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Chapter I

Introduction

I.1 Outline

Enumerative geometry and Gromov–Witten theory

Enumerative geometry is a branch of mathematics which essentially deals with counting the number of

solutions to a geometrical problem. One of the first enumerative geometry problem one encounters is the

following: given two distinct points of the plane, how many lines going through these two points can we find?

This problem has a more difficult version: given five points of the plane in general position, how many conics

go through these five points?

Gromov–Witten theory gives tools to answer similar enumerative geometry problems. One of its feats was

to solve the generalisation of our two first problems:

Problem. Let d ∈ Z>0. Find the number Nd of rational curves of degree d in P2
C
going through 3d− 1 points.

The answer to this problem was given in 1994 by M. Kontsevich and Y. Manin in [KM94]. They show

that the numbers Nd satisfy the recurrence relation (see Example III.2.1.10)

Nd = ∑
d1+d2=d
d1,d2>0

Nd1Nd2 (( 3d − 43d1 − 2)d
2
1d

2
2 − ( 3d − 43d1 − 1)d

3
1d2)

This was a great step forward: before, we only knew the values Nd for d small, and no one could expect these

numbers to satisfy such a recursive relation.

Gromov–Witten theory is a branch of algebraic geometry. It first came to birth in theoretical physicists’

string theory. The mathematical community would then realise its potential when a group of four physicists,

P. Candelas, X. de la Ossa, P. Green and L. Parkes [CdlOGP91] announced a mean to compute similar

numbers Nd obtained by replacing P2
C
by an arbitrary quintic X ⊂ P4

C
(Clemens’ conjecture). The next step

is to include these ideas in the context of geometry.

Gromov–Witten invariants and quantum differential equations

One major difficulty we encounter is the actual definition of the numbers Nd. These numbers are examples

of Gromov–Witten invariants. We begin by giving only an intuition for their definition.

5



6 CHAPTER I. INTRODUCTION

Definition (sketch). Let X be a projective complex variety. Let g,n ∈ Z≥0, d ∈ H2(X ;Z). Consider some

cycles Z1, . . . , Zn ∈ Z∗(X). The Gromov–Witten invariant associated to this data is the number

⟨[Z1], . . . , [Zn]⟩cohg,n,d = ⎛⎝
Number of curves C ⊂X of genus g, and homological class d,

satisfying for all i,C ∩Zi ≠ ∅
⎞
⎠ ∈ Z≥0?

To give this definition a true meaning, we have to realise this number as the degree of some intersection

product ([Ful98, Vis89]) on a moduli space parametrising this data - called the moduli space of stable maps.

The obstacle to defining and computing Gromov–Witten invariants comes from the geometry of this moduli

space. The construction of this space, due to M. Kontsevich, outputs not a scheme, but a Deligne–Mumford

stack which is not of pure dimension in general. The dimension issue was fixed by B. Fantechi and K.

Behrend’s intrinsic normal cone [BF97], which defines the virtual fundamental class [Mg,n(X,d)]vir. This

virtual class allows us to define Gromov–Witten as an integral on the cycle of the correct dimension.

Definition (III.1.1.1). Let g,n, d as above, and let αi be the Poincaré dual of [Zi]. The associated Gromov–

Witten invariant is defined by

⟨α1, . . . , αn⟩cohg,n,d = ∫
[Mg,n(X,d)]

vir
⋃
i

ev⋆i (αi) ∈ Q
Now, we would like to actually compute these integrals. We proceed to define some generating series, a

product and a bundle with connection. Properties of the moduli spaces above can be translated to properties

on these constructions (see e.g. Proposition III.2.1.8).

We fix a basis of the cohomology H∗(X ;Q) = Span(Ti)i∈I , and we associate to Ti a coordinate ti. Thus,

an arbitrary class in cohomology can be written as τ = ∑i tiTi. We denote by g the metric on H∗(X ;C) given
by Poincaré duality: g(Ti, Tj) = ∫X Ti∪Tj. We encode the Gromov–Witten invariants in the generating series

Definition (III.2.1.1). The Gromov–Witten potential is the formal power series of variables t0, . . . , tN defined

by

F(ti) = ∑
n≥0

d∈H2(X;Z)

1

n!
⟨τ, . . . , τ⟩coh0,n,d

We assume from now on that there exists some open set U on which this series converges.

Example (III.2.1.4). For X = P2, the potential is expressed with the numbers Nd defined above by

F(t1, t2, t3) = 1

2
(t0t21 + t20t2) +

∞

∑
d=1

edt1Nd
t3d−12(3d − 1)!

Definition (III.2.1.5). The quantum product ●τ is a deformation of the classic product ∪ on cohomology,

which depends on parameters (ti). It is defined by the relation

g(Ti ●τ Tj , Tk) = ∂ti∂tj∂tkF
We can now construct the quantum D-module, which is the data of a bundle with a connection (F,∇)

(cf. [Dub96]).

Definition (III.2.2.1). Let F be the trivial bundle on H∗(X ;C)×P1 of fibre H∗(X ;C). We denote by z the

local coordinate P1 at 0. Dubrovin’s connection ∇ is defined by the following formula:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇∂tiTj = (∂ti + 1

z
Ti●τ)Tj , 0 ≤ i ≤N

∇∂zTj = (∂z − 1

z2
E ●τ +1

z

degH∗(X)

2
)Tj
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where E is some section of the bundle F , which will be made explicit in another chapter.

We define a new generating series of Gromov–Witten invariants

Definition (III.2.3.15). Givental’s J-function is defined by J = S−11, where S is a fundamental solution of

the quantum D-module and 1 is the constant section of the bundle F whose value on the fibre is the unit of

cohomology 1 ∈ H0(X ;C).
On one hand, it turns out that Givental’s J-function is the solution of some differential equation. In this

thesis, we will focus on the case X = PN . Under this condition, the equation satisfied by J is

[(z∂t1)N+1 − et1]J = 0
On the other hand, we are able to build an explicit solution to this differential equation, called Givental’s

I-function. These functions are related by the

Theorem ([Giv96]). For X = PN , the functions I and J satisfy I = J
Remark. There are two interpretations for the definition of I :

1. By mirror symmetry via the GKZ D-modules.

2. Via the localisation theorem applied to Givental’s equivariant J-function.

However, we will not mention anything else on the function I.

Quantum K-theory and q-difference equations

More recently in 2004, Y.P. Lee and A. Givental gave [Lee04, Giv00] defined new enumerative invariants

inspired by previous Gromov–Witten invariants. These invariants are defined by replacing cohomological

definitions by their K-theoretical analogues. Y.P. Lee constructed a virtual structure sheaf Ovir
M

. We define

the K-theoretical Gromov–Witten invariants by the following:

Definition (IV.1.1.1). Let X be a projective complex variety. Let g,n ∈ Z≥0, d ∈ H2(X ;Z). Consider some

classes φ1, . . . , φn ∈K(X). The K-theoretical Gromov–Witten invariant associated to this data is the number

⟨φ1,⋯, φn⟩Kth
g,n,d = χ(Mg,n (X,d) ;Ovir

Mg,n(X,d)

n⊗
i=1

ev∗i (φi)) ∈ Z
Questions. (Q1) Can we build the analogue in K-theory of the quantum product and the quantum D-
module?

(Q2) Can we relate together cohomological Gromov–Witten and K-theoretical Gromov–Witten invari-

ants ?

To answer the first question (Q1), the naive analogue of the product using the classic metric g(L1, L2) =
χ(L1 ⊗L2) is not associative. To fix this problem, Givental–Lee [Lee04, Giv00] introduce a modified metric

with the of K-theoretical Gromov–Witten invariants. Once the metric is changed, we are more or less

back in the same situation: we can define a product, the operators ∇∂ti and the J-function. However, we

observe something new: instead of the operator ∇∂z , Givental–Iritani–Milanov–Tonita [IMT15, GT14] obtain

q-difference operators.
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To answer the second question (Q2), there are two approaches.

The first approach is to look for an application of a Riemann–Roch theorem. Unfortunately, a Hirzebruch–

Riemann–Roch formula we could use for Deligne–Mumford stack, due to B. Toën [Toe99], only works when

these stacks are smooth - which our moduli spaces are not in general (though this is the case when the target

space X is a projective space). In 2011, A. Givental and V. Tonita [GT14] prove a theorem relating the two

Gromov–Witten theories. The statements are nonetheless quite technical.

The second approach is the aim of this thesis. It is inspired by the computations of the K-theoretical

J-function by Givental–Lee [GL03]. In the case X = PN , the J-function can be linked to the q-hypergeometric

series

fq(Q) = ∑
d≥0

1

∏dr=1 (1 − qr)N+1Q
d

which is solution not of a differential equation, but of a q-difference equation

[(1 − qQ∂Q)N+1 −Q]JKth(q,Q) = 0
Given a q-difference equation, we are able to obtain a differential equation using a phenomenon called

confluence. We can therefore wonder if we can compare the confluence of q-difference equations in quantum

K-theory with the differential equations in quantum cohomology.

Confluence and Gromov–Witten theories

The confluence phenomenon for q-difference equations was studied first by J. Sauloy in 2000 [Sau00]. This

property says that a q-difference equation can admit a differential equation as a limit by doing ”q → 1”.

Notice that for any k ∈ Z we have

qQ∂Q − Id
q − 1 ⋅Qk = (1 + q + q2 +⋯+ qk−1)Qk

Because of this, we have the formal limit

lim
q→1

qQ∂Q − Id
q − 1

⋅Qk = kQk = Q∂Q ⋅Qk
This principle generalises to general q-difference equations, as long as we allow ourselves to specify further

what ”q → 1” means. A q-difference equation that has a well defined limit when q tends to 1 is said to

be confluent (see Definition V.2.4.4). Then, the limit of this q-difference equation defines a differential

equation. It makes sense to compare the q-difference equation and its limit: for example, the solutions of the

q-difference equation give solutions to the differential equation by taking their limit when q tends to 1 (see

Theorem V.2.4.7).

The main result of this thesis adapts the confluence of q-difference equation in the context of quantum

K-theory to obtain the theorem below.

Theorem (VI.2.1.1). For X = PN , let Jcoh (resp. JKth) be the small cohomological (resp. K-theoretical)

J-function. Then,

1. The q-difference equation satisfied by JKth will degenerate through confluence to the differential equation

satisfied by Jcoh.

2. We denote by ch ∶ K (PN)⊗Q → H∗ (PN ;Q) the Chern character. Let confluence(JKth) the result of

confluence applied to the solution JKth. Then, we have

ch (confluence (JKth)) = Jcoh
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I.2 Plan of the thesis

In Chapter II, we define the moduli space of stable maps and briefly expose some constructions and geometrical

properties needed for the later chapters.

In Chapter III, we define Gromov–Witten invariants of a target space X and list their properties. Then, we

use these invariants to define a deformation of the cohomology ring of the target space X , called quantum

cohomology. The remaining of this chapter is dedicated to the definition and the study of the quantum

D-module, from which we construct Givental’s J-function.

In Chapter IV, we construct the K-theoretic analogues of the previous chapter. More precisely, we define

K-theoretic Gromov–Witten invariants and quantum K-theory as a deformation of K-theory of the target

space. Then, we try to construct the analogue of the quantum D-module. Lastly, we explicit the q-difference

operators acting on quantum K-theory.

In Chapter V, we give the necessary background on q-difference equations to be able to state our main

theorem. We explain how to construct the fundamental solution of a regular singular q-difference equation.

Then, we explain the confluence of these systems.

In Chapter VI, we state and prove our main theorem, which uses confluence of q-difference equation to relate

quantum K-theory with quantum cohomology.

We recommend the reader familiar with Gromov–Witten to focus on Chapters V and VI. The construction

of the q-difference module in quantum K-theory, is recalled in Subsection IV.2.3.

We suggest the reader unacquainted with Gromov–Witten theory to skip the technical details of the

three first chapters in a first lecture. In Chapter III, this reader should focus instead on the properties of

the quantum D-module as a meromorphic connection (Section III.2) while keeping the examples in mind.

The construction of Givental’s J-function will also be important. In Chapter IV, we suggest to focus on

the construction of the J-function (Definition IV.2.2.16). The construction of the q-difference module in

Subsection IV.2.3 can be skipped, and we refer instead to the q-difference equations exposed in the Chapter

VI, starting with Proposition VI.1.1.4.
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Chapter II

Moduli space of stable maps

In this introductory chapter we review the construction of the moduli space of stable maps, which is an

essential ingredient to the define Gromov–Witten invariants. Then, we define the evaluation maps and the

tautological cotangent line bundles which will also be useful for defining Gromov–Witten invariants.

II.1 Stable maps and their moduli

II.1.1 Stable maps

Definition II.1.1.1 ([Kon95]). Let n ∈ Z≥0 and X be a complex projective variety with even cohomology. A

stable map is the data of a connected proper curve C with n markings p1, . . . , pn and a morphism f ∶ C →X

such that

(i) The singularities of C are of nodal type at worst

(ii) The markings p1, . . . , pn ∈ C are distinct smooth points of the curve.

(iii) If C has an irreducible component C0, such that C0 is of genus 0 and f is constant on C0, then C0

must contain three points which are either singularities or markings. If C has genus 1 and there are no

marking, then f must not be constant.

Definition II.1.1.2. Let (f ∶ (C;p)→X) and (g ∶ (C′, p′) →X) be two stable maps. An isomorphism of

stable maps ϕ ∶ (f ∶ (C;p) →X) → (g ∶ (C′, p′)→X) is the data of an isomorphism ϕ ∶ C → C′ such that for

all i ∈ {1, . . . , n}, ϕ(pi) = p′i and the triangle below is commutative:

(C;p1, . . . , pn)

X

(C;p′1, . . . , p′n)

∼ϕ

f

g

The condition (iii) in the Definition II.1.1.1 is equivalent to the condition that the stable map (f ∶ C →X)
has a finite amount of automorphisms. We will thus refer to these conditions as stability conditions.

11



12 CHAPTER II. MODULI SPACE OF STABLE MAPS

Definition II.1.1.3. Let d ∈ H2(X,Z). We say that the stable map (f ∶ (C;p)→X) has class d if the

fundamental class [C] ∈H2(C;Z) satisfies f∗([C]) = d.
Example II.1.1.4. Let us give an example of a stable map to P2 of genus 1 and degree 3. We consider the

curve C with three irreducible components C1,C2,C3, with g(C1) = g(C2) = 0, g(C3) = 1. We consider the

maps

f∣C1
∶

RRRRRRRRRRRRR
C1 ≃ P1 P2

[x ∶ y] [x3 ∶ xy2 ∶ y3]
And we take f∣C2

, f∣C3
to be constant equal to [0 ∶ 0 ∶ 1] ∈ P2.

To make the map f stable, we need C2 to contain one marking since it has already two nodal points of

C, and we need C3 to contain one marking.

II.1.2 Moduli space of stable maps

Definition II.1.2.1. Let S be a scheme over C. A family of stable maps over S is a flat proper morphism

π ∶ C → S with n sections s1, . . . , sn and a map f ∶ C → X such that for all point t ∈ S, denoting Ct = π−1(t),
the map [f∣Ct ∶ (Ct, s1(t), . . . , sn(t))→X] is a stable map.

Definition II.1.2.2 (Moduli space of stable curves). Let X be a complex projective variety and fix the

parameters g,n ∈ Z≥0, d ∈ H2(X,Z). We denote by Mg,n(X,d) the contravariant functor Mg,n(X,d) ∶
(Schemes over C)→ (Groupoids) which sends the C-scheme S to the isomorphism class [π ∶ C → S] of family

of stable maps over S of genus g, with n markings and of degree d. This functor is called the moduli space

of stable maps.

Theorem II.1.2.3 ([Kon95]). Let X be a complex projective variety and fix the parameters g,n ∈ Z≥0, d ∈
H2(X,Z). The functor Mg,n(X,d) is an algebraic Deligne–Mumford stack over C which is proper.

In general, this space is not equidimensional, nonetheless, these moduli spaces have a virtual fundamental

class [Mg,n(X,d)]vir (see [BF97, BM96]) and a virtual structure sheaf Ovir (see [Lee04]). These two virtual

objects satisfy a collection of properties called the Behrend–Manin axioms, see [BM96] for the virtual class,

[Lee04] for the virtual sheaf.

Remark II.1.2.4. The Deligne–Mumford stackMg,n(X,d) has virtual dimension

vdimC (Mg,n(X,d)) = (1 − g)(dim(X)− 3)+ n −∫
X
c1(TX)

This number can be reobtained by checking the deformation theory of a stable map and using the Hirzebruch–

Riemann–Roch formula, see [CK99], 7.14.

Let us give a class of varieties X for which the genus 0 moduli spaces are well behaved.

Proposition II.1.2.5 ([FP97], Theorem 2). If X is a homogeneous space (e.g. for X = PN ), then the moduli

spaces M0,n(X,d) are smooth stacks.

II.2 Towards Gromov–Witten classes

In this section we will give some additional constructions on the moduli of stable maps to construct Gromov–

Witten invariants. Our main objective is to construct the evaluation maps evi and some line bundles Li. For
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completeness, we also give some properties satisfied by the virtual fundamental class which we may use in

the next chapter.

II.2.1 Universal curve

Definition II.2.1.1. Let i ∈ {1, . . . , n}.
• The ith evaluation map is the map (in the category of Deligne–Mumford stacks)

evi ∶
RRRRRRRRRRRR

Mg,n(X,d) X

[f ∶ (C;p0, . . . , pn) →X] f(pi)
• We denote by πi the map which forgets the ith marking then contracts the eventually unstable compo-

nents :

πi ∶

RRRRRRRRRRRRR
Mg,n(X,d) Mg,n−1(X,d)

[f ∶ (C;p1, . . . , pn)→X] [f ∶ (C;p1, . . . , p̂i, . . . , pn)→X](stabilised)
Where ⋅̂ means that element is omitted. We explain what stabilised means below.

If a n-pointed morphism f ∶ (C;p1, . . . , pn) → X satisfies the properties (i) and (ii) but not (iii), it is

possible to stabilise this morphism into a stable map by contracting the irreducible components of C on

which f fails the stability conditions, eventually killing some markings. We refer to the resulting stable map

as the stabilised map.

Proposition II.2.1.2. (i) The forget map πn+1 ∶ Mg,n+1(X,d) → Mg,n(X,d) is the universal moduli

space, i.e. for any family of stable C over a scheme S, we have the cartesian diagram

C Mg,n+1(X,d)

S Mg,n(X,d)
πn+1

In particular, if f ∶ (C;p1, . . . , pn) → X is a stable map, let C = C , S = pt and the bottom map is pt ↦
[f ∶ (C;p1, . . . , pn) →X] the fibres of πn+1 satisfy

π−1n+1([f ∶ (C;p1, . . . , pn)→X]) ≃ C/Aut(f)
(ii) The virtual fundamental class satisfies

[Mg,n+1(X,d)]vir = π∗n+1 [Mg,n+1(X,d)]vir
Definition II.2.1.3. Let i ∈ {1, . . . , n}. The ith tautological section si ∶Mg,n(X,d) →Mg,n+1(X,d) is the
section of the universal moduli space which takes a a stable map [f ∶ (C;p)→X] ∈Mg,n(X,d) and sends

it to the class in Mg,n+1(X,d) defined by replacing the ith marked point pi with an irreducible component

Ci ≃ P1 with two markings p′i, p
′
n+1, and defining f∣Ci

∶= f(pi).
Definition II.2.1.4. Let i ∈ {1, . . . , n}. Let ωn+1 be the relative dualizing sheaf of the universal curve

πn+1 ∶Mg,n+1(X,d) →Mg,n(X,d). The cotangent line bundle at the ith marking Li →Mg,n(X,d) is the

line bundle defined by s∗i ωn+1.

The fibres of this bundle at the point [f ∶ (C;p1, . . . , pn) → X] ∈Mg,n(X,d) is given by the cotangent

space at the ith marked point T ∗piC.
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II.2.2 Gluing stable maps

In this subsection, we detail what happens when we try to glue two stable maps together. This leads us to

a technical property satisfied by the virtual fundamental class. We suggest to the reader that is unfamiliar

with the quantum D-module to skip this subsection in a first lecture and assume instead that the quantum

product is associative (cf. Proposition III.2.1.8).

First, we give a scheme theoretic heuristic to construct a gluing map

ϕ ∶Mg1,n1+1(X,d1) ×X
Mg2,n2+1(X,d2)→Mg,n(X,d)

This map takes two stable maps [f1 ∶ (C1;p1, . . . , pn1
, a) → X] ∈Mg1,n1+1(X,d1), [f2 ∶ (C2; b, p

′
1, . . . , p

′
n2
) →

X] ∈ Mg2,n2+1(X,d2) and sends them to the stabilised map given by the gluing together the markings

a ∈ C1, b ∈ C2. This results in a new stable map of genus g1 + g2, with n1 +n2 markings and of degree d1 + d2.
For this application to be well defined, the last point a ∈ C1 of the first stable map and the first point

b ∈ C2 of the second stable map to satisfy f1(a) = f2(b) ∈ X . Therefore, the maps to the base X in the fibre

product are the maps evn1+1 ∶Mg1,n1+1(X,d1)→X and ev1 ∶Mg2,n2+1(X,d2)→X, as in the diagram

Mg1,n1+1(X,d1) ×X
Mg2,n2+1(X,d2) Mg1,n1+1(X,d1)

Mg2,n2+1(X,d2) X

evn1+1

ev1

There is also a second Cartesian diagram we should consider, which is obtained by using the gluing of

stable curves instead of trying to glue stable maps. We denote by g ∶Mg1,n1+1 ×Mg2,n2+1 →Mg,n the map

which glues two stable curves as described above. We have

Zd Mg,n(X,d)

Mg1,n1+1 ×Mg2,n2+1 Mg,n

Stab

g

Proposition II.2.2.1 ([LT98], Theorem 5.2). Let Zd1,d2 =Mg1,n1+1(X,d1)×X
Mg2,n2+1(X,d2). There exists

a canonical morphism

Ψ ∶ ⋃
d1+d2=d

Zd1,d2 → Zd
which is proper, finite and dominant. Furthermore, we have the Cartesian diagram

Zd1,d2 Mg1,n1+1(X,d1) ×Mg2,n2+1(X,d2)

X X ×X

evn+1×ev1

∆

We define the class

[ ⋃
d1+d2=d

Zd1,d2]
vir

= ∑
d1+d2=d

∆! [Mg1,n1+1(X,d1)]vir ⊗ [Mg2,n2+1(X,d2)]vir

It satisfies the identity

Ψ∗ [ ⋃
d1+d2=d

Zd1,d2]
vir

= g! [Mg,n(X,d)]vir



Chapter III

Cohomological Gromov–Witten

Invariants

In this chapter, we recall the definition of Gromov–Witten invariants and their main properties in Section

III.1. The next section is dedicated to how these invariants are encoded in a differential module. We define

the quantum D-module and study its properties. Then, we construct a fundamental solution and define

Givental’s J-function.

III.1 Cohomological Gromov–Witten invariants

III.1.1 Definitions

Notation. We will denote by 1 ∈ H0(X ;Q) the unit in the cohomology ring of X . We also recall that the

virtual cycle [Mg,n(X,d)]vir has homological degree 2(1 − g)(dim(X)− 3) + 2n + 2 ∫d c1(TX).
Definition III.1.1.1. Let g,n ∈ Z≥0, d ∈ H2(X ;Z). Let k1, . . . , kn ∈ Z≥0 be some integers, and let α1, . . . αn ∈
H∗(X ;Q). We also introduce the cohomological class ψi ∶= c1 (Li) ∈ H2 (Mg,n(X,d);Q). The associated

Gromov–Witten invariant is defined by the following intersection formula in the moduli space of stable maps

⟨ψk11 α1, . . . , ψ
kn
n αn⟩cohg,n,d = ∫

[Mg,n(X,d)]
vir
⋃
i

(ψkii ∪ ev⋆i (αi)) ∈ Q
We extend this definition to ki ∈ Z<0 by setting the invariant to be equal to zero if one of the ki is negative.

For intersection on algebraic stacks, we refer to [Vis89]. Note that in the left hand side, the expression

ψkii αi should not be considered as a product but merely as a notation, since these two classes live on different

spaces - which are respectively H∗(Mg,n(X,d);Q) and H∗(X ;Q).
If one integer ki is zero, we will replace ψkiαi by αi. We may also shorten the insertion ψki1, ki ≠ 0 by

ψki .

The assertion that the invariant ⟨ψk11 α1, . . . , ψ
kn
n αn⟩cohg,n,d is only a rational and not an integer is a con-

sequence that the moduli space Mg,n(X,d) is a Deligne–Mumford stack and not always a scheme (e.g. in

[CK99], Example 10.1.3.3.). The choice of taking the cohomology with rational coefficients is also the trace

of the use of orbifold cohomology. We will give an example of a non integer, non positive Gromov–Witten

invariant below. We also point that the cohomological class inside the integral has degree ∑i 2ki + deg(αi).

15
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III.1.2 Properties of cohomological Gromov–Witten invariants

In this subsection we give a list of some important properties of the Gromov–Witten invariants. We recom-

mend to the reader mainly interested in the construction of the quantum D-module to skip this subsection

on the first read.

We refer to [Gat03, CK99, Sections 7.3 and 10.1.2] for detailed proofs of these statements. We begin by

giving some properties useful for computations.

Proposition III.1.2.1 (Degree Axiom). The Gromov–Witten invariant ⟨ψk11 α1, . . . , ψ
kn
n αn⟩cohg,n,d is zero un-

less the following integer condition is verified:

∑
i

2ki + deg(αi) = 2(1 − g)(dim(X)− 3) + 2n − 2∫
X
c1(TX)

Proposition III.1.2.2 (Fundamental Class Axiom, [Gat03], 1.3.3). This property can also be referred to as

the String Equation. Let g,n, d such that n+2g ≥ 4 or n > 1, d ≠ 0. If one of the insertions in a Gromov–Witten

invariant is the unit in cohomology, we have

⟨ψk11 α1, . . . , ψ
kn−1
n−1 αn−1,1⟩cohg,n,d

= n−1∑
i=1
⟨ψk11 α1, . . . , ψ

ki−1
i αi, . . . , ψ

kn−1
n−1 αn−1⟩cohg,n,d

Proposition III.1.2.3 (Dilaton Axiom, [Gat03], 1.3.4). If one insertion in a Gromov–Witten invariant is

ψ1
1, we have

⟨ψk11 α1, . . . , ψ
kn−1
n−1 αn−1, ψ

1
n⟩cohg,n,d

= (2g − 2 + n) ⟨ψk11 α1, . . . , ψ
kn−1
n−1 αn−1⟩cohg,n−1,d

Proposition III.1.2.4 (Point Mapping Axiom, [CK99], 7.35). In this proposition, we assume that both the

genus and the degree of the stable curve are zero. We have

⟨α1, . . . , αn⟩coh0,n,0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
X
α1∪α2 ∪ α3 if n = 3

0 otherwise.

