − 1) spin-1/2’s with

(N
(1)
↑ +N

(2)
↑ + 1) ↑’s by replacing the +− dipole with an

↑. For example, the following holds:

|↑↑↓ +− ↑↓↑↑↑〉
(A)

⇐⇒ |↑↑↓↑↑↓↑↑↑〉
(B)

, (32)

where configuration (A) in the Krylov subspace with

(N,N
(1)
↑ , N

(2)
↑ ) = (10, 2, 4) maps onto the configuration

(B) in the spin subspace with (N,N↑) = (9, 6) by re-
placing the +− dipole with an ↑. The inverse mapping
from the spin-1/2 Hilbert space of (N − 1) sites and

(N
(1)
↑ + N

(2)
↑ + 1) ↑’s to the single dipole Krylov sub-

space (N,N
(1)
↑ , N

(2)
↑ ) proceeds by identifying one ↑ to be

the +− dipole such that the resulting configuration has

the correct N
(1)
↑ and N

(2)
↑ . For instance in Eq. (32), given

(N,N
(1)
↑ , N

(2)
↑ ) = (10, 2, 4), the mapping from (B) to (A)

is possible only if the third ↑ in the configuration (B) is
replaced by a +− dipole.

The mapping for the single −+ dipole subspace follows
analogously, with ↑ replaced by ↓ i.e., by identifying −+’s

with ↓’s instead. In that case, the quantities N
(1)
↓ and

N
(2)
↓ , defined as

|∗ · · · ∗ −+ ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↓

︸ ︷︷ ︸
N

(2)
↓

, (33)

are preserved within the Krylov subspace. Thus, the
single dipole Krylov subspace with OBC and a fixed

(N,N
(1)
↑ , N

(2)
↑ ) (resp. (N,N

(1)
↓ , N

(2)
↓ )) is isomorphic to

the Hilbert space of (N − 1) spin-1/2’s with (N
(1)
↑ +

N
(2)
↑ + 1) ↑’s (resp. (N

(1)
↓ + N

(2)
↓ + 1) ↓’s). Secondly,

since Eq. (29) is identical to Eq. (25) when the dipole
+− (resp. −+) is replaced with an ↑ (resp. ↓), the
effective Hamiltonian within each such Krylov subspace
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is the XX model of (N − 1) sites with OBC.5 In par-
ticular, the spectrum of H in Eq. (26) restricted to the

single Krylov subspace labelled by (N,N
(1)
↑ , N

(2)
↑ ) (resp.

(N,N
(1)
↑ , N

(2)
↑ )) is precisely the spectrum of the quan-

tum number sector Sz = (2(N
(1)
↑ +N

(2)
↑ ) + 3−N) (resp.

Sz = −(2(N
(1)
↓ +N

(2)
↓ ) + 3−N)) of the XX model.

Note that with PBC this Krylov subspace is no longer
isomorphic to the spin-1/2 Hilbert space of the XX
model, since the inverse mapping from the spin-1/2
Hilbert space to the dipole subspace is not unique. Thus,
the effective Hamiltonian within this Krylov subspace
cannot map exactly onto the XX model of Eq. (26) with
PBC, and it remains unclear whether or not the resulting
Hamiltonian is integrable for any finite system size.

C. Multidipole subspaces

We now consider Krylov subspaces generated by root
configurations containing multiple identically oriented
dipoles. All such subspaces turn out to be integrable
and governed by effective XX Hamiltonians of various
sizes. As with a single dipole discussed in the previous
section, spins and dipoles interact according to Eq. (29).
A crucial property of these rules, which we will make use
of throughout this section, is that the +− (resp. −+)
dipole cannot cross any ↑ (resp. ↓) spins under the ac-
tion of the Hamiltonian H.

We first illustrate the case where the root state con-
tains two +− dipoles before discussing the general set-
ting. Since the dipoles +− cannot cross ↑’s, the Krylov
subspace generated from a root state with two identi-
cally oriented dipoles preserves three quantities of the

root state: (N
(1)
↑ , N

(2)
↑ , N

(3)
↑ ), depicted schematically by

the following configurations:

|∗ · · · ∗+− ∗ · · · ∗+− ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(2)
↑

︸ ︷︷ ︸
N

(3)
↑

, (34)

where ∗ = ↑, ↓. That is, for a Krylov subspace generated
by root states with two +− dipoles, the number of ↑ spins
to the left of the left dipole, in between the two dipoles,
and to the right of the right dipole are each separately

conserved. Thus, the quantities (N,N
(1)
↑ , N

(2)
↑ , N

(3)
↑ )

uniquely label the Krylov subspace.
We now restrict our discussion to the Krylov subspace

containing two +− dipoles, with the generalization to the
two −+ dipole subspace being straightforward. Provided

N
(2)
↑ ≥ 1 in the root state |ψ0〉, the two dipoles are al-

ways separated by an ↑ spin and can never be adjacent

5 Once an ↑ spin is identified, note that the action of the XX

Hamiltonian also preserves N
(1)
↑ and N

(2)
↑ , the number of ↑ spins

to the left and to the right of the identified ↑ spin respectively.

to each other; the action of the Hamiltonian is there-
fore entirely specified by Eq. (29). Product states in the
Krylov subspace can be mapped onto configurations of

(N − 2) spin-1/2’s with
(
N

(1)
↑ +N

(2)
↑ +N

(3)
↑ + 2

)
↑’s by

replacing the +− dipoles by ↑’s. For example,

|↑↓↑ +− ↑↓↑ +− ↑↓〉
(A)

⇐⇒ |↑↓↑↑↑↓↑↑↑↓〉
(B)

, (35)

where the configuration (A) in the two-dipole Krylov

subspace labeled by
(
N,N

(1)
↑ , N

(2)
↑ , N

(3)
↑

)
= (12, 2, 2, 1),

maps onto configuration (B).
Similar to the single dipole case, the inverse mapping

is unique once (N,N
(1)
↑ , N

(2)
↑ , N

(3)
↑ ) are specified. This

inverse mapping proceeds by identifying two of the ↑’s to
be +− dipoles such that the resulting configuration has

the required values of N
(1)
↑ , N

(2)
↑ , and N

(3)
↑ . For example,

given that (N,N
(1)
↑ , N

(2)
↑ , N

(3)
↑ ) = (12, 2, 2, 1), the two-

dipole configuration (A) in Eq. (35) is the unique two-
dipole configuration corresponding to spin configuration
(B).

The mapping for the two-dipole subspace with −+
dipoles follows analogously, with ↑ replaced by ↓ i.e.,
by identifying −+’s with ↓’s instead. The action of
the Hamiltonian is completely specified by Eq. (29)
when the dipoles are not allowed to be adjacent each
other; as discussed in Sec. V B, Eq. (29) is identical
to Eq. (25) when the +− (resp. −+) dipole is identi-
fied with ↑ (resp. ↓) spin. Thus, the Hamiltonian re-
stricted to the two +− (resp. −+) dipole Krylov sub-
space is identical to the XX model of (N − 2) sites

within the Sz = (2(N
(1)
↑ + N

(2)
↑ + N

(3)
↑ ) + 6 −N) (resp.

Sz = −(2(N
(1)
↓ +N

(2)
↓ +N

(3)
↓ ) + 6−N)) sector.

We emphasize that the two-dipole Krylov subspace of
N is isomorphic to the spin-1/2 Hilbert space of (N − 2)
sites only when the two +− (resp. −+) dipoles have
at least one ↑ (resp. ↓) spin between them i.e., only if

N
(2)
↑ ≥ 1 (resp. N

(2)
↓ ≥ 1). When the two dipoles are

adjacent to each other, using Eqs. (13) and (14) we find
that the action of the Hamiltonian H reads

|+−+−〉 ↔ |↓ + ↑ −〉 , |+−+−〉 ↔ |+ ↑ − ↓〉 ,
|−+−+〉 ↔ |↑ − ↓ +〉 , |−+−+〉 ↔ |− ↓ + ↑〉 .

(36)

As a consequence, the action of the Hamiltonian on root
states of the form |· · ·+−+− · · · 〉 result in the “disin-
tegration” of dipoles, resulting in configurations of the
form:

|· · · ↓ + ↑ − · · · 〉 , |· · ·+ ↑ − ↓ · · · 〉 ,

which cannot be mapped onto a configuration of (N −
2) spin-1/2’s through the map described earlier in this
section. Nevertheless, we find that such Krylov subspaces
does map onto the XX model, albeit one with (N − 1)
spin-1/2’s; we discuss this mapping in App. D.
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The preceding discussion straightforward generalizes
to three or more dipoles. For a Krylov subspace gen-
erated by a root state containing n identically oriented
dipoles, with OBC the system can be partitioned into
(n+ 1) segments separated by the dipoles. We introduce

the quantities N
(1)
↑ , N

(2)
↑ , · · · , N (n+1)

↑ , where N
(j)
↑ (resp.

N
(j)
↓ ) represents the number of ↑ (resp. ↓) spins in the

j-th segment of the chain in the root state:

1 2 n−1 n

|· · ·+− · · ·+− · · ·+− · · ·+− · · · 〉︸︷︷︸
N

(1)
↑

︸︷︷︸
N

(2)
↑

︸︷︷︸
N

(n)
↑

︸︷︷︸
N

(n+1)
↑

, (37)

with the superscripts 1, 2, · · · , n indexing the dipoles.
Since a +− dipole is not allowed to cross an ↑ spin under

the action of the Hamiltonian, the quantities {N (j)
↑ ≥ 1}

are invariant under the dynamics i.e., these quantities
are identical for all product states within the Krylov sub-
space generated by the root state of the form Eq. (37).
As with two dipoles, this is true provided no dipoles are
adjacent in the root state, which corresponds to the con-

straint N
(j)
↑ ≥ 1 for any j.

In this case (N (j) 6= 0 ∀ j), the n dipole Krylov sub-
space exactly maps onto a spin-1/2 Hilbert space with

(N − n) sites and (n +
n+1∑
j=1

N
(j)
↑ ) ↑’s by identifying each

+− dipole with an ↑ spin. For example,

|↑↓ +− ↓↑↑ +− ↓↑ +− ↑↑〉
(A)

⇐⇒ |↑↓↑↓↑↑↑↓↑↑↑↑〉
(B)

, (38)

where n = 3 and where the three dipole configura-

tion (A) with (N
(1)
↑ , N

(2)
↑ , N

(3)
↑ , N

(4)
↑ ) = (1, 2, 1, 2) maps

onto the spin configuration (B). This mapping onto the
spin-1/2 Hilbert space is invertible provided the tuple

(N
(1)
↑ , N

(2)
↑ , · · · , N (n+1)

↑ ) is known, and it proceeds by
identifying n ↑ spins in each product configuration with
+− dipoles such that the resulting configuration has the

requisite (N
(1)
↑ , N

(2)
↑ , · · · , N (n+1)

↑ ) values. For example,

given (N
(1)
↑ , N

(2)
↑ , N

(3)
↑ , N

(4)
↑ ) = (1, 2, 1, 2), configuration

(B) in Eq. (38) uniquely maps onto (A) by identifying
the appropriate ↑ spins with +− dipoles.

The mapping with −+ dipoles proceeds in a similar
way by replacing the −+ dipole by ↓. The quantities

{N (j)
↓ } are thus preserved within the Krylov subspaces,

where

1 2 n−1 n

|· · · −+ · · · −+ · · · −+ · · · −+ · · · 〉︸︷︷︸
N

(1)
↓

︸︷︷︸
N

(2)
↓

︸︷︷︸
N

(n)
↓

︸︷︷︸
N

(n+1)
↓

. (39)

Since the Hamiltonian Eq. (29) is identical to Eq. (10)
upon the identification of dipoles with spins, the Hamilto-
nian restricted to the Krylov subspace for the n+− (resp.
−+) dipole case is the XX model with (N−n) sites within

the quantum number sector Sz = (3n +
n+1∑
j=1

N
(j)
↑ − N)

(resp. Sz = −(3n+
n+1∑
j=1

N
(j)
↓ −N)).

When N
(j)
↑ = 0 or N

(j)
↓ = 0 for some j in the root state

Eq. (37), the mapping prescribed above fails because the
action of the Hamiltonian causes the adjacent dipoles to
disintegrate, as shown in Eq. (36). Nevertheless, as we
show in App. D, we find that the Krylov subspace re-
mains integrable even if some dipoles in the root state
are adjacent. Specifically, we find that the Hamiltonian
restricted to a Krylov subspace with only n +− (resp.
−+) dipoles is the XX model of (N −n+X) sites, where
X is the number of segments j containing no spins, such

that N
(j)
↑ = 0 (resp. N

(j)
↓ = 0). For example, the ef-

fective Hamiltonians restricted to the Krylov subspaces
generated by the root states

|∗ · · · ∗+−+−+− ∗ · · · ∗〉

and

|∗ · · · ∗+−+− ∗ · · · ∗+− ∗ · · · ∗〉 ,

where ∗ = ↑, ↓ are the XX models acting on (N − 1) and
(N − 2) spin-1/2’s respectively.

As was the case for a single dipole, the mapping onto
XX models does not work with PBC. However, it is not
clear if the effective Hamiltonian restricted to this sector
with PBC is solvable for a finite system size, although
integrability of this sector should be restored in the ther-
modynamic limit and the energy spectrum should display
Poisson level statistics for a large enough system size.
Finally, we note that upon the addition of electrostatic
terms or disorder (discussed in App. E), the spin sub-
space described in Sec. V A maps onto the XXZ model
or disordered XX model, and thus remains integrable.
However, the dipole subspaces are no longer integrable,
and they show all the signs of usual non-integrability,
including GOE level statistics [100].

D. Systematic construction of integrable subspaces

Having illustrated the existence of several integrable
Krylov subspaces of the pair-hopping model Eq. (1), we
briefly discuss a general prescription for constructing ad-
ditional irreducible integrable subspaces by using the in-
tegrable subspaces of Secs. V A-V C as building blocks.
As also emphasized in Refs. [82, 83], one can introduce
blockades i.e., regions of the chain on which terms of the
Hamiltonian vanish. For example, consider the following
root state with a configuration of the form:

|∗ · · · ∗+ + · · ·+ + ∗ · · · ∗〉︸ ︷︷ ︸
A

︸ ︷︷ ︸
B

, (40)
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where ∗ = ↑, ↓, with N+ ≥ 2 and N− = 0. Following
the rules Eqs. (10)-(14), the Hamiltonian can act non-
trivially only on sites contained within regions A and B
of the root state Eq. (40).

Due to this, all basis states of the Krylov subspace
generated from the root state Eq. (40) retain the same
schematic form, with + + · · · + + (N+ ≥ 2) acting as
a blockade that spatially disconnects two parts of the
Krylov subspace.

Thus, one can show that the effective Hamiltonian re-
stricted to such blockaded Krylov subspaces is simply
given by the sum of two independent XX models acting
on distinct degrees of freedom lying in regions A and B.
Note that blockades can also be constructed using expo-
nentially many other “static” patterns [82, 83], such as
−−· · ·−−, ++−−· · ·++−−, or ++ ↑ · · · ↑ ++, which
in turn lead to exponentially many integrable subspaces.

Similarly, we can also introduce blockades for the
dipole Krylov subspaces considered in Secs. V B-V C, as
long as the dipoles do not interact with the blockade.
For example, consider the root configuration of the form
of Eq. (40) where region A is a root configuration for an
integrable subspace with one or more −+ dipoles, and re-
gion B is a root configuration for an integrable subspace
with +− dipoles:

|∗ · · · ∗ −+ ∗ · · · ∗+ + · · ·+ + ∗ · · · ∗+− ∗ · · · ∗〉︸ ︷︷ ︸
A

︸ ︷︷ ︸
B

, (41)

where ∗ =↑, ↓. Upon successive applications of the
Hamiltonian on the root state of Eq. (41), the dipoles
in regions A and B do not interact with the string of +’s
in between the regions. Thus, the string of +’s acts as a
blockade, and the Krylov subspaces generated by such
root configurations are integrable, since the restricted
Hamiltonian is a sum of XX models on regions A and B.
While we have only illustrated the simplest cases where
blockades are introduced between regions A and B, each
of which are integrable regions that do not interact with
the blockade, we can of course generalise by introducing
n blockades separating n+ 1 regions, each of which con-
tain the integrable subspaces that do not interact with
the neighboring blockades. In such a case, the Hamilto-
nian restricted to the Krylov subspace is a sum of n+ 1
independent XX models.

A detailed study delineating all integrable subspaces
of the pair-hopping model Eq. (1) is beyond the scope
of this work. Nevertheless, the above examples suffice to
illustrate the existence of exponentially many integrable
Krylov subspaces, clearly establishing the possibility of
emergent, Krylov-restricted integrability in systems ex-
hibiting Krylov fracture.

VI. NON-INTEGRABLE SUBSPACES AND
KRYLOV-RESTRICTED ETH

Given that large swaths of the spectrum of the pair-
hopping Hamiltonian are solvable, it is natural to ask

whether this model is completely integrable. The stan-
dard diagnostic for probing non-integrability of some
Hamiltonian is the appearance of random matrix behav-
ior within a sector resolved by symmetries of that Hamil-
tonian. For example, the energy level statistics [21, 100]
and the matrix elements of local operators in the energy
eigenbasis (according to ETH) [8] are expected to follow
random matrix behavior for non-integrable systems.

Generally, in unconstrained models, symmetry sectors
are themselves examples of well-defined dynamically dis-
connected Krylov subspaces. In other words, a root-state
which is an eigenstate of the symmetry typically gen-
erates a Krylov subspace which spans all states within
that symmetry sector. However, for systems exhibiting
Krylov fracture, there exist several dynamically discon-
nected Krylov subspaces within each symmetry sector.
As was also emphasized by Refs. [82, 83], resolving eigen-
states by symmetries alone may hence be insufficient for
identifying ergodicity, given the possibility of Krylov frac-
ture.

Thus, we pose the crucial question that motivates the
title of the paper: Whether symmetries are only a sub-
set of the more general phenomena of Krylov fracture,
and if ergodicity or its absence should correspondingly
be defined within dynamically disconnected irreducible
Krylov subspaces. In the previous section, we encoun-
tered examples of Krylov subspaces within symmetry sec-
tors which display the characteristic trademarks of in-
tegrable systems e.g., Poisson level statistics. Now, we
wish to ask whether Krylov subspaces that are not in-
tegrable exhibit conventional diagonostics of ergodic sys-
tems, such as Wigner-Dyson level statistics and ETH [8].
Of course, random matrix theory is a statement about
“large” matrices i.e., in the limit that the size of the ma-
trix goes to infinity; consequently, the question of ther-
malization within Krylov subspaces is only well-posed for
“large” Krylov subspaces, whose size tends to infinity in
the thermodynamic limit. Thus, we explore some sim-
ple non-integrable Krylov subspaces of the pair-hopping
model Eq. (1) and, in the process, establish the notion of
Krylov-restricted ETH.

Indeed, there exist Krylov subspaces of the pair-
hopping Hamiltonian which are not integrable. Consider
for instance the Krylov subspace generated by the root
state containing both +− and −+ dipoles:

|ψ0〉 = |∗ · · · ∗ −+ +− ∗ · · · ∗〉 , (42)

where ∗ = ↑, ↓. Since the dipoles are of opposite orien-
tation, the mapping of the +− and −+ dipoles to ↑ and
↓ spins would only be justified if |−+ +−〉 ↔ |+−−+〉
under the action of the Hamiltonian, which is strictly
prohibited by the rules given in Eqs. (10)-(14). As a re-
sult, the Hamiltonian restricted to this Krylov subspace
does not need to map onto an integrable model. Another
example is the Krylov subspace generated by the root
state containing two separated fractons:

|ψ0〉 = |∗ · · · ∗+ ∗ · · · ∗ − ∗ · · · ∗〉 , (43)
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FIG. 1. (Color online) (a) Level statistics within the Krylov subspace K (H, |ψ0〉) generated by various root states |ψ0〉 with
OBC, where H is the pair-hopping Hamiltonian Eq. (1). Red: |ψ0〉 = |↓↑↑↑↓↓↓ −+ +− ↓↓↓↑↑↓↓〉 (Krylov subspace dimension
DK = 18849), Blue: |ψ0〉 = |↑↓↑↓↑ + ↑↑↑↑↓↓↓ − ↓↑↓↑↓〉 (Krylov subspace dimension DK = 21660). The configurations of spins
in the root configurations have been chosen to ensure that the Krylov subspace does not have any symmetries. The standard
〈r〉 parameter [101] in these subspaces is 0.5331 and 0.5276 respectively, close to the GOE value of 0.53. (b) Evidence for the
Eigenstate Thermalization Hypothesis (ETH) in the non-integrable Krylov subspace K (H, |ψ0〉) generated by the root state
shown in Eq. (45), which for N = 18 reads |ψ0〉 = |↑↓↑↓↑↓↑ −+ +− ↓↑↓↑↓↑↓〉. In order to break the symmetries within this
Krylov subspace, the couplings {Jj} of the terms of the pair-hopping Hamiltonian (see Eq. (E10)) are chosen from a uniform
distribution [1−W, 1 +W ], with W = 0.1. This disorder preserves the Krylov fractured structure of the Hilbert space. Main:

The difference between 〈E| Q̂N/2 |E〉, the expectation value of the charge operator in an eigenstate at energy E and 〈Q̂N/2〉E ,

the thermal expectation value at that energy determined by averaging 〈E| Q̂N/2 |E〉 in an energy window of ∆E = 0.05 [102].

Inset: The standard deviations of that difference as a function of the Hilbert dimension DK scales ∼ 1/
√
DK (dotted line)

for two operators: the charge operator Q̂N/2 (blue) and the spin operator Ŝz
N/2 (red), consistent with ETH within the Krylov

subspace K (H, |ψ0〉).

where ∗ = ↑, ↓, and the ∗ · · · ∗ in between the + and
− contains both ↑ and ↓ spins. The latter condition is
required to ensure that |ψ0〉 does not belong to any of
the integrable multidipole Krylov subspaces discussed in
App. D.

We have numerically studied the behaviour of Krylov
subspaces generated by root states such as those given in
Eqs. (42) and (43). As shown in Fig. 1(a), we find that
eigenstates of the Hamiltonian within these Krylov sub-
spaces K (H, |ψ0〉) exhibit GOE level statistics, provid-
ing evidence for the non-integrability of the Krylov sub-
space. We further conjecture that such non-integrable
Krylov subspaces satisfy the Eigenstate Thermalization
Hypothesis (ETH) [7–11]. ETH states that the matrix
elements of local operators in the energy eigenstates of a
non-integrable model take the form [11]

〈Em| Ô |En〉 = Ō (E) δm,n +Rm,ne
−S(E)/2fO (E,ω) ,

(44)

where Ô is a local operator that is invariant under the
symmetries of the Hamiltonian, |Em〉 and |En〉 are the
energy eigenstates with energies Em and En with the
same symmetry quantum numbers, E = (Em + En) /2,
ω = Em−En, Rm,n is a random variable with zero mean
and unit variance, Ō (E) is a smooth function of E and

represents the thermal expectation value of Ô at energy
E,6 fO (E,ω) is a smooth function of E and ω which
do not scale with the system size [11], and S (E) is the
thermodynamic entropy at energy E. In Eq. (44), since
S(E) ∼ logD for states in the middle of the spectrum,
where D is the Hilbert space dimension, the standard
deviation of expectation values of operators in the eigen-
states is expected to scale as ∼ 1/

√
D for eigenstates in

the middle of the spectrum [102].
Here, we want to test whether Eq. (44) holds within a

non-integrable Krylov subspace. We focus on the Krylov
subspace with the root states (with OBC):

|ψ0〉 =

{
|↑↓ · · · ↑↓ −+ +− ↑↓ · · · ↑↓〉 if N = 4p

|↑↓ · · · ↑↓↑ −+ +− ↓↑↓ · · · ↑↓〉 if N = 4p+ 2
,

(45)
with two dipoles −+ and +− placed at the center of the
chain. Furthermore, to probe the validity of Eq. (44),

we need to choose an operator Ô that preserves the

6 The thermal value here is determined by averaging the eigenstate
expectation values 〈E| Ô |E〉 over a small energy window ∆E,
where |E〉 is an eigenstate with energy E. [102]
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Krylov subspaces. Hence we choose the charge opera-

tor on the N/2-th site Ô = Q̂N/2, which is diagonal
in the basis of product states. Since the Krylov sub-
space K (H, |ψ0〉) has symmetries (e.g. inversion symme-
try), we add disorder to the couplings of the pair-hopping
Hamiltonian (see Eq. (E10)), which does not affect the
structure of the Krylov subspaces of the Hamiltonian,
and focus on testing the ergodicity within the Krylov
subspace. To probe the validity of Eq. (44) within non-
integrable Krylov subspaces, in Fig. 1(b) we plot the

quantity
(
〈E|Ô|E〉 − Ō (E)

)
, as a function of E, where

|E〉 is the eigenstate with energy E. The inset show the
variance of the difference as a function of the Krylov sub-
space dimension DK.