Proposition III.1.2.5 (Divisor Axiom, [Gat03], 1.3.4). Let g,n, d such that n+2g ≥ 4 or n > 1, d ≠ 0. If one
of the insertions in a Gromov–Witten invariant is the class of a divisor D ∈H2(X ;Q), then

⟨ψk11 α1, . . . , ψ
kn−1
n−1 αn−1,D⟩cohg,n,d

=(∫
d
D) ⟨ψk11 α1, . . . , ψ

kn−1
n−1 αn−1⟩cohg,n−1,d

+
n−1

∑
j=1
⟨ψk11 α1, . . . , ψ

ki−1
i (D ∪ αi), . . . , ψkn−1n−1 αn−1⟩cohg,n−1,d

III.2 Quantum cohomology and the quantum D-module

III.2.1 Quantum cohomology

In this subsection, we will follow [CK99], Section 8.2. We recall that X denotes a complex projective variety

with even cohomology.
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Notation. Let N be the dimension of H∗(X ;Q) and 1 ≤ r ≤ N . We will use the following notation:

T0, . . . TN A basis of H∗(X ;Q), so that T1, . . . , Tr span H2(X ;Q) and Tr+1, . . . , TN ∈ H≥4(X ;Q)
g the pairing on H∗(X ;Q) given by Poincaré duality , gij ∶= g(Ti, Tj) = ∫

X
Ti ∪ Tj

(gij)i,j the inverse of the Gram matrix of the metric g

T i the metric dual of Ti with respect to the metric g, T i ∶= ∑
j

gijTj

ti the coordinate associated to Ti

τ an arbitrary point in H∗(X ;Q), τ ∶= ∑
i

tiTi

τ2(d) for d ∈H2(X ;Z), τ2 ∈ H2(X ;Q) the integral τ2(d) ∶= ∫
d
τ2

Q1, . . . ,Qr Novikov variables associated to T1, . . . , Tr. If d ∈H2(X ;Z), we also define Qd ∶= QT1(d)
1 ⋯QTr(d)

r

If a definition depends on the coordinates t0, . . . , tN , we may say it depends on the symbol τ instead, e.g.

we will denote the ring H∗(X ;Q)⊗C [t0, . . . , tN ] by H∗(X ;Q)⊗C[τ].
The Novikov ring C[[Q]] is defined by the ring of formal series in Q1, . . . ,Qr :

C[[Q]] =
⎧⎪⎪⎨⎪⎪⎩ ∑
d∈H2(X;Z)

fdQ
d

RRRRRRRRRRRR
fd ∈ C

⎫⎪⎪⎬⎪⎪⎭
Definition III.2.1.1. The genus zero Gromov–Witten potential F is the formal power series defined by

F(τ,Q) = ∑
n≥0

d∈H2(X;Z)

1

n!
⟨τ, . . . , τ⟩coh0,n,dQ

d ∈ Q[[τ]]⊗C[[Q]]

Remark III.2.1.2. Let τ ′ = t0T0 +∑i>r tiTi and τ2 = ∑rj=1 tjTj. Because of the Divisor Axiom (see Proposition

III.1.2.5), we have

F(τ,Q) = ∑
d,n≥0

1

n!
⟨τ ′, . . . , τ ′⟩coh0,n,de

τ2(d)Qd

When looking at Definition III.2.1.1, we may be tempted to see the genus zero potential as some local formal

data defined near t = 0. Through this new identity, we see that the potential also defined near the point

τ ′ = 0,Re(τ2(d))→ −∞. This point is called the large radius limit.

Remark III.2.1.3. By the linearity of the Gromov–Witten invariants, we have

∂tiF(τ,Q) = ∑
d∈H2(X;Z)

n≥0

1

n!
⟨Ti, τ, . . . , τ⟩coh0,n,dQ

d

Example III.2.1.4. For X = P2, let H = c1(O(1)) ∈ H2(P2;Q) be the hyperplane class and [l] ∈ H2(X ;Z) be
the class of a line. Consider the Gromov–Witten invariant

Nd = ⟨H2, . . . ,H2⟩coh
0,3d−1,d[l]

Notice that the class H2 ∈ H4(P2;Q) corresponds the Poincaré dual of the class of a point [pt] ∈ H0(X ;Q).
We are going to show that the Gromov–Witten potential of P2 is given by

F(t0, t1, t2,Q) = 1

2
(t0t21 + t20t2) +

∞

∑
d=1

Nd
t3d−12(3d − 1)!edt1Qd
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In the expression above, the right hand side is written in two parts: first we have a degree 3 polynomial,

then we get a power series in et1Q. The first part will be obtained by the Point Mapping Axiom, while the

second comes from Divisor Axiom. We follow the strategy of [CK99], Subsection 8.3.2.

Proof. To make our expressions more compact, we will be denoting the Gromov–Written invariant whose

entries are the classes T0, T1, T2 appearing respectively α0, α1, α2 times by ⟨T (α0)
0 , T

(α1)
1 , T

(α2)
2 ⟩coh

0,α0+α1+α2,d[l]
.

Since the classes d[l] are effective if and only if d ≥ 0, we have

F(t0, t1, t2,Q) = ∑
d≥0

∞

∑
n=0

∑
α0+α1+α2=n

tα0

0

α0!

tα1

1

α1!

tα2

2

α2!
⟨T (α0)

0 , T
(α1)
1 , T

(α2)
2 ⟩coh

0,n,d[l]

Let us compute the zero degree d = 0 part of the potential. Using the Point Mapping Axiom (see III.1.2.4),

the degree d = 0 part is given by

∑
α0+α1+α2=3

tα0

0

α0!
⋯
tα2

2

α2!
∫
P2

Hα1+2α2 = 1

2
(t0t21 + t20t2)

For the positive degree d > 0 part of the potential, by String Equation (see III.1.2.2) we immediately set

α0 = 0. Using the Divisor Axiom (see III.1.2.5), we have

⟨T (α1)
1 , T

(α2)
2 ⟩coh

0,α1+α2,d[l]
= dα1 ⟨T (α2)

2 ⟩coh
0,α2,d[l]

By the Degree Axiom (III.1.2.1), the invariant in the right hand side is non zero if and only if α2 = 3d − 1.
Therefore, recalling that Nd = ⟨T (3d−1)2 ⟩coh0,3d−1,d[l], we get

F(t0, t1, t2,Q) = 1

2
(t0t21 + t20t2) +∑

d>0
∑
n≥0

∑
α1+3d−1=n

Nd
(d t1)α1

α1!

t3d−12(3d − 1)!Qd

Rearranging the sums, the variable n being mute, we make an exponential appear and obtain

F(t0, t1, t2,Q) = 1

2
(t0t21 + t20t2) +

∞

∑
d=1

Nd
t3d−12(3d − 1)!edt1Qd

Definition III.2.1.5. The quantum product ●τ is a product on H∗(X ;Q)[[τ]][[Q]] defined on basis elements

by

Ti ●τ Tj = ∑
k

∂ti∂tj∂tkF(τ,Q)T k
We then extend bilinearly this product to H∗(X ;Q)⊗C[[t0, . . . , tN ,Q1, . . . ,Qr]].

The ring (H∗(X ;Q)⊗C[[τ]][[Q]], ●τ ) formed by this product will be called quantum cohomology, denoted

by QH∗(X).
Remark III.2.1.6. The quantum product ●τ satisfies a compatibility relation with the metric g

g(Ti ●τ Tj, Tk) = g(Ti, Tj ●τ Tk) = ∂ti∂tj∂tkF(τ,Q)
Notice also that the relation g(Ti, Tj ●τ Tk) = ∂ti∂tj∂tkF(τ,Q) can be taken as a definition of the quantum

product.
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Remark III.2.1.7. The quantum product ●τ can be seen as a deformation of the usual product ∪ on the

cohomology, indexed by the parameters t0, . . . , tN . Notice that if we set Q = 0, in the power series F remains

only the terms corresponding to d = 0. Then, by the Point Mapping Axiom (see Proposition III.1.2.4),

(Ti ●τ Tj)∣Q=0 = Ti ∪ Tj
Proposition III.2.1.8. The product ●τ is unitary, commutative and associative. The unit of this product is

the unit in cohomology, 1 ∈ H∗(X ;Q)⊗C[[τ]][[Q]].
Before giving a proof, we mention that the associativity of the quantum product can be translated into a

property satisfied by the Gromov–Witten potential, which appears in the theorem below.

Theorem III.2.1.9 ([KM94], Theorem-Definition 4.5). The genus zero Gromov–Witten potential F satisfies

the set of differential equations, called WDVV equations (Witten–Dijkgraaf–Verlinde–Verlinde), indexed by

i, j, k, l ∈ {0, . . . ,N}:
N

∑
a,b=0

∂3F
∂ti∂tj∂ta

gab
∂3F

∂tb∂tk∂tl
= N

∑
a,b=0

∂3F
∂tj∂tk∂ta

gab
∂3F

∂tb∂ti∂tl

Proof of Proposition III.2.1.8. (i) The quantum product is unitary. We are going to show that the unit

in cohomology 1 ∈H0(X ;Q) is also the unit of the quantum product. Let j ∈ {0, . . . ,N}. We have

1 ●τ Tj =
N

∑
k=0

∂t0∂tj∂tkF(τ,Q)T k =
N

∑
k=0
∑
d,n≥0

1

n!
⟨1, Tj , Tk, τ, . . . , τ⟩coh0,n,dT

kQd

By the String Equation (see III.1.2.2), all the Gromov–Witten invariants in the rightmost expression are

zero unless d = 0. In this case, we can apply the Point Mapping Axiom (see III.1.2.4), which means we only

consider the invariants with parameters d = 0, n = 3. Finally, since the classes T k and Tk are dual with respect

to the Poincaré pairing, we get

1 ●τ Tj =
N

∑
k=0

T k ∫
X
Tj ∪ Tk =

N

∑
k=0

gjkT
k = Tj

(ii) The quantum product is commutative. This follows from the definition of the quantum product.

We have Ti ●τ Tj = ∑k ∂ti∂tj∂tkF(τ,Q)T k. Since the derivatives commute, we have ∂tj∂ti∂tkF(τ,Q) =
∂ti∂tj∂tkF(τ,Q).

(iii) The quantum product is associative. Using T a = ∑b gabTb, we get

(Ti ●τ Tj) ●τ Tk = ∑
a,b,l

∂ti∂tj∂taF(τ)gab∂tb∂tk∂tlF(τ)T l
Ti ●τ (Tj ●τ Tk) = ∑

a,b,l

∂tj∂tk∂taF(τ)gab∂tb∂ti∂tlF(τ)T l

Using Theorem III.2.1.9, the two series on the right hand sides are equal.

Continuing the example of X = P2, the WDVV equations allow us to recursively compute the coefficients

of the Gromov-Witten potential.
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Example III.2.1.10. Let X = P2. In Example III.2.1.4, we had showed that the Gromov-Witten potential is

given by

F(t0, t1, t2,Q) = 1

2
(t0t21 + t20t2) +

∞

∑
d=1

Nd
t3d−12(3d − 1)!edt1Qd

For simplicity, we will set Q = 1. We can do this because, if we consider the potential as a power series in Q,

the ratio test implies it has infinite convergent ray. By the Theorem III.2.1.9, we have

2

∑
a,b=0

∂3F
∂ti∂tj∂ta

(t0, t1, t2)gab ∂3F
∂tb∂tk∂tl

(t0, t1, t2) = 2

∑
a,b=0

∂3F
∂ti∂tl∂ta

(t0, t1, t2)gab ∂3F
∂tb∂tj∂tk

(t0, t1, t2)
We recall that the matrices (gij) , (gij) are given by

(gij) = (gij) =
⎛⎜⎜⎝
0 0 1

0 1 0

1 0 0

⎞⎟⎟⎠
Using String Equation and Point Mapping Axiom, we also have (see proof of Proposition III.2.1.8)

∂t0∂ta∂tbF(t0, t1, t2,Q) = gab
We choose to compute the values in the WDVV equations for a quadruplet (i, j, k, l) such that the sums have

non zero terms. We choose (i, j, k, l) = (1,1,2,2). The corresponding WDVV equation reduces to

∂3F
∂t32
+
∂3F
∂t31

∂3F
∂t1∂t

2
2

= ( ∂3F
∂t21∂t2

)
2

(III.2.1.11)

We have
∂3F
∂t32
= ∞∑
d=2

Nde
dt1

1

(3d − 4)! t3d−42

Therefore, in (III.2.1.11), we look for the coefficient in front of edt1t3d−42 . For the left hand side, we find

1

(3d − 4)!Nd + ∑
d1+d2=d

Nd1Nd2d
3
1d2

1

(3d1 − 1)!
1

(3d2 − 3)!
And for the right hand side, we find

∑
d1+d2=d

Nd1Nd2d
2
1d

2
2

1

(3d1 − 2)!
1

(3d2 − 2)!
Using (III.2.1.11), we thus get

Nd = (3d − 4)! ∑
d1+d2=d

Nd1Nd2 (−d31d2 1

(3d1 − 1)!
1

(3d2 − 3)! + d
2
1d

2
2

1

(3d1 − 2)!
1

(3d2 − 2)!)
Using d2 = d − d1, this can be rewritten as

Nd = ∑
d1+d2=d

Nd1Nd2 (( 3d − 43d1 − 2
)d21d22 − ( 3d − 43d1 − 1

)d31d2)
This allows us to compute the values of Nd recursively. The first values of the sequence (Nd) are (see OEIS’

sequence A013587)

1,1,12,620,87304,26312976,14616808192,13525751027392, . . .

http://oeis.org/A013587


III.2. QUANTUM COHOMOLOGY AND THE QUANTUM D-MODULE 21

Since we know the value of the Gromov–Witten potential for X = P2, we can also give the value of the

quantum product.

Example III.2.1.12. Let X = P2 and Ti = Hi for i ∈ {0,1,2}. For simplicity, we set Q = 1 again. We know

that T0 is the unit of the quantum product. The other values of this product are given by

T1 ●τ T1 = ( ∞∑
d=1

Ndd
2edt1

t3d−22(3d − 2)!)T0 + (
∞

∑
d=1

Ndd
3edt1

t3d−12(3d − 1)!)T1 + T2
T1 ●τ T2 = ( ∞∑

d=1
Ndde

dt1
t3d−32(3d − 3)!)T0 + (

∞

∑
d=1

Ndd
2edt1

t3d−22(3d − 2)!)T1
T2 ●τ T2 = ( ∞∑

d=2
Nde

dt1
t3d−42(3d − 4)!)T0 + (

∞

∑
d=1

Ndde
dt1

t3d−32(3d − 3)!)T1
As seen as the formulas above, the (big) quantum product ●τ can be hard to compute. We introduce a

second product, which is easier to compute and depends on less variables.

Definition III.2.1.13. Let τ ′ = t0T0 +∑i>r tiTi and τ2 = ∑rj=1 tjTj. The small quantum product ○τ2 is a

product on H∗(X ;Q) [t1, . . . , tr] [[Q]] defined by

Ti ○τ2 Tj = (Ti ●τ Tj)∣τ ′=0
We denote by SQH∗(X) the ring (H∗(X ;Q)[[τ]][[Q]], ○τ2), called small quantum cohomology.

Example III.2.1.14. For X = PN , let H = c1 (O(1)) ∈H2 (PN) be the hyperplane class. We have

H∗(PN ;Q) ≃ Q[H] /(HN+1)
Set Ti =Hi, so that T i =HN−i. We have

SQH∗ (PN) ≃ Q[H,et1Q] /(HN+1 − et1Q)
III.2.2 The quantum D-module

Big quantum D-module

The references for this subsection are [CK99], Section 10.2 and [Iri09], Section 2.2.

Assumption. We can recall that following Remark III.2.1.2, the quantum product Ti ●τ Tj can be seen as a

formal power series in the parameters τ ′ and eτ2Q. From now on, we assume that the potential F is convergent

on some open set U , neighbourhood of the large radius limit. On this open set U , we can now replace the

expression eτ2(d)Qd by eτ2(d) to drop the Novikov variables. We will still denote Ti ●τ Tj = (Ti ●τ Tj)∣Q=1.
Definition III.2.2.1. Let z be a local coordinate on P1 at 0 ∈ A1. The quantum D-module is the bundle

with connection QDM(X) = (F,∇) where F is the trivial bundle

U × P1 ×H∗(X)→ U × P1

Since F is a trivial bundle, the space of its sections is spanned as a OU×P1 -module by the constant sections

of value Ti on the fibres for i ∈ {0, . . . ,N}. We will also denote by F the space of sections of F , and by (Ti)
the basis of sections of F .
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We denote by ti the local coordinates on the open set U . The connection ∇ on the bundle F is called the

Dubrovin connection, and is defined by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇∂tiTj = (∂ti + 1

z
Ti●τ)Tj , 0 ≤ i ≤N

∇∂zTj = (∂z − 1

z2
E ●τ +

1

z
µ)Tj

Where the Euler field E is the section of the bundle F defined by

E = c1(TX)+∑
i

(1 − 1

2
degH∗(X)(Ti)) tiTi

and the Hodge grading operator is the endomorphism µ ∈ End(H∗(X)) given by

µ (Tj) = 1

2
(degH∗(X)(Tj) − dimC(X))Tj

Proposition III.2.2.2. The quantum D-module (F,∇) is a cyclic D-module, generated by the constant

section 1. In other words, if we denote by F the space of sections of the bundle F , and consider the application

ϕ ∶
RRRRRRRRRRRR
C[t0, . . . , tN , z]⟨z∂t0, . . . , z∂tN⟩ F

P (t0, . . . , tN , z, z∂t0, . . . , z∂tN) P (t0, . . . , tN , z,∇z∂t0 , . . . ,∇z∂tN ) ⋅ 1
Then, the application ϕ is surjective.

Proof. The space of sections F is spanned by the constant sections T0, . . . , TN . Using the definition of

Dubrovin’s connection, we have for any i ∈ {0, . . . ,N},
∇z∂ti1 = z∂ti1 + Ti ●τ 1 = 0 + Ti ●τ 1

According to Proposition III.2.1.8, the cohomological class 1 is the unit of the quantum product, so we get

∇z∂ti1 = Ti
So the application ϕ is surjective.

Proposition III.2.2.3 ([Dub96]). Dubrovin’s connection ∇ is flat, i.e. its curvature satisfies ∇2 = 0
We now define a metric on the bundle F .

Definition III.2.2.4. Let ι ∶ U × P1 → U × P1 be the involution given by z ↦ −z. We define a pairing g on

F by

g ∶
RRRRRRRRRRRR
ι∗(F,∇) × (F,∇) OU×P1

(s1, s2) ∫X s1(t,−z) ∪ s2(t, z)
Proposition III.2.2.5. This pairing is ∇-flat, i.e. if s1, s2 are sections of F , and ξ is a vector field on

U × P1, then

∂ξg(s1, s2) = g(∇ξs1, s2) + g(s1,∇ξs2)
Proof. We have for all i, j, k ∈ {0, . . . ,N},

g(∇∂tkTi, Tj) + g(Ti,∇∂tkTj) = 1

−z
g(Tk, Ti ● Tj) + 1

z
g(Ti, Tj ● Tj) = 0 = ∂tkg(Ti, Tj)
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Where we used the Remark III.2.1.6 in the second equality.

For the derivative with respect to coordinate z, recall that g(Ti, Tj) = 0 unless Ti and Tj are Poincaré

dual, i.e. Tj = T i, and then deg Ti + deg Tj = 2dimC(X). As a consequence, we have

g(∇z∂zTi, Tj) + g(Ti,∇z∂zTj)
= 1

z
g(E ● Ti, Tj) + deg Ti

2
g(Ti, Tj) + 1

−z
g(Ti,E ● Tj) + deg Tj

2
(Ti, Tj) − dimC(X)g(Ti, Tj)

= 0 = z∂zg(Ti, Tj)
Where we used the Remark III.2.1.6 again in the second equality.

Small quantum D-module

The small analogue of the quantum D-module is obtained by replacing the quantum product ●τ with the

small quantum product ○τ2 and restricting the directions for which we define ∇ to variables tj of degree 2.

Definition III.2.2.6. Let τ ′ = t0T0 +∑i>r tiTi, τ2 = ∑rj=1 tjTj and U2 = U ∩H2(X ;C). The small quantum

D-module is the bundle with connection obtained by restriction of the quantum D-module (F,∇) to U2 ×P1.

j∗(F,∇) (F,∇)

U2 × P1 U × P1j

Keeping the same notations, we obtain a connection ∇ defined by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇∂tj Tk = (∂tj + 1

z
Ti○τ2)Tk, 1 ≤ j ≤ r

∇∂zTk = (∂z − 1

z2
c1(TX) ○τ2 +1

z
(1 − 1

2
dim(X)))Tk

Remark III.2.2.7. In general, Dubrovin’s connection ∇ has a regular singularity at z = ∞ and an irregular

singularity at z = 0. If X is Calabi–Yau, then c1(TX) = 0 and the small quantum D-module’s singularity

z = 0 becomes regular.

While the big quantum D-module was cyclic spanned by the section 1 (cf Proposition III.2.2.2), it is not

necessarily the case for the small quantum D-module. Although, it is cyclic if, for example, we can generate

the cohomology ring H∗(X ;Q) from the unit 1 and products with elements of H2(X ;Q). This is true for

smooth toric varieties, see [Ful93], Proposition p.106.

Example III.2.2.8. For X = PN , let H = c1 (O(1)) ∈ H2 (PN) be the hyperplane class, and set Ti =Hi.

Using the Euler sequence ([Har77], Theorem 8.13),

0 OPn OPn(1)⊕n+1 TPn 0

We obtain c1(TPN) = (N + 1)H .

The small quantum connection is the connection on the bundle

H2 (PN) × P1 ×H∗ (PN)→H2 (PN)
(t1)
× P1

(z)
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Given by ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇z∂t1 = z∂t1 +H○τ2
∇z∂z = z∂z − 1

z
(N + 1)H ○τ2 +(1 − N + 12

)
Considering only the first direction, we get a module SQDM (PN) on C[t1, z, et1]⟨z∂t1⟩. We have

C[t1, z, et1]⟨z∂t1⟩ /((z∂t1)N+1 − et1) ≃ SQDM (PN)
This isomorphism is given by

P (t1, z, et1 , z∂t1)↦ P (t1, z, et1 ,∇z∂t1 ) ⋅ 1 ∈ SQDM (PN)
Thus SQDM (PN) is cyclic, its unique generator is the constant section 1.

III.2.3 Fundamental solution and Givental’s J-function

The aim of this subsection is to build a formal fundamental solution to the quantum D-module. This

fundamental solution is related to a cohomological function, called Givental’s J-function, which plays an

essential role: this function can be used to compute Gromov–Witten invariants and obtain relations in

quantum cohomology.

Fundamental solution

We will follow [Iri09], Section 2.2. We begin by introducing a formal function which will be our main tool to

construct a fundamental solution.

Definition III.2.3.1. We define the formal function Scoh by the expression, for α ∈H(X)

Scoh(τ, z)(α) = e−τ2/zα − ∑
d∈H2(X;Z)−{0}

l≥0

N

∑
k=0

1

l!
⟨Tk, τ ′, . . . , τ ′, e−τ2/zα

z + ψ
⟩
coh

0,l+2,d
T keτ2(d) ∈ QH(X)⊗C((z))

Where the Gromov–Witten invariant ⟨Tk, τ ′, . . . , τ ′, e−τ2/zαz+ψ ⟩coh0,l+2,d
is actually a shortcut for the expression

⟨Tk, τ ′, . . . , τ ′, e−τ2/zα
z + ψ

⟩
coh

0,l+2,d
∶= ∑
n,m≥0

(−1)n+m
zn+m+1

⟨Tk, τ ′, . . . , τ ′, ψnl+2τm2 ∪ α⟩coh0,l+2,d

Now we can construct the fundamental solution. This is done in essentially two parts: first we show that

the formal function Scoh is a fundamental solution for the directions ∂ti , then we modify Scoh to obtain a

full solution.

Theorem III.2.3.2 ([Iri09], Proposition 2.4). We recall that µ denoted the Hodge grading operator, was

defined by

µ (Tj) = 1

2
(degH∗(X)(Tj) − dimC(X))Tj

We also denote by ρ the endormorphism of H∗(X), ρ = c1(TX)∪.
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(i) Let α ∈ H⋆(X) be a section of F. For all i ∈ {0, . . . ,N}, we have

∇∂tiS
coh(τ, z)α = 0

∇z∂zS
coh(τ, z)α = Scoh(τ, z)(µ(α) − 1

z
ρ(α))

(ii) We define the endomorphism z−µzρ ∈ End(QH(X)⊗C((z))) by
z−µzρ(Ti) = exp(−µ log(z)) exp(ρ log(z)) ⋅ Ti

Then, the function Scoh(τ, z)z−µzρ is a fundamental solution of the quantum D-module.

(iii) The function Scoh(τ, z) is an isometry, i.e. for all i, j ∈ {0, . . . ,N}
g (Scoh(τ, z)(Ti), Scoh(τ, z)(Tj)) = g(Ti, Tj)

The proof of the first equality in (i) is adapted from [CK99], Propositions 10.2.1 and 10.2.3. For the other

results, we refer to [Iri09], Proposition 2.4. Before giving the proof, we introduce a few lemmas. The first

two lemmas are intermediary steps to prove that ∇∂tiS
coh(τ, z) = 0.

Notation. We will use the compact expression

⟨⟨ψk11 α1, . . . , ψ
kn
n αn⟩⟩coh0,n,τ

∶= ∑
l≥0

d∈H2(X;Z)

1

l!
⟨ψk11 α1, . . . , ψ

kn
n αn, τ, . . . , τ´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

l times

⟩coh0,n+l,dQ
d

Lemma III.2.3.3 (Topological Recursion Relations). For all k1, k2, k3 ≥ 0
and 0 ≤ j1, j2, j3 ≤ r,

⟨⟨ψd1+11 Tj1 , ψ
d2
2 Tj2 , ψ

d3
3 Tj3⟩⟩0,3,τ =

N

∑
a=0
⟨⟨ψd11 Tj1 , Ta⟩⟩0,2,τ ⟨⟨T a, ψd22 Tj2 , ψ

d3
3 Tj3⟩⟩0,3,τ

For a proof of this lemma, see [CK99], Lemma 10.2.2.

Lemma III.2.3.4. The fundamental solution Scoh can be written as the compact expression

Scoh(τ, z)(α) = α − N

∑
j=0

T j ⟨⟨ α

z +ψ
,Tj⟩⟩

0,2,τ

(III.2.3.5)

Proof. We start from the right hand side. By writing τ = τ2 + τ ′ inside the Gromov–Witten invariants in

⟨⟨ α
z+ψ , Tj⟩⟩0, we can make a careful use of the linearity of the invariants and the Divisor Axiom. By linearity,

we have

⟨ψnTa, Tj , τ (k)⟩coh0,k+2,d = ∑
u+v=k

k!

u!v!
⟨ψnTa, Tj , τ (u)2 , τ ′(v)⟩coh

0,k+2,d

Where we recall that the notation τ (k) means the entry τ appears k times. Before applying the Divisor

Axiom, we notice that we have to separate two cases: either d ≠ 0 and we can apply the axiom u times, or

d = 0 and we can apply the axiom u − 1 times. When d ≠ 0, we have

⟨ψn1 Ta, Tj , τ (k)⟩coh0,k+2,d = ∑
u+v=k
x+y=u

k!

v!x!y!
(τ2(d))x ⟨ψn−y1 (Ta ∪ τy2 ), Tj, τ ′(v)⟩coh0,v+2,d
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Therefore, in the right hand side of (III.2.3.5), the coefficient in front of Qd, d > 0 is given by the sum on the

following parameters

j ∈ {0, . . .N} parameters that runs the basis in cohomology

n ∈ Z≥0 from developing
1

z +ψ

k ∈ Z≥0 from developing the expression ⟨⟨ψnTa, Tj⟩⟩0,2,τ
u, v ∈ Z≥0 from using the linearity axiom

x, y ∈ Z≥0 from using the divisor axiom

Moreover, we have the relations u + v = k and x + y = u = k − v, so u is a mute parameter. The general term

of this whole sum is given by

(−1)n
zn+1

1

v!

1

x!

1

y!
(τ2(d))x ⟨ψn−y(Ta ∪ τy2 ), Tj, τ ′(v)⟩coh0,v+2,d T

j

Let l = n − y, the general term becomes

1

v!
((τ2(d))x

x!
) (−1)l
zl+1

⟨ψl ((−1)y
y!

(τ2)y
zy
) ∪ Ta, Tj , τ ′(v)⟩

coh

0,v+2,d
T j

The series in the parameters x and y can now be identified with the Taylor series of an exponential, while

the series in the parameter l can be identified with the expansion of 1
z+ψ . The coefficient in front of Qd, d > 0

in the right hand side of of (III.2.3.5) is finally given by

N

∑
j=0
∑
l≥0

1

v!
eτ2(d) ⟨e−τ2/z

z + ψ
,Tk, (τ ′)v⟩

coh

0,l+2,d
T j

which is precisely the coefficient in front of Qd, d > 0 in the left hand side of of (III.2.3.5).

Now we move to the d = 0 case. In that case, we have by the Divisor Axiom

⟨ψn1 Ta, Tj , τ (k)⟩coh0,k+2,0 = ∑
u+v=k

∑
x+y=u−1

k!

v!x!y!
τ2(0)x ⟨ψn−y+11 (Ta ∪ τy−12 ), Tj , τ2, τ ′(v)⟩coh0,v+3,0

When d = 0, we have M0,n(X,0) ≃M0,n ×X . Therefore, the line bundle L1 is trivial and its first Chern

class is zero. Consequently, ⟨ψn−y+1(Ta ∪ τy−12 ), Tj , τ2, τ ′(v)⟩coh0,v+3,0 are zero unless n − y + 1 = 0. So the non

zero Gromov–Witten invariants are of the form ⟨Ta ∪ τn2 , Tj , τ2, (τ ′)v⟩0,v+3,0. Since there no psi classes, we

can apply the Point Mapping Axiom. The remaining non zero invariants are

⟨(Ta ∪ τn2 ), Tj , τ2, ⟩coh0,3,0 = ∫
X
Ta ∪ Tj ∪ τn+12

Finally, in the right hand side of (III.2.3.5), the coefficient in front of Q0 is given by

Ta +
∞

∑
n=0
∑
j

(−1)n+1
(n + 1)!

1

zn+1
(∫

X
Ta ∪ τn+12 ∪ Tj)T j = e−τ2/zTa

This completes the proof of the identity (III.2.3.5).

The next result will be helpful for the computation of ∇z∂zS
coh(τ, z).
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Notation. We are going to associate to the Euler field E a vector field E(∂) by replacing the generator

Tj ∈ H∗(X ;Q) in the expression of the section E by the differential operator ∂tj . The motivation for

introducing this operator is that once we have shown that ∇∂tiS
coh(τ, z) = 0, then we have E ●τ Scoh(τ, z) =

−zE(∂) ⋅ Scoh(τ, z), which is easier to compute. Explicitly, if c1(TX) = ∑i=1 ωiTi, then

E(∂) ∶=
r

∑
i=1
ωi∂ti +

N

∑
k=0
(1 − deg Tk

2
tk)∂tk

Notice that the expression of E(∂) consists of two sums, the first acting on the variables of cohomological

degree two (τ2), the second acting on the other variables (τ ′).

Lemma III.2.3.6. Recall that µ is the Hodge grading operator and ρ = c1(TX)∪. Let α ∈ H∗(X ;Q). The

fundamental solution Scoh satisfies the following commutativity property:

(z∂z +E(∂) + µ) ○ Scoh(τ, z)(eτ2/zα) = Scoh(τ, z) ○ eτ2/z ○ (z∂z +E(∂) + µ)(α)
Proof. We introduce in this proof the notation S(t, z)(α) ∶= S(t, z)(eτ2/zα). Therefore, we have

S(t, z)(α) = α − ∑
d∈H2(X;Z)−{0}

l≥0

N

∑
k=0

1

l!
⟨Tk, τ ′, . . . , τ ′, α

z +ψ
⟩coh
0,l+2,d

T keτ2(d)

We begin by computing the right hand side in the identity we want to prove. We have

S(t, z)(z∂z +E(∂) + µ)α = S(t, z)(deg(α)
2

−
dimC(X)

2
)α = (deg α

2
−
dimC(X)

2
)S(t, z)(α)

Thus, we want to show that

(z∂z + E(∂) + µ)S(t, z)(α) = (deg(α)
2

−
dimC(X)

2
)S(t, z)(α)

We have the expansion

⟨Tk, (τ ′)l, α

z + ψ
⟩
0,l+2,d

= ∑
u≥0

(−1)u
zu+1

⟨ψuα,Tk, (τ ′)l⟩0,l+2,d
We are going to evaluate the action of the operators z∂z, µ,E(∂) individually on S(t, z)(α). We have

z∂z ⋅S(t, z)(α) = ∑
k

∑
d≠0
l,u≥0

(−1)u+1 1
l!
(u + 1) 1

zu+1
⟨ψuα,Tk, τ ′(l)⟩coh0,l+2,d T

keτ2(d)

µ ⋅S(t, z)(α) = (deg(α)
2

−
dimC(X)

2
)α +∑

k

∑
d≠0
l,u≥0

(−1)u 1
l!

(deg T k)/2
zu+1

⟨ψuα,Tk, (τ ′)l⟩0,l+2,d T keτ2(d)

Next, we will compute E(∂) ⋅ S(t, z)(α). In a first time, we have

E(∂)e
τ2(d) = ( r

∑
i=1
ωi∂ti) eτ2(d) =

r

∑
i=1
ωiTi(d)eτ2(d) (III.2.3.7)
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In a second time, for a fixed l ∈ Z>0, we develop the Gromov–Witten invariant ⟨ψuα,Tk, (τ ′)l⟩coh0,l+2,d. For a

multi-index a′ = (a0, ar+1, . . . , aN ) ∈ (Z≥0)N+1−r, we introduce the following notations:

∣a′∣ ∶= a0 + ar+1 +⋯ + aN
ta
′

∶= ta00 tar+1r ⋯taNN

⟨T (a′)⟩coh
0,∣a∣,d

∶= ⟨T (a0)0 , T
(ar+1)
r+1 . . . , T

(aN)
N ⟩coh

0,∣a∣,d

a′! ∶= (a0!)⋯(aN !)
Using this notation, we have

1

l!
⟨ψuα,Tk, (τ ′)l⟩0,l+2,d = ∑

a′∈(Z≥0)N+1−r

∣a∣=l

ta
′

a′!
⟨ψuα,Tk, T (a′)⟩coh

0,l+2,d

We can compute the action of E(∂) on this function. For k ∈ Z≥0, we set by convention ak = 0 if deg(Tk) = 2.
E(∂) ⋅

1

l!
⟨ψuα,Tk, (τ ′)l⟩0,l+2,d =

N

∑
i=0
(1 − deg(Tk)

2
) ∑
a′∈(Z≥0)N+1−r

∣a∣=l

ai
ta
′

a′!
⟨ψuα,Tk, T (a′)⟩coh

0,l+2,d
(III.2.3.8)

Plugging (III.2.3.7) and (III.2.3.8) together, we obtain

E(∂) ⋅
1

l!
⟨ψuα,Tk, (τ ′)l⟩coh0,l+2,d e

τ2(d) = ∑
∣a∣=l

⎛
⎝
N

∑
i=0
(1 − deg(Tk)

2
)ai + r

∑
j=1

ωjTj(d)⎞⎠
ta
′

a′!
⟨ψuα,Tk, T (a′)⟩coh

0,l+2,d
eτ2(d)

However, applying the Degree Axiom (see III.1.2.1) to the Gromov–Witten invariant here gives the relation

N

∑
i=0
(1 − deg(Tk)

2
)ai + r

∑
j=1

ωjTj(d) = −dimC(X) + deg Tk
2

+
deg α

2
+ u + 1

Which means we can use the linearity of Gromov–Witten invariants to get rid of the sum on multi-indices a′

and obtain

E(∂) ⋅ S(t, z)(α) = N

∑
k=0
∑
d≠0
l,u≥0

(−dimC(X)+ deg Tk
2

+
deg α

2
+ u + 1) (−1)u 1

l!
⟨ψuα,Tk, T (a′)⟩coh

0,l+2,d
T keτ2(d)

At last, we have that (z∂z + E(∂) + µ)○S(t, z)(α) is equal to
(deg(α)

2
−
dimC(X)

2
)α + N

∑
k=0
∑
d≠0
l,u≥0

(−(u + 1) − dimC(X)+ deg Tk
2

+
deg α

2
+ u + 1 +

deg(T k) − dimC(X)
2

)×

×
(−1)u
zu+1

1

l!
⟨ψuα,Tk, (τ ′)l⟩coh0,l+2,d e

τ2(d)

Using deg(T k) = 2dimC(X)− deg(Tk), we obtain

(z∂z + E(∂) + µ)○S(t, z)(α) = (deg(α)
2

−
dimC(X)

2
)S(t, z)(α)
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Lemma III.2.3.9. Let α ∈ H∗(X ;Q) be a section of F . We have

(z∂z +E(∂) + µ) ○ e−τ2/z = e−τ2/z ○ (z∂z +E(∂) + µ − ρ
z
)

Proof. Let Ta ∈H∗(X ;Q) be a section of F . The right hand side gives

e−τ2/z ○ (z∂z + E(∂) + µ − ρ
z
) (Ta) = e−τ2/z (µ − ρ

z
) (Ta)

For the left hand side, (z∂z +E(∂) + µ) ○ (e−τ2/zTa), we have

z∂z ⋅ e−τ2/zTa = τ2
z
e−τ2/zTa

(E)∂ ⋅ e−τ2/zTa = e−τ2/z (−ρz ) (Ta)
µ ⋅ e−τ2/zTa = ∑

k≥0

1

k!zk
(k + deg(Ta) − dim(X)

2
) τk2 ∪ Ta = −z∂z(e−τ2/zTa) + e−τ2/z ∪ µ(Ta)

Therefore,

(z∂z +E(∂) + µ) ○ (e−τ2/zTa) = eτ2/z (−ρ
z
+ µ) (Ta)

We finish by giving a lemma for the computation of ∇z∂zScoh(τ, z)z−µzρ.
Lemma III.2.3.10. Let α ∈H∗(X). We have

(z ∂
∂z
+ µ −

ρ

z
)(z−µzρα) = 0

Proof. First, notice that we have

[µ, ρ] (Ta) = deg(Ta) + 2
2

ρ(Ta) − ρ(deg(Ta)
2

Ta) = ρ(Ta)
Thus [µ, ρ] = ρ.

We will now show that
ρ

z
z−µ = z−µρ

We have

zµ
ρ

z
z−µ = ead(µ log z) ρ

z
=∑

k

1

k!
(ad(µ log z))k ρ

z

=∑
k

1

k!
(log z)k 1

z
[µ, [µ, [⋯, [µ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

, ρ]⋯]] = ∑
k

1

k!
(log z)k 1

z
ρ = ρ

This concludes the proof of the identity ρ

z
z−µ = z−µρ.

We have

z
∂

∂z
(z−µzρα) = −µz−µzρ + z−µρzρ

Thus

(z ∂
∂z
+ µ −

ρ

z
) (z−µzρα) = z−µρzρ − ρ

z
z−µzρ = 0
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This concludes the listing of lemmas required for the proof Theorem III.2.3.2.

Proof of Theorem III.2.3.2. Let Ta ∈H∗(X) be a section of F . We begin by showing that

∇z∂tiS
coh(τ, z)(Ta) = 0

Using Lemma III.2.3.4, we have

∇z∂tiS
coh(τ, z)(Ta) = z∂tiScoh(τ, z)(Ta) − Ti ●τ Ta + Ti ●τ N

∑
j=0
⟨⟨ Ta

z +ψ
,Tj⟩⟩

0,2,τ

T j

We compute every summand separately. We have

z∂tiS
coh(τ, z)(Ta) = N

∑
k=0
∑
n≥0

(−1)n
zn

⟨⟨ψn1 Ta, Ti, Tk⟩⟩0,2,τ T k (III.2.3.11)

Ti ●τ Ta =
N

∑
k=0
⟨⟨Ti, Ta, Tk⟩⟩0,3,τ T k (III.2.3.12)

Next, we have

Ti ●τ Ta + Ti ●τ
N

∑
j=0
⟨⟨ Ta

z +ψ
,Tj⟩⟩

0,2,τ

T j = N

∑
j,k=0

∑
n≥0

(−1)n
zn+1

⟨⟨ψn1 Ta, Tj⟩⟩0,2,τ ⟨⟨Ti, T j, Tk⟩⟩0,3,τ T k

We apply Lemma III.2.3.3 to the right hand side. We obtain

Ti ●τ Ta + Ti ●τ
N

∑
j=0
⟨⟨ Ta

z +ψ
,Tj⟩⟩

0,2,τ

T j = N

∑
k=0
∑
n≥0

(−1)n
zn+1

⟨⟨ψn+11 Ta, Ti, Tk⟩⟩0,3,τ T k (III.2.3.13)

Putting (III.2.3.11), (III.2.3.12) and (III.2.3.13) together, we obtain

∇z∂tiS
coh(τ, z)(Ta) = 0

Next, we prove that

∇z∂zS
coh(τ, z)(Ta) = Scoh(τ, z)(µ(α) − 1

z
ρ(Ta))

Using ∇z∂tiS
coh(τ, z)(Ta) = 0, we have

∇z∂zS
coh(τ, z)(Ta) = (z∂z +E(∂) + µ)Scoh(τ, z)(Ta)

Using Lemma III.2.3.6, we have

∇z∂zS
coh(τ, z)(Ta) = (Scoh(τ, z) ○ eτ2/z) ○ (z∂z + E(∂) + µ) ○ e−τ2/z

Using Lemma III.2.3.9, we obtain

∇z∂zS
coh(τ, z)(Ta) = Scoh(τ, z)(µ − ρ

z
) (Ta)

This conclude the proof of the assertion (i) of Theorem III.2.3.2.

Next, we show that the function Scoh(τ, z)z−µzρ is a fundamental solution of the quantum D-module. We

have to show that ∇z∂tiS
coh(τ, z)z−µzρ = 0 and ∇z∂zScoh(τ, z)z−µzρ = 0. The first identity is a consequence
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of ∇z∂tiS
coh = 0 which is contained in the assertion (i) of Theorem III.2.3.2. Using the Lemmas III.2.3.6 and

III.2.3.9 again, we obtain

∇z∂zScoh(τ, z)z−µzρ = Scoh(τ, z) ○ (z∂z + µ − ρ
z
) ○ z−µzρ

Using Lemma III.2.3.10, we obtain

∇z∂zScoh(τ, z)z−µzρ = 0
Finally, we show that the function Scoh is an isometry. For a, b ∈ {0, . . . ,N}, we want to show that

g (Scoh(τ, z)(Ta), Scoh(τ, z)(Tb)) = g(Ta, Tb)
Since ∇z∂tiS

coh = 0 and the metric g is ∇-flat by Proposition III.2.2.3, we have for any i ∈ {0, . . . ,N}
∂tig (Scoh(τ, z)(Ta), Scoh(τ, z)(Tb)) = 0

So the expression g (Scoh(τ, z)(Ta), Scoh(τ, z)(Tb)) is constant in τ . At the large radius limit, we have

lim
τ ′→0

g (Scoh(τ, z)(Ta), Scoh(τ, z)(Tb)) = g (e−τ2/zTa, e−τ2/zTb) = g(Ta, Tb)

Big J-function

Proposition III.2.3.14. Let Ta ∈ H∗(X ;Q) be a section of F . The inverse of the fundamental solution

Scoh is given by

(Scoh)−1 (τ, z)(Ta) = N

∑
j=0

g

⎛⎜⎜⎝e
τ2/zTj + ∑

d∈H2(X;Z)−{0}
l≥0

∑
k

1

l!
eτ2(d) ⟨eτ2/zTj

−z +ψ
,Tk, τ

′, . . . , τ ′⟩
coh

0,l+2,d
T k, Ta

⎞⎟⎟⎠T
j

Proof. According to Theorem III.2.3.2, (iii), the fundamental Scoh is an isometry for the metric g on F . This

means that its inverse is given by its adjoint with respect to the metric g. This means that if Ta ∈H∗(X ;Q)
is a section of F , we have

Scoh(τ, z)−1(Ta) = N

∑
j=0

g (Scoh(τ, z)(Tj), Ta)T j
So we end up having

N

∑
j=0

g

⎛⎜⎜⎝
eτ2/zTj + ∑

d∈H2(X;Z)−{0}
l≥0

∑
k

1

l!
eτ2(d) ⟨eτ2/zTj

−z + ψ
,Tk, τ

′, . . . , τ ′⟩
coh

0,l+2,d
T k, Ta

⎞⎟⎟⎠
T j

To motivate the definition of Givental’s J-function, recall also that the constant section 1 played a special

role in Proposition III.2.2.2, as it was generating QDM(X) as a cyclic D-module.

Definition III.2.3.15. Givental’s J-function Jcoh is given by the expression

Jcoh(τ, z) = Scoh(τ, z)−11 ∈ QH(X)⊗C((z))
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Proposition III.2.3.16 ([CK99], Lemma 10.3.3). Givental’s J-function Jcoh is given by

Jcoh(τ, z) = eτ2/z
⎛⎜⎜⎝1 +∑d≠0

l≠0

N

∑
i=0

1

l!z
⟨τ ′, . . . , τ ′, Ti

z − ψ
⟩coh
0,l+2,d

eτ2(d)T i
⎞⎟⎟⎠

Proof. Using Proposition III.2.3.14, we have

Jcoh(τ, z) = (Scoh)−1 (τ, z)(1) = N

∑
j=0

g

⎛⎜⎜⎝e
τ2/zTj +∑

d≠0
l≥0

∑
k

1

l!
eτ2(d) ⟨eτ2/zTj

−z +ψ
,Tk, τ

′, . . . , τ ′⟩
coh

0,l+2,d
T k,1

⎞⎟⎟⎠T
j

We expand the expression in the sum using the linearity of the metric g. First, notice that for any class

α = ∑k αkTk ∈H∗(X), we have

N

∑
j=0

g(α,Tj) =∑
j,k

αkgkjT
j = ∑

k

αkTk = α
In our setting, using the definition of the metric g, we obtain

N

∑
j=0

g(eτ2/zTj,1)T j = N

∑
j=0

g(eτ2/z, Tj)T j = eτ2/z
Next, we are going to compute

N

∑
j=0

g
⎛
⎝ ∑(d,l)≠0∑k

1

l!
eτ2(d) ⟨eτ2/zTj

−z +ψ
,Tk, τ

′, . . . , τ ′⟩
coh

0,l+2,d
T k,1

⎞
⎠T j

Because 1 is the unit in cohomology, if deg(T k) ≠ 2dim(X), we have

g(T k,1) = ∫
X
T k = 0

The degree will match the dimension if and only if k = 0, therefore g(T k,1) = δk,0. Plugging that in our

computation gives

N

∑
j=0

g
⎛
⎝ ∑(d,l)≠0∑k

1

l!
eτ2(d) ⟨eτ2/zTj

−z +ψ
,Tk, τ

′(l)⟩
coh

0,l+2,d
T k,1

⎞
⎠T j =

N

∑
j=0

∑
(d,l)≠0

1

l!
eτ2(d) ⟨eτ2/zTj

−z +ψ
,1, τ ′(l)⟩

coh

0,l+2,d
T j

We are going to apply the String Equation (see III.1.2.2) to the right hand side. There is no issue since we

have d ≠ 0. We have

⟨eτ2/zTj
−z +ψ

,1, τ ′(l)⟩
coh

0,l+2,d
= ∑
n≥0

(−1)n
(−z)n+1 ⟨ψn1 eτ2/zTj ,1, τ ′(l)⟩

coh

0,l+2,d

= ∑
n≥0

−1
zn+1

⟨ψn−11 eτ2/zTj , τ
′(l)⟩coh

0,l+1,d =
−1
z
⟨eτ2/zTj
z + ψ

τ ′(l)⟩
coh

0,l+1,d

Doing a base change Tj ↦ e−τ2/zTj gives the desired formula.

These definitions can be summed up in the diagram below.

(F,d,g) (F,∇,g)

U × P1

∼
Scoh

1Jcoh
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Small J-function

The constructions of the fundamental solution Scoh and Givental’s J-function have their analogue in the

small quantum D-module by restricting to τ ′ = 0.
Definition III.2.3.17. We define the formal function scoh by

scoh(τ2, z) = (Scoh(τ, z))
∣τ ′=0

Proposition III.2.3.18. Denote by ∇ the small Dubrovin connection and let i ∈ {1, . . . , r}.
(i) The formal function scoh(τ2, z) satisfies

∇∂tis
coh(τ2, z) = 0

(ii) The formal function scoh(τ2, z)z−µzρ is a fundamental solution of the small quantum D-module (F2,∇)
Definition III.2.3.19. Givental’s small J-function jcoh(τ2, z) is given by

jcoh(τ2, z) = scoh(τ2, z)(1)
Note that (C∗)N+1 acts on PN by (λ0, . . . , λN ) ⋅ [z0 ∶ ⋯ ∶ zN ] = [λ0z0 ∶ ⋅ ⋅ ⋅ ∶ λNzN ]. Using Atiyah–Bott

fixed point localisation, it is possible [Giv96, BCFK05] to find an explicit formula for the small J-function of

toric varieties.

Proposition III.2.3.20 ([Giv96]). In the case X = PN , recall that H∗(PN ;Q) ≃ Q[H] /(HN+1) , where

H = c1(O(1)) is the hyperplane class. The small J-function is given by

jcoh(t1, z) = e t1H

z ∑
d≥0

et1d

∏dr=1 (H + rz)N+1
The expression 1

H−rz should be understood as its power series expansions

1

H − rz
= −1
rz
∑
m≥0
(H
rz
)m = −1

rz

N

∑
m=0
(H
rz
)m

Furthermore, the small J-function satisfies the differential equation

[(z∂t1)N+1 − et1] jcoh(t1, z) = 0
Remark III.2.3.21. This differential equation corresponds to the relation in the small quantum cohomology

of PN found in Example III.2.1.14. Recall that we had seen

H○t1(N+1) = et1 ∈ SQH∗ (PN)
Since we have here ∇z∂t1 = z∂t1 + H○t1 , using that scoh is a fundamental solution for the small quantum

D-module, we have

(H○t1 (N+1) − et1)1 = 0 ⇐⇒ [(z∂t1)N+1 − et1] jcoh(t1, z) = 0
Remark III.2.3.22. There is an alternative structure to the quantum D-module (used e.g. in [GT14]) called

Givental’s Lagrangian cone, denoted LcohX , see [Giv04]. The tangent spaces to this cone carry a D-module

structure that is identified with the quantum D-module, see [CCIT09], Appendix B or [IMM16], Subsection

2.4.d.
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Chapter IV

K-theoretical Gromov–Witten

invariants

We give the elements to describe quantum K-theory, by essentially building K-theoretic analogues to the

constructions of Chapter III. In the first section, this will result in the construction of a quantum ring

(QK(X),⋆τ) that is a deformation of the K-theory ring of a projective variety X . However, the properties

satisfied by our constructions will be much more complicated than in the cohomological case.

The next section attempts to build a K-theoretical analogue of the quantum D-module. While we are able

to construct differential operators acting on quantum K-theory, we will not try to define a flat connection

analogous to Dubrovin’s connection.

The third section adds additional structure to quantum K-theory. Using Givental–Tonita’s quantum

Hirzebruch–Riemann–Roch theorem (see [GT14], Section 9, Theorem), we will build q-difference operators

acting on quantum K-theory.

IV.1 K-theoretical Gromov–Witten invariants

Our objective in this section is to define K-theoretic analogues to Gromov–Witten invariants and quantum

cohomology. The main references for this section are [Lee04] and [Giv00].

IV.1.1 Definitions

We recall that just as we used the virtual fundamental class [Mg,n (X,d)]vir, the moduli space of stable

maps also an analogous virtual structure sheaf Ovir
Mg,n(X,d)

constructed by Y.P Lee in [Lee04].

Definition IV.1.1.1 ([Lee04]). Let g,n ∈ Z≥0, d ∈ H2(X ;Z). Let k1, . . . , kn ∈ Z≥0 be some integers, and let

φ1, . . . φn ∈K(X). A K-theoretical Gromov–Witten invariant is given by the Euler characteristic

⟨Lk11 φ1,⋯,Lknn φn⟩Kth

g,n,β
= χ(Mg,n (X,d) ;Ovir

M

n⊗
i=1
Lkii ev∗i (φi)) ∈ Z

We precise that in the left hand side, the notation Lkii φi should not be thought of as the tensor product

of two sheaves, as the cotangent line bundle Li ∈ K (Mg,n (X,d)) and the input φi ∈ K(X) are not sheaves

on the same space.

35
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Recall that a cohomological Gromov–Witten ⟨ψk1α1, . . . , ψknαn⟩Hg,n,d needed not be an integer. Here,

since we are taking the Euler characteristic of a sheaf, a K-theoretical Gromov–Witten is necessarily an

integer.

IV.1.2 Properties of K-theoretical Gromov–Witten invariants

The K-theoretic Gromov–Witten invariants satisfy properties similar to the cohomological Gromov–Witten

invariants (cf. III.1.2). However, we should note that the ring K(X) does not come with a graduation,

therefore we cannot define a Degree Axiom nor a Divisor Axiom, and the Point Mapping Axiom will be

stated in a weaker form. We suggest that the reader mainly interested in the algebraic structure of K-

theoretical Gromov–Witten invariants should skip this section on a first lecture. For simplicity, we will only

state the axioms for the genus zero case. For the proof of these statements, we refer to [Lee04], Subsections

4.3 and 4.4 (see also [MR18], Theorem 5.4.2).

Proposition IV.1.2.1 (Fundamental class Axiom). This property can also be referred to as the String

Equation. Let n, d such that n ≥ 4 or n > 1, d ≠ 0. Let πn+1 ∶M0,n+1(X,d) →M0,n(X,d) be the universal

curve and consider q1, . . . , qn be some formal variables. We have

π∗ (Ovir ⊗ ( n∏
i=1

1

1 − qiLi )) = (1 +
n

∑
i=1

qi

1 − qi
)(Ovir ⊗ ( n∏

i=1

1

1 − qiLi )) ∈K (M0,n(X,d))
Proposition IV.1.2.2 (Dilaton Axiom). Let n, d such that n ≥ 4 or n > 1, d ≠ 0. Let πn+1 ∶M0,n+1(X,d) →
M0,n(X,d) be the universal curve and consider q1, . . . , qn be some formal variables. We have

π⋆ (Ovir ⊗ (n−1∏
i=1
)⊗Ln−1) = Ovir ⊗ [(n−1∑

i=1

1

1 − qi
) n−1∏
i=1
L−1i

n−1

∏
i=1

1

1 − qiLi ] ∈K (M0,n(X,d))
Proposition IV.1.2.3 (Point Mapping Axiom). Let Mg,n be the moduli space of genus g n-pointed stable

curves, and π ∶ C →Mg,n be its universal curve. Consider the diagram

Mg,n(X,0) Mg,n ×X

C

Mg,n X

pr
1

ev

π

We have

Ovir

Mg,n(X,0)
=∑
i≥0
(−1)i⋀i (pr∗1R1π∗OC ⊗ ev∗TX)∨

IV.2 Quantum K-theory, differential and q-difference operators

Assumption. Since we had assumed that X is smooth, we will identify K○(X) ≃K○(X) =∶ K(X). Now, we
also assume that the K-theory K(X) admits a finite basis φ0, . . . , φN ∈ K(X) satisfying φ0 = [OX] and for

which there exists an integer r ∈ Z>0 such that c1(φ1), . . . , c1(φr) form an integral basis of A2(X)/(torsion)
and ch(φr+1), . . . , ch(φN) ∈ A≥4(X)
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IV.2.1 Quantum K-theory

In this subsection, the main reference is [Lee04].