Two observations in Fig. 1(b) suggest the validity of
ETH within the Krylov subspace. Firstly, the quantity

〈E|Ô|E〉 − Ō (E) is centered about 0, which shows that
eigenstate expectation values approach the thermal ex-
pectation value. Secondly, the standard deviation of the
difference (shown in the inset) scales as ∼ 1/

√
DK, the

dimension of the Krylov subspace. Hence these observa-
tions provide evidence for “diagonal ETH” within non-
integrable Krylov subspaces, supporting the existence of
Krylov-restricted ETH in systems exhibiting Krylov frac-
ture.

VII. QUASILOCALIZATION FROM
THERMALIZATION

Based on the results of the previous section, which
established the phenomenon of Krylov-restricted ETH,
we expect that the long-time behaviour of typical states
within a particular non-integrable (resp. integrable)
Krylov subspace coincides with the Gibbs ensemble (resp.
generalized Gibbs ensemble) restricted to that subspace.
Such Krylov-restricted thermalization can lead to sur-
prising behaviour within some Krylov subspaces. For
example, in the following we show that the thermal ex-
pectation value of charge density on the chain within a
particular Krylov subspace is spatially non-uniform for
any finite system size.

To illustrate this behaviour, we consider the dynamics
of a single fracton immersed in a spin background i.e., we
study the Krylov subspace generated by the root state
with PBC:

|ψ0〉 = |∗ · · · ∗+ ∗ · · · ∗〉 , (46)

where ∗ =↑, ↓ such that N↑ = N↓. The configuration |ψ0〉
thus belongs to the quantum number sector Q = 1, D =
exp (iπ(N + 1)/N) , Sz = 0, where N is the length of the
chain. Since we impose PBC here, all configurations of
∗’s in the root state generate the same Krylov subspace
as the spins can rearrange amongst themselves under the
action of the Hamiltonian (see Eq. (10)). Hence, in the
following, we only explicitly describe the action of the
Hamiltonian on the fractons, given that all possible spin

configurations (with N↑ = N↓) are generated within this
subspace. An explicit example of the complete list of
product configurations in the Krylov subspace generated
by |ψ0〉 = |↑↑↑ + ↓↓↓〉 forN = 7 is given in App. F. There
are two possibilities for how the state |ψ0〉 of Eq. (46)
evolves under one application of the Hamiltonian H: ei-
ther the spins can rearrange amongst themselves or the
fracton moves by emitting a dipole, according to Eq. (13).
Since we are only focusing on the fracton, in the latter
case, the new basis state reads

|ψ1〉 = |∗ · · · ∗+−+ ∗ · · · ∗〉 , (47)

where ∗ = ↑, ↓. Upon further actions of the Hamiltonian,
the emitted +− or −+ dipole in Eq. (47) can propagate
in the spin background to the left or to the right, leav-
ing behind a free + fracton and resulting in one of the
following two configurations:

|ψ2〉 =

{
|∗ · · · ∗+− ↓ · · · ↓ + ∗ · · · ∗〉
|∗ · · · ∗+ ↑ · · · ↑ −+ ∗ · · · ∗〉

, (48)

where ∗ =↑, ↓ such that N↑ = N↓. With either a string
of ↓’s or ↑’s (upper and lower situation in Eq. (48) re-
spectively), further actions of the Hamiltonian enable the
isolated fracton in Eq. (48) to move through the emission
of an additional dipole, which can then propagate in the
spin background. This results in configurations of the
form:

|ψ3〉 =

{
|∗ · · · ∗+−+− ↓ · · · ↓ + ∗ · · · ∗〉
|∗ · · · ∗+ ↑ · · · ↑ −+−+ ∗ · · · ∗〉 ,

(49)

where ∗ =↑, ↓ such that N↑ = N↓. Once configurations
of the form Eq. (49) are generated, a fracton can absorb
a dipole when acted upon by the Hamiltonian, as allowed
by Eq. (14). The resulting configurations are of the form:

|ψ4〉 =

{
|∗ · · · ∗+ ↑ − ↓ · · · ↓ + ∗ · · · ∗〉
|∗ · · · ∗+ ↑ · · · ↑ − ↓ + ∗ · · · ∗〉 ,

(50)

where ∗ =↑, ↓ such that N↑ = N↓. Following the above
discussion, one can show that the repeated emission and
absorption of multiple dipoles generates product states
within the Krylov subspace that are necessarily of the
form:

|· · · ∗+ ↑ · · · ↑ − ↓ · · · ↓ + ↑ · · · ↑ − ↓ · · · ↓ + ∗ · · · 〉 ,
(51)

i.e. with strings of only ↑’s or ↓’s between consecu-
tive fractons. Given the symmetries of the Hamiltonian,
only strings of the form Eq. (51), that have the same
(Q,D, Sz) quantum numbers as the root state |ψ0〉, are
allowed in the Krylov subspace. Hence, this subspace is
characterized by the presence of an emergent string-order
(equivalently, it is non-locally constrained).

To illustrate the novel features of this Krylov subspace,
we compare the time evolution of the charge density on
the middle site (the site on which the fracton resides ini-
tially) with that on a different site, which initially hosts
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FIG. 2. (Color online) (a) Time-evolution of the expectation value of on-site charge operators for the middle site and a site away
from the middle under the pair hopping Hamiltonian with PBC, starting from an initial state of the form |ψ0〉 = |∗ · · · ∗+ ∗ · · · ∗〉
where ∗ = ↑, ↓ for N = 15 with total spin Sz = 0. The horizontal lines show the infinite-temperature expectation values of the
same charge operators. Data averaged over 10 configurations of the ∗’s such that Sz = 0. (b) Late-time charge profile on sites
of the chain matches the infinite temperature value within the Krylov subspace K (H, |ψ0〉). They both show a peak on the
middle site, providing an example of quasilocalization from thermalization.

a spin. The results are shown in Fig. 2(a), which com-
pares the charge density at the middle site (in blue) to
that at a different site (in green) as a function of time.
Irrespective of the spin configuration in the initial state,
we consistently find that the middle site exhibits a higher
charge density as compared to any other site. Moreover,
as shown in Fig. 2(b), we find that this late-time charge
density matches that predicted by ETH, assuming the
initial state lies in the middle of the spectrum of the
Krylov subspace. The charge density at an inverse tem-
perature β restricted to the Krylov subspace K is then
given by

〈Q̂mid〉β =
Tr
(
Q̂mide

−βH|K
)

Tr
(
e−βH|K

) , (52)

where H|K is the restriction of the Hamiltonian H to

the Krylov subspace K, and Q̂mid is the charge opera-
tor of the middle site, using the established convention:
spins are charge neutral, whereas + and − fractons have
charges +1 and −1 respectively.

Assuming infinite temperature (β = 0) in Eq. (52), we
obtain

〈Q̂mid〉β =
Tr
(
Q̂mid

)
Tr (1|K)

≡ QN
DN

=
3

N
, (53)

where 1|K is the identity restricted to the Krylov sub-
space K, and thus Tr (1|K) = DN , the Hilbert space
dimension of K (H, |ψ0〉) of the chain of N sites. We
provide analytical and numerical arguments for the re-
sult of 3/N in Eq. (53) in App. F (see Eq. (F8)). On the

other hand, the late time expectation value of the charge
density on any other site in the middle of the chain is
1/N . We dub this phenomenon as quasi-localization of
the fracton, since it is localized for any finite system size
although the localization vanishes in the thermodynamic
(N → ∞) limit. We emphasize that unlike usual mech-
anisms for localization, which rely on the existence of
localized eigenstates [21, 82, 83], the phenomenon here
is quasi-localization from thermalization, which is a con-
sequence of ergodicity, albeit ergodicity within a con-
strained Krylov subspace.

VIII. CONNECTIONS WITH BLOCH MBL

Having established some consequences of Krylov frac-
ture, we now discuss the relationship between our model
and the Bloch (or Stark) MBL problem [84, 85]. The lat-
ter is an interacting extension of the well-known single
particle Wannier-Stark localization [94], with the Hamil-
tonian given by

HBloch = t

L−1∑
j=1

(
c†jcj+1 + h.c.

)
+ E

L∑
j=1

j n̂j

+ V0

L∑
j=1

wj n̂j + V1

L−1∑
j=1

n̂j n̂j+1, (54)

where n̂j = c†jcj is the fermionic number operator, t is the

hopping strength, wj is an on-site disorder (wj random)
or curvature (wj ∼ j2) whose strength is set by V0, and
V1 is the nearest-neighbour repulsion strength. Here, the
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model is defined on a chain with L sites and with open
boundary conditions.

Observe that the term
∑
j jn̂j , representing the uni-

form electric field, is precisely the center-of-mass operator

Ĉ for OBC, defined in Eq. (4). As detailed in App. G, we
can perform a Schrieffer-Wolff transformation [103] per-
turbatively at large E/t for an infinite chain to derive the
effective CoM preserving Hamiltonian (see Eq. (G33)):

Heff = V0

∑
j

w̃j n̂j + Ṽ1

∑
j

n̂j n̂j+1 + Ṽ2

∑
j

n̂j n̂j+2

− t2V1

E2

∑
j

(
c†jc
†
j+3cj+2cj+1 + h.c.

)
+O

(
t3

E3

)
,

(55)

where w̃j , Ṽ1, Ṽ2 are defined in Eq. (G34). w̃j and Ṽ1 are
the disorder and nearest neighbor interaction strengths
respectively “renormalized” by corrections of O

(
t2/E2

)
,

and Ṽ2 is the effective next-nearest neighbor interaction
of O

(
t2/E2

)
. Hence, the leading order hopping term in

the effective Hamiltonian governing the Wannier-Stark
model is the pair-hopping term studied in this paper,
given by Eq. (1). Longer range center-of-mass preserv-
ing terms, including n-body terms for n > 2 appear at
higher orders in perturbation theory, and are therefore
suppressed by higher powers of t/E; we thus expect their
strength to drop off exponentially with range as∼ tn/En,
for terms which have support over ∼ n sites.

Given this mapping, we now comment briefly on the
phenomenon of Bloch MBL, as discussed in Refs. [84, 85].
We begin by noting that the electric field in itself is
not sufficient to give MBL, since while the electric field
‘switches off’ single particle hopping, it leaves in place the
correlated center-of-mass preserving hopping processes
discussed above. As we have discussed in the preceding
sections, eigenstates of such processes are by no means
guaranteed to be localized. Thus, different physics must
underlie the numerical observation of MBL in the Bloch
MBL problem.

Strictly in the E/t → ∞ limit, the effective Hamil-
tonian consists only of the nearest-neighbor electro-
static term V1

∑
j n̂j n̂j+1 and the onsite potential term

V0

∑
j wj n̂j . When wj = 0, i.e. without disorder or cur-

vature, the eigenstates are clearly not localized since the
spectrum of V1

∑
j n̂j n̂j+1 is highly degenerate. However,

that degeneracy is lifted by small disorder or curvature;
thus, when wj is random or wj ∼ j2, all the eigenstates of
Eq. (55) have low entanglement. This is consistent with
the fact that Refs. [84, 85] do not observe MBL without
curvature or disorder respectively.

Moving away from the E/t → ∞ limit, we obtain the
effective Hamiltonian of Eq. (55) for large but finite E/t,
which exhibits Krylov fracture. The fracture is said to
be ‘strong’ [82, 83] if the dimension of the largest Krylov
subspace is a vanishing fraction of the full Hilbert space
dimension in the thermodynamic limit. This leads to the
non-thermalization of generic initial product states with
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FIG. 3. (Color online) Inset: Weight of the state
e−iHBlochT |ψ0〉 within the Krylov subspaceK (Heff, |ψ0〉), cap-
tured by the quantity O(T ) (defined in Eq. (56)) for two val-
ues of the electric field E. Main: Time-average of O (T ), de-
noted by 〈O〉T as a function of E/t. O is close to 1 for larger
values of E, justifying that the pair-hopping Hamiltonian H is
a good approximation for HBloch. Data is shown for V0/t = 0,
V1/t = 1, and |ψ0〉 = |↑↓↑↓ · · · · · · 〉 = |01100110 · · · · · · 〉.

respect to the entire Hilbert space [82, 83], for example
the entanglement entropy does not saturate to the maxi-
mum value allowed by the full Hilbert space. For a ‘min-
imal’ center-of-mass preserving Hamiltonian, such as the
pair-hopping model of Eq. (1), obtained by retaining only
the leading order hopping terms in the effective Hamilto-
nian, strong fracture indeed occurs.7 A simple example
of such non-thermalization is,the CDW state |0101 · · · 01〉
used as a diagnostic of localization in Ref. [84]. This state
forms a one-dimensional Krylov subspace under the pair-
hopping Hamiltonian of Eq. (1): it maps onto the state
|↑↑ . . . ↑↑〉 under the mapping defined in Sec. III. Clearly,
once initialized with this state, the system will forever re-
tain memory of its initial condition under time evolution
with the minimal pair-hopping Hamiltonian.

However, we note that the effective Hamiltonian Heff

of Eq. (55) is a good approximation to the Bloch MBL
Hamiltonian HBloch, given by Eq. (54), only for large
values of E/t. To test the effectiveness of Heff, we study
the quantity

O (T ) =
∑

|φn〉∈K(Heff,|ψ0〉)

| 〈φn| e−iHBlochT |ψ0〉 |2, (56)

which is the weight of the state e−iHBlochT |ψ0〉 within

7 The pair-hopping Hamiltonian Eq. (1) is equivalent to a S = 1/2
spin Hamiltonian for which evidence of strong fracture was found
in Ref. [82]. We have also verified numerically up to L = 24 that
the size of the largest Krylov subspace ∼ 2L while the Hilbert
space dimension ∼ 4L, consistent with strong fracture.
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the Krylov subspace K (Heff, |ψ0〉).8 We expect Heff to
correctly capture the dynamics of HBloch only for values
of E/t when

〈O〉T ≡ lim
τ→∞

1

τ

∫
dτ O (τ) ≈ 1. (57)

In Fig. 3, we show the behavior of 〈O〉T for the initial
state |ψ0〉 = |↑↓↑↓ · · · · · · 〉 = |01100110 · · · · · · 〉. Thus, we
find that Heff is a good approximation for HBloch only for
E/t & 50 when V0, V1 ∼ O (1) and for system sizes up
to L = 14. In Fig. 3, we also find that for a fixed value
of E/t, Heff becomes a worse approximation for HBloch

with increasing system size. Thus, it is not clear whether
Krylov fracture of the pair-hopping model of Eq. (1) plays
a significant role in the observations of Refs. [84, 85],
which focus on the regimes where E/t ∼ O (10).

To conclude this section, we speculate on two mech-
anisms that give rise to localized eigenstates at the
smaller values of E/t with disorder, which could provide
a partial explanation for the Bloch MBL phenomenon
in Refs. [84, 85]: (i) At smaller values of E/t, terms at
higher order in perturbation theory cannot be neglected
in the effective Hamiltonian. However, since terms gen-
erated at all orders in perturbation theory are necessar-
ily center-of-mass preserving, the hopping term of the
effective Hamiltonian at any finite order exhibits expo-
nentially many frozen eigenstates [82, 83]. The addi-
tion of disorder breaks the exponentially large degener-
acy of these frozen states under the effective Hamiltonian,
which results in exponentially many product eigenstates
of the effective Hamiltonian at any finite order. (ii) When
disorder is added in Eq. (54) (as is done in Ref. [85]),
then this can give rise to conventional ‘disorder-induced’
MBL [21] within Krylov subspaces of the effective Hamil-
tonian. This can happen even when the disorder is weak
compared to the bare single particle hopping t, because
the disorder may be strong compared to the largest hop-
ping term: from Eq. (55), we see that the hopping term
is of O

(
t2V1/E

2
)
, while the disorder is an O (V0) term,

which suggests the possibility of conventional MBL in the
effective Hamiltonian.

IX. CONCLUSIONS AND OPEN QUESTIONS

In this paper, we have studied a simple translation
invariant model which conserves both charge and center-
of-mass, and which provides a natural platform for realis-
ing the physics of fractonic systems. Specifically, we find
that the pair-hopping model Eq. (1) exhibits the phe-
nomenon of Krylov fracture, wherein various regions of
Hilbert space are dynamically disconnected even if they
belong to the same global symmetry sectors. In addition

8 Note that since Heff of Eq. (55) and H of Eq. (1) only differ by
diagonal terms, K (Heff, |ψ0〉) = K (H, |ψ0〉).

to exponentially many product eigenstates, whose effect
on quantum dynamics was studied in Refs. [82, 83], the
pair-hopping model also hosts several large closed Krylov
subspaces with dimensions that grow exponentially in the
system size at half-filling.

We find that exponentially many of such large Krylov
subspaces admit a mapping onto spin-1/2 XX models of
various sizes and hence, constitute examples of integrable
Krylov subspaces. However, not all large Krylov sub-
spaces show signs of integrability; instead, the model also
possesses exponentially many non-integrable subspaces,
many of which show level-repulsion and behaviour con-
sistent with ETH. Moreover, some of these Krylov sub-
spaces are highly constrained, which leads to atypical
dynamical behaviour even within a thermal Krylov sub-
space, an effect we dub “quasilocalization due to thermal-
ization”. By this, we specifically mean that the late-time
expectation values of local operators within such sub-
spaces deviate from the expected behaviour in generic
translation invariant systems. Finally, since the pair-
hopping model appears as the leading order hopping term
in the strong-field limit of the interacting Wannier-Stark
problem, we make contact between our work and Bloch
MBL. Besides shedding new light on Bloch MBL, our
work hence also provides an experimentally relevant set-
ting for studying the dynamics of center-of-mass preserv-
ing systems.

Our results, which illustrate the rich structure that
can arise as a consequence of Krylov fracture, harbour
several implications for the dynamics of isolated quan-
tum systems. Firstly, in the presence of Krylov frac-
ture, we have demonstrated that notions of ergodicity
and its violation are well-defined once restricted to large
Krylov subspaces. Moreover, we showed that usual diag-
nostics, such as energy level-statistics, accurately cap-
ture whether such Krylov subspaces are integrable or
not. These results thus suggest that a modified version
of ETH, restricted to large Krylov subspaces, holds for
systems with fractured Hilbert spaces.

Secondly, our results provide a clear example of a
“semi-integrable” model i.e., one where integrable as well
as non-integrable exponentially large Krylov subspaces
co-exist [80, 81]. When viewed from the perspective of
the entire Hilbert space (within a particular symmetry
sector), the integrable Krylov subspaces are examples of
quantum many-body scars, since they are ETH-violating
states embedded within the entire many-body spectrum.
Unlike the exponentially many static configurations (one-
dimensional Krylov subspaces) which necessarily exist for
any center-of-mass (dipole moment) conserving Hamilto-
nian [82, 83], these integrable subspaces have an expo-
nentially large dimension, which can lead to non-trivial
dynamics in an otherwise non-integrable model. For the
cognoscenti, we note that such subspaces are qualita-
tively distinct from subspaces generated from states con-
taining a blockaded region [104]. Thus, the existence
of such integrable Krylov subspaces of dimension much
smaller than that of the full Hilbert space, even if only ap-
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proximately closed, might be related to quantum many-
body scars which by now have been observed in several
constrained systems, including the PXP model [48, 60].

Additionally, even large non-integrable subspaces show
ergodicity breaking with respect to the entire Hilbert
space [82] and instead obey ETH only once restricted
to the Krylov subspace, resulting in highly non-general
thermal expectation values of local operators within such
Krylov subspaces. Note also that we have only focused on
Krylov subspaces generated by root states that are prod-
uct states (see Eq. (21)), but one could also study closed
Krylov subspaces generated by other low-entanglement
states; whether this leads to further fracturing within the
Krylov subspaces of the pair-hopping model is a question
for future work.

On a different note, we described the emergent frac-
tonic behaviour of composite degrees of freedom in a
simple model, one which can be realised by subjecting
fermions hopping on a chain to a strong electric field. It
would be interesting to study whether similar emergent
behaviour appears in higher dimensions. For instance,
one can impose the conservation of quadrupole moment in
two-dimensions, which could be arranged e.g., by adding
strong field-gradients. Such a system could allow one to
study the relation, if any, between the dynamics of frac-
ton models [72–74] and Krylov fracture.

Note added : During the completion of this work, there
appeared Refs. [105, 106] which also discuss connections
between center-of-mass preserving models and the Bloch
MBL phenomenon, and Ref. [107] which discusses la-
belling the Krylov subspaces of a related model by non-
local symmetries. Our results agree wherever there is
overlap.

ACKNOWLEDGEMENTS

We thank Dan Arovas, Vedika Khemani, Alan Morn-
ingstar, Frank Pollmann, Gil Refael, Max Schultz, Shiv-
aji Sondhi, Ruben Verresen, and particularly David Huse
for useful discussions. S.M. acknowledges the hospital-
ity of the Laboratoire de Physique de l’Ecole Normale
Supérieure, where parts of the manuscript were com-
pleted. A.P. acknowledges the hospitality of the Aspen
Center of Physics, where part of this work was completed
during a visit to the program “Realizations and Appli-
cations of Quantum Coherence in Non-Equlibrium Sys-
tems.” The Aspen Center for Physics is supported by
National Science Foundation grant PHY-1607611. A.P. is
supported by a PCTS fellowship at Princeton University.
This material is based in part (R.M.N.) upon work sup-
ported by Air Force Office of Sponsored Research under
grant no. FA9550-17-1-0183. R.M.N. also acknowledges
the hospitality of the KITP, where part of this work was
done, during a visit to the program “Dynamics of Quan-
tum Information.” The KITP is supported in part by the
National Science Foundation under grant PHY-1748958.
B.A.B. and N.R. were supported by the Department of

Energy Grant No. de-sc0016239, the National Science
Foundation EAGER Grant No. DMR 1643312, Simons
Investigator Grant No. 404513, ONR Grant No. N00014-
14-1-0330, the Packard Foundation, the Schmidt Fund for
Innovative Research, and a Guggenheim Fellowship from
the John Simon Guggenheim Memorial Foundation.

Appendix A: Symmetries of the pair-hopping
Hamiltonian in terms of composite degrees of

freedom

In this appendix, we discuss some of the symmetries
of the pair-hopping Hamiltonian Eq. (1) in terms of the
composite degrees of freedom defined in Eq. (9). Simi-
larly to the center-of-mass operator Eq. (4), for PBC the

dipole moment operator D̂ in Eq. (17) does not commute
with translation by one unit cell (which corresponds to
translation by two sites in the original degrees of free-
dom). To see this, note that under translation j → j+1,

N∑
j=1

jQ̂j 7→
N∑
j=1

jQ̂j + Q̂, (A1)

with Q̂ the total charge operator. This operator obeys
non-trivial commutation relations with translations along
the chain, since

T̂ D̂T̂−1 = D̂ exp

(
2πi

L
Q̂

)
= D̂ exp

(
2πi

p

q

)
, (A2)

where T̂ is the operator for translation by one unit cell
(two sites of the original system), and we are focusing
on states with a fixed charge Q such that Q/N = p/q.
Thus, [

T̂ q, D̂
]

= 0, (A3)

within the charge Q sector.
Further, as discussed in Sec. II, the pair-hopping

Hamiltonian H is inversion symmetric (i.e., under the
exchange of sites j and L − j + 1). After grouping sites
using Eq. (9), the inversion symmetry of H also flips the
composite spin degrees of freedom |↑〉 ↔ |↓〉 in addition
to interchanging the sites j and N − j + 1. For example,
when L = 10 (N = 5), under inversion about the center
bond in the third unit cell, the configuration∣∣∣ 01 10 11 01 00

〉
→
∣∣∣ 00 10 11 01 10

〉
.

In terms of composite degrees of freedom, this corre-
sponds to the transformation

|↑ ↓ + ↑ −〉 → |− ↓ + ↑ ↓〉 ,

which is the usual inversion about the center site fol-
lowed by a spin flip. However, inversion also does not

http://arxiv.org/abs/de-sc/0016239
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commute with translation symmetry (with PBC). Un-
der inversion, a momentum eigenstate with momentum
k goes to a state with momentum −k. Similarly, under
inversion symmetry, note that

N∑
j=1

jQ̂j →
N∑
j=1

(N + 1− j) Q̂j = (N + 1) Q̂−
N∑
j=1

jQ̂j ,

(A4)
such that the dipole moment operator transforms as

D̂ →

{
(N + 1) Q̂− D̂ if OBC

exp
(

2πiQ
N

)
D̂−1 if PBC

. (A5)

Thus, for PBC, the inversion symmetry can be diagonal-
ized only in sectors with dipole moment D that satisfies:

D2 = exp

(
2πiQ

N

)
.