Notation. We keep the notation (φi) for the basis as in the assumption above. We will also write :

1 The class of the structure sheaf, unit in K(X) ∶ [OX] = φ0;
g Pairing on K(X) given by gij = g(φi, φj) ∶= χ(φi ⊗ φj);
t0, . . . , tn coordinates on K(X), associated to φ0, . . . , φn;

τ an arbitrary point in K(X), τ ∶= n

∑
i=0
tiφi ∈K(X);

Q1, . . . ,Qr Novikov variables associated to φ1, . . . , φr ;

Qd shortcut for Q
(c1(φ1))(d)
1 ⋯Q(c1(φr))(d)

r , where d ∈H2(X ;Z).
We recall that (c1(φi))(d) = ∫d c1(φi).

The Novikov ring C[[Q]] is defined by the ring of formal series in Q1, . . . ,Qr :

C[[Q]] ∶=
⎧⎪⎪⎨⎪⎪⎩ ∑
d∈H2(X;Z)

fdQ
d

RRRRRRRRRRRR
fd ∈ C

⎫⎪⎪⎬⎪⎪⎭
Again, if a definition depends on the formal variables t0, . . . , tN , we may say it depends on the symbol τ

instead.

Big quantum K-theory

Definition IV.2.1.1 (Genus zero potential). The genus zero (K-theoretical) Gromov–Witten potential F is

the generating series

F(τ,Q) = ∑
d,n≥0

1

n!
⟨τ, . . . , τ⟩Kth

0,n,dQ
d ∈ Z[[t0, . . . , tN ]]⊗C[[Q]]

Remark IV.2.1.2. If we try from now on to reproduce the definition of the product as in quantum cohomology,

the resulting product would not be associative. To fix this issue, Lee–Givental introduce a new metric, which

we will call quantum metric. Once we replace the usual metric by the new metric, we use the formulas from

cohomology.

Definition IV.2.1.3. The quantum metric is the pairing Gτ defined on K(X) by
Gij = Gτ (φi, φj) = ∂t0∂ti∂tjF ∈ Z[[t0, . . . , tN ]]⊗C[[Q]]

We also denote by (Gij) the inverse matrix of the Gram matrix (Gij).
This metric is said to be a quantisation of the usual metric g because we have (Gij)∣Q=0 = gij from Point

Mapping Axiom.

Remark IV.2.1.4. If we were to reproduce this definition for quantum cohomology, we would recover G = g
because of the Point Mapping Axiom (see Proposition III.1.2.4).



38 CHAPTER IV. K-THEORETICAL GROMOV–WITTEN INVARIANTS

Theorem IV.2.1.5 ([Giv00],4, Theorem). The genus zero K-theoretical Gromov–Witten potential F satisfies

the set of differential equations, called WDVV equations, indexed by i, j, k, l ∈ {0, . . . ,N}:
N

∑
a,b=0

∂3F
∂ti∂tj∂ta

Gab
∂3F

∂tb∂tk∂tl
= N

∑
a,b=0

∂3F
∂tj∂tk∂ta

Gab
∂3F

∂tb∂ti∂tl

Definition IV.2.1.6. The quantum product ⋆τ is a product on K(X)[[τ]]⊗C[[Q]] defined by

Gτ (φi ⋆τ φj , φk) = ∂ti∂tj∂tkF(τ,Q)
The ring (K(X)[[τ]] ⊗ C[[Q]],⋆τ ) formed by this product will be called quantum K-theory, denoted by

QK(X).
We have

φi ⋆τ φj =
N

∑
α,β=0

(∂ti∂tj∂tαF)Gαβφβ
Proposition IV.2.1.7. The quantum product ⋆τ is commutative and associative. Its unit is the structure

sheaf 1. Furthermore, (K(X)[[τ]]⊗C[[Q]],G,⋆τ ) is a Frobenius algebra, i.e.

Gτ (φi ⋆τ φj , φk) = Gτ (φi, φj ⋆τ φk)
And we have

(φi ⋆τ φj)∣Q=0 = φi ⊗ φj
Proof. 1. Commutativity. This is a consequence of [∂ti , ∂tj ] = 0.

2. Associativity. Just like in cohomology, writing the expressions φi ⋆● (φj ⋆● φk) and (φi ⋆● φj) ⋆● φk
will give each side of the K-theoretic WDVV equations of Theorem IV.2.1.5.

3. Unit. Plugging i = 0 in the definition Gτ(φi ⋆τ φj , φk) = Gτ (φi, φj ⋆τ φk) gives
Gτ (φ0 ⋆τ φj , φk) = ∂t0∂tj∂tkF(τ,Q) = Gτ (φj , φk)

4. Frobenius algebra. The compatibility relation between the quantum metric Gτ and the quantum

product ⋆τ comes from the definition of the quantum product and the symmetry of the pairing G.

5. Classical limit. Using Point Mapping Axiom, we obtain (φi ⋆τ φj)∣Q=0 = φi ⊗ φj .

Small quantum K-theory

Definition IV.2.1.8. The small quantum product ☆Q is a product on K(X)⊗C[[Q]] defined by

Ti ☆Q Tj = (Ti ⋆τ Tj)τ=0
We denote by SQK(X) the ring (K(X)⊗C[[Q]],☆Q), called small quantum K-theory. This ring comes with

a pairing given by G∣t=0, called small quantum metric.
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Example IV.2.1.9. For X = PN , let P = O(1) ∈K(PN) be the class of the anti-tautological bundle. We have

K(PN) ≃ Z[P,P −1] /((1 − P −1)N+1)
We choose therefore the basis given by φi = (1 − P −1)i, which verifies c1(φ1) = H ∈ H2(X ;Z). The small

quantum K-theory is given by

SQK(PN) ≃ C[P,P −1] /((1 − P −1)N+1 −Q)
For the pairings, let φi = (1 −P −1)i. We have

gij =
⎧⎪⎪⎨⎪⎪⎩
1 if i + j ≤N
0 otherwise

(Gij)∣t=0 = gij + Q

1 −Q

The computation of the small quantum product can be found in [BM11], Section 5. The computation for

small quantum metric relies on the small J-function; it can be found in [IMT15], Corollary 4.3.

IV.2.2 Differential operators on quantum K-theory

Big differential module in quantum K-theory

Assumption. We assume that the potential F is convergent on some open set U .

Definition IV.2.2.1. Let q be a local coordinate on P1 at 1 ∈ A1 and denote by (ti) the local coordinates

on U associated to the basis (φi). We define the trivial bundle FKth by

FKth = U × P1 ×K(X)→ U × P1

The quantum connection is the differential operator ∇ acting on the sections of FKth by

∇(1−q)∂ti = (1 − q)∂ti + φi⋆τ
As there is no definition for a derivative along the direction q, this is not exactly a connection. We will

still use the language of connections to describe these operators.

Remark IV.2.2.2. When comparing the formulas for the operators ∇∂ti in quantum cohomology and quantum

K-theory, we can observe that the parameter z in quantum cohomology is replaced by the expression 1 − q
in K-theory. It is possible to give a geometric meaning to the variables q in quantum K-theory and z in

quantum cohomology. The variable q should be understood as a generator of the C∗-equivariant K-theory of

a point KC∗(pt). As for z, it is a generator of the C∗-equivariant cohomology H∗
C∗
(pt). We have z = −c1(q).

Writing ctot for the total Chern class, these two variables are related through the formula ctot(q) = 1− z. For
more on this comparison, see [IMT15], Subsection 2.6.

Proposition IV.2.2.3 ([Giv00], Corollary 2). The quantum connection is flat, i.e. for q ≠ 1,
[∇(1−q)∂ti ,∇(1−q)∂tj ] = 0
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Proof. We have to compute the three commutators [∂ti , ∂tj ], [∂ti , φj⋆τ ] and [φi⋆τ , φj⋆τ ].
We have [∂ti , ∂tj ] = 0 by definition. Next, for all k ∈ {0, . . . ,N}, we have

∂tiφj ⋆τ φk = ∑
α,β∈{0,...,N}

((∂ti∂tj∂tk∂tαF(τ,Q))Gαβ + (∂tj∂tk∂tαF(τ,Q))∂tiGαβ)φβ
The expression ∂ti∂tj∂tk∂tαF(τ,Q)Gnm is invariant by permutation of the inputs i, j, k. Then, we have

(∂tj∂tk∂tαF(τ,Q))(∂tiGαβ) = (∂tj∂tk∂tαF(τ,Q)) ∑
α′,β′
(∂tiGα′β′)Gαα′Gββ′

Using String Equation, we have ∂tiGα′β′ = ∂ti∂tα′∂tβ′ . Finally, we obtain

(∂tj∂tk∂tαF(τ,Q))(∂tiGαβ) = (∂tj∂tk∂tαF(τ,Q)) ∑
α′,β′
(∂ti∂tα′∂tβ′F(τ,Q))Gαα′Gββ′

The WDVV equations (see IV.2.1.5) imply that the right hand side is invariant by permutation of the inputs

i, j, k, so we get

[∂ti , φj⋆τ ]φk = 0
Lastly, using Proposition IV.2.1.7, the associativity of the quantum product of Porposi gives

[φi⋆τ , φj⋆τ ]φk = 0

Proposition IV.2.2.4 ([Lee04], Proposition 12). Denote by ▽(LC) the Levi–Civita of the metric Gτ . We

have

2▽(LC) = ϕ∗∇∣q=−1
In particular, the metric Gτ is flat.

Proof. We define the Christofell symbols Γkij by ▽
(LC)
∂ti

tj = ∑Nk=0 Γkijtk. The definition of the Livi–Civita metric

gives

Γkij =
N

∑
l=0
Gkl

1

2
(∂tjGil + ∂tiGjl − ∂tlGij)

Notice that by String Equation, we have ∂tjGil = ∂tj∂t0∂ti∂tlF = ∂tj∂ti∂tlF . Plugging that in the computation

of our Christoffel symbol gives

Γkij = 1

2

N

∑
l=0
Gkl∂ti∂tj∂tkF

We have recovered the coefficients of the K-theoretical quantum product:

φi ⋆τ φj =
N

∑
k=0

2Γkijφk

Therefore, we obtain 2▽LC = ϕ∗∇∣q=−1. Since the connections ∇ are flat for all q ≠ 1, the Livi–Civita ▽(LC)

is flat, i.e. the metric Gτ is flat.

Remark IV.2.2.5. The metric g on U is also flat, its Levi–Civita connection is the trivial connection d.
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Definition IV.2.2.6. We define the sesquilinear pairings g and Gτ are extended FKth by setting, for any

sections Φ1(q),Φ2(q) ∈ QK(X)⊗C[[q, q−1]],
g (Φ1(q),Φ2(q)) = g (Φ1(q−1),Φ2(q)) Gτ (Φ1(q),Φ2(q)) = Gτ (Φ1(q−1),Φ2(q))

The involution of P1 given by q ↦ q−1 corresponds to the involution ι ∶ z ↦ −z in quantum cohomology,

following the relation ch(q) = e−z of Remark IV.2.2.2. This time, the fixed points of the involution are q = 1
and q = −1.
Proposition IV.2.2.7 ([IMT15], Proposition 2.3). The endomorphism SKth ∶ (FKth,g)→ (FKth,G) is an

isometry, i.e. for all i, j ∈ {0, . . . ,N}, we have

Gτ (SKth(φi), SKth(φj)) = g(φi, φj) (IV.2.2.8)

Moreover, we have

TKth = (SKth)−1
Proof. For all i, j, k ∈ {0, . . . ,N},

We want to compare the Levi–Civita connection of the metric Gτ on U with the quantum connection.

Denote by FKth
∣q=−1 the restriction of the trivial bundle FKth to the hypersurface U × {q = −1} ≃ U . We have

an isomorphism ϕ between the trivial bundles TU and FKth
∣q=−1 over U given by (for their sections)

ϕ ∶

RRRRRRRRRRRRR
TU FKth

∣q=−1

∂ti φi

We can build a fundamental for the quantum connection.

Definition IV.2.2.9 ([Giv00]). For i, j ∈ {0, . . . ,N}, define the formal function Sij by

Sij = gij + ∑
n≥0

d∈H2(X;Z)

1

n!
⟨φi, τ, . . . , τ, φj

1 − qL
⟩Kth

0,n+2,d
Qd

We will see below that the matrix (Sij) defines a fundamental solution of the differential equations

associated to the operators ∇∂ti .

Lemma IV.2.2.10 ([Lee04], Theorem 4). For all i, j, k, l ∈ {0, . . . ,N}, we have

N

∑
α,β=0

(∂ti∂tj∂tαF)Gαβ (∂tkSβl) =
N

∑
α,β=0

(∂ti∂tk∂tαF)Gαβ (∂tjSβl)

Definition IV.2.2.11 ([IMT15]). We define the endomorphisms SKth, TKth ∈ End(QK(X))⊗C((q)) such
that

Gτ (SKth(φi), φj) = Sij g(φi, TKth(φj)) = Sij
Notation. Let f(q) be an expression depending on the coordinate q (e.g. Sij). We will write f(q) ∶= f(q−1).
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The endomorphisms SKth and TKth have the explicit formulas below.

SKth(φi) = N

∑
α,β=0

SiαG
αβφβ

TKth(φi) = N

∑
α,β=0

Siαg
αβφβ

Proposition IV.2.2.12 ([IMT15], Proposition 2.3). The metric Gτ on F is ∇-parallel, i.e. given two

sections s1, s2 of F , we have for all i ∈ {0, . . . ,N},
∂tiGτ (s1, s2) =Gτ (∇∂tis1, s2) +Gτ (s1,∇∂tis2)

Proof. For all i, j, k ∈ {0, . . . ,N}, we have

Gτ (∇∂tkφi, φj) +Gτ (φi,∇∂tkφj) = ( 1

1 − q
+

1

1 − q
)Gτ(φi, φj ⋆τ φk) = ∂ti∂tj∂tkF = ∂tkGτ(φi, φj)

Where the first equality uses the Frobenius algebra property, and the third uses String Equation.

From these definitions we can instantly deduce the following adjunction property of SKth and TKth with

respect to the metrics Gτ and g :

Gτ(SKth(φi), φj) = g(φi, TKth(φj)) (IV.2.2.13)

Theorem IV.2.2.14 ([Lee04], Theorem 4). The endormorphisms SKth, TKth are fundamental solutions to

the set of differential equations indexed by i ∈ {0, . . . ,N} :
∇(1−q)∂ti ○ S

Kth = SKth
○ (1 − q)∂ti TKth

○ ∇(1−q)∂ti = (1 − q)∂ti ○ TKth

Remark IV.2.2.15. Notice that unit 1 is not ∇-flat, while it was the case in cohomology. This means that in

quantumK-theory, we do not have a Frobenius manifold with the same properties as in quantum cohomology.

Definition IV.2.2.16. Givental’s K-theoretical J-function is given by the expression

JKth(τ, q,Q) = SKth(τ, q,Q)−11 ∈ QK(X)⊗C((q))
= 1 + ∑

(n,d)≥0

N

∑
i,j=0

1

n!
⟨1, τ, . . . , τ, φi

1 − qL
⟩Kth

0,n+2,d
Qdgijφj

Where

⟨1, τ, . . . , τ, φi

1 − qL
⟩Kth

0,n+2,d
= ∑
m≥0

qm ⟨1, τ, . . . , τ,Lmn+2φi⟩Kth
0,n+2,d

Givental’s small J-function is given by restricting the expression above to τ = 0.
So far, our data fit in the diagram below.

(F,d,g) (F,∇,Gτ )

U × P1

SKth

∼

1JKth
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Example IV.2.2.17. for X = PN , let P = O(1) ∈K(PN). The K-theoretical small J-function is given by

jKth(q,Q) = 1 +∑
d≥0

N−1

∑
i=0
⟨1, (1 −P −1)i

1 − qL ⟩
Kth

0,n+2,d
Qdϕi

Where ϕi is the metric-dual of (1 −P −1)i with respect to g :

ϕ0 = (1 −P −1)N
ϕi = P −(N−i)(1 −P −1) if i ≠ 0

A computation gives

jKth(q,Q) = ∑
d≥0

Qd

∏dr=1 (1 − qrP −1)N+1
Where

1

1 − qrP −1
= 1

(1 − qr) + qr(1 −P −1) =
1

1 − qr
N

∑
m=0
( qr

1 − qr
(1 − P −1))m ∈K (PN)⊗C((q))

The computation of jKth uses fixed point localisation in equivariant K-theory, see [GL03, Giv].

IV.2.3 Building q-shift operators on quantum K-theory

In this subsection we will follow [IMT15], Subsection 2.5.

The q-difference structure on quantum K-theory was first found by A. Givental and Y. P. Lee for flag

manifolds in [GL03], and they were able to identify it to a difference Toda lattice. For a general target X , it

is obtained by A. Givental and V. Tonita in [GT14].

This q-difference structure should play the role of the Divisor Axiom in K-theory. In [GT14], Givental–

Tonita show that because of the Divisor Axiom, one can find some differential operators acting on quantum

cohomology. Then, using a Riemann–Roch theorem, they send these operators to quantum K-theory and

realise they become q-difference operators. More precisely, they show that the tangent spaces to Givental’s

Lagrangian cone in quantum K-theory is preserved by q-difference operators denoted by P −1j q
Qj∂Qj for

j ∈ {1, . . . , r} (see the two definitions below for notations).

Definition IV.2.3.1. Let j ∈ {1, . . . , r}. We denote by qQj∂Qj the q-difference operator that acts on functions

f = f(Q1, . . . ,Qr) by
(qQi∂Qi f) (Q1, . . . ,Qr) = f(Q1, . . . ,Qj−1, qQj ,Qj+1, . . . ,Qr)

Definition IV.2.3.2 ([IMT15]). Let j ∈ {1, . . . , r}. Denote by P −1j ∈ End(K(X)) the map ψ ↦ φj ⊗ψ. The
q-shift operator Aj is given by the expression

Aj = SKth(q, t,Q) ○ P −1j q
Qj∂Qj ○ (SKth)−1 (q, t,Q)

= SKth(q, t,Q) ○ (P −1j q
Qj∂Qj (SKth)−1) (q, t,Q) ○ qQj∂Qj

This expression defines an automorphism∗ Aj of QK(X)⊗C[q, q−1].
∗This is a consequence of Givental–Tonita’s quantum Riemann–Roch theorem, see [GT14], Section 9, Theorem. This theorem

is used in the definition of Aj to justify using in the right hand sides the endomorphism SKth(q, t,Q) instead of SKth(q, t, qQ).

See also the diagram below Proposition IV.2.3.6.
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Our main motivation for introducing that q-shift operator is that it preserves flat sections.

Theorem IV.2.3.3 ([IMT15], Equation 2, Proposition 2.6). The endomorphisms S and T are fundamental

solutions to the set of q-difference equations indexed by j ∈ {1, . . . , r}
SKth

○ P
−1
j q

Qj∂Qj =Aj ○ SKth P −1j q
Qj∂Qj ○ T

Kth = TKth
○ Aj (IV.2.3.4)

Furthermore, let i ∈ {0, . . . ,N}. The q-shift operator Ai and the derivative ∇q∂ti satisfy the compatibility

identity

[Aj ,∇∂ti ] = 0 (IV.2.3.5)

Proposition IV.2.3.6 ([IMT15], Proposition 2.6). The compatibility of the metric Gτ and the q-shift oper-

ator is given by the identity

q
Qj∂QjGτ(φ,ψ) =Gτ (Ajφ,A−1j ψ)

We can add the q-shift operators to our previous diagram.

(F,d,g) (F,∇,Gτ)

U × P1

SKth

∼P−1j q
Qj∂Qj Aj

1JKth

Example IV.2.3.7. for X = PN , let P = O(1) ∈K(PN). The K-theoretical small J-function was given by

jKth(q,Q) = ∑
d≥0

Qd

∏dr=1 (1 − qrP −1)N+1
It satisfies the q-difference equation

[(1 − P −1qQ∂Q)N+1 −Q] jKth(q,Q) = 0
Which should be compared to the relation

(1 −P −1)N+1 −Q = 0 ∈ QK(PN)
To mirror Example III.2.3.20, it can be convenient to modify the endomorphisms S,T so that in the

q-difference equations, the operator P ±1j q
Qj∂Qj is replaced by qQj∂Qj . In [IMT15], this is done by introducing

a shift by f(q,Qj) = φ± log(Qj)/ log(q)
j , which satisfies qQj∂Qj f(q,Qj) = φ±1j f(q,Qj). In this thesis, we will use

a different function which has the same purpose: they are both solutions of the q-difference equation.

Definition IV.2.3.8 ([IMT15]). We consider the new endomorphisms S̃Kth, T̃Kth defined by

S̃Kth = SKth
○

r

∏
j=1

φ
ℓq(Qj)
j T̃Kth = r

∏
j=1

φ
−ℓq(Qj)
j ○ T

Kth

Where

φ
−ℓq(Qj)
j = ∑

k≥0
(−1)k(ℓq(Qj)

k
)(1 − φ−1j )k = ∑

k≥0
(−1)k ( 1

k!

k−1

∏
r=0
(ℓq(Q) − r)) (1 − φ−1j )k
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And

ℓq(Qj) = −Qjθ
′
q(Qj)

θq(Qj)
θq(Qj) =∏

r≥0
(1 − qr+1)(1 + qrQj)(1 + qr+1

Qj
)

We also do the same for the J-function. We set

J̃Kth = r

∏
j=1

φ
−ℓq(Qj)
j ○ J

Kth

We refer to Subsection V.2.1 for more details on this special function. One should understand the

product∏rj=1 φ
−ℓq(Qj)
j as the K-theoretical analogue of term e−τ2/z in the formula of SH , JH for cohomological

Gromov–Witten theory). This comparison will be explained in the last chapter. Meanwhile, we invite the

reader to compare the formulas for the small J-functions of P2 given in Examples VI.2.1.2 and VI.2.1.3.

Corollary IV.2.3.9. The endomorphism S̃, T̃ are fundamental solutions of the set of q-difference equations

indexed by j ∈ {1, . . . , r}
S̃Kth ○ q

Qj∂Qj = Aj ○ S̃Kth q
Qj∂Qj ○ T̃Kth = T̃Kth ○ Aj

These results fit in the following diagram

(F,d,g) (F,∇,Gτ )

U × P1

S̃Kth

∼q
Qj∂Qj Aj

1J̃Kth

(IV.2.3.10)
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Chapter V

Regular singular q-difference equations

In this chapter, we begin by giving a brief overview of (analytic) q-difference equations, which the reader

might not be familiar with. We want to give the results necessary to understand the main theorem which

relates the q-difference module in quantum K-theory with the differential module in quantum cohomology.

This chapter is organised as follows:

• In Section V.1, we work some examples to motivate the general theory.

• In Section V.2, we introduce the main definitions for q-difference equations. Then, we focus on the

class of regular singular q-difference equations. We explain how they are solve and their confluence

phenomenon.

• In Section V.3, we discuss the analogue of monodromy of regular singular q-difference equations. This

section is not necessary for the understanding of the main theorem.

V.1 First two examples

In this section we will work on two q-difference equations. The aim of the subsection is to introduce the

basics of the analytical theory of q-difference equations: the space of functions in which we look for solutions,

special functions needed to build solutions, and the analogue of the characters (Q↦ Qµ).
V.1.1 Finding solutions which are q-characters

Definition V.1.1.1. LetM(C) be the field of meromorphic functions on C. Fix q ∈ C, ∣q∣ < 1 and n ∈ Z>0.
Let qQ∂Q be the q-difference operator acting on functions f ∶ C → C by (qQ∂Qf) (Q) = f(qQ). A linear

q-difference system is a functional equation

qQ∂QXq(Q) = Aq(Q)Xq(Q)
where Xq is a column vector of n complex functions of input Q, and A ∈Mn(M(C)).

The rank of this q-difference system is defined to be the rank of the matrix Aq.

Remark V.1.1.2. Let us discuss briefly our choice to take q ∈ C, ∣q∣ < 1. Suppose that q is a rth root of unity,

for some r ∈ Z≥0. Then, we have (qQ∂Q)r = Id. Therefore, having Arq = In is a necessary condition for the

47
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q-difference equation qQ∂QXq(Q) = Aq(Q)Xq(Q) to have a non trivial solution. To avoid having to deal with

this condition, we set ∣q∣ ≠ 1 and choose the inner side of the unit circle. Our results will still hold on the

outer side after replacing q by q−1. We could also consider the case ∣q∣ = 1, q not root of unity, however it is

more technical. We refer to [DV09]

Let λq ∈ C∗ be some complex number, which may depend of the parameter q. In this subsection, our goal

is to understand solutions of the rank 1 q-difference equation

qQ∂Qfq(Q) = λqfq(Q) (V.1.1.3)

Definition V.1.1.4. A solution of the q-difference equation qQ∂Qfq(Q) = λqfq(Q) is called a q-character.

Remark V.1.1.5. To see the necessity for λq to depend on q, and to motivate the choice of name in the

definition above, we will see in Proposition V.2.4.2 that if limq→1
λq−1
q−1 = µ ∈ C∗, then

lim
q→1

eq,λq
(Q) = Qµ

This statement is actually not true in general and needs to be refined in most situations. However, in the

next subsection, we will see an example where this kind of limit can be directly computed.

Solutions in C[[Q]][Q−1]
Proposition V.1.1.6. The q-difference equation (V.1.1.3) only has non trivial solutions in C[[Q]][Q−1] if
λq = qk for some integer k ∈ Z. If this condition is satisfied, then the C-vector space of solutions is spanned

by the function

fq(Q) = Qk
Proof. Assume that fq(Q) = ∑d≥k fd(q)Qd for some k ∈ Z. If fq is a solution of the q-difference equation

(V.1.1.3), then for all d ≥ k, qdfd = λqfd. This is only possible if fq = 0 or if λq = qk0 for some k0 ∈ Z, and
then fq(Q) = Qk0 up to a constant.

To get non trivial solutions for every λq ≠ 0, we need to look for solutions in a bigger space: we are going

to allow our solutions to have an essential singularity at Q = 0
Notation. We denote byM(C∗) the field of meromorphic function on C∗. The germ of such functions at 0

is denoted byM(C∗,0) = C{Q,Q−1}, the space of convergent Laurent series defined on a punctured disk at

0.

Solutions in M(C∗)
We will build solutions using a special function which we introduce below (note that it is not a q-character).