Appendix B: Formal mapping of the spin Krylov
subspace to the XX model

In this Appendix, we show the formal mapping from
the spin Krylov subspace in the pair-hopping Hamilto-
nian Eq. (1) at half-filling to the XX model. We de-
fine spin-1/2 raising and lowering operators using the

fermionic operators cj and c†j ,

σ+
j ≡ c

†
2j−1c2j ,

σ−j ≡ c
†
2jc2j−1 . (B1)

Using Eq. (B1), we obtain

{σ+
j , σ

−
j } = {c†2j−1c2j , c

†
2jc2j−1}

= c†2j−1c2j−1c2jc
†
2j + c†2jc2jc2j−1c

†
2j−1

= n̂2j−1 (1− n̂2j) + n̂2j (1− n̂2j−1)

= n̂2j−1 + n̂2j − 2n̂2j−1n̂2j . (B2)

Since n2j−1, n2j ∈ {0, 1}, σ+
j and σ−j are valid Pauli op-

erators only within the subspace of configurations that
satisfy

n2j−1 + n2j = 1, n2j−1n2j = 0 (B3)

=⇒ {σ+
j , σ

−
j } = 1. (B4)

The conditions in Eq. (B4) are only satisfied if the com-
posite degrees of freedom on unit cells j and j + 1 are
|↑〉 or |↓〉 (see Eq. (9)), and hence the mapping from
fermions to effective spin degrees of freedom is restricted
only to the spin Krylov subspace. First, we re-write the
pair-hopping Hamiltonian Eq. (1) (with PBC) as

H =

N∑
j=1

(
c†2j−1c

†
2j+2c2j+1c2j + c†2jc

†
2j+3c2j+2c2j+1 + h.c

)

=

N∑
j=1

(
c†2j−1c2jc

†
2j+2c2j+1 + c†2jc

†
2j+3c2j+2c2j+1 + h.c

)
.

(B5)

Given the conditions in Eq. (B3), either n2j+1 = 0,
n2j+2 = 1 or n2j+1 = 1, n2j+2 = 0 for every j for con-
figurations within the spin Krylov subspace. Since the
second term of Eq. (B5) contains c2j+2c2j+1, it and its
Hermitian conjugate always vanish on states within the
spin Krylov subspace. Thus, we obtain

HXX [N ] =

N∑
j=1

(
σ+
j σ
−
j+1 + h.c

)
=

1

2

N∑
j=1

(
σxj σ

x
j+1 + σyj σ

y
j+1

)
, (B6)

which is the familiar XX model.
The XX model is solved via the Jordan-Wigner trans-

formation [99], which proceeds by defining the operators

σ+
j = (−1)

∑
l<j d

†
l dld†j

σ−j = (−1)
∑
l<j d

†
l dldj

σzj = 2d†jdj − 1, (B7)

where dj ’s and d†j ’s are fermionic operators. Using

Eq. (B7), the Hamiltonian HXX [N ] is mapped onto a
non-interacting fermionic hopping Hamiltonian:

Hd =

N∑
j=1

(
d†jdj+1 + h.c.

)
. (B8)

Thus, the many-body ground state is a Fermi sea of the
d fermions, with the Fermi momentum kF = ±π/2:

|G〉 =
∏
k<kF

d†k |0〉 , (B9)

where the vacuum |0〉 is defined by

dj |0〉 = 0, 1 ≤ j ≤ N. (B10)

Appendix C: Energies of the Integrable Krylov
subspaces

We now discuss the energies of the various integrable
Krylov subspaces discussed in Sec. V, which map onto
XX models of various sizes. The ground state energies
of HXX [N ] with PBC (and approximately for OBC) can
be written as (see Ref. [108])

EN =

 −2 sin
(

pπ
2p+1

)
csc
(

π
2p+1

)
if N = 2p+ 1

−2 csc
(
π
2p

)
if N = 2p

.

(C1)
As described in Sec. V, starting with a root state with

a single dipole in the spin background (with restrictions
discussed in Sec. V C) results in a Krylov subspace for
which the Hamiltonian maps onto an XX model with
(N − 1) sites. Interestingly, this state is separated by a
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finite gap from the ground state of the full pair-hopping
model, which we numerically observe to be in the spin
subspace discussed in Sec. V A.

Since this finite gap corresponds to the insertion of a
dipole, we associate it with the energy of creating a single
dipole. Using Eq. (C1), this dipole gap in the thermody-
namic limit (where the OBC and PBC spectra are the
same) is

∆Ed =− 2 lim
p→∞

(
sin

(
pπ

2p+ 1

)
csc

(
π

2p+ 1

)
− csc

(
π

2p

))
=

2

π
≈ 0.64. (C2)

The dipole gap also corresponds to the gap between the
ground states of the single-dipole and two-dipole Krylov
subspaces illustrated in Secs. V B and V C, and more gen-
erally, between the ground states of the n dipole and the
(n + 1) dipole Krylov subspaces illustrated in Sec. V C.
Thus, the pair-hopping model Eq. (1) exhibits an equally
spaced tower of integrable Krylov subspaces.

Appendix D: Mapping to the XX model when
dipoles are adjacent to each other

Here, we study the dipole Krylov subspaces generated
by root states containing adjacent, identically oriented
dipoles. The discussion will focus on OBC throughout
this appendix.

1. Multidipole subspace

We first consider the two-dipole Krylov subspace
K (H, |ψ0〉) generated by the root state

|ψ0〉 = |∗ · · · ∗+−+− ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(3)
↑

, (D1)

where ∗ = ↑, ↓ and where N
(1)
↑ and N

(3)
↑ represent the

number of ↑’s to the left and right of the dipoles respec-

tively. Here N
(2)
↑ = 0, where N

(2)
↑ is the number of ↑’s

between the two dipoles (see Eq. (34)). Under the action
of the Hamiltonian, which results in one of the dipoles
moving via repeated applications of Eq. (11), we obtain
product states of the form

|ψ1〉 = |∗ · · · ∗+− ↓ · · · ↓ +− ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
d

︸ ︷︷ ︸
N

(3)
↑

, (D2)

within the Krylov subspace, where ∗ = ↑, ↓, d is the
number of ↓ spins in between the dipoles, and the total
number of ↓ spins is conserved.

Similarly, applying the Hamiltonian on |ψ0〉 and using
the rules Eqs. (13) and (14), which results in fractons

absorbing a dipole, product states of the form

|ψ2〉 = |∗ · · · ∗+ ↑ − ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(3)
↑

(D3)

are generated within the Krylov subspace. Due to
Eqs. (13) and (14), the + and − fractons in Eq. (D3)
cannot move without the emission of a dipole (which re-
sults in Eq. (D1)), all product states in K (H, |ψ0〉) are
of the form specified by Eqs. (D1), (D2), or (D3).

We now map each product state of the form |ψ0〉, |ψ1〉,
or |ψ2〉 onto product states in a spin-1/2 Hilbert space
of (N − 1) sites. The mapping proceeds similarly to the
multi-dipole case discussed in Sec. V C i.e., by identify-
ing the +− dipoles as ↑’s. However, to account for the
action of the Hamiltonian that results in product states
of the form |ψ2〉 in the Krylov subspace, we introduce a
↓ spin between the dipoles and map |ψ0〉, |ψ1〉, and |ψ2〉
according to

|∗ · · · ∗+−+− ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(3)
↑

⇐⇒ |∗ · · · ∗ ↑↓↑ ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(3)
↑

|∗ · · · ∗+− ↓ · · · ↓ +− ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
d

︸ ︷︷ ︸
N

(3)
↑

⇐⇒ |∗ · · · ∗ ↑↓ · · · ↓↑ ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
d+1

︸ ︷︷ ︸
N

(3)
↑

|∗ · · · ∗+ ↑ − ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(3)
↑

⇐⇒ |∗ · · · ∗ ↑↑ ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(3)
↑

, (D4)

where the ∗’s remain in the same configurations as in the
original configurations.

The reverse mapping from the spin-1/2 Hilbert space

is unique provided the quantities (N
(1)
↑ , N

(3)
↑ ) are fixed,

and it proceeds as follows. In the spin-1/2 configuration,

we identify two ↑ spins such that there are N
(1)
↑ and

N
(3)
↑ ↑ spins to the left and right of them respectively.

Since the spin-1/2 configuration has (N
(1)
↑ + N

(3)
↑ + 2)

↑ spins, we are guaranteed that the two chosen ↑’s only
have ↓’s between them. Depending on the number of ↓’s
between the chosen ↑’s, we then use Eq. (D4) to obtain
the corresponding configuration in the Krylov subspace
K (|ψ0〉 , H).

Through the mapping Eq. (D4), the action of the
Hamiltonian restricted to this Krylov subspace is equiv-
alent to the XX model of (N − 1) sites. To see this,
note that the action of the terms of the Hamiltonian on
the states in Eq. (D4) can be of three kinds, which can
be mapped onto the action on spin degrees of freedom
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through Eq. (D4):

|· · ·+− ↓ · · · 〉 ↔ |· · · ↓ +− · · · 〉
⇐⇒ |· · · ↑↓ · · · 〉 ↔ |· · · ↓↑ · · · 〉 , (D5)

|· · ·+−+− · · · 〉 ↔ |· · · ↓ + ↑ − · · · 〉
⇐⇒ |· · · ↑↓↑ · · · 〉 ↔ |· · · ↓↑↑ · · · 〉 , (D6)

|· · ·+−+− · · · 〉 ↔ |· · ·+ ↑ − ↓ · · · 〉
⇐⇒ |· · · ↑↓↑ · · · 〉 ↔ |· · · ↑↑↓ · · · 〉 , (D7)

which are precisely the actions of the XX model on spin-
1/2’s. The mapping for two adjacent −+ dipoles pro-
ceeds analogously, with ↓ and ↑ interchanged in Eqs. (D4)
and (D5)-(D7).

The preceding discussion for the two-dipole subspace
can be extended to the Krylov subspace generated by
a root state containing n dipoles with no spins between
them (∗’s are ↑ or ↓):

|ψ0〉 =
∣∣∣∗ · · · ∗ +−+− · · ·+−+− ∗ · · · ∗

〉
︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
n dipoles

︸ ︷︷ ︸
N

(n+1)
↑

, (D8)

and N
(1)
↑ and N

(n+1)
↑ denote the number of ↑’s to the

left and right of the string of dipoles respectively. We
map the root state Eq. (D8) to a spin configuration by
identifying each +− dipole by an ↑, and inserting a ↓ spin
between the dipoles. Thus, we find that |ψ0〉 maps onto
a spin-1/2 configuration by replacing the n consecutive
dipoles by a “Néel state” of (2n− 1) spins:

|ψ0〉 ⇐⇒
∣∣∣∗ · · · ∗ ↑↓↑ · · · ↑↓↑ ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
(2n−1) spins

︸ ︷︷ ︸
N

(n+1)
↑

(D9)

We do not attempt to rigorously prove the mapping for
arbitrary n, but instead illustrate the mapping for the
case when n = 3 and provide a conjecture for arbitrary n.
When the dipoles interact among themselves according
to Eqs. (13) and (14), the mappings read (∗’s are ↑ or ↓):

|∗ · · · ∗+−+−+− ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↑↓↑↓↑ ∗ · · · ∗〉
|∗ · · · ∗ ↓ + ↑ −+− ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↓↑↑↓↑ ∗ · · · ∗〉
|∗ · · · ∗+ ↑ − ↓ +− ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↑↑↓↓↑ ∗ · · · ∗〉
|∗ · · · ∗+− ↓ + ↑ − ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↑↓↓↑↑ ∗ · · · ∗〉
|∗ · · · ∗+−+ ↑ − ↓ ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↑↓↑↑↓ ∗ · · · ∗〉
|∗ · · · ∗ ↓ + ↑↑ − ↓ ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↓↑↑↑↓ ∗ · · · ∗〉
|∗ · · · ∗+ ↑ −+− ↓ ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↑↑↓↑↓ ∗ · · · ∗〉
|∗ · · · ∗+ ↑↑ − ↓↓ ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↑↑↑↓↓ ∗ · · · ∗〉

|∗ · · · ∗ ↓ +−+ ↑ − ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↓↑↓↑↑ ∗ · · · ∗〉
|∗ · · · ∗ ↓↓ + ↑↑ − ∗ · · · ∗〉 ⇐⇒ |∗ · · · ∗ ↓↓↑↑↑ ∗ · · · ∗〉 ,

(D10)

where the quantities N
(1)
↑ and N

(4)
↑ (shown in Eq. (D9))

are conserved in each of the above configurations. Apart
from these, applying the Hamiltonian to configurations
in Eq. (D10) where dipoles move according to Eq. (D5),
we derive the following maps (∗’s are ↑ or ↓):

|∗ · · · ∗+− ↓ · · · ↓ +− ↓ · · · ↓ +− ∗ · · · ∗〉︸ ︷︷ ︸
d′

︸ ︷︷ ︸
d

⇐⇒ |∗ · · · ∗ ↑↓ · · · ↓↑↓ · · · ↓↑ ∗ · · · ∗〉︸ ︷︷ ︸
d′+1

︸ ︷︷ ︸
d+1

|∗ · · · ∗+ ↑ − ↓ · · · ↓ +− ∗ · · · ∗〉︸ ︷︷ ︸
d

⇐⇒ |∗ · · · ∗ ↑↑↓ · · · ↓↑ ∗ · · · ∗〉︸ ︷︷ ︸
d+1

|∗ · · · ∗+− ↓ · · · ↓ + ↑ − ∗ · · · ∗〉︸ ︷︷ ︸
d

⇐⇒ |∗ · · · ∗ ↑↓ · · · ↓↑↑ ∗ · · · ∗〉︸ ︷︷ ︸
d+1

.