Definition V.1.1.7 ([Mum83]). Jacobi’s theta function θq is the complex function defined by

θq(Q) = ∑
d∈Z

q
d(d−1)

2 Qd

Since ∣q∣ < 1, this defines a convergent Laurent series θq(Q) ∈ C{Q,Q−1}. The computation of the

convergence rays give that the function θq is defined for any Q ≠ 0.
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Proposition V.1.1.8 ([Mum83]). Jacobi’s theta function θq is a solution of the rank 1 q-difference equation

qQ∂Qθq(Q) = 1

Q
θq(Q)

Proof. We compute each side of this equality individually.

1

Q
θq(Q) =∑

d∈Z
q

d(d−1)
2 Qd−1 =∑

d∈Z
q
(d+1)d

2 Qd

qQ∂Qθq(Q) =∑
d∈Z

q
d(d−1)

2 (qQ)d =∑
d∈Z

q
(d+1)d

2 Qd

Definition V.1.1.9 ([Sau00]). We define the function eq,λq
∈M(C∗) by

eq,λq
(Q) = θq(Q)

θq(λqQ) ∈M(C
∗)

Lemma V.1.1.10. Denote by Fun(C) the ring of complex functions. The q-difference operator qQ∂Q ∶
Fun(C) → Fun(C) is a ring automorphism.

Proposition V.1.1.11 ([Sau00]). The function eq,λq
is a solution of the q-difference equation qQ∂Qfq(Q) =

λqfq(Q).
Proof. Using Proposition V.1.1.8 and Lemma V.1.1.10, we have

qQ∂Qeq,λq
(Q) = λqQθq(Q)

Qθq(λqQ) = λqeq,λq
(Q)

We have exhibited a non trivial solution eq,λq
of the q-difference equation (V.1.1.3). To find the others,

notice that we can obtain another solution by multiplying eq,λq
with a solution of the q-difference equation

qQ∂Qfq(Q) = fq(Q). Let us describe the solution space of qQ∂Qfq(Q) = fq(Q).
The case λq=1

Definition V.1.1.12. A function f which is a solution of the q-difference equation qQ∂Qfq(Q) = fq(Q) will
be called a q-constant.

Remark V.1.1.13. The Remark V.1.1.5 in this case (µ = 0) says that the limit when q tends to 1 of q-constants

will give us constant functions.

Proposition V.1.1.14. The solution space of the q-difference equation qQ∂Qfq(Q) = fq(Q) is given by the

space of meromorphic functions on the elliptic curve C∗/qZ.
Proof. We look for functions fq that are meromorphic on C∗ that satisfy for any k ∈ Z, fq(qkQ) = fq(Q). We

can identify the solutions to this q-difference equation with functions on the quotient Eq ∶= C∗/qZ, the action

of qZ being given by the multiplication qk ⋅ z = qkz.
The space C∗/qZ has the structure of an elliptic curve. Take τ ∈ H such that e2iπτ = q. The elliptic curve

C∗/qZ is related to the usual elliptic curve C/ (Z ⋅ 1⊕Z ⋅ τ) by
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C C∗

C

Z⋅(1,τ)
C
∗

qZ
=∶ Eq

exp

ẽxp
∼

Therefore, the solutions to the q-difference equation qQ∂Qf(Q) = f(Q) which are meromorphic on C∗ is given

by the space of meromorphic functionsM(Eq).
Remark V.1.1.15. This space of functions strictly contains the space of constant functions. To give an

example of a non constant function which is a q-constant, take λ,µ ∈ C∗ − qZ, λ/µ ∉ qZ, and consider

eq,λq
(Q)eq,µ(Q)
eq,λqµ(Q)

Using Lemma V.1.1.10, we obtain the corollary below.

Corollary V.1.1.16. Let qQ∂Qfq(Q) = Aq(Q)fq(Q) be a q-difference equation. Then, the set of its solutions

in M(C∗) has the structure of a M(Eq)-vector space.

Conclusion

We return to the general case λq ≠ 0.
Proposition V.1.1.17. The solution space of the q-difference equation (V.1.1.3) : qQ∂Qfq(Q) = λqfq(Q) is
theM(Eq)-vector space of dimension 1 spanned by eq,λq

.

Proof. According to Proposition V.1.1.11, the function eq,λq
is a q-character. Using Proposition V.1.1.14,

the solution space has the structure of aM(Eq)-vector space. What remains is to show that the dimension

of this vector space is given by the rank of the q-difference equation which we admit for now, cf Proposition

V.2.1.3.

Remark V.1.1.18. Later, we will explain how confluence relates the q-characters eq,λq
to the characters

(Q↦ Qµ) of differential equations; see Proposition V.2.4.2.

V.1.2 An example to introduce confluence

The goal of this subsection is to introduce the confluence of q-difference equations on an example where the

limits are not too technical. This time, we consider the rank 1 q-difference equation

qQ∂Qfq(Q) = (1 −Q)fq(Q) (V.1.2.1)

Let us build a solution inM(C∗).
Definition V.1.2.2. The q-Pochhammer symbol is the complex function defined by, for d ∈ Z≥0

(Q; q)0 = 1
(Q; q)d = d−1∏

r=0
(1 − qrQ)

(Q; q)∞ =∏
r≥0
(1 − qrQ)
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Proposition V.1.2.3. The function fq defined by

fq(Q) = 1

(Q; q)∞
is a solution of the q-difference equation (V.1.2.1)

Proof. We have

qQ∂Q(Q; q)∞ =∏
r≥0
(1 − qr+1Q; q) = 1

1 −Q
(Q; q)∞

We remark that the function fq has poles at complex numbers of the form Q = qk for k ∈ Z≤0.
The idea for confluence of q-difference lies in the following computation. Introduce another q-difference

δq by

δq = q
Q∂Q − Id
q − 1

Then, for any k ∈ Z, applying the q-difference operator δq to the monomial Qk gives

δqQ
k = qkQk −Qk

q − 1
= (1 + q +⋯ + qk−1)Qk

Taking the limit when q tends to 1 gives

lim
q→1

δqQ
k = kQk = Q∂QQk

Definition V.1.2.4. We say the q-difference operator δq has the formal limit Q∂Q when q tends to 1 because

of the above computation: for any monomial Qk, we have

lim
q→1

δqQ
k = Q∂QQk

Trying to apply this principle to our example, we rewrite the q-difference equation (V.1.2.1) as

qQ∂Q − Id
q − 1

fq(Q) = Q

1 − q
fq(Q)

Notice that the coefficient in front of fq(Q) in the right hand side does not have a limit when q tend to one.

this leads us to introduce instead the q-difference equation

qQ∂Qfq(Q) = (1 − (1 − q)Q)fq(Q) (V.1.2.5)

This time, this q-difference equation can be rewritten as

qQ∂Q − Id
q − 1

fq(Q) = Qfq(Q)
Writing formally f̃(Q) = limq→1 fq(Q), we obtain the differential equation below as a formal limit of the

q-difference (V.1.2.5) when q tends to 1.

Q∂Qf̃(Q) = Qf̃(Q)
Furthermore, the q-difference (V.1.2.5) has solutions spanned overM(Eq) by

gq(Q) = fq ((1 − q)Q) = 1

((1 − q)Q; q)∞
Let us try to compute limq→1 gq(Q) for a given Q near zero.
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Proposition V.1.2.6. (i) For ∣Q∣ < 1, the function gq has the Taylor expansion at Q = 0

gq(Q) = ∑
d≥0

(1 − q)d
(q; q)d Q

d

(ii) For ∣Q∣ < 1, we have the following pointwise convergence

lim
q→1

gq(Q) = eQ
Proof. (i) We are going to show instead that

fq(Q) = ∑
d≥0

1

(q; q)dQ
d

We show that the Taylor series of the right hand side hq(Q) ∶= ∑d≥0 1
(q;q)d

Qd is a solution of the q-difference

equation (V.1.2.1), which was the equation qQ∂Qfq(Q) = (1 −Q)fq(Q). Indeed, we have

qQ∂Q (∑
d≥0

1

(q; q)dQ
d) = ∑

d≥0

qd

(q; q)dQ
d

(1 −Q)(∑
d≥0

1

(q; q)dQ
d) = 1 +∑

d≥1
( 1

(q; q)d −
1

(q; q)d−1)Q
d = ∑

d≥0

1 − (1 − qd)
(q; q)d Qd

Therefore, the functions fq and hq are solutions of the same rank 1 q-difference equation, so they are related

by a q-constant by Proposition V.2.1.3. Note that fq ∈ C{Q} as it is a convergent limit of inverses of finite

q-Pochhammer symbols. We also have fq(0) = hq(0) = 1. Thus, by Proposition V.1.1.6, the q-constant

relating the solutions fq and hq is necessarily the constant function 1.

(ii) We use (i) to compute the limit of the function gq. We have

lim
q→1

(1 − q)d
(q; q)d =

1

d!

From which we can deduce the wanted result.

Notice that limq→1 gq = exp is indeed a solution of the formal limit differential equation ∂Qf̃(Q) = f̃ . This
observation will be formalised in the Theorem V.2.4.7.

V.2 Survey of the theory of regular singular q-difference equations

The aim of this section is to give definitions related to the study of q-difference equations. After giving basic

definitions, we review the theory of regular singular q-difference equations. Similarly to differential equations,

solutions to a regular singular q-difference will exhibit polynomial growth properties at the singularity. We

will begin by showing how to find a basis of solutions for such q-difference equation. Then, we are interested

in describing how a q-difference equation is a q-unfolding of a differential equation, which is a phenomenon

referred as confluence. This phenomenon was first described in the easy case of Subsection V.1.2. The

main result will be that if such a q-difference equation admits a formal limit when q → 1, then it admits

a fundamental solution whose limit is a fundamental solution of the limit differential equation. The main

references for this section are [Sau00] and [HSS16].
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V.2.1 Fundamental solution, q-gauge transform and q-pullback

In this subsection, we define some basic notions in the theory of q-difference equations.

Remark V.2.1.1. We will actually restrict ourselves to finding solutions that are germs at Q = 0 or Q =∞ for

the following reason : if a function fq is a solution of a q-difference equation qQ∂Qfq(Q) = aq(Q)fq(Q) and
has a singularity at some Q0 ≠ 0,∞, then fq has a singularity at any complex number Q0q

k.

From now on we will be working all the time locally at Q = 0. Our results will also hold for Q =∞.

Definition V.2.1.2. Let (Eq) ∶ qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference system, with Aq ∈Mn (M(C)).
We define the solution space of this q-difference equation by

Sol (Eq) = {Xq ∈ (C{Q,Q−1})n ∣ qQ∂QXq(Q) = Aq(Q)Xq(Q)}
By Corollary V.1.1.16, this set has the structure of aM(Eq)-vector space.

Proposition V.2.1.3 ([HSS16], Theorem 2.3.1 p.118). Let (Eq) ∶ qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-

difference system. Then, we have

dimM(Eq) (Sol (Eq)) ≤ rank(Aq)
Definition V.2.1.4. Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference system. A fundamental solution of

this system is a matrix Xq ∈ GLn (C{Q,Q−1}) such that qQ∂QXq(Q) = Aq(Q)Xq(Q).
Let us define gauge transforms and pullbacks for q-difference equations. We will only use pullbacks by

isomorphisms so we will give an easier definition.

Remark V.2.1.5. In the differential case, let ∇ = d + A be a connection on a bundle F → X (we have

A ∈Mn(ΩU) where U is a trivialising open for F ). Given a base change P ∈ Γ(U,GLn(OX)), the connection

matrix A in the new base becomes

P ⋅ [A] ∶= P −1AP +P −1dP
The matrix P ⋅ [A] is called the gauge transform of A by P .

Definition V.2.1.6. Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference system. Consider a matrix Pq ∈
GLn (C{Q,Q−1}). The gauge transform of the matrix Aq by the gauge transformation Pq is the matrix

Pq ⋅ [Aq] ∶= (qQ∂QPq)AqP −1q
A second q-difference system qQ∂QXq(Q) = Bq(Q)Xq(Q) is said to be equivalent by gauge transform to the

first one if there exists a matrix Pq ∈ GLn (C{Q,Q−1}) such that

Bq = Pq ⋅ [Aq]
Remark V.2.1.7. We can retrieve the formula for the q-gauge transform by computation. Consider a q-

difference system qQ∂QXq(Q) = Aq(Q)Xq(Q) and a matrix Pq ∈ GLn (C{Q,Q−1}). Denote Yq = PqXq.

Then, we have

qQ∂QYq = qQ∂Q (PqXq) = (qQ∂QPq) (qQ∂QXq) = (qQ∂QPq)AqXq = [(qQ∂QPq)AqP −1q ]Yq
Definition V.2.1.8. Let (Eq) ∶ qQ∂QXq(Q) = Aq(Q)Xq(Q) be a q-difference system and let f ∶ C → C be

an isomorphism. The q-pullback (f∗Eq) of (Eq) by f is the q-difference system given by

(f∗Eq) ∶ qQ∂QXq(Q) = Aq(f−1(Q))Xq(Q)
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Definition V.2.1.9. A system qQ∂QXq(Q) = Aq(Q)Xq(Q) is regular if Aq(0) is diagonal and if its eigen-

values are of the form qk for k ∈ Z≥0
Example V.2.1.10 (Proposition V.1.1.6). Let k ∈ Z≥0 and consider the q-difference equation

qQ∂Qfq(Q) = qkfq(Q)
Then, the solutions of this q-difference equation are spanned by the function (Q↦ Qk).
Definition V.2.1.11. A system qQ∂QXq(Q) = Aq(Q)Xq(Q) is said to be regular singular at Q = 0 if there

exists a q-gauge transform Pq ∈ GLn (C{Q,Q−1}) such that the matrix (Pq ⋅ [Aq]) (0) is well-defined and

invertible: Pq ⋅ [Aq] (0) ∈ GLn(C).
Remark V.2.1.12. In [HSS16], such a q-difference system is called fuchsian at 0. A q-difference system is

strictly fuchsian at 0 if its associated matrix is already invertible without the need of a q-gauge transform.

Example V.2.1.13 ([IMT15, GL03]). Let us considerate the q-difference system obtained from the q-difference

equation of the small K-theoretical J-function of P2. The q-difference system given by

qQ∂QXq(Q) =
⎛⎜⎜⎝

0 1 0

0 0 1

1 −Q −3 3

⎞⎟⎟⎠Xq(Q)

is regular singular at Q = 0.
Let us give a criteria for when a q-difference equation is regular singular at Q = 0. This critera is the

analogue of Fuchs’ condition for differential equation ([Sab02], Théorème 4.3)

Proposition V.2.1.14 ([HSS16]). Let P (qQ∂Q) = ∑nk ak(q,Q) (qQ∂Q)k be a q-difference operator.

(i) The q-difference equation P (qQ∂Q) fq(Q) = 0 can be vectorised to a q-difference system qQ∂QXq(Q) =
Aq(Q)Xq(Q) where Aq is companion matrix of the operator P . The resulting q-difference system is

qQ∂Q

⎛⎜⎜⎜⎜⎜⎝

fq(Q)
qQ∂Qfq(Q)

⋮

(qQ∂Q)n−1 fq(Q)

⎞⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

⋮ 0 ⋱ 0

0 ⋯ ⋯ ⋯ 1

− a0
an

− a1
an

⋯ ⋯ −an−1
an

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

fq(Q)
qQ∂Qfq(Q)

⋮

(qQ∂Q)n−1 fq(Q)

⎞⎟⎟⎟⎟⎟⎠
(ii) We denote by val0(ak)) the Q-adic valuation of the polynomial ak, i.e. the lowest integer α ∈ Z ∪
{+∞} such that (Qαak(Q))∣Q=0 ≠ 0. The q-difference system associated to the q-difference equation

P (qQ∂Q) fq(Q) = 0 is regular singular if and only if val0(a(0)) − val0(a(n)) = 0, and for every k ∈
{1, . . . , r − 1}, val0(a(k))) − val0(a(n)) ≥ 0

V.2.2 Special functions to solve regular singular q-difference equations

We define some specials functions required to construct fundamental solutions for regular singular q-difference

systems. We recall that to build a fundamental solution in the case of a regular singular differential system,

we need to use the functions (Q ↦ Qµ) and (Q ↦ log(Q)). We are going to give q-analogues of these

functions.
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Recall that in Definition V.1.1.7, we defined Jacobi’s theta function by

θq(Q) =∑
d∈Z

q
d(d−1)

2 Qd

This function satisfies by Proposition V.1.1.8 the q-difference equation qQ∂Qθq(Q) = 1
Q
θq(Q).

We also recall the q-characters below.

Definition V.2.2.1 (cf V.1.1.9). Let λq ∈ C∗. The q-character associated to λq is the function eq,λq
∈M(C∗)

defined by

eq,λq
(Q) = θq(Q)

θq(λqQ) ∈M(C
∗)

By Proposition V.1.1.11, the function eq,λq
satisfies the q-difference equation qQ∂Qeq,λq

(Q) = λqeq,λq
(Q).

Definition V.2.2.2. The q-logarithm is the function ℓq ∈M(C∗) defined by

ℓq(Q) = −Qθ
′

q(Q)
θq(Q)

Proposition V.2.2.3. The function ℓq is a solution of the q-difference equation

qQ∂Qℓq(Q) = ℓq(Q) + 1
Proof. We obtain the wanted identity after deriving the q-difference equation satisfied by Jacobi’s theta

function θq. By Proposition V.1.1.8, we have

qθ′q(qQ) = 1

Q
θ′q(Q)− 1

Q2
θq(Q)

Which gives

qQ∂Q (−Qθ′q(Q)
θq(Q) ) =

−qQ ( 1
qQ
θ′q(Q) − 1

qQ2 θq(Q))
1
Q
θq(Q) = ℓq(Q) + 1

Remark V.2.2.4. Note that this q-difference equation is not a linear q-difference system as in Definition

V.1.1.1. To understand ℓq as a solution of a q-difference system, we should instead consider the q-difference

system

qQ∂Q
⎛
⎝
fq(Q)
gq(Q)

⎞
⎠ =
⎛
⎝
1 0

1 1

⎞
⎠
⎛
⎝
fq(Q)
gq(Q)

⎞
⎠

Notice that fq is a q-constant and gq satisfies q
Q∂Qgq = gq+fq. Therefore, solutions of this q-difference system

are given by
⎛
⎝
1

0

⎞
⎠ and

⎛
⎝

1

ℓq(Q)
⎞
⎠.

V.2.3 Fundamental solution of a regular singular q-difference equation

The strategy to construct a fundamental solution of a regular singular q-difference equation is the same as

for differential equations. As a reminder, we give a sketch of this strategy for differential equations.
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Fundamental solution of a regular singular differential equation

Definition V.2.3.1. Let ∂QX(Q) = A(Q)X(Q) be a differential system, where A ∈ Mn(C(Q)). A funda-

mental solution of this differential system is a matrix X ∈ GLn (C{Q} [Q−1]) such that

∂QX(Q) = A(Q)X(Q)
Definition V.2.3.2. A complex function f ∶ C → C has polynomial (or moderate) growth at Q = 0 if there

exists a neighbourhood U of 0 and two constants d ∈ Z≥0,C ∈ R>0 such that for any Q ∈ U , we have

∣f(Q)∣ ≤ C ∣Q∣−n
Definition V.2.3.3. Consider a differential system ∂QX(Q) = A(Q)X(Q). This system is called regular

singular at Q = 0 if it admits a fundamental solution which has a pole at Q = 0, with polynomial growth at

this pole on small triangular sector.

Proposition V.2.3.4 ([Sab02], Subsections II.2.1 and II.2.6). For a regular singular system, there exists a

gauge transform F ∈ GLn (C{Q} [Q−1]), such that the connection matrix becomes

∂QX(Q) = 1

Q
B(Q)X(Q)

where the matrix B ∈Mn(C[Q]) has holomorphic coefficients.

Remark V.2.3.5. Consider a differential system ∂QX(Q) = A(Q)X(Q). The order of the pole at Q = 0 of

the matrix A does not immediately determine the nature of the complex number 0 as a singularity. Indeed,

following [Sab02], Exercise II.4.4, consider the gauge transform

P (Q) = ⎛⎝
Q−1 0

0 Q1

⎞
⎠

The differential system ∂QX(Q) = ⎛⎝
0 0
1
Q

0

⎞
⎠X(Q) is regular singular, as we see the logarithm as a solution,

but its gauge transform by the matrix P is the system given by ∂QX(Q) = ⎛⎝
Q−1 0

Q−3 Q−1
⎞
⎠ ,which appears to

be of order 3.

To construct a fundamental solution of a regular singular differential system, we are going to consider

first the case where the matrix B(Q) is constant in Q. In a second time, we will explain how this gives a

fundamental solution for any regular singular differential system.

Lemma V.2.3.6 ([Sab02], Chapter II, 2.6.). Consider a regular singular differential system ∂QX(Q) =
1
Q
BX(Q), where the matrix B is constant. Take the Jordan-Chevalley decomposition B =D +N where D is

semi-simple, N is nilpotent and D,N commute. Write the diagonalization D = P −1diag(λi)P . We define

QD ∶= P −1diag(Qλi)P
and

QN ∶= d

∑
k=0

1

k!
(N log(Q))d

Then, the matrix QDQN is a fundamental solution of the differential system ∂QX(Q) = 1
Q
BX(Q).
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Lemma V.2.3.7 ([Sab02], Chapter II, Propositions 2.11 to 2.13). Consider a regular singular differential

system ∂QX(Q) = 1
Q
B(Q)X(Q). Assume that the difference between any two distinct eigenvalues of the ma-

trix B(0) is not an integer. Then, there exists a gauge transform P ∈ GLn (C{Q} [Q−1]) which is recursively

computable such that

P ⋅ [B(Q)] = B(0)
Definition V.2.3.8. A a regular singular differential system ∂QX(Q) = 1

Q
B(Q)X(Q) is said to be non

resonant if the difference between any two distinct eigenvalues of the matrix B(0) is not an integer.

Theorem V.2.3.9 ([Sab02], Chapter 2, Theorem 2.8). Consider a regular singular differential system

∂QX(Q) = 1
Q
B(Q)X(Q). Assume that this system is also non resonant. Then, there exists a fundamental

solution X ∈ GLn (C{Q} [Q−1]) of the regular singular differential system.

Proof. We apply Lemma V.2.3.7 to our system and obtain a gauge transform P ∈ GLn (C{Q} [Q−1]).
Then, we can apply Lemma V.2.3.6 to the differential system ∂QX(Q) = 1

Q
B(0)X(Q) and obtain matrices

QD,QU , so that the product QDQU is a fundamental solution of ∂QX(Q) = 1
Q
B(0)X(Q).

Finally, the matrix PQDQU =∶ X is a fundamental solution of the starting 1differential system ∂QX(Q) =
1
Q
B(Q)X(Q).

Existence of a fundamental solution for regular singular q-difference equations

Definition V.2.3.10. We denote by qZ (resp. qR) the discrete (resp. continuous) q-spiral

qZ ∶= {qk ∣k ∈ Z} ⊂ C qR ∶= {qk ∣k ∈ R} ⊂ C
For a complex number λq ∈ C, we will also use the notation

λqq
Z ∶= {λqqk ∣k ∈ Z} ⊂ C

Definition V.2.3.11. Consider a regular singular q-difference system qQ∂QXq(Q) = Aq(Q)Xq(Q) and denote

by (λi) the eigenvalues of the matrix Aq(0). This q-difference system is said to be non (q-)resonant if for

every i ≠ j, we have λi

λj
∉ qZ.

Theorem V.2.3.12 ([Sau00],1.1.4). Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a regular singular q-difference sys-

tem. Assume that this q-difference system is non resonant. Then, there exists a fundamental solution of

Xq ∈ GLn (C{Q,Q−1}) of this q-difference equation expressed with functions eq,λq
and ℓq of Definitions

V.1.1.9 and V.2.2.2.

Sketch of proof. We start by recursively building a gauge transform Fq ∈ GLn (C{Q,Q−1}) sending the matrix

Aq(Q) to the constant matrix Aq(0). See [Sau00], Subsections 1.1.1 and 1.1.3, or [HSS16], Theorems 3.2.2

and 3.2.3 pp.127-129 for the construction.

Then, we find a fundamental solution for the q-difference system of constant matrix qQ∂QXq = Aq(0)Xq.

Take the Jordan-Chevalley decomposition of A(0) = DU where D is semi-simple, U is unipotent and D,U

commute. Take a basis change P to diagonalise D = P −1diag(λi)P . We define

eq,D ∶= P −1diag(eq,λi
(Q))P

Write U = eN , where N is nilpotent. We define

eq,U ∶=
∞

∑
d=0

1

k!
(ℓq(Q)N)d
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Then one can check that the product Fqeq,Deq,U =∶ Xq(Q) is a fundamental solution of the q-difference system

qQ∂QXq(Q) = Aq(Q)Xq(Q).
Recall that in the case of differential systems, solutions of a regular singular q-difference system at Q = 0

had polynomial growth at that singularity. Solutions of a regular singular q-difference system will also have

polynomial growth at Q = 0. Before giving a statement, we need to identify the poles of the special functions

eq,λq
and ℓq. We recall the notation for the q-Pochhammer symbol: (Q; q)∞ ∶=∏r≥0(1 − qrQ).

Proposition V.2.3.13 (Jacobi’s triple product identity, [Mum83]). For Q ∈ C∗, the following identity holds

θq(Q) = (q; q)∞(−Q; q)∞ (−q
Q

; q)
∞

Corollary V.2.3.14 ([Sau00]). (i) Jacobi’s theta function θq has an essential singularity at 0,∞. Its

zeroes are all single and at every complex number −qk for k ∈ Z.
(ii) Let λq ∈ C. The poles of the q-character eq,λq

are all simple and are given by the set −λ−1q q
Z.

(iii) The poles of the q-logarithm ℓq are all simple and are given by the set −qZ.

At last, we can give a statement on the growth of the solutions of a regular singular q-difference system.

These solutions will have polynomial growth along the continuous q-spirals νqR. However we have to make

sure the q-spiral we choose does not contain a pole of the solution.

Proposition V.2.3.15 ([HSS16], Theorem 3.1.7 p.127). Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a regular singular

q-difference system of rank n which is not resonant. For i ∈ {1, . . . , n}, denote by X(i) the i
th column of the

fundamental solution given by Theorem V.2.3.12. Choose ν ∈ C, ∣ν∣ = 1 such that the function below is well

defined:

fi,ν ∶
RRRRRRRRRRRR
(R,−∞) (C∗,0)

t X(i)(νqt)
Then, the function fi,ν has polynomial growth at t = −∞.

V.2.4 Confluence of a regular singular q-difference equation

In this last subsection we explain the confluence phenomenon for the class of regular singular q-difference

systems. The main idea is the following: take a regular singular q-difference system and its fundamental

solution Xq given by Theorem V.2.3.12. If the q-difference system admits a formal limit when q tends to 1

that is a regular singular differential system, then the limit limq→1Xq coincides with the fundamental solution

of the differential system given by Theorem V.2.3.9. The precise statement will be found in Definition V.2.4.4

and Corollary V.2.4.8.

Remark V.2.4.1. We recall that in Subsection V.1.2, we got a similar result in Proposition V.1.2.6. We

had (the q-pullback of) a q-difference equation whose solutions were spanned by gq(Q) = ((1 − q)Q; q)−1
∞
.