(D11)

Note that in order to derive the mapping for a particu-
lar configuration within this Krylov subspace, one should
start from the mapping of the root state in Eq. (D9) and
follow the actions of the Hamiltonian in Eqs. (D5)-(D7).
Note that the mappings of Eqs. (D8), (D10), and (D11)
are only valid if there are no other dipoles or fractons
other than the ones shown. We discuss the case of mul-
tiple dipole blocks in the next subsection.

2. Systematic construction of integrable Krylov
subspaces

In the previous section, we conjectured that the Krylov
subspace generated by a root state with n contiguous
dipoles is integrable and maps onto a particular quantum
number sector of an XX model with (N − 1) sites, and
we showed an example for n = 3. This mapping can be
extended to Krylov subspaces generated by root states
containing configurations with m blocks of contiguous
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+− dipoles, with at least one ↑ separating the blocks.

We start by illustrating the case when m = 2. The
root state with two blocks of dipoles reads

|ψ0〉 =

n1 dipoles︷ ︸︸ ︷ n2 dipoles︷ ︸︸ ︷
|∗ · · · ∗+− · · ·+− ∗ · · · ∗+− · · ·+− ∗ · · · ∗〉︸ ︷︷ ︸

N
(1)
↑

︸ ︷︷ ︸
N

(n1+1)
↑

︸ ︷︷ ︸
N

(n1+n2+2)
↑

,

(D12)

where ∗ = ↑, ↓, N (j)
↑ denotes the number of ↑ spins in the

j-th segment of the chain, which is the part of the chain
between the j-th and (j+1)-th +− dipole. In Eq. (D12),

N
(j)
↑ = 0 if 2 ≤ j ≤ n1 or n1 + 2 ≤ j ≤ n1 + n2 +

1, and we are considering the case where N
(n1+1)
↑ ≥ 1.

The mapping from |ψ0〉 onto a configuration of spin-1/2’s
proceeds as follows. The two groups of n1 and n2 dipoles
are mapped onto Néel states of (2n1 − 1) and (2n2 − 1)
spins respectively. Since the Hamiltonian acts on the
state |ψ0〉 in Eq. (D12) according to Eqs. (D5)-(D7), the
Hamiltonian H restricted to this Krylov subspace is the
XX model of size (N−2). The full dictionary of mappings
to the spin-1/2 Hilbert space can be derived by starting
from the mapping for the root configuration and following
the actions of the Hamiltonian in Eqs. (D5)-(D7).

This mapping directly generalizes to a root state with
m dipole groups with the form

|ψ0〉 =

n1 dipoles︷ ︸︸ ︷ nm dipoles︷ ︸︸ ︷
|∗ · · · ∗+− · · ·+− � · · · · · · �+− · · ·+− ∗ · · · ∗〉︸ ︷︷ ︸
N

(1)
↑

︸ ︷︷ ︸
N

(
m∑
k=1

nk+m)

↑

,

(D13)
where ∗ = ↑, ↓, and � · · · � consists of spins and (m − 2)
blocks of +−· · ·+−, with two adjacent blocks separated
by at least one ↑. The mapping to the spin-1/2 chain
proceeds by mapping each sequence of nl adjacent dipoles
in Eq. (D13) onto a Néel state of (2nl − 1) spins, as
depicted in Eq. (D9). Since the Hamiltonian acts on this
subspace according to Eqs. (D5)-(D7), the Hamiltonian
restricted to this Krylov subspace is the XX model with
(N −m) sites. In general, the Krylov subspace consisting
of n +− (resp. −+) dipoles with m values of j such that

N
(j)
↑ = 0 (resp. N

(j)
↓ = 0), precisely maps onto the XX

model with (N − n+m) sites.

Appendix E: Effect of electrostatic terms and
disorder

1. Electrostatic terms

We now briefly discuss the effect of adding electrostatic
terms to the analysis of the integrable Krylov subspaces
discussed in Sec. V. In particular, we consider two simple

perturbations to the Hamiltonian

δH1 = V1

Lb∑
j=1

n̂j n̂j+1, δH2 = V2

L′b∑
j=1

n̂j n̂j+2, (E1)

where Lb = L − 1 (resp. Lb = L) and L′b = L − 2
(resp. L′b = L) for OBC (resp. PBC). The terms in
Eq. (E1) are the simplest two electrostatic terms. In ex-
perimentally relevant settings, these terms typically have
strengths greater than or comparable to that of the pair-
hopping Hamiltonian H; see Eq. (8) and Sec. II for a
discussion of their sizes.

The electrostatic terms are nearest neighbor terms that
are diagonal in the basis of product states of the compos-
ite degrees of freedom i.e., of the spins and fractons de-
fined in Eq. (9). Since composite degrees of freedom are
formed by grouping pairs of neighboring sites, in terms of
composite degrees of freedom the electrostatic Hamiltoni-
ans δH1 and δH2 in Eq. (E1) map onto nearest-neighbor
Hamiltonians δH1 and δH2, which have the forms:

δH1 =

Nb∑
j=1

(δH1)j,j+1+

N∑
j=1

(δH1)j , δH2 =

Nb∑
j=1

(δH2)j,j+1,

(E2)
where Nb = N (resp. Nb = N−1) for PBC (resp. OBC),
and {(δHα)j,j+1} and {(δHα)j} are nearest-neighbor and
onsite terms respectively. The actions of each of the
nearest-neighbor terms follows directly by using Eq. (E1)
and the definitions Eq. (9), and can be tabulated as:

Config. δH1 δH2

|++〉 V1 2V2

|+ ↑〉 0 V2

|+ ↓〉 V1 V2

|+−〉 0 0

|↑ +〉 V1 V2

|↑↑〉 0 V2

|↑↓〉 V1 0

|↑ −〉 0 0

Config. δH1 δH2

|↓ +〉 0 V2

|↓↑〉 0 0

|↓↓〉 0 V2

|↓ −〉 0 0

|−+〉 0 0

|− ↑〉 0 0

|− ↓〉 0 0

|−−〉 0 0

, (E3)

whereas the onsite terms read:

Config. δH1

|+〉 V1

|−〉 0

Config. δH1

|↑〉 0

|↓〉 0

. (E4)

Importantly, since these terms are diagonal in the prod-
uct basis, they do not change the structure of Krylov
subspaces generated from product states. In other words,
the full Hilbert space is still expressed in the same form as
Eq. (21) irrespective of whether H contains electrostatic
terms or not.

Within the integrable spin subspace discussed in
Sec. V A, the onsite terms always vanish according to
Eq. (E4). Further, according to Eq. (E3), the actions of
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the nearest neighbor terms of δH1 and δH2 read

(δH1 + δH2)j,j+1 |↓↑〉 = 0,

(δH1 + δH2)j,j+1 |↑↓〉 = V1 |↑↓〉 ,
(δH1 + δH2)j,j+1 |↑↑〉 = V2 |↑↑〉 ,
(δH1 + δH2)j,j+1 |↓↓〉 = V2 |↓↓〉 .

(E5)

The above actions of the electrostatic terms are suc-
cinctly encoded in the Hamiltonian δH = δH1 + δH2

δH =

Nb∑
j=1

(
V2

2

(
1 + σzjσ

z
j+1

)
+
V1

4

(
1 + σzj

) (
1− σzj+1

))

=

Nb∑
j=1

(
V1 + 2V2

4
+

2V2 − V1

4
σzjσ

z
j+1

)
+
V1

4

Nb∑
j=1

(
σzj − σzj+1

)
.

(E6)

where the unit cell index j is defined modulo N for PBC.
Thus, Eq. (E6) reduces to

δH =
Nb∑
j=1

(
V1+2V2

4 + 2V2−V1

4 σzjσ
z
j+1

)
+

{
V1

4 (σz1 − σzN ) if OBC

0 if PBC
. (E7)

Thus, the restriction of the total Hamiltonian—the pair-
hopping Hamiltonian in addition to the electrostatic
terms—to the spin Krylov subspace maps onto (for PBC
and and infinite chain for OBC)

HT =
∑
j

(
V1 + 2V2

4
+ σ+

j σ
−
j+1 + σ−j σ

+
j+1 +

2V2 − V1

4
σzjσ

z
j+1

)
,

(E8)
which is the translation invariant XXZ model and is thus
Bethe Ansatz integrable.

In contrast, the integrable dipole subspaces discussed
in Secs. V B and V C become non-integrable upon the
addition of electrostatic terms. To see this, consider the
action of the nearest-neighbor terms of (δH1 + δH2) on
the dipole, which are given by (using Eq. (E3))

(δH1 + δH2) |↑ +−〉 = (V1 + V2) |↑ +−〉 ,
(δH1 + δH2) |↓ +−〉 = V2 |↓ +−〉 ,
(δH1 + δH2) |+− ↑〉 = 0,

(δH1 + δH2) |+− ↓〉 = 0. (E9)

When V1 6= 0, the actions encoded in Eq. (E9) break
the symmetry between the configurations |+− ∗〉 and
|∗+−〉, where ∗ = ↑, ↓. Thus the dipole cannot be iden-
tified with an ↑, as is the case in the absence of elec-
trostatic terms. We have verified that upon addition of
electrostatic terms, the energy levels within any quan-
tum number sector of the dipole subspace show GOE
level statistics. The same is true for Krylov subspaces
with −+ dipoles, for which the action of the electrostatic
terms follows from Eq. (E9) upon the application of in-
version symmetry.

2. Disorder

Consider the disordered pair-hopping Hamiltonian,

H =

Lb∑
j=1

Hj =

Lb∑
j=1

Jj

(
c†jc
†
j+3cj+2cj+1 + h.c.

)
, (E10)

where Lb = L − 3 (resp. Lb = L) for OBC (resp.
PBC), and {Jj} are the disordered couplings. Assuming
L = 2N , we divide the Hamiltonian Eq. (E10) into two
parts to preempt the mapping onto composite degrees of
freedom, defined in Eq. (9):

H =
N

(o)
b∑
j=1

J2j−1

(
c†2j−1c

†
2j+2c2j+1c2j + h.c.

)
+
N

(e)
b∑
j=1

J2j

(
c†2jc

†
2j+3c2j+2c2j+1 + h.c.

)
, (E11)

where N
(o)
b = N − 1 (resp. N

(o)
b = N) and N

(e)
b = N − 2

(resp. N
(e)
b = N) for OBC (resp. PBC). Once the sites

(2j−1) and 2j are grouped into one unit cell, the actions
of the Hamiltonian terms are as follows (see Eqs. (10)-
(14)):

2j 2j+1∣∣∣ 0 1 1 0
〉

J2j−1←−−→
2j 2j+1∣∣∣ 1 0 0 1

〉
⇐⇒ |↑↓〉 J2j−1←−−→ |↓↑〉 , (E12)

2j 2j+3∣∣∣ 1 0 1 1 0 0
〉

J2j←−→
2j 2j+3∣∣∣ 1 1 0 0 1 0

〉
⇐⇒ |↓ +−〉 J2j←−→ |+− ↓〉 , (E13)

2j 2j+3∣∣∣ 0 0 1 1 0 1
〉

J2j←−→
2j 2j+3∣∣∣ 0 1 0 0 1 1

〉
⇐⇒ |−+ ↑〉 J2j←−→ |↑ −+〉 , (E14)

2j 2j+3∣∣∣ 1 0 1 1 0 1
〉

J2j←−→
2j 2j+3∣∣∣ 1 1 0 0 1 1

〉
⇐⇒ |↓ + ↑〉 J2j←−→ |+−+〉 , (E15)

2j 2j+3∣∣∣ 0 1 0 0 1 0
〉

J2j←−→
2j 2j+3∣∣∣ 0 0 1 1 0 0

〉
⇐⇒ |↑ − ↓〉 J2j←−→ |−+−〉 , (E16)

where |a〉 J←→ |b〉 denotes that the action of a term of the
Hamiltonian on the configuration |a〉 results in |b〉 with
a coefficient J , and vice-versa.