Furthermore, the function gq was pointwise convergent when q → 1 to a solution of the formal limit of the

q-difference equation for Q ≤ 1.
In general, these limits will be harder to obtain. One issue that arises is quickly is the behaviour of the

poles of our special function eq,λq
, ℓq when we consider q as a variable. One way to control the poles of these

functions is to fix q0 ∈ C∗, ∣q0∣ < 1, let q(t) = qt0, t ∈ (0,1] and compute limits when t → 0. By doing so,
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the discrete q-spirals q(t)Z are for all t > 0 subsets of the continuous q-spiral qR0 . Notice also that the set

C∗ − q(0)R is simply connected, so we can define a logarithm on it.

Proposition V.2.4.2 ([Sau00], Subsections 3.1.3 and 3.1.4). Let q0 ∈ C∗, ∣q0∣ < 1, let q(t) = qt0, t ∈ (0,1], and
consider λq(t), µ ∈ C∗ such that

λq(t)−1

q−1
→ µ. Then we have the asymptotics:

(i) Denote by log the logarithm on C∗ − (−1)qR0 , such that log(1) = 0. We have the uniform convergence on

any compact of C∗ − (−1)qR0
lim
t→0
(q(t) − 1)ℓq(t)(−Q) = log(Q)

(ii) We have the uniform convergence on any compact of C∗ − λq0q
R
0

lim
t→0

eq(t),λq(t)
(−Q) = Qµ

Confluence of the q-difference equation

Definition V.2.4.3. A regular singular q-difference system qQ∂QX = Aq(Q)X is said to be non resonant if

two different eigenvalues λi ≠ λj of the matrix A(0) satisfy λiλ−1j ∉ qZ
Definition V.2.4.4 ([Sau00] Section 3.2). Let q0 ∈ C, ∣q0∣ < 1, and set q(t) = qt0, for t ∈ (0,1]. A regular

singular, non q-resonant q-difference system qQ∂QX = Aq(Q)X is said to be confluent if it satisfies the four

conditions below. Set Bq(Q) = Aq(Q)−Id

q−1
, whose coefficients have poles Q1(q), . . . ,Qk(q) in the input Q. We

require that

1. The q-spirals satisfy ⋂ki=1Qi(q0)qR0 = ∅.
2. There exists a matrix B̃ ∈ GLn (C(Q)) such that

lim
t→0

Bq(t) = B̃
uniformly in Q on any compact of C∗ −⋃ki=0QiqR0 , where Q0 = 1.

3. This limit defines a regular singular, non resonant differential system

Q∂QX̃ = B̃X
with distinct singularities Q̃i = limt→0Qi(q).

4. Take all Jordan decompositions Bq(t)(0) = Pq(t)−1Jq(t)Pq(t) as well as B̃(0) = P̃ −1J̃ P̃ . We ask that

lim
t→0

Pq(t) = P̃
Let us discuss these hypotheses. The condition 1. says that two different poles Qi,Qj lie on different

continuous q-spirals. This implies that the limit differential system will have simple singularities given by

limt→0Qi(q).
Example V.2.4.5 (About condition 2.). Given a regular singular q-difference system qQ∂QX = Aq(Q)X ,

such system needs not to satisfy the existence of limt→0
Aq−Id

q−1
. For example, take the q-difference equation

qQ∂Qfq(Q) = (1 −Q)fq(Q) of Subsection V.1.2. We can easily see that this q-difference equation is regular

singular at Q = 0 while the matrix Bq(t) = −Q

q(t)−1
does not admit a limit when t → 0, so the q-difference

equation qQ∂Qfq(Q) = (1 −Q)fq(Q) fails condition 2.
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Example V.2.4.6 (About condition 3.). The q-difference equation

qQ∂Qfq(Q) = (1 + q − 1
Q + (q − 1)) fq(Q)

is singular regular at Q = 0 and admits a formal limit which is

Q∂Qf̃(Q) = 1

Q
f(Q)

whose solutions are spanned by e−
1

x , which has exponential growth at x = 0. This system is therefore singular

irregular.

For a counter-example where condition 4. fails, we refer to [Sau00], Subsection 3.3.2, Subsubsection

”Remarque préliminaire”.

Confluence of the solutions

Theorem V.2.4.7 ([Sau00], Section 3.3). Let q0 ∈ C, ∣q0∣ < 1, and set q(t) = qt0, for t ∈ [0,1]. Consider a

regular singular confluent q-difference system qQ∂QXq(Q) = Aq(Q)Xq(Q), whose limit system is Q∂QX(Q) =
B̃(Q)X(Q).

We assume that there exists a vector X0 ∈ Cn − 0, independent of q, such that Aq(t)X0 = X0 for all

t ∈ (0,1]. We also assume that we have a solution Xq of the q-difference system satisfying the initial condition

Xq(0) =X0.

Let X̃ be the unique solution of Q∂QX(Q) = B̃(Q)X(Q) satisfying the initial condition X̃(0) = X0. We

have

lim
t→0

Xq(t)(Q) = X̃(Q)
uniformly in Q on any compact of C∗ −⋃ki=0QiqR0 .

Applying this theorem to the fundamental solutions given by Theorems V.2.3.12 and V.2.3.9 gives the

corollary below.

Corollary V.2.4.8 ([Sau00], Subsections 3.2.4 and 3.4). Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a confluent

regular singular q-difference system. Denote by Xq the fundamental solution of the q-difference given by

Theorem V.2.3.12. The limit differential system Q∂QX̃ = B̃X also has a fundamental solution constructed

by Theorem V.2.3.9, which we denote by X̃ . Then, we have

lim
t→0
Xq(t) = X̃

Remark V.2.4.9. This corollary applies only to the fundamental solutions of Theorems V.2.3.12 and V.2.3.9.

For example, consider the q-difference equation qQ∂Qfq(Q) = fq(Q), which has formal limit ∂Qf̃ = 0. The

function Xq(Q) = 1
q−1

is a solution of this q-difference equation. However, it does not admit a limit when

t → 0. This function failed the requirements on the initial condition of Theorem V.2.4.7.

Definition V.2.4.10. Let qQ∂QX = AqX be a confluent q-difference system. A fundamental solution Xq is

confluent if limq→1Xq is a fundamental solution of the formal limit of qQ∂QX = AqX .
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When confluence fails

We close this subsection on what can be done if confluences fails because a limit is not well defined.

Remark V.2.4.11. Recall that in Subsection V.1.2, the example qQ∂Qfq(Q) = (1−Q)fq(Q) was not confluent
(see Remark V.2.4.5). Then, we studied the confluence of another q-difference equation, qQ∂Qfq(Q) = (1 −
(1 − q)Q)fq(Q). The second equation is the q-pullback of the first one by the isomorphism

RRRRRRRRRRR
C C

Q (1 − q)−1Q
Notice that this is the only q-pullback by an isomorphism of the form (Q↦ (1 − q)kQ) for k ∈ Z such

that, after q-pullback, the system has a limit which is both defined and non trivial.

When working on concrete example, a q-pullback of the same form (Q ↦ (1 − q)kQ) is always used when

a q-difference system fails the condition 2. for confluence. However, we could not find a statement which

guarantees the existence of a ”good” q-pullback.

Remark V.2.4.12. The q-difference equation qQ∂Qfq(Q) = fq(Q) is a regular singular confluent q-difference

system of formal limit ∂Qf̃(Q) = 0. The function fq(Q) = 1
q−1

is a solution of this q-difference equation,

however it is not confluent. However, let us consider the change of fundamental solution replacing fq by

(1 − q)fq. The rescaled solution (1 − q)fq = 1 is now confluent.

Notice that this is the only transformation of the form (fq ↦ (1 − q)kfq) for k ∈ Z such that the limit

when q → 1 of the rescaled solution is both defined and non trivial.

A similar situation can also be found in Proposition V.2.4.2 where the special function ℓq was rescaled to

(q − 1)ℓq to obtain a non trivial limit.

Let us give an informal summary of this section.

Summary. Let qQ∂QX = AX be a regular singular q-difference system (Definition V.2.1.11).

• This q-difference system is confluent if, up to some technicalities, its formal limit when q → 1 defines

a regular singular differential system (cf. Definition V.2.4.4). If that limit is not defined, we may try

to find a q-pullback after which it exists (cf. Remark V.2.4.11). In common situations, the q-pullback

that is used is of the form (Q↦ (1 − q)kQ), with k ∈ Z.
• If this q-difference system is confluent, it has a fundamental solution Xq given by Theorem V.2.3.12.

Also, the limit when q → 1 of this system defines a singular regular differential system, which has a

fundamental solution X̃ constructed by Theorem V.2.3.9. Then (cf. Corollary V.2.4.8),

lim
q→1
Xq = X̃

• A non trivial solution to a confluent q-difference system is confluent if it admits a non trivial limit when

q → 1 (cf. Definition V.2.4.10). If that limit is not defined, we may try to find a change of fundamental

solution after which it exists (cf. Remark V.2.4.12). In common situations, this change of fundamental

solution changes the non confluent fundamental solution Xq into the confluent fundamental solution

XqBq, where Bq ∈ GLn(M(Eq)) is a q-constant matrix.
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V.3 Monodromy of regular singular q-difference equations

In this subsection we discuss the q-analogue of monodromy for regular singular q-difference systems. Since

the contents of this subsection does not apply to the q-difference of Givental’s small K-theoretic J-function

of projective planes (see Example V.3.1.2), the reader interested in the comparison theorem can skip this

section. However, this subsection will be useful for the computation of the q-stokes matrices.

V.3.1 Birkhoff’s connection matrix

Definition V.3.1.1. A q-difference system qQ∂QXq(Q) = Aq(Q)Xq(Q) is fuchsian if it is regular singular

at Q = 0 and Q =∞.

Example V.3.1.2. The q-difference equation (1 − qQ∂Q)2fq(Q) = Qfq(Q) is regular singular at Q = 0 but is

not fuchsian. Define W = Q−1. This q-difference equation becomes

(1 − (qW∂W )−1)2 gq(W ) = 1

W
gq(W )

Which can be rewritten as q2W (qW∂W − 1)2 − (qW∂W )2gq(W ) = 0. This q-difference equation is not regular

singular at W = 0 by Proposition V.2.1.14.

Definition V.3.1.3. Let qQ∂QXq(Q) = Aq(Q)Xq(Q) be a fuchsian q-difference system. This q-difference

systems admits a fundamental solution X0(Q) at Q = 0 and a second one X∞(1/Q) at Q = ∞. Birkhoff’s

connection matrix (or q-monodromy) Pq is the ratio Pq(Q) = X0(Q) (X∞(1/Q))−1 ∈ GLn (M(Eq)).
Since Birkhoff’s connection matrix is the ratio of two fundamental solutions, it is invariant by gauge

transform. The data of Birkhoff’s connection matrix classifies fuchsian q-difference systems up to gauge

transform. For a precise statement, see [HSS16], Theorem 3.4.9 p.134.

Theorem V.3.1.4 ([Sau00], Section 4.3). Let qQ∂QXq(Q) = Aq(Q)Xq(Q) denote a fuchsian confluent q-

difference system such that the matrix Bq(Q) = Aq(Q)−Id

q−1
has poles Q1(q), . . . ,Qk(q). Let Pq ∈ GLn (M(Eq))

be the Birkhoff’s connection matrix of this system.

(i) Let Q0 = 1. The limit P̃ (Q) = limt→0Pq(t)(Q) is well defined on any compact of C∗ − ⋃ki=0 qR, and is

locally constant.

(ii) Define Q̃i ∶= limt→0Qi(q(t)) and let P̃i be the value of P̃ (Q) on the connected component whose boundary

is given by the q-spirals Qi(q0)qR0 and Qi+1(q0)qR0 . Then the monodromy Mi of the limit differential

system at Q̃i is given by the ratio P̃i
−1
P̃i−1.

V.3.2 Computing q-monodromy and its confluence on an example

In this subsection we give the computations for a given example. This subsection has no purpose in quantum

K-theory and can be skipped. However, we mention that this subsection contains two propositions that can

be helpful to compute the confluence of solutions, which are Propositions V.3.2.8 and V.3.2.10.

Consider the rank 1 q-difference equation

qQ∂Qfq(Q) = (1 + (q − 1)Q
(Q − 1)(Q − i)(Q + 1)) fq(Q) (V.3.2.1)
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We chose this q-difference equation because it admits the formal limit

∂Qf̃(Q) = 1

(Q − 1)(Q − i)(Q + 1) f̃(Q)
Solution at Q = 0. We check that the coefficient in front of fq in the right hand side is not an integer

power of q and well defined when Q = 0, so the q-difference equation is regular singular at Q = 0.
Proposition V.3.2.2. Let λq ∈ C∗,N > 0, and (αi) , (βi) ∈ (C∗)N . Consider the q-difference equation

qQ∂Qfq(Q) = λq∏i(1 − αiQ)∏i(1 − βiQ) fq(Q)
A solution to such a q-difference equation is given by

fq(Q) = eq,λq
(Q)∏i(βiQ; q)∞
∏i(αiQ; q)∞

Proof. Because of the compatibility of the q-difference operator qQ∂Q with multiplication, this is a consequence

of

qQ∂Q
1

(αQ; q)∞ =
1 − αQ
(αQ; q)∞

Corollary V.3.2.3. Let α1(q), α2(q), α3(q) ∈ C∗ be the inverses of the roots of the polynomial P (Q) =
(q − 1)Q + (Q − 1)(Q − i)(Q + 1). A solution of the q-difference (V.3.2.1) is given by

fq(Q) = (Q,q)∞(−iQ, q)∞(−Q,q)∞(α1(q)Q,q)∞(α2(q)Q,q)∞(α3(q)Q,q)∞
While the expression of the roots of the polynomial P (Q) = (q−1)Q+(Q−1)(Q− i)(Q+1) might be hard

to obtain (especially if P were to be degree > 4), we are only interested in computing their Taylor polynomial

in q − 1 of degree 1.

Solution at Q =∞ and connection formula. We set W = 1
Q
. Notice that qQ∂Q = (qW∂W )−1. Setting

gq(W ) = fq (W −1), the q-difference equation (V.3.2.1) becomes

qW∂W gq(W ) = (1 − qW )(1 − iqW )(1 − (−1)qW
(1 − α1(q)qW )(1 − α2(q)qW )(1 − α3(q)qW )gq(W ) (V.3.2.4)

Proposition V.3.2.5. A solution at W = 0 of the q-difference equation (V.3.2.4) is given by the function

gq(W ) = (qα1(q)−1W,q)∞(qα2(q)−1W,q)∞(qα3(q)−1W,q)∞(qW, q)∞(iqW, q)∞(−qW, q)∞
Proof. Same argument as in the Proposition V.3.2.3

Corollary V.3.2.6. Birkhoff’s connection matrix of the q-difference equation (V.3.2.1) is given by

Pq(Q) = θq(−Q)θq(iQ)θq(Q)
θq (−α1(q)Q) θq ((−α2(q)Q) θq ((−α3(q)Q)

Proof. Consequence of Jacobi’s triple product identity, see Proposition V.2.3.13.
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Confluence. We had seen that the q-difference equation (V.3.2.1) has the formal limit

∂Qf̃(Q) = 1

(Q − 1)(Q − i)(Q + 1) f̃(Q)
The solutions to this differential equation are spanned by the function

f̃(Q) = (Q − 1) 1

4
(1+i)(Q − i)− 1

2 (Q + 1) 1

4
(1−i) (V.3.2.7)

For confluence of solutions, we will need the Taylor polynomial in q − 1 of degree 1 for every root of

P (Q) = (q − 1)Q + (Q − 1)(Q − i)(Q + 1). We have three roots Q1,Qi,Q−1 which satisfy

Q1 = 1 + −1
2(1 − i)(q − 1)+ o(q − 1)

Qi = i + i
2
(q − 1) + o(q − 1)

Q−1 = −1 + 1

2(1 + i)(q − 1) + o(q − 1)
Therefore,

α1 = 1 + 1 + i
4
(q − 1) + o(q − 1) = 1(1 + 1 + i

4
(q − 1)+ o(q − 1))

α2 = −i + i
2
(q − 1) + o(q − 1) = −i(1 − 1

2
(q − 1) + o(q − 1))

α3 = −1 − 1 − i
4
(q − 1) + o(q − 1) = −1(1 + 1 − i

4
(q − 1) + o(q − 1))

Proposition V.3.2.8 ([Sau00]). Let Ω = C− qR0 ,Q0 ∈ Ω. Let Q1(q),Q2(q) ∈ Ω. Assume there exists complex

numbers α0, α1 ∈ C so that Qi(q(t)) = Q0q
αit+o(t)
0 .

Then, on Ω, we have the uniform convergence when t→ 0

lim
t→0

(Q1(q(t); q(t))∞(Q2(q(t)); q(t))∞ = (1 −Q0)α2−α1

Proof. See [Sau00], Subsection 3.1.7, Corollaire 3.

Corollary V.3.2.9. Let fq be the solution of the q-difference equation (V.3.2.1) given by Proposition V.3.2.3,

and let f̃ be the solution (V.3.2.7) of the limit differential equation. Set Ω = C − (qR ∪ iqR ∪ −qR). Then, on

any compact of Ω,

lim
t→0

fqt = f̃

Proposition V.3.2.10 ([Sau00]). Let Ω = C−qR0 ,Q0 ∈ Ω. Let Q1(q),Q2(q) ∈ Ω. Assume there exists complex

numbers α0, α1 ∈ C so that Qi(q(t)) = Q0q
αit+o(t)
0 .

Then, on Ω, we have the uniform convergence when t→ 0

θq(t)(Q1(q(t))
θq(t)(Q2(q(t)) = Q

α2−α1

0

Proof. See [Sau00], Subsection 3.1.7, Corollaire 1.
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Corollary V.3.2.11. Let Pq be Birkhoff’s connection ”matrix” of the q-difference equation (V.3.2.1). Set

Ω = C − (qR ∪ iqR ∪ −qR). Then, on any compact of Ω, we have the uniform convergence

lim
t→0

Pqt(Q) = (−Q) 1+i
4 (−iQ)− 1

2Q
1−i
4

We recall that that the logarithm used to define the characters Q↦Qα is the principal determination of

the logarithm on the simply connected subset C∗ − (−1)qR.
We give below a picture of the three connected components of Ω. If we denote by P̃i

up
, P̃i

down
the two

connected components bordering the singularity i, we remark that the computation (P̃idown)−1 P̃iup should

amount to the action of a loop around the singularity i on the solution of the differential equation.

1−1

i

The three connected components of Ω with the singularities of the differential system
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Chapter VI

Confluence of the q-difference

structure for SQK(PN)

In quantum cohomology, the I-function appears as a solution to a (differential) hypergeometric system. In

quantum K-theory, we see instead the apparition of q-hypergeometric series (see e.g. [Giv], V). Therefore, it

may be interesting to study the q-difference module structures in quantum K-theory. It turns out that the

q-difference module in quantum K-theory can be related to the differential module in quantum cohomology

using the confluence of q-difference equations. The goal of this chapter is explain this relation.

VI.1 Definitions revisited from the point of view of q-difference

equations

In this section we revisit the definitions related to Givental’s K-theoretical small J-function. We focus on

the q-difference structure given by this function, and try to apply the theory of the previous chapter.

VI.1.1 Solving the q-difference equation for the J-function

The goal of this subsection is to try to find the solutions of the q-difference equation of the J-function.

The main result of this subsection is Proposition VI.1.1.12, which states that Givental’s J-function is a

fundamental solution of its q-difference equation.

We begin by recalling the definition of the two Givental’s smallK-theoretical J-function, then we establish

their q-difference equations.

Definition VI.1.1.1 ([GL03]). Let X = PN and let P = O(1) ∈ K (PN) be the anti-tautological bundle.

Givental’s small J-function is the power series

JKth(q,Q) = ∑
d≥0

Qd

(qP −1; q)N+1d

∈K (PN)⊗C(q)[[Q]]

We recall that the q-Pochhammer symbol (qP −1; q)d is defined by ∏dr=1 (1 − qrP −1)

67
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Recall that the K-theory of PN is the ring ([Kar08], Theorem 2.5 p.190)

K (PN) = Z[P,P −1]/((1 −P −1)N+1)
Thus we can look for a basis of K (PN) in which we will decompose the value JKth(q,Q). We choose the

basis 1,1 −P −1, , . . . (1 −P −1)N .
Remark VI.1.1.2. The basis ((1 −P −1)i)

i
of K (PN) has two advantages.

(i) The ring generator 1 −P −1 is nilpotent which will be useful for definitions and computations.

(ii) We have the ring automorphism γ ∶ K (PN) ⊗ Q → H∗ (PN ;Q) defined by γ(1 − P −1) = H , where

H ∈H2 (PN ;Q) is the hyperplane class.

Example VI.1.1.3. Let us give the decomposition of the value JKth(q,Q) when X = P2. We have

(qP −1; q)d ∶= d

∏
r=1
(1 − qrP −1) = d

∏
r=1
((1 − qr) + qr(1 −P −1))

= d

∏
r=1
(1 − qr) + (1 −P −1) d

∏
r=1
(1 − qr) d

∑
j=1

qj

1 − qj
+ (1 −P −1)2 d

∏
r=1
(1 − qr) ∑

0≤i<j≤d

qi+j

(1 − qi)(1 − qj)
Therefore, in the power series JKth(q,Q), the coefficient attached to the to Qd is

(qP −1; q)−3d = 1

(q; q)3d
⎛⎜⎝1 + (1 − P

−1) ⎡⎢⎢⎢⎣−3
d

∑
j=1

qj

1 − qj

⎤⎥⎥⎥⎦ + (1 −P
−1)2
⎡⎢⎢⎢⎢⎣
6
⎛
⎝
d

∑
j=1

qj

1 − qj
⎞
⎠
2

− 3 ∑
0≤i<j≤d

qi+j

(1 − qi)(1 − qj)
⎤⎥⎥⎥⎥⎦
⎞⎟⎠

Notice that in the sum following (1 −P −1)i, for i ∈ {0,1,2}, each term is a fraction of the form below

qj1+⋯+ji

(1 − qj1)⋯(1 − qji)
We point out that this denominator consists of exactly i products, which will be important for the confluence

of the J-function.

Proposition VI.1.1.4 ([GL03]). The small J-function is a solution of the q-difference equation with K-

theoretical coefficients

[(1 −P −1qQ∂Q)N+1 −Q]JKth(q,Q) = 0
Where P −1 is the operator acting on K (PN) by tensor product with the class P −1 ∈K (PN).
Proof. For d > 0, notice that

(1 − P −1qQ∂Q)N+1 Qd

(qP −1; q)N+1d

= (1 − q
dP −1)N+1Qd

(qP −1; q)N+1d

= Qd

(qP −1; q)N+1d−1

Therefore,

[(1 −P −1qQ∂Q)N+1 −Q]JKth(q,Q) = ∑
d≥0

(1 − qdP −1)N+1Qd
(qP −1; q)N+1d

−∑
d≥1

Qd

(qP −1; q)N+1d−1

= (1 −P −1)N+1

We conclude using the relation (1 −P −1)N+1 = 0 in K (PN).
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Notice that the q-difference equation of Proposition VI.1.1.4 is not a q-difference equation in the sense of

Definition V.1.1.1: since we make use of the operator P −1, it is a q-difference equation with K-theoretical

coefficients. Therefore, it is convenient to introduce another J-function which will be a solution of the same

q-difference equation without any K-theoretical operator. We will refer to this function as the J-function

throughout this chapter.

Definition VI.1.1.5 ([IMT15]). Let X = PN and let P = O(1) ∈ K (PN) be the anti-tautological bundle.

Givental’s (small, modified) J-function is the function

J̃Kth(q,Q) ∶= P −ℓq(Q)JKth(q,Q) = P −ℓq(Q)∑
d≥0

Qd

(qP −1; q)N+1d

(VI.1.1.6)

Where

P −ℓq(Q) = (1 − (1 −P −1))ℓq(Q) = ∑
k≥0
(−1)k(ℓq(Q)

k
)(1 −P −1)k

And

(ℓq(Q)
k
) = 1

k!

k−1

∏
r=0
(ℓq(Q)− r)

Proposition VI.1.1.7. The K-theoretical function (Q↦ P −ℓq(Q)) satisfies the ordinary linear q-difference

equation with K-theoretical coefficients

qQ∂QP −ℓq(Q) = P −1P −ℓq(Q)

Proof. The q-logarithm ℓq satisfies by Proposition V.2.2.3 the q-difference equation qQ∂Qℓq(Q) = ℓq(Q) + 1.
Therefore, we have

qQ∂QP −ℓq(Q) = P −ℓq(Q)−1 = P −1P −ℓq(Q)

Proposition VI.1.1.8 ([IMT15]). The J-function J̃Kth(q,Q) is a solution of the q-difference equation

[(1 − qQ∂Q)N+1 −Q] J̃Kth(q,Q) = 0 (VI.1.1.9)

This q-difference equation is regular singular at Q = 0 and irregular singular at Q =∞ and of rank N + 1.

Proof. Using Proposition VI.1.1.7, we get

qQ∂Q J̃Kth(q,Q) = (qQ∂QP −ℓq(Q)) (qQ∂QJKth(q,Q)) = P −1P −ℓq(Q) (qQ∂QJKth(q,Q))
Therefore, using Proposition VI.1.1.4, we have

[(1 − qQ∂Q)N+1 −Q] J̃Kth(q,Q) = P −ℓq(Q) [(1 −P −1qQ∂Q)N+1 −Q]JKth(q,Q) = 0
Applying Proposition V.2.1.14 to this q-difference equations gives that it is regular singular at Q = 0. Now,

to study the singularity at Q =∞, let us set W = Q−1. Then, the q-difference equation (VI.1.1.9) becomes

[qN+1W (qW∂W − 1)N+1 − (qW∂W )N+1]f(W ) = 0
This q-difference equation is not regular singular at W = 0. More precisely, its Newton polygon consists of

one slope of value 1
N+1

.
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Now, we want to exhibit a fundamental solution of the q-difference equation (VI.3.1.14). We are going to

show that the J-function J̃Kth provides this fundamental solution. We will require an intermediary result on

the q-logarithms.

Lemma VI.1.1.10 ([Ada29]). Let N ∈ Z≥0. The family consisting of the functions ℓq(Q)i ∈ M (C∗) for

i ∈ {0, . . . ,N} is linearly independent over the fieldM (Eq)
Proof. Let us assume that the function ℓq is algebraic over the field M (Eq). Then, it admits a unique

minimal polynomial, denoted by P (X) =Xd +ad−1Xd−1+⋯+a0 ∈M (Eq) [X], which satisfies P (ℓq(Q)) = 0.
Applying the q-difference operator qQ∂Q to this identity, we obtain

P (ℓq(Q)+ 1) = ℓq(Q)d +⋯ + (a0 +⋯+ ad−1 + 1) = 0
Which means we have a new unitary polynomial Q ∈ M(Eq) [X] satisfying P (ℓq(Q)+ 1) = Q(ℓq(Q)) = 0

and P ≠ Q. By contradiction, the function ℓq is not algebraic.

Remark VI.1.1.11. Consider the q-difference system

qQ∂QXq(Q) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋯ 0

(1
0
) 1 0 ⋮
(2
0
) (2

1
) 1 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋮
(N
0
) (N

1
) ⋯ ( N

N−1
) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Xq(Q)

This q-difference system admits the fundamental solution below:

Xq(Q) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ ⋯ 0

ℓq(Q) 1 ⋱ ⋮
ℓq(Q)2 ℓq(Q) ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮

ℓq(Q)N ℓq(Q)N−1 ⋯ ℓq(Q) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proposition VI.1.1.12. Consider the q-difference equation (VI.1.1.9) : [(1 − qQ∂Q)N+1 −Q]fq(Q) = 0 and

take the decomposition

J̃Kth(q,Q) = N

∑
i=0
J̃i(q,Q) (1 − P −1)i ∈K (PN)⊗C(q)[[Q]]

Then, the functions J̃0, . . . , J̃N form a fundamental solution of this q-difference equation.

Remark VI.1.1.13. Obtaining a fundamental solution this way is similar to the Frobenius method for the

resolution of regular singular q-difference equations which have exponents of multiplicity strictly greater than

1. For a reference in the differential setting, see [HLY96].

Proof. Since the q-difference equation (VI.1.1.9) does not involve K-theoretical coefficients, each of the func-

tions J̃0, . . . , J̃N is a solution of the q-difference equation. Since the q-difference equation has rank N + 1, it
remains to check if our solutions are linearly independent over the fieldM(Eq). We recall the definition

J̃Kth(q,Q) = P −ℓq(Q)∑
d≥0

Qd

(qP −1; q)N+1d
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The decomposition of the function Q↦ P −ℓq(Q) in our basis is given by

P −ℓq(Q) = ∑
k≥0
(−1)k(ℓq(Q)

k
)(1 −P −1)k

Let Ji be the coefficient in front of (1 −P −1)i in JKth(q,Q). Then, Ji does not involve q-logarithms. More

precisely, a computation gives

Ji(q,Q) = ∑
d≥0

Qd

(q; q)N+1d

⎛⎜⎜⎜⎜⎜⎝
N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=i

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

qm1+⋯+ml

(1 − qm1)⋯(1 − qml)
⎞
⎠
jl
⎞⎟⎟⎟⎟⎟⎠

(VI.1.1.14)

Therefore, the decomposition of J̃Kth(q,Q) is given by the functions

J̃i(q,Q) = ∑
a+b=i

0≤a,b≤N

(−1)a(ℓq(Q)
a
)Jb(q,Q)

This expression involves integer powers of the q-logarithm ℓq up to the order i. Therefore, by applying

Proposition VI.1.1.10, we obtain that the functions J̃0, . . . , J̃N are linearly independent over the fieldM(Eq).

For the remainder of this subsection, we try to naively solve the q-difference equation (VI.1.1.9) satisfied

by the J-function by hand, in the case of X = P2. This will allow us to recover the functions J̃i given by the

decomposition of the J-function. We will try to find two solutions J̃0, J̃1 ∈M(C∗,0) of the form

J̃0(q,Q) =∑
d∈Z

fd(q)Qd J̃1(q,Q) =∑
d∈Z

gd(q)Qd + ℓq(Q)∑
d∈Z

gd(q)Qd

Using the previous Proposition VI.1.1.10, we will get the that solutions J̃0 and J̃1 are linearly independent

over the fieldM(Eq) as long as the sequences f, g, d are non zero. To have a basis of solutions, we could also

look for third solution J̃2 involving the special function ℓ2q.

Proposition VI.1.1.15 (A first solution for N = 2). The function J̃0 below is a solution of the q-difference

equation (VI.1.1.9).

J̃0(q,Q) = ∑
d≥0

Qd

(q; q)3d
Before giving a proof, we remark that the solution J̃0 coincides with the coefficient in front of 1 in the

decomposition of J̃Kth
X=P2 (see Example VI.1.1.3).

Proof. Let us explain how the Taylor series J̃0 is found. Let us assume that J̃0(q,Q) = ∑d∈Z fd(q)Qd is

a solution of the q-difference (VI.1.1.9), where fd(q) ∈ C are some unknown coefficients to determine. By

assuming that J̃0 is a solution of the q-difference equation, we have

(1 − qQ∂Q)3 ⋅∑
d∈Z

fd(q)Qd = Q∑
d∈Z

fd(q)Qd

Now, fix an integer d ∈ Z. By comparing the coefficients in front of Qd, we obtain the identity

(1 − qd)3 fd(q) = fd−1(q)
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Which allows us to determine recursively the coefficients fd(q). Setting d = 0 implies that all coefficients

fd(q) for d < 0 are zero. The other coefficients are given by

fd(q) = f0(q)
∏dr=1(1 − qr)3 =

f0(q)(q; q)3d
Setting f0(q) = 1, we get the wanted solution.

Our next proposition will explain how to construct another solution of the q-difference equation (VI.1.1.9).

This solution will be a priori of the form J̃1(q,Q) = gq(Q)+ hq(Q)ℓq(Q), where gq, hq ∈ C((q)).
Proposition VI.1.1.16 (Second solution for N = 2). The function J̃1 below is a solution of the q-difference

equation (VI.1.1.9)

J̃1(q,Q) = (∑
d≥0

Qd

(q; q)3d )(ℓq(Q) +
d

∑
k=1

−3qk

1 − qk
)

Setting h0 = 1 and a0 = 0, we obtain the wanted solution.

Proof. Let us assume that we have a solution of (VI.1.1.9) of the form

J̃1(q,Q) =∑
d∈Z

gd(q)Qd + ℓq(Q)∑
d∈Z

hd(q)Qd

Where gd(q), hd(q) ∈ C are to be determined. We begin by computing (qQ∂Q)k J̃1(q,Q) for k ∈ Z≥0 before

computing (1 − qQ∂Q)3 J̃1(q,Q). We have, for any k ∈ Z≥0,
(qQ∂Q)k J̃1(q,Q) = ∑

d≥0
(gd + khd) qkdQd + ℓq(Q)∑

d≥0
hdq

kdQd

Thus, we have

(1 − qQ∂Q)3 J̃1(q,Q) = ∑
d≥0
( 3

∑
k=0
(3
k
)(−qd)k(gd + khd))Qd + ℓq(Q)∑

d≥0
( 3

∑
k=0
(3
k
)(−qd)khd)Qd

Now, in the identity (1 − qQ∂Q)3 J̃1(q,Q) = Qf(q,Q), because of Proposition VI.1.1.10, we can identify the

coefficients in front of Qd for both series to get the recursion relations for d ∈ Z
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 − qd)3 hd = hd−1
(1 − qd)3 gd + 3

∑
k=0
(3
k
)(−qd)kkhd = gd−1

The recursion relation for hd gives (see the previous proof) that for all d ∈ Z,
hd(q) = h0(q)(q; q)3d

In particular, hd(q) = 0 for d < 0. Using the second line, we also obtain

g−1(q) = h0(q) 3

∑
k=0
(3
k
)(−1)kk = 0

so gd(q) = 0 for d < 0. Now, let us make a change of variable and set gd = hdad for some ad ∈ C. The second

line becomes

(1 − qd)3 hdad + 3

∑
k=0
(3
k
)(−qd)kkhd = hd−1ad−1
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Using (1 − qd)3 hd = hd−1 in the right hand side, we can factor by (1 − qd)3 hd for d > 0 and obtain the relation

ad +
1

(1 − qd)3
3

∑
k=0
(3
k
)(−qd)kk = ad−1

Developing and reorganising, we obtain for d > 0
ad − ad−1 = 1

(1 − qd)3 (−3q
d + 6q2d − 3q3d) = −3qd

1 − qd

Remark VI.1.1.17. Notice that the function J̃1 of Proposition VI.1.1.16 corresponds to the coefficient in front

of (1 −P −1) in the development of J̃Kth(q,Q).
A third and last independent solution can be found using the same method as in Proposition VI.1.1.16.

This solution will be matched with the coefficient in front of (1−P −1)2 in the development of J̃Kth(q,Q), using
Example VI.1.1.3 and the formula of the function P −ℓq(Q) in Definition VI.1.1.5. Since the computations are

getting quite technical, we will stop there.

VI.1.2 About the special function used in the J-function

In this transitory subsection we discuss the role played by the functionQ↦ P −ℓq(Q) in Givental’sK-theoretical

J-function J̃Kth.

We recall that the function Q ↦ P −ℓq(Q) is a solution of the q-difference equation with K-theoretical

coefficients q(Q)∂(Q)fq(Q) = P −1fq(Q). This function allowed us to replace the original J-function, which was

a solution of a q-difference equation with K-theoretical coefficients, by a changed solution which is a solution

of a q-difference equation with complex coefficients, in the sense of Definition V.1.1.1. To do so, we need

to pick a q-character, solution of q(Q)∂(Q)fq(Q) = P −1fq(Q). In this subsection, we explain that our choice

has a simple decomposition in the K-theoretical basis ((1 −P −1)i), unlike the usual q-characters from the

literature.

Remark VI.1.2.1. Let us discuss why we chose the function P −ℓq(Q) as a solution of the q-difference equation

qQ∂Qfq(Q) = P −1fq(Q)
Notice that this q-difference equation is close to the one satisfied by the q-characters of Definition V.1.1.9.

We will explain in this remark that our choice is motivated by a computational reason.

In a first time, we return to the usual q-characters of Subsection V.1.1. Let λq ∈ C∗ − qR. We consider the

q-difference equation qQ∂Qfq(Q) = λqfq(Q). We can find two solutions

eq,λq
(Q) = θq(Q)

θq(λqQ) λℓq(Q)q = ∑
k≥0

1

k!
(log(λq)ℓq(Q))k

These two solutions are in general different, and the second one depends on the choice of a logarithm (which

is well defined here since λq takes values in a simply connected space). Let us compare the confluence of

these solutions. Assume that λq = qµ. We had already seen in Proposition V.2.4.2 that for Q ∈ C∗ − (−1)qR,
we had the uniform convergence

lim
t→0

eqt,λqt
(Q) = Qµ
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For the second solution, we have

λ
ℓqt (Q)

qt
= eµ log(qt)ℓq(Q) ∼t→0 e

µ(qt−1)ℓqt (Q)

Using Proposition V.2.4.2, we obtain

lim
t→0

λ
ℓqt (Q)

qt
= eµ log(Q) = Qµ

Thus both solutions eq,λq
(Q) and λℓq(Q)q are confluent without the need of a change of fundamental solution,

and have the same limit. This means that choosing one or the other has no influence on confluence.

In a second time, we consider instead the q-difference equation with K-theoretical coefficients

qQ∂Qfq(Q) = P −1fq(Q)
We want to build the analogues of the two solutions above. Since 1−P −1 ∈K (PN) is nilpotent, we can define

the following functions

eq,P−1(Q) ∶= θq(Q)
θq(P −1Q) =

(Q; q)∞ ( qQ ; q)
∞

(P −1Q; q)∞ ( q

P−1Q
; q)
∞

P −ℓq(Q) = (1 − (1 −P −1))ℓq(Q) ∶= ∑
k≥0
(−1)k(ℓq(Q)

k
)(1 − P −1)k

Notice that it is harder a obtain a decomposition of the first function in our basis of K (PN).
VI.1.3 Recall: Givental’s cohomological J-function

Let us recall the definition of the cohomological small J-function. In this section we will use a slightly different

form of the cohomological J-function compared to Definition III.2.3.15.

Definition VI.1.3.1. The small cohomological J-function is given by the expression

J̃coh(z,Q) = QH
z ∑
d≥0

Qd

∏dr=1 (H + rz)N+1 ∈H (P
N)⊗C[z, z−1][[Q]] (VI.1.3.2)

Proposition VI.1.3.3. This function is a solution of the differential equation

[(zQ∂Q)N+1 −Q] J̃coh(z,Q) = 0 (VI.1.3.4)

The strategy we use to prove this result is similar to the proof of Proposition VI.1.1.4, which is the

K-theoretical analogue of this proposition.

Proof. First, notice that

zQ∂Q (QH
z ) =HQH

z

Thus, we have

(zQ∂Q)N+1QH
z

Qd

∏dr=1 (H + rz)N+1 = (H + dz)
N+1Q

H
z

Qd

∏dr=1 (H + rz)N+1 = Q
H
z

Qd

∏d−1r=1 (H + rz)N+1
Therefore, we get

[(zQ∂Q)N+1 −Q] J̃coh(z,Q) =HN+1Q
H
z

We conclude using the relation HN+1 = 0 in H∗ (PN).
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Remark VI.1.3.5 (Comparison with Definition III.2.3.15). In Definition III.2.3.15, or more precisely in Propo-

sition III.2.3.20, we had

jcoh(t1, z) = e t1H

z ∑
d≥0

et1d

∏dr=1 (H + rz)N+1
Which was a solution of the differential equation

[(z∂t1)N+1 − et1] jcoh(t1, z) = 0
We obtain the J-function J̃coh(z,Q) from jcoh(t1, z) by setting Q ∶= et1 . Then, we have ∂t1e

t1 = Q∂QQ.

Let us describe the role played by the function Q↦Q
H
z for the cohomological J-function

Definition VI.1.3.6. We introduce another J-function given by

Jcoh(z,Q) = ∑
d≥0

Qd

∏dr=1 (H + rz)N+1
Proposition VI.1.3.7. The function Jcoh is solution of the differential equation with cohomological coeffi-

cients

[(H + zQ∂Q)N+1 −Q]Jcoh(z,Q) = 0
Therefore, we observe that just like Q↦ P −ℓq(Q) in the K-theoretical setting, the function Q↦ Q

H
z gives

a J-function that satisfies a functional equation with complex coefficients. We could expect the confluence

of the function Q ↦ P −ℓq(Q) to be related to the function Q↦ Q
H
z . In the next section, we will show that it

is true.

VI.2 Confluence for small quantum K-theory of projective spaces

VI.2.1 Statement of the theorem

For us to apply q-difference equation’s confluence phenomenon to Givental’s K-theoretical J-function, we

have to think the class q ∈KC∗(pt) as a parameter q ∈ C∗, ∣q∣ < 1. Then confluence will correspond to taking

the limit of this parameter q → 1 along a q-spiral. Similarly, the class z ∈HC∗(pt) will be seen as a parameter

z ∈ C∗.
The goal of this subsection is to prove the following theorem:

Theorem VI.2.1.1. For X = PN , let J̃Kth (resp. J̃coh) be the small K-theoretical (resp. cohomological)

J-function.

(i) Making the q-difference equation satisfied by J̃Kth (VI.1.1.9) confluent yields the differential system

satisfied by Jcoh, (VI.1.3.4).

(ii) Consider the ring automorphism γ ∶ K (PN) ⊗ Q → H∗ (PN ;Q) defined by γ(1 − P −1) = H and let

confluence(J̃Kth) be the result of confluence applied to the solution J̃Kth of the above q-difference

system. Then, we have

γ (confluence(J̃Kth)) (z,Q) = J̃coh(z,Q)
For a precise definition of theK-theoretical function confluence(J̃Kth), we will refer to Definition VI.2.4.1.

The proof of this theorem is structured in three parts, which get their own subsection:
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(i) Confluence of the q-difference equation (see Subsection VI.2.2 and Proposition VI.2.2.4).

(ii) Confluence of the fundamental solution (see Subsection VI.2.3 and Proposition VI.2.3.3)

(iii) Comparison between the confluence of the solution and the cohomological J-function (see Subsection

VI.2.4 and Proposition VI.2.4.2).

For the sake of comparison, we give the developments of the small J-functions in the case X = P2.

Example VI.2.1.2 (Example VI.1.1.3). In the case of P2, the partial decomposition of the K-theoretical

J-function J̃Kth
X=P2(q,Q) in the basis (1,1 − P −1, (1 −P −1)2) of K (P2) is given by

P −ℓq(Q)∑
d≥0

Qd

(q; q)3d
⎛⎜⎝1 + (1 −P

−1) ⎡⎢⎢⎢⎣−3
d

∑
j=1

qj

1 − qj

⎤⎥⎥⎥⎦ + (1 − P
−1)2
⎡⎢⎢⎢⎢⎣
6
⎛
⎝
d

∑
j=1

qj

1 − qj
⎞
⎠
2

− 3 ∑
0≤i<j≤d

qi+j

(1 − qi)(1 − qj)
⎤⎥⎥⎥⎥⎦
⎞⎟⎠

Example VI.2.1.3. In the case of P2, the partial decomposition of the cohomological J-function in the basis

(1,H,H2) of H∗ (P2;Q) is given by

J̃coh
X=P2(z,Q) = QH

z ∑
d≥0

Qd

(zdd!)3
⎡⎢⎢⎢⎢⎢⎣
1 −H

⎛
⎝3

d

∑
j=1

1

jz

⎞
⎠ +H

2
⎛⎜⎝6
⎛
⎝
d

∑
j=1

1

jz

⎞
⎠
2

− 3 ∑
1≤j1<j2≤d

1

j1j2z2

⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎦

More precisely, through confluence of the K-theoretical J-function, we expect to obtain the correspon-

dences

QK (P2) QH
∗ (P2)

Basis 1,1 − P −1, (1 − P −1)2 Basis 1,H,H2

q-character P −ℓq(Q) Character Q
H
z

∑d≥0
Qd

(q;q)3
d

∑d≥0
Qd

(zdd!)3

−3∑d≥0
Qd

(q;q)3
d
∑d

j=1
qj

1−qj −3∑d≥0
Qd

(zdd!)3
(∑d

j=1
1

jz
)

∑d≥0
Qd

(q;q)3
d

[6(∑d
j=1

qj

1−qj )2 − 3∑0≤i<j≤d
qi+j

(1−qi)(1−qj)] ∑d≥0
Qd

(zdd!)3
[6(∑d

j=1
1

jz
)2 − 3∑1≤j1<j2≤d

1

j1j2z
2 ]

γ

qt→1

qt→1

qt→1

qt→1

VI.2.2 Confluence of the q-difference equation of the small J-function

Notation. In this chapter the indices of the matrices will start at 0 instead of 1. This means we will write a

matrix of size (N + 1) × (N + 1) in a vector space V as

A = (Ai,j)i,j∈{0,...,N} ∈MN+1(V )
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Remark VI.2.2.1. To check the confluence of the equation with respect to Definition V.2.4.4, let us write our

equations in matrix form. The differential equation (VI.1.3.4) satisfied by the cohomological J-function can

be translated to the differential system

Q∂Q

⎛⎜⎜⎜⎜⎜⎝

f

Q∂Qf

⋮
(Q∂Q)N f

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

0 0 ⋱ ⋮
⋮ ⋮ ⋱ 0

0 ⋮ 1
Q

zN+1
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f

Q∂Qf

⋮
(Q∂Q)N f

⎞⎟⎟⎟⎟⎟⎠
(VI.2.2.2)

Write δq = qQ∂Q−Id
q−1

. The q-difference equation (VI.1.1.9) becomes the q-difference system

δq

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

0 0 ⋱ ⋮
⋮ ⋮ ⋱ 0

0 ⋮ 1
Q

(1−q)N+1
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠
(VI.2.2.3)

Proposition VI.2.2.4. Consider the q-difference equation (VI.1.1.9) : (1 − qQ∂Q)N+1 f(q,Q) = Qf(q,Q)
Let z ∈ C∗ and let ϕq,z be the function

ϕq,z ∶

RRRRRRRRRRRRRR
C C

Q ( z
1−q
)N+1Q

Then, the q-pullback of the q-difference equation (VI.1.1.9) by ϕq,z is confluent, and its limit is the

differential equation (VI.1.3.4) satisfied by the small cohomological J-function

(zQ∂Q)N+1 Jcoh(z,Q) = QJcoh(z,Q)

Proof. Replace the q-difference equation (VI.1.1.9) by the q-difference system (VI.2.2.3)

δq

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

0 0 ⋱ ⋮
⋮ ⋮ ⋱ 0

0 ⋮ 1
Q

(1−q)N+1
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠

Then, the q-pullback of this q-difference system by the isomorphism ϕ ∶ Q↦ ( z
1−q
)N+1Q is given by

δq

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

0 0 ⋱ ⋮
⋮ ⋮ ⋱ 0

0 ⋮ 1
Q

zN+1
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠
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Recall that we have the formal limit limq→1 δq = Q∂Q. By taking q → 1, the q-difference system above has

the formal limit

Q∂Q

⎛⎜⎜⎜⎜⎜⎝

f

Q∂Qf

⋮
(Q∂Q)N f

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

0 0 ⋱ ⋮
⋮ ⋮ ⋱ 0

0 ⋮ 1
Q

zN+1
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f

Q∂Qf

⋮
(Q∂Q)N f

⎞⎟⎟⎟⎟⎟⎠
Which corresponds to the differential system (VI.2.2.2) satisfied by the cohomological J-function.

Let us make a few remarks on the q-pullback ϕq,z we have used in this proposition.

Remark VI.2.2.5. (i) The q-difference system (VI.2.2.3) of the K-theoretical J-function is not confluent,

so we look for a q-pullback ϕq,z to make it confluent. From the point of view of q-difference equations, the

natural pullback to use is Q ↦ (1 − q)−(N+1)Q, cf. Remark V.2.4.11. By doing so, we obtain as formal limit

the differential system satisfied by the function (Q↦ J̃coh(1,Q)).
(ii) In the C∗-equivariant cohomology H∗

C∗
(pt), we recall that we have the relation ch(q) = e−z = 1− z ∈

H∗
C∗
(pt) ([CK99], (9.1)). An easy way to modify the q-pullback of (i) is to consider instead the q-pullback

ϕq,z of the Proposition VI.2.2.4: (Q ↦ (z/(1 − q))N+1Q).
(iii) Notice that we have in small quantum cohomology the relation H○(N+1) = Q, which means the

Novikov variable has degree N + 1. This degree appears also in the q-difference system (VI.2.2.3) and in the

exponent in the formula for ϕq,z .

Remark VI.2.2.6. The q-pullback ϕq,z defined in Proposition VI.2.2.4 is natural in the following way: it is the

only q-pullback of the form Q ↦ ( z
1−q
)λQ, with λ ∈ Z, which defines a confluent q-difference system whose

formal limit is non zero.

Let us verify that. Let ϕλ,q,z be the function defined by

ϕλ,q,z ∶

RRRRRRRRRRRRRR
C C

Q ( z
1−q
)λQ

Then, the q-pullback of the q-difference system (VI.2.2.3) by ϕλ,q,z is given by system

δq

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

0 0 ⋱ ⋮
⋮ ⋮ ⋱ 0

0 ⋮ 1

( 1−q
z
)λ Q

(1−q)N+1
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠

The only value of λ such that this q-difference system has a well defined and non trivial limit when q tends

to 1 is for λ = N + 1.

VI.2.3 Confluence of the J-function

We recall that by Proposition VI.1.1.12, we can see the K-theoretical J-function as a solution of the q-

difference equation (VI.1.1.9). Our goal is to obtain the confluence of the q-pullback by ϕq,z of this funda-

mental solution. Before giving a statement, we need to describe this fundamental solution.
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Remark VI.2.3.1. Consider the q-difference system (VI.2.2.3) associated to the K-theoretical J-function

δq

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ⋯ 0

0 0 ⋱ ⋮
⋮ ⋮ ⋱ 0

0 ⋮ 1
Q

(1−q)N+1
0 ⋯ ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

f

δqf

⋮
δNq f

⎞⎟⎟⎟⎟⎟⎠

Take the decomposition

J̃Kth(q,Q) = N

∑
i=0
J̃i(q,Q) (1 −P −1)i ∈K (PN)⊗C(q)[[Q]]

The fundamental solution (see Proposition VI.1.1.12) associated to the J-function is the matrix

XKth(q,Q) =
⎛⎜⎜⎜⎜⎜⎝

J̃0(q,Q) J̃1(q,Q) ⋯ J̃N(q,Q)
δqJ̃0(q,Q) δqJ̃1(q,Q) ⋯ δqJ̃N(q,Q)

⋮ ⋮ ⋱ ⋮
δNq J̃0(q,Q) δNq J̃1(q,Q) ⋯ δNq J̃N(q,Q)

⎞⎟⎟⎟⎟⎟⎠
The first line of this matrix is of particular interest for us as it contains the J-function.

Recall that the q-pullback ϕq,z was given by the function

ϕq,z ∶

RRRRRRRRRRRRRR
C C

Q ( z
1−q
)N+1Q

Therefore, the q-pullback by the ϕq,z of the fundamental solution XKth is given by

XKth (q,ϕ−1q,z(Q)) =
⎛⎜⎜⎜⎜⎜⎜⎝

J̃0 (q, (1−qz )N+1Q) J̃1 (q, ( 1−qz )N+1Q) ⋯ J̃N (q, ( 1−qz )N+1Q)
δqJ̃0 (q, ( 1−qz )N+1Q) δqJ̃1 (q, ( 1−qz )N+1Q) ⋯ δqJ̃N (q, ( 1−qz )N+1Q)

⋮ ⋮ ⋱ ⋮

δNq J̃0 (q, ( 1−qz )N+1Q) δNq J̃1 (q, ( 1−qz )N+1Q) ⋯ δNq J̃N (q, (1−qz )N+1Q)

⎞⎟⎟⎟⎟⎟⎟⎠
(VI.2.3.2)

Proposition VI.2.3.3. Let ϕq,z be the q-pullback of Proposition VI.2.2.4. There exists a q-constant matrix

Pq,z ∈ GLN+1 (M(Eq)) such that the transformed fundamental solution XKth (q,ϕ−1q,z(Q))Pq,z obtained from

Equation VI.2.3.2 is given by

(XKth (q,ϕ−1q,z(Q))Pq,z)li = (δq)l ∑
0≤a,b≤N
a+b=i

(q − 1
z
)a (ℓq (Q)

a
)(1 − q

z
)b Jb (q,(1 − q

z
)N+1Q)

Where the functions Jb are defined in Equation VI.1.1.14. Moreover, this fundamental solution has a non

trivial limit when qt tends to 1.

Before giving a proof, let us comment on the characterisation of the change of fundamental solution Pq,z .

While the condition on the first line of the new fundamental solution may seem arbitrary, we will see in

Proposition VI.2.4.2 that it is closely related to the cohomological J-function. Furthermore, we will discuss

in Remark VI.2.3.9 the naturality of this transformation. Let us detail these formulas in the concrete example

of P2.
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Example VI.2.3.4. In the case of P2, let us apply the q-pullback ϕq,z and the change of fundamental solution

Pq,z to the small J-function. Putting the first line of the fundamental solution (XKth (qt, ϕ−1q,z(Q)))Pq,z as

a K-theoretical function again, we obtain the function

(∑
k≥0
(−1)k (1 − q

z
)k (ℓq(Q)

k
)(1 − P −1)k)(∑

d≥0
Q

d (1 − q)3d(q; q)3
d

×

× ⎛⎝1 + (1 − P −1) [−
3

z

d∑
m=1

qm(1 − q)
1 − qm ] + (1 − P −1)2 1

z2

⎡⎢⎢⎢⎢⎣
6( d∑

m=1

qm(1 − q)
1 − qm )

2

− 3 ∑
0≤m1<m2≤d

qm1+m2(1 − q)2
(1 − qm1)(1 − qm2)

⎤⎥⎥⎥⎥⎦
⎞
⎠
⎞
⎠

Which has the limit when qt → 1 given by

(∑
k≥0

log(Q)
zk

(1 − P −1)k)⎛⎝∑d≥0
Qd

(zdd!)3
⎛
⎝1 − (1 − P −1)

3

z

d∑
m=1

1

m
+ (1 − P −1)2 1

z2

⎛
⎝6(

d∑
m=1

1

m
)
2

− 3 ∑
1≤m1<m2≤d

1

m1m2

⎞
⎠
⎞
⎠
⎞
⎠

We invite the reader to compare this limit to the cohomological J-function given in Example VI.2.1.3:

after using the isomorphism γ sending the class (1 −P −1)i to γ ((1 −P −1)i) = Hi, the limit coincides with

J̃coh
X=P2(z,Q).