Since the spin Krylov subspace discussed in Sec. V A is
only sensitive to the action of the Hamiltonian on the spin
degrees of freedom, according to Eq. (E12) the Hamilto-
nian restricted to the Krylov subspace maps onto the
disordered XX model:

H =

Nb∑
j=1

J2j−1

(
σ+
j σ
−
j+1 + σ−j σ

+
j+1

)
, (E17)
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where Nb = N−1 (resp. Nb = N) for OBC (resp. PBC).
Thus, we expect that the spin Krylov subspace exhibits
Anderson localization [16] upon the addition of disorder.

We now analyze the effect of disorder on the sin-
gle or multi-dipole Krylov subspaces. Recall that the
Hamiltonian restricted to the dipole Krylov subspaces in
Secs. V B and V C maps onto the XX model by iden-
tifying the +− (resp. −+) dipole with an ↑ (resp. ↓)
and noting that Eq. (11) (resp. Eq. (12)) is identi-
cal to Eq. (10) upon this identification. However, if
J2j−1 6= J2j , Eq. (E13) (resp. Eq. (E14)) is no longer
identical to Eq. (E12) when +− (resp. −+) is identified
with ↑ (resp. ↓). Hence, the Hamiltonian restricted to
dipole Krylov subspaces does not map onto the disor-
dered XX model as one would naively expect.

Appendix F: Properties of the Fracton Krylov
subspace

Here, we discuss some properties of the Fracton Krylov
subspace discussed in Sec. VI. To understand the effects
of this constrained Krylov subspace, we focus on odd sys-
tem sizes N and on the root state consisting of a + frac-
ton on the center site (N+1)/2 along with an equal num-
ber of ↑ and ↓ spins enveloping it, as shown in Eq. (46).
Such a configuration has charge Q = 1, spin Sz = 0, and
dipole moment D = exp (iπ(N + 1)/N) (see Eq. (17) for
the definition of dipole moment with PBC). We refer to
the site containing the fracton in the root state as the
middle site.

For purposes of illustration, we consider the root state
|ψ0〉 = |↑↑↑ + ↓↓↓〉 with N = 7 and with PBC, which
has charge Q = 1, spin S = 0, and dipole moment D =
e8πi/7. Using the actions of Eqs. (10)-(14), the product
state configurations in K (H, |ψ0〉) are then

|↑↑↑ + ↓↓↓〉 ,
|↓↑↑ + ↓↓↑〉 ,

|↑↓↑ + ↓↓↑〉 , |↓↑↑ + ↓↑↓〉 ,
|↑↑↓ + ↓↓↑〉 , |↑↓↑ + ↓↑↓〉 , |↓↑↑ + ↑↓↓〉
|↑↑↓ + ↓↑↓〉 , |↑↓↑ + ↑↓↓〉 , |↓↓↑ + ↓↑↑〉

|↑↑↓ + ↑↓↓〉 , |↓↑↓ + ↑↓↑〉 , |↓↓↑ + ↑↓↑〉 , |↓↑↓ + ↓↑↑〉
|↑↑ +−+ ↓↓〉 , |↓↑ +−+ ↓↑〉 , |↑↓↓ + ↓↑↑〉 , |↑↓↓ + ↑↓↑〉 , |↓↓↑ + ↑↑↓〉 , |↓↑↓ + ↑↑↓〉

|↑↓ +−+ ↓↑〉 , |↓↑ +−+ ↑↓〉 , |↑↓↓ + ↑↑↓〉
|↑ +− ↓ + ↓↑〉 , |↑↓ +−+ ↑↓〉 , |↓↑ + ↑ −+ ↓〉 , |↓↓↓ + ↑↑↑〉

|↓↓ +−+ ↑↑〉 , |↑ +− ↓ + ↑↓〉 , |↑↓ + ↑ −+ ↓〉
|↑ +−+−+ ↓〉 , |↓↓ + ↑ −+ ↑〉 , |↓ +− ↓ + ↑↑〉

|↓ +−+−+ ↑〉 , |+− ↓↓ + ↑↑〉 , |↓↓ + ↑↑ −+〉 , |↑ + ↑ − ↓ + ↓〉
|+− ↓ +−+ ↑〉 , |↓ +−+ ↑ −+〉 , |↓ + ↑ − ↓ + ↑〉 ,
|+−+− ↓ + ↑〉 , |↓ + ↑ −+−+〉 , |+− ↓ + ↑ −+〉
|+ ↑ − ↓↓ + ↑〉 , |+−+−+−+〉 , |↓ + ↑↑ − ↓ +〉

|+−+ ↑ − ↓ +〉 , |+ ↑ − ↓ +−+〉 , |+ ↑ −+− ↓ +〉 , |+ ↑↑ − ↓↓ +〉 , (F1)

where configurations on the n-th row are product configu-
rations belonging to span

{
|ψ0〉 , H |ψ0〉 , · · · , Hn−1 |ψ0〉

}
but not to span

{
|ψ0〉 , H |ψ0〉 , · · · , Hn−2 |ψ0〉

}
. That is,

they are the new product configurations obtained on the
(n− 1)-th action of the Hamiltonian H on |ψ0〉.

As discussed in Sec. VI (see Eq. (53)), in order to ob-
tain the infinite temperature expectation value of the
charge on the middle site within the Krylov subspace,
we must compute the Hilbert space dimension DN of the
Krylov subspace as well as QN , the difference between
the number of product states with a + fracton and with
a − fracton on the middle site. These quantities can be
enumerated numerically for various system sizes, and are

tabulated in the following:

N DN QN
3 3 1

5 12 1

7 50 14

9 210 15

11 882 56

13 3696 210

15 15444 792

17 64350 3003

(F2)

For example, the total number of configurations in
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Eq. (F1) (N = 7) is 50, and it can be explicitly veri-
fied that the total middle site charge summed over all
configurations equals 14.

We now compute the infinite temperature expectation
value of the middle site charge. We find that the Hilbert
space dimension DN for odd system sizes, tabulated in
Eq. (F2) for N ≤ 17, corresponds to the integer sequence
OEIS A092443 [109], which takes the standard form

DN=2n+1 =
n+ 2

2

(
2n

n

)
. (F3)

Similarly we find that QN , tabulated in Eq. (F2) for
N ≤ 17, corresponds to the integer sequence OEIS
A051924 [109], which has the closed form

QN=2n+1 =
3n− 2

n

(
2(n− 1)

n− 1

)
. (F4)

Although we do not attempt to prove this rigorously
here, we posit that Eqs. (F3) and (F4) accurately rep-
resent DN=2n+1 and QN=2n+1 for all values of n. With
these expressions in hand, we can then analytically ob-
tain the infinite temperature charge density from the ra-
tio QN/DN . To find the asymptotic behavior for large
N , we use Stirling’s approximation

n! ≈
√

2πn
(n
e

)n
. (F5)

The asymptotic behaviour of DN of Eq. (F3) is then

DN=2n+1 =
n+ 2

2

(2n)!

(n!)2
≈ n+ 2

2
√
πn

(
2n
e

)2n(
n
e

)2n
∼
√

n

4π
22n ∼

√
N

32π
2N , (F6)

whereas QN asymptotes to

QN=2n+1 =
3n− 2

n

(2(n− 1))!

((n− 1)!)
2

≈ (3n− 2)

n
√
π (n− 1)

(
2(n−1)

e

)2(n−1)

(
n−1
e

)2(n−1)

∼ 3√
16πn

22n ∼ 3√
32πN

2N . (F7)

Hence, for large N, the infinite temperature expectation
value of the charge on the middle site is given by

QN
DN
∼ 3

N
. (F8)

Appendix G: Schrieffer-Wolff Transformation for the
Bloch MBL Hamiltonian

In this Appendix, we explicitly derive the pair-hopping
Hamiltonian Eq. (1) in the large E/t limit of the Bloch

MBL Hamiltonian Eq. (54):

HBloch = t
∑
j

(
c†jcj+1 + h.c.

)
+ E

∑
j

j n̂j

+ V0

∑
j

n̂j + V1

∑
j

wj n̂j n̂j+1, (G1)

where we have omitted the limits on the sums since we
consider a chain of infinite length. Furthermore, we treat
t, V0, V1 perturbatively and hence rescale Eq. (54) by E,
such that the Hamiltonian is recast as

H ≡ HBloch

E
= Ĉ + λ

(
T̂+ + T̂− + V̂

)
, (G2)

where Ĉ is the CoM operator (for OBC)

Ĉ =
∑
j

jnj , (G3)

T̂ = T̂+ + T̂− and V̂ = V̂0 + V̂1, with

T̂+ =
∑
j

c†j+1cj , T̂− =
∑
j

c†jcj+1 = T̂ †+,

V̂0 = α0

∑
j

wj n̂j , V̂1 = α1

∑
j

n̂j n̂j+1 . (G4)

Here, the parameters are defined as

λ =
t

E
, αν =

Vν
t
, (G5)

for ν ∈ {0, 1} and where we work in the regime where
ασ ∼ O (1).

As is clear from Eq. (G4), T̂+ and T̂− correspond to
hopping processes that increase and decrease energies by

one unit with respect to the CoM term Ĉ. That is,

Ĉ |µ〉 = Eµ |µ〉 =⇒ Ĉ
(
T̂± |µ〉

)
= (Eµ ± 1) T̂± |µ〉 .

(G6)
Following the standard Schrieffer-Wolff procedure [103],
we divide the Hilbert space into “blocks”, which are sub-

spaces degenerate under the leading order term Ĉ. Terms
of the Hamiltonian which only have non-vanishing matrix
elements within the same block are called “block diago-
nal” whereas terms which only have non-vanishing ma-
trix elements between different blocks are called “block
off-diagonal”. For the Hamiltonian H, the “block diago-
nal” and “block off-diagonal” parts Hd and Hod respec-
tively read

H = Ĉ + λV̂︸ ︷︷ ︸
Hd

+ λT̂︸︷︷︸
Hod

. (G7)

Next, we wish to perturbatively find a unitary trans-
formation such that the resultant Hamiltonian has no
“block off-diagonal” parts:

Heff = eλSHe−λS , (G8)
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where S is anti-Hermitian. Here, each block diagonal
subspace of Heff corresponds to a subspace degenerate

under Ĉ—since Ĉ is the center-of-mass operator with
OBC (see Eq. (4)), different block diagonal parts of Heff

correspond to subspaces labelled by distinct center-of-
mass quantum numbers. The effective Hamiltonian can
be expressed as

Heff = eλSHe−λS =

∞∑
n=0

λnH
(n)
eff , (G9)

where H
(n)
eff is the effective Hamiltonian in n-th order per-

turbation theory. In what follows, we show that the pair-

hopping term arises in H
(3)
eff i.e., in the effective Hamilto-

nian restricted to one center-of-mass sector of the Bloch
MBL Hamiltonian.

We now derive the expression for Heff up to third or-
der in perturbation theory. Expanding Heff, defined in
Eq. (G8), in powers of λ, we obtain

Heff = H + λ [S,H] +
λ2

2
[S, [S,H]]

+
λ3

6
[S, [S, [S,H]]] +O

(
λ4
)
. (G10)

We also expand S in powers of λ as

S = S0 + λS1 + λ2S2 +O
(
λ3
)
. (G11)

Using Eqs. (G7) and (G10), we obtain

Heff = Ĉ + λ
{
V̂ + T̂ +

[
S0, Ĉ

]}
+ λ2

{
1
2

[
S0,
[
S0, Ĉ

]]
+
[
S0, V̂ + T̂

]
+
[
S1, Ĉ

]}
+ λ3

{
1
6

[
S0,
[
S0,
[
S0, Ĉ

]]]
+ 1

2

([
S1,
[
S0, Ĉ

]]
+
[
S0,
[
S1, Ĉ

]]
+
[
S0,
[
S0, V̂ + T̂

]])
+
[
S1, V̂ + T̂

]
+
[
S2, Ĉ

]}
+O

(
λ4
)
.