Proof of Proposition VI.2.3.3. We recall that

J̃i (q,ϕ−1(Q)) = ∑
a+b=i

0≤a,b≤N

(−1)a(ℓq ((1−qz )
N+1

Q)
a

)Jb (q,(1 − q
z
)N+1Q)

Where the functions Jb are obtained from the decomposition of JKth,

Jb(q,Q) = ∑
d≥0

Qd

(q; q)N+1d

⎛⎜⎜⎜⎜⎜⎝
N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=b

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

qm1+⋯+ml

(1 − qm1)⋯(1 − qml)
⎞
⎠
jl
⎞⎟⎟⎟⎟⎟⎠

We are going to exhibit a q-constant matrix Pq,z ∈ GLN+1 (M(Eq)) such that the limit of the transformed

fundamental solution

lim
t→0
XKth (qt, ϕ−1qt,z(Q))Pqt,z

is well defined. The transformation Pq will be constructed in two steps.

(i) Notice that in the formula of J̃i (q,ϕ−1(Q)), the q-logarithms ℓq (( 1−qz )N+1Q), do not have a well defined
limit. We are going to construct a first transformation Aq,z to change them into the q-logarithms ℓq(Q).

(ii) After this change, we will require to multiply J̃i by (1−qz )i to get a well defined limit that is not zero.

We will construct a second transformation Bq,z to do that.

In the end, the function J̃i (q,ϕ−1(Q)) will be replaced by the function

(1 − q
z
)i ∑

a+b=i
0≤a,b≤N

(−1)a(ℓq (Q)
a
)Jb (q,(1 − q

z
)N+1Q)

Then, we will show that the transformation given by Pq,z = Aq,zBq,z satisfies the conditions imposed by the

proposition.
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We begin by making a first change of fundamental solution to modify the q-logarithms ℓq (( 1−qz )N+1Q).
Notice that we can not use the asymptotic of the q-logarithm of Proposition V.2.4.2, as the input of the

q-logarithm tends to 0. We recall that a q-logarithm is a solution of the q-difference equation qQ∂Qfq(Q) =
fq(Q)+ 1. To be able to apply Proposition V.2.4.2 to the matrix XKth (q,ϕ−1q,z(Q)), we are going to take the

other q-logarithm ℓ̃q,z defined by

ℓ̃q,z(Q) = ℓq ((1 − q
z
)N+1Q)

By replacing in the matrix XKth (q,ϕ−1q,z(Q)) the q-logarithms ℓq by ℓ̃q,z, we obtain a new fundamental

solution X̃Kth(q,Q). In particular, for i ∈ {0, . . . ,N}, denote by (X̃Kth)
0i
(q,Q) the coefficient of the new

fundamental solution on the first row and the (i + 1)th column. We have

(X̃Kth)
0i
(q,Q) = ∑

a+b=i
0≤a,b≤N

(−1)a(ℓq (Q)
a
)Jb (q,(1 − q

z
)N+1Q)

So we will be able to apply Proposition V.2.4.2 to compute the asymptotics of the matrix X̃Kth(q,Q).
Since the matrix X̃Kth(q,Q) is another fundamental solution of the same q-difference equation, there exists

a q-constant matrix Aq,z ∈ GLN+1 (M(Eq)) replacing the fundamental solution XKth (q,ϕ−1q,z(Q)) by the

transformed solution X̃Kth(q,Q) = XKth (q,ϕ−1q,z(Q))Aq,z .
Our new goal is to compute limt→0 (X̃Kth)

0i
(qt,Q), or more precisely, to find a transformation after

which these limits exist, then to compute them. We recall that

(ℓq (Q)
a
) = 1

a!

a−1

∏
r=0
(ℓq(Q) − r) = 1

a!
ℓq(Q)a +⋯

And

Jb (q,(1 − q
z
)N+1Q) =

∑
d≥0

(1 − q)d(N+1)Qd
zd(N+1)(q; q)N+1d

⎛⎜⎜⎜⎜⎜⎝
N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=b

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

qm1+⋯+ml

(1 − qm1)⋯(1 − qml)
⎞
⎠
jl
⎞⎟⎟⎟⎟⎟⎠

For the coefficient (ℓq(Q)
a
) to have a well defined limit when qt tends to 1, according to Proposition V.2.4.2,

we should multiply it by (1 − q)a. Then, by the same proposition, we have

lim
t→0
(1 − qt

z
)
a

(ℓqt (Q)
a
) = (−1)a log(Q)a

za

As for the second one, Jb (q, ( 1−qz )N+1Q), the summand inside the sum on the multi-index (j1, . . . , jN) only
has a well defined limit after being multiplied by (1 − q)j1+2j2+⋯NjN = (1 − q)b. Then, we have

fb(z,Q) ∶= lim
t→0
(1 − qt

z
)
b

Jb
⎛
⎝qt,(

1 − qt

z
)
N+1

Q
⎞
⎠

= ∑
d≥0

Qd

(d!zd)N+1
⎛⎜⎜⎜⎜⎜⎝
1

zb

N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=b

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

1

m1⋯ml

⎞
⎠
jl
⎞⎟⎟⎟⎟⎟⎠
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So, for the first line to have a well defined limit, we need to modify the coefficient (X̃Kth)

0i
(q,Q) by

( 1−q
z
)i (X̃Kth)

0i
(q,Q). Since we are multiplying by a scalars, the matrix

YKth(z, q,Q)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

(X̃Kth)
00
(q,Q) ( 1−q

z
) (X̃Kth)

01
(q,Q) ⋯ (1−q

z
)N (X̃Kth)

0N
(q,Q)

δq (X̃Kth)
00
(q,Q) ( 1−q

z
) δq (X̃Kth)

01
(q,Q) ⋯ (1−q

z
)N δq (X̃Kth)

0N
(q,Q)

⋮ ⋮ ⋱ ⋮

δNq (X̃Kth)
00
(q,Q) (1−q

z
) δNq (X̃Kth)

01
(q,Q) ⋯ (1−q

z
)N δNq (X̃Kth)

0N
(q,Q)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(VI.2.3.5)

is another fundamental solution of the same q-difference system, which is confluent. Therefore, there exists

a q-constant matrix Bq,z ∈ GLN+1 (M(Eq)) replacing the fundamental solution X̃Kth(q,Q) by the confluent

solution YKth(z, q,Q) given by Equation (VI.2.3.5).

Furthermore, the fundamental solution YKth(z, q,Q) verifies the condition of the Proposition on the

coefficients (XKth (q,ϕ−1q,z(Q))Pq,z)li, since we have

(Bq,zX̃Kth)
0i
= ∑

0≤a,b≤N
a+b=i

(q − 1
z
)a (ℓq (Q)

a
)(1 − q

z
)b Jb (q,(1 − q

z
)N+1Q)

Next, we compute the limit of the matrix YKth(z, q,Q) when qt tends to 1. For the first row of this matrix,

we have

lim
t→0
(YKth(z, q,Q))

0i
= ∑

0≤a,b≤N
a+b=i

log(Q)a
zaa!

fb(z,Q)

Since limq→1 δq = Q∂Q, the other rows have a finite limit, and the fundamental solution YKth(z, q,Q) has a
well defined limit.

Therefore, the q-constant transformation given by Pq,z ∶= Aq,zBq,z satisfies the conditions imposed by

the proposition, and the matrix XKth (q,ϕ−1q,z(Q))Pq,z is given by the matrix YKth(z, q,Q) of Equation

(VI.2.3.5).

Remark VI.2.3.6. Just like in the Proposition VI.2.2.4, we could have multiplied the functions (ℓq(Q)
γ
) and

Jγ (q, ( 1−qz )N+1Q) by (1 − q)γ only. By doing so, the limit we get will be related to J̃coh(1,Q) only, cf.
Remark VI.2.2.5.

Definition VI.2.3.7. We can put the first row of the fundamental solution (XKth (qt, ϕ−1q,z(Q)))Pqt,z back

into a K-theoretical function, which we will denote by Pq,z ⋅ ϕ∗q,zJ̃Kth. Denoting by a0i, i ∈ {0, . . . ,N} the

elements of the first row of (XKth (qt, ϕ−1q,z(Q)))Pqt,z, we have

Pq,z ⋅ ϕ∗q,z J̃Kth(z, q,Q) = N

∑
i=0
(1 −P −1)i a0i

The function Pq,z ⋅ϕ∗q,z J̃Kth decomposes in our basis of K (PN) as follows:

Pq,z ⋅ ϕ∗q,z J̃Kth(z, q,Q) = N

∑
i=0
(1 − P −1)i ∑

0≤a,b≤N
a+b=i

(q − 1
z
)a (ℓq (Q)

a
)(1 − q

z
)b Jb (q,(1 − q

z
)N+1Q) (VI.2.3.8)
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Remark VI.2.3.9. The q-constant transformation Pq,z of Proposition VI.2.3.3 could be natural in the following

sense: if a fundamental solution is not confluent, it makes sense to look for a transformation which changes a

solution ϕ∗q,z J̃i(z, q,Q) into the confluent solution (1−q
z
)ki ϕ∗q,z J̃i(z; q,Q) for some integer ki ∈ Z (cf Remark

VI.2.2.5). The transformation Pq,z is the only change of fundamental solution of this form such that the

limits when q tends to 1 of the solutions ( 1−q
z
)ki ϕ∗q,z J̃i(z; q,Q) are well defined and non zero.

Let us explain why. For the change of fundamental solution Pq,z , we chose ki = i in the proof of Proposition

VI.2.3.3. If instead we have ki ≠ i, in Equation VI.2.3.8, this amounts to changing the exponents of ( qt−1
z
)a

and ( 1−qt
z
)b. If these exponents were to be changed, we see that the limit of the coefficient in front of

(1 −P −1)i when q tends to 1 would be either trivial or not defined.

VI.2.4 Comparison between the confluence and the cohomological J-function

This subsection consists of the comparison between the limit of our transformed fundamental solution and

the cohomological J-function J̃coh(z,Q) using the Chern character.

Definition VI.2.4.1. We denote by confluence(J̃Kth) the function defined by the limit

confluence(J̃Kth) (z,Q) = lim
t→0

Pqt,z ⋅ ϕ
∗

qt,zJ̃
Kth(z, qt,Q)

The existence of this limit is given by Proposition VI.2.3.3.

Proposition VI.2.4.2. Consider the ring automorphism γ ∶ K (PN) ⊗ Q → H∗ (PN ;Q) defined by γ(1 −
P −1) = H. The confluence of the K-theoretical J-function is related to the cohomological J-function by the

identity

γ (confluence(J̃Kth) (z,Q)) = J̃coh(z,Q)
Before giving a proof of this Proposition, we recall that a decomposition of the function Pq,z ⋅ϕ∗q,z J̃Kth is

given by Equation (VI.2.3.8). We are going to compare this decomposition with the one of the cohomological

J-function.

Proof. The decomposition of the cohomological J-function in the basis (1,H, . . . ,HN) is given by

J̃coh(z,Q) = N

∑
i=0
Hi ∑

0≤a,b≤N
a+b=i

1

a!
( log(Q)

z
)
a

gb(z,Q) (VI.2.4.3)

Where

gb(z,Q) = ∑
d≥0

Qd

(zdd!)N+1
⎛⎜⎜⎜⎜⎜⎝
1

zb

N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=b

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

1

m1⋯ml)
⎞
⎠
jl
⎞⎟⎟⎟⎟⎟⎠

Let us recall Equation (VI.2.3.8). We have

Pq,z ⋅ϕ∗q,z J̃Kth(z, q,Q) = N

∑
i=0
(1 −P −1)i ∑

0≤a,b≤N
a+b=i

(qt − 1
z
)
a

(ℓqt (Q)
a
)(1 − qt

z
)
b

Jb
⎛
⎝qt,(

1 − qt

z
)
N+1

Q
⎞
⎠
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Where

Jb (q,(1 − q
z
)N+1Q) =

∑
d≥0

(1 − q)d(N+1)Qd
zd(N+1)(q; q)N+1d

⎛⎜⎜⎜⎜⎜⎝
N

∑
k=0

∑
0≤j1,...,jN≤N
j1+⋯+jN=k

j1+2j2+⋯+NjN=b

(−1)k (N + k)!
N !j1!⋯jN !

N

∏
l=1

⎛
⎝ ∑
1≤m1<⋯<ml≤d

qm1+⋯+ml

(1 − qm1)⋯(1 − qml)
⎞
⎠
jl
⎞⎟⎟⎟⎟⎟⎠

We observe that

lim
t→0
(1 − qt

z
)
b

Jb
⎛
⎝qt,(

1 − qt

z
)
N+1

Q
⎞
⎠ = gb(z,Q)

Using Proposition V.2.4.2, we also observe that

lim
t→0
(qt − 1

z
)
a

(ℓqt (Q)
a
) = 1

a!
( log(Q)

z
)
a

Putting these two observations together, we get

confluence(J̃Kth) (z,Q) = N

∑
i=0
(1 −P −1)i ∑

0≤a,b≤N
a+b=i

1

a!
( log(Q)

z
)
a

gb(z,Q)

Comparing with Equation (VI.2.4.3), we find that

γ (confluence(J̃Kth) (z,Q)) = J̃coh(z,Q)

We can now give a complete proof of Theorem VI.2.1.1.

Proof of Theorem VI.2.1.1. Confluence of the equation. Using the q-pullback ϕq,z of Proposition VI.2.2.4,

we obtain a confluent q-difference system. Its limit is the differential equation (zQ∂Q)N+1f̃(Q) = f̃(Q), which
is the differential equation associated to the small cohomological J-function. The choice of the formula for

the q-pullback ϕq,z is discussed in Remark VI.2.2.6.

Confluence of the solution. By Proposition VI.1.1.12, we can see the K-theoretical J-function as a

fundamental solution matrix XKth of the starting q-difference equation (VI.1.1.9). By Proposition VI.2.3.3,

there exists a change of fundamental solution Pq,z ∈ GLN+1 (M(Eq)) such that the fundamental solution

ϕ∗q,zXKthPq,z is confluent. The choice of the formula for the q-constant transformation Pq is discussed in

Remark VI.2.3.9.

Comparison with quantum cohomology. The first row of the fundamental solution ϕ∗q,zXKthPq,z

defines another K-theoretical function, which we denote by Pq,z ⋅ ϕ∗q,zJ̃Kth. Since the fundamental solution

was confluent, this function has a well defined limit when qt → 1, which we denote by confluence(J̃Kth).
Using Proposition VI.2.4.2, we have

γ (confluence(J̃Kth) (z,Q)) = J̃coh(z,Q)
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VI.3 Equivariant version of the comparison theorem

In this section we state and prove an analogue of Theorem VI.2.1.1 in the context of equivariant K-theory

and cohomology. The two main differences compared to the previous section are:

(i) The formulas have to be adapted to the equivariant setting. In particular, since we see the generating

classes q ∈KC∗(pt), z ∈ H∗C∗(pt) as parameters, we will also need to see the generators of K(C∗)N+1(pt)
as parameters.

(ii) The bases of equivariant K-theory and cohomology are not related to the non equivariant bases. This

means that the fundamental solution we will consider in the equivariant setting are different.

VI.3.1 Equivariant Gromov–Witten theory

The goal of this subsection is to introduce the definitions of the J-functions in the equivariant setting and

explain the differences mentioned above.

Equivariant K-theory

Notation. We denote by TN+1 the torus (C∗)N+1.
For (t0, . . . , tN) ∈ TN+1 and [z0 ∶ ⋯ ∶ zN] ∈ PN , we define an action of the torus TN+1 = (C∗)N+1 on PN by

the formula,

(t0, . . . , tN) ⋅ [z0 ∶ ⋯ ∶ zN ] = [t0z0 ∶ ⋯ ∶ tNzN ]
The elementary representations

ρi ∶
RRRRRRRRRRRR
(C∗)N+1 C∗

(t0, . . . , tN) ti

defines N +1 classes Λ0, . . . ,ΛN ∈KTN+1(pt), where −Λi is the line bundle on the point with an action of the

group TN+1 given by ρi. In the end, we get

Proposition VI.3.1.1 ([CG10]). The TN+1-equivariant K-theory of the point is the ring given by

KTN+1(pt) = Z[Λ±10 ,⋯,Λ±1N ]
Proposition VI.3.1.2 ([CG10]). Denote by P = Oeq(1) ∈ KTN+1 (PN) the anti-tautological equivariant

bundle. The TN+1-equivariant K-theory of PN is the ring

KTN+1 (PN) = Z[Λ±10 , . . . ,Λ±1N ][P ±1] /((1 −Λ0P
−1)⋯ (1 −ΛNP −1))

Corollary VI.3.1.3. The TN+1-equivariant K-theory of PN is generated as a KTN+1(pt)-module by the

classes

Ψi =∏
j≠i

1 −ΛjP −1

1 −ΛjΛ−1i
∈KTN+1 (PN)

Notice the generating classes Ψi ∈KTN+1 (PN) behave like the polynomials of Lagrange interpolation: for

all j ∈ {0, . . . ,N}, we have

Ψi∣P=Λj
= δi,j
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Definition VI.3.1.4. There is a morphism of rings ρ ∶ KTN+1 (PN) → K (PN) defined by ρ(P ) = P and for

all i ∈ {0, . . . ,N}, ρ(Λi) = 1. Given an equivariant class φ ∈KTN+1 (PN), its image ρ(φ) will be called its non

equivariant limit.

Remark VI.3.1.5. The non equivariant limit of the basis (Ψi) of KTN+1 (PN) is not a basis of K (PN). For

any i ∈ {0, . . . ,N}, we have ρ(Ψi) = (1 − P −1)N

Equivariant cohomology

Introduce the classes

λi = c1(Λi) ∈H2
TN+1(pt) =H2(BTN+1) z = −c1(q) ∈H2

T (pt)
Proposition VI.3.1.6 ([CK99], Section 9.1). We have the following equivariant cohomology rings

H∗TN+1(pt;Q) = Q[λ0, . . . , λN ] H∗T (pt;Q) = Q[z]
Denote by H = c1(Oeq(1)) the equivariant hyperplane class. We have

H∗TN+1 (PN ;Q) = Q[λ0, . . . , λN ][H] /((H − λ0)⋯(H − λN))
Corollary VI.3.1.7 ([CK99], Equation 9.4). The set H∗

TN+1 (PN ;Q) is generated as a H∗
TN+1(pt;Q)-module

by the classes

Lagi =∏
j≠i

H − λj
λi − λj

∈H∗TN+1 (PN ;Q)
Definition VI.3.1.8. There is a morphism of rings ρ ∶ H∗

TN+1 (PN ;Q) → H∗ (PN ,Q) defined by ρ(H) = H
and for all i ∈ {0, . . . ,N}, ρ(Λi) = 0. Given an equivariant class φ ∈KTN+1 (PN), its image ρ(φ) will be called

its non equivariant limit.

Comparison between the equivariant classes

Let us explain how to the actions by T and TN+1 are related. Our goal is to motivate a formula we will use

later when dealing with q-difference equations. The multiplicative group morphism

f ∶
RRRRRRRRRRR

TN+1 T

(z0, . . . , zN) z0⋯zN

Induces a ring morphism fKth ∶ KT (pt) → KTN+1(pt) as follows: if E denotes a complex vector space and

χ ∶ T ×E → E is a T -action, then we can define a (C∗)N+1-action on E by

(t0, . . . , tN) ⋅ v = χ(f(t0, . . . , tN), v) = χ(t0⋯tN , v)
In particular, by checking the group actions, recalling that q is a generator of KT (pt), we have fKth(−q) =
Λ0 ⊗⋯⊗ΛN . This map has N + 1 sections (si), with the section si being given by the inclusion of T in the

ith factor of TN+1. We have sj(Λi) = δi,jq. The map fKth has a cohomological analogue gcoh constructed in

the same way. This data fit in the diagram

Q[q±1] =KT (pt)⊗Z Q KTN+1(pt)⊗Z Q

Q[z] =H∗T (pt;Q) H∗
TN+1(pt;Q)

fKth

ch ch

gcoh
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Proposition VI.3.1.9. Up to degree 1 terms, we have the relation in H∗
TN+1(pt;Q)

ch(Λi) = ch(fK(q))− λi
gH (z) (VI.3.1.10)

Proof. Since all the K-theoretical classes are line bundles, we have up to degree one terms

ch(fK(q))− λi
gH(z) = 1 + λi

λ0 +⋯ + λN
c1(Λ0 ⊗⋯⊗ΛN) +⋯ = 1 + λi +⋯ = ch(λi)

Givental’s equivariant K-theoretical J-function

Definition VI.3.1.11 ([Giv], II). Let X = PN and let P = Oeq(1) ∈ KTN+1 (PN) be the anti-tautological

equivariant bundle. Givental’s equivariant small J-function is the function

JKth,eq(q,Q) = P −ℓq(Q)∑
d≥0

Qd

(qΛ0P −1, . . . , qΛNP −1; q)d (VI.3.1.12)

Where

(qΛ0P
−1, . . . , qΛNP

−1; q)
d
= N

∏
i=0
(qΛiP −1; q)d

Proposition VI.3.1.13. The small equivariant J-function (VI.3.1.12) is solution of the q-difference equation

[(1 −Λ0q
Q∂Q)⋯ (1 −ΛNqQ∂Q) −Q]JKth(q,Q) = 0 (VI.3.1.14)

The proof of this proposition is exactly the same as in Proposition VI.1.1.4, where we use instead the

relation (1 −Λ0P
−1)⋯ (1 −ΛNP −1) = 0 ∈KTN+1 (PN).

Remark VI.3.1.15. The non equivariant limit of the equivariant J-function JKth,eq is the usual J-function

J̃Kth.

Recall that the equivariant K-theory of projective spaces is generated by the classes

Ψi =∏
j≠i

1 −ΛjP −1

1 −ΛjΛ−1i
∈KTN+1 (PN)

Proposition VI.3.1.16 ([Giv], II). The decomposition of the J-function in this basis is given by

JKth,eq(q,Q) = N

∑
i=0
J
Kth,eq
∣P=Λi

(q,Q)Ψi
Remark VI.3.1.17. The equivariant limit of this decomposition does not have a sense, since the basis (Ψi) is
not compatible with non equivariant limit. We have

ρ(JKth,eq
∣P=Λi

(q,Q)) = ∑
d≥0

Qd

(q; q)N+1d

= J̃0(q,Q)
Where we recall that J̃0(q,Q) is the coefficient in the decomposition

J̃Kth(q,Q) = N

∑
i=0
J̃i(q,Q) (1 −P −1)i ∈K (PN)⊗C(q)[[Q]]
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Givental’s equivariant J-function as a fundamental solution

Let us consider the q-difference equation (VI.3.1.14)

[(1 −Λ0q
Q∂Q)⋯ (1 −ΛNqQ∂Q) −Q]JKth,eq(q,Q) = 0

If we assume Λ0, . . . ,ΛN ∈ C∗ such that if i ≠ j,ΛiΛ−1j ∉ qZ, then this q-difference equation is a hypergeometric

q-difference equation which is regular singular and non resonant, see Definition VI.3.1.20 (here, non resonance

is equivalent to the condition ΛiΛ
−1
j ∉ qZ). Notice that, from the previous section, the non equivariant q-

difference equation [(zQ∂Q)N+1 −Q] J̃coh(z,Q) = 0 is resonant.

Proposition VI.3.1.18. The functions (JKth,eq
∣P=Λi

)
i∈{0,...,N}

form a M(Eq)-basis of the solutions of the q-

difference equation (VI.3.1.14).

Proof. Since the q-difference equation (VI.3.1.14) has no K-theoretical coefficient, the functions JKth,eq
∣P=Λi

are

solutions. The condition ΛiΛ
−1
j ∉ qZ implies that the q-logarithms Λ

ℓq(Q)
i and Λ

ℓq(Q)
j are independent over

M(Eq). Using Proposition V.1.1.6, if i ≠ j, then JKth,eq
∣P=Λi

and JKth,eq
∣P=Λj

areM(Eq)-linearly independent.

Remark VI.3.1.19. Given a q-hypergeometric equation that is regular singular at Q = 0 and non resonant, the

theory of q-difference equation gives a fundamental solution. This fundamental solution depends on the choice

of a q-character. For example, choosing the q-characters Λ
−ℓq(Q)
i in [Ada29] gives a basis of solutions that is

the same as (JKth,eq
∣P=Λi

)
i∈{0,...,N}

. We will explain how this basis is constructed in the next subsubsection, see

Proposition VI.3.1.26.

q-hypergeometric equations

In this subsubsection, we give the definitions and the fundamental solutions for q-hypergeometric equations.

Definition VI.3.1.20. Let r, s ∈ Z≥0, a1, . . . , ar, b1, . . . bs ∈ C∗. The associated q-hypergeometric equation is

⎡⎢⎢⎢⎣Q (−q
Q∂Q)1+s−r r

∏
i=1
(1 − aiqQ∂Q) − (1 − qQ∂Q)

s

∏
j=1
(1 − bj

q
qQ∂Q)

⎤⎥⎥⎥⎦ fq(Q) = 0 (VI.3.1.21)

The q-difference equation is said to be non resonant if any ratio of two coefficients a1, . . . , ar, b1, . . . bs is not

in qZ.

Proposition VI.3.1.22. This q-difference equation is singular regular at 0 and ∞ if and only if r + 1 = s.
Proof. This is done by applying Proposition V.2.1.14 to the Equation (VI.3.1.21). Notice that the only

coefficient depending on Q in this q-difference is Q (−qQ∂Q)1+s−r. If r > s+1 (resp. r < s+1), this q-difference
equation is singular irregular at Q = 0 (resp. Q =∞).

By looking for a solution under the form of a Laurent series, we find the following definition.

Definition VI.3.1.23. Let a1, ..., ar, b1, ..., bs ∈ C∗. The associated q-hypergeometric series is the formal

Taylor series

ϕr s

⎛
⎝
a1 ⋯ ar

b1 ⋯ bs

RRRRRRRRRRRR
q,Q
⎞
⎠ = ∑d≥0

(a1, . . . , ar; q)d
(q, b1, . . . , bs; q)d ((−1)

dq
d(d−1)

2 )1+r−sQd (VI.3.1.24)

Where (a1, . . . , ar; q)d = (a1; q)d⋯ (ar; q)d = ∏r≥0 (1 − qra1)⋯ (1 − qrar). If b1, . . . , bs ∉ qZ≤0 , this defines an

element of C[[Q]].
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Proposition VI.3.1.25. The q-hypergeometric series (VI.3.1.24) is a solution of the q-hypergeometric equa-

tion (VI.3.1.21). Moreover, assuming ∣q∣ < 1, if r < s + 1 (resp. r > s + 1), this formal power series has

convergent ray ∞ (resp. 0).

Proof. We look for a solution of the q-hypergeometric equation (VI.3.1.21) of the form

fq(Q) = ∑
d∈Z

ad(q)Qd

Where (ad(q))d∈Z ∈ CZ. Assuming that fq is a solution of (VI.3.1.21), we