(G12)

Since V̂ is diagonal, to cancel the block off-diagonal com-

ponent T̂ at O (λ) in Eq. (G12) we require that S0 satis-
fies [

S0, Ĉ
]

= −T̂ . (G13)

Simplifying Eq. (G12) using Eq. (G13), we obtain

Heff = Ĉ + λV̂ + λ2
{

1
2

[
S0, T̂

]
+
[
S0, V̂

]
+
[
S1, Ĉ

]}
+ λ3

{
1
3

[
S0,
[
S0, T̂

]]
+ 1

2

([
S1, T̂

]
+
[
S0,
[
S1, Ĉ

]]
+
[
S0,
[
S0, V̂

]])
+
[
S1, V̂

]
+
[
S2, Ĉ

]}
+O

(
λ4
)
. (G14)

To determine the block off-diagonal terms at O
(
λ2
)

in

Eq. (G14), we note that since Ĉ and T̂ are block diag-
onal and block off-diagonal respectively, we can always
choose S0 in Eq. (G13) to be block off-diagonal. Thus,[
S0, T̂

]
can have block diagonal terms, whereas

[
S0, V̂

]
is completely block off-diagonal. To cancel the block off-
diagonal terms at O

(
λ2
)

in Eq. (G14), we hence require

that S1 satisfies[
S1, Ĉ

]
= −

[
S0, V̂

]
− 1

2

([
S0, T̂

]
− P

[
S0, T̂

]
P
)
,

(G15)
where P is a projector that kills block off-diagonal com-
ponents. That is, if a matrix X has both block diag-
onal and block off-diagonal components, PXP (resp.
(X − PXP)) is completely block diagonal (resp. off-
diagonal). Simplifying the expression for Heff in
Eq. (G14) using Eq. (G15), we obtain

Heff = Ĉ + λV̂ +
λ2

2
P
[
S0, T̂

]
P + λ3

{
1

3

[
S0,
[
S0, T̂

]]
+

1

2

[
S1, T̂

]
+
[
S1, V̂

]
+
[
S2, Ĉ

]}
+O

(
λ4
)
. (G16)

In Eq. (G15), since the RHS is block off-diagonal, and Ĉ is block diagonal, S1 can be chosen to be block off-
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diagonal. Since S0 and S1 are block off-diagonal,
[
S1, T̂

]
and

[
S0,
[
S0, T̂

]]
can have block diagonal components

whereas
[
S1, V̂

]
is completely block off-diagonal. More-

over, in the Schrieffer-Wolff procedure, S2 is chosen such

that the term
[
S2, Ĉ

]
cancels block off-diagonal terms at

O
(
λ3
)
. That is,[

S2, Ĉ
]

= −
[
S1, V̂

]
− 1

2

([
S1, T̂

]
− P

[
S1, T̂

]
P
)

− 1
3

([
S0,
[
S0, T̂

]]
− P

[
S0,
[
S0, T̂

]]
P
)
. (G17)

Thus, Heff reads

Heff = Ĉ + λV̂ +
λ2

2
P
[
S0, T̂

]
P + λ3P

(
1

2

[
S1, T̂

]
+

1

3

[
S0,
[
S0, T̂

]])
P +O

(
λ4
)
. (G18)

Thus, we find that H
(2)
eff and H

(3)
eff are given by

H
(2)
eff =

1

2
P
[
S0, T̂

]
P

H
(3)
eff = P

(
1

2

[
S1, T̂

]
+

1

3

[
S0,
[
S0, T̂

]])
P. (G19)

We now compute S0 and S1 in order to obtain the

effective Hamiltonians H
(2)
eff and H

(3)
eff . According to

Eq. (G13), S0 is determined by

[
S0, Ĉ

]
= −T̂ = −

(
T̂+ + T̂−

)
. (G20)

We first compute some useful commutators:

[
T̂+, T̂−

]
= 0,

[
T̂+, Ĉ

]
= −T̂+,

[
T̂−, Ĉ

]
= T̂−,

(G21)
Thus, Eq. (G13) is satisfied by choosing

S0 = T̂+ − T̂−. (G22)

Note that S0 in Eq. (G22) is block off-diagonal and anti-
Hermitian. Using Eqs. (G22) and (G21), we obtain

[
S0, T̂

]
= 0, H

(2)
eff = 0. (G23)

S1 is computed using Eq. (G15), and the relevant com-

mutators read[
T̂+, V̂1

]
= α1

∑
j

(
n̂j−1c

†
j+1cj − c

†
jcj−1n̂j+1

)
≡ α1

(
Ô+− − Ô++

)
[
T̂−, V̂1

]
= α1

∑
j

(
−n̂j−1c

†
jcj+1 + c†j−1cj n̂j+1

)
≡ α1

(
Ô−+ − Ô−−

)
,[

T̂+, V̂0

]
= α0

∑
j

(wj − wj+1) c†j+1cj

≡ α0

(
−F̂+ + B̂+

)
[
T̂−, V̂0

]
= α0

∑
j

(wj+1 − wj) c†jcj+1

≡ α0

(
F̂− − B̂−

)
=⇒

[
S0, V̂

]
= α1

(
Ô+− + Ô−− − Ô−+ − Ô++

)
+ α0

(
−F̂+ − F̂− + B̂+ + B̂−

)
. (G24)

where we have defined the operators

Ô++ =
∑
j

c†jcj−1n̂j+1, Ô−+ = Ô†++ =
∑
j

c†j−1cj n̂j+1

Ô+− =
∑
j

c†j+1cj n̂j−1, Ô−− = Ô†+− =
∑
j

c†jcj+1n̂j−1,

F̂+ =
∑
j

wj+1c
†
j+1cj , F̂− = F̂ †+ =

∑
j

wj+1c
†
jcj+1,

B̂+ =
∑
j

wjc
†
j+1cj , B̂− = B̂†+ =

∑
j

wjc
†
jcj+1.(G25)

Thus, according to Eq. (G15), S1 should satify[
S1, Ĉ

]
= −

[
S0, V̂

]
= α1

(
−Ô+− − Ô−− + Ô−+ + Ô++

)
+ α0

(
F̂+ + F̂− − B̂+ − B̂−

)
.

(G26)

We now show that S1 can be chosen to be a linear super-

position of Ôµν , F̂µ, and B̂µ, where µ, ν ∈ {+,−}. The
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commutators
[
Ôµν , Ĉ

]
,
[
F̂µ, Ĉ

]
, and

[
B̂µ, Ĉ

]
read[

Ô++, Ĉ
]

= −Ô++,
[
Ô−+, Ĉ

]
= Ô−+,[

Ô+−, Ĉ
]

= −Ô+−,
[
Ô−−, Ĉ

]
= Ô−−,[

F̂+, Ĉ
]

= −F̂+,
[
F̂−, Ĉ

]
= F̂−,[

B̂+, Ĉ
]

= −B̂+,
[
B̂−, Ĉ

]
= B̂−. (G27)

Thus, Eq. (G26) is satisfied by choosing

S1 = α1

(
Ô+− − Ô−− + Ô−+ − Ô++

)
+ α0

(
−F̂+ + F̂− + B̂+ − B̂−

)
. (G28)

Noting that
[
S0, T̂

]
= 0, H

(3)
eff in Eq. (G19) reads

H
(3)
eff =

λ3

2
P
[
S1, T̂+ + T̂−

]
P

= −α1λ
3

2
P
[
T̂+ + T̂−, Ô+− − Ô−− + Ô−+ − Ô++

]
P

− α0λ
3

2
P
[
T̂+ + T̂−,−F̂+ + F̂− + B̂+ − B̂−

]
P.
(G29)

We obtain the following commutators

[
T̂+, Ô+−

]
=
∑
j

(
−n̂jc†j+1cj−1 + c†j+2cj n̂j−1 − c†j+1cjc

†
j−1cj−2

)
[
T̂+, Ô−+

]
=
∑
j

(
(n̂j − n̂j−1) n̂j+1 + c†j−1c

†
j+2cj+1cj

)
[
T̂+, Ô++

]
=
∑
j

(
−c†j n̂j+1cj−2 + c†j+1cj−1nj + c†jcj−1c

†
j+2cj+1

)
[
T̂−, Ô+−

]
=
[
T̂ †+, Ô

†
−−

]
= −

[
T̂+, Ô−−

]† [
T̂−, Ô++

]
=
[
T̂ †+, Ô

†
−+

]
= −

[
T̂+, Ô−+

]†
,[

T̂−, Ô−+

]
=
[
T̂ †+, Ô

†
++

]
= −

[
T̂+, Ô++

]†
,
[
T̂−, Ô−−

]
=
[
T̂ †+, Ô

†
+−

]
= −

[
T̂+, Ô+−

]†
[
T̂+, F̂+

]
=
∑
j

(wj − wj+1) c†j+1cj−1,
[
T̂+, F̂−

]
=
∑
j

(wj − wj+1) n̂j ,[
T̂+, B̂+

]
=
∑
j

(wj−1 − wj) c†j+1cj−1,
[
T̂+, B̂−

]
=
∑
j

(wj−1 − wj) n̂j[
T̂−, F̂−

]
=
[
T̂ †+, F̂

†
+

]
= −

[
T̂+, F̂+

]†
,
[
T̂−, F̂+

]
=
[
T̂ †+, F̂

†
−

]
= −

[
T̂+, F̂−

]†
[
T̂−, B̂−

]
=
[
T̂ †+, B̂

†
+

]
= −

[
T̂+, B̂+

]†
,
[
T̂−, B̂+

]
=
[
T̂ †+, B̂

†
−

]
= −

[
T̂+, B̂−

]†
. (G30)

Note that

P
[
T̂+, Ô+−

]
P = P

[
T̂−, Ô−−

]
P = 0, P

[
T̂+, Ô++

]
P = P

[
T̂−, Ô−+

]
P = 0

P
[
T̂+, F̂+

]
P = P

[
T̂−, F̂−

]
P = 0, P

[
T̂+, B̂+

]
P = P

[
T̂−, B̂−

]
P = 0,

(G31)

since according to Eq. (G30), these terms change the energy of eigenstates of Ĉ, and are hence block off-diagonal.
Simplifying Eq. (G29) using Eqs. (G30) and (G31), we obtain

H
(3)
eff = −α1λ

3

2 P
{(
−
[
T̂+, Ô−−

]
+
[
T̂+, Ô−+

])
+ h.c.

}
P − α0λ

3

2 P
{([

T̂+, F̂−

]
−
[
T̂+, B̂−

])
+ h.c.

}
P

= −α1λ
3
∑
j

{(
c†jc
†
j+3cj+2cj+1 + h.c.

)
+ 2 (n̂j n̂j+1 − n̂j n̂j+2)

}
− α0λ

3
∑
j

(2wj − wj−1 − wj+1) n̂j

(G32)

Finally, re-introducing the overall factor of E, the full effective Hamiltonian restricted to one center-of-mass sector is:

Heff = V0

∑
j

w̃j n̂j + Ṽ1

∑
j

n̂j n̂j+1 + Ṽ2

∑
j

n̂j n̂j+2 − t2V1

E2

∑
j

(
c†jc
†
j+3cj+2cj+1 + h.c.

)
+O

(
t3

E3

)
,

(G33)
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where we have omitted the term E
∑
j

jn̂j since it is a symmetry of the effective Hamiltonian, and we have defined

w̃j ≡
(

1− 2t2

E2

)
wj +

t2

E2
(wj−1 + wj+1) , Ṽ1 ≡ V1

(
1− 2t2

E2

)
, Ṽ2 ≡

2t2V1

E2
. (G34)
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M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Science 349, 842 (2015).

[4] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W.
Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe,
Nature Physics 12, 907 (2016).

[5] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli,
R. Schittko, P. M. Preiss, and M. Greiner, Science 353,
794 (2016).

[6] G. Kucsko, S. Choi, J. Choi, P. C. Maurer, H. Zhou,
R. Landig, H. Sumiya, S. Onoda, J. Isoya, F. Jelezko,
E. Demler, N. Y. Yao, and M. D. Lukin, Phys. Rev.
Lett. 121, 023601 (2018).

[7] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[8] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[9] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)

452, 854 (2008).
[10] A. Polkovnikov, K. Sengupta, A. Silva, and M. Ven-

galattore, Rev. Mod. Phys. 83, 863 (2011).
[11] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol,

Advances in Physics 65, 239 (2016).
[12] C. Gogolin and J. Eisert, Reports on Progress in Physics

79, 056001 (2016).
[13] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Jour-

nal of Physics B Atomic Molecular Physics 51, 112001
(2018).

[14] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90,
052105 (2014).

[15] J. R. Garrison and T. Grover, Phys. Rev. X 8, 021026
(2018).

[16] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[17] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys.

Rev. Lett. 95, 206603 (2005).
[18] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Annals

of Physics 321, 1126 (2006).
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[89] C. H. Lee, Z. Papić, and R. Thomale, Phys. Rev. X 5,
041003 (2015).
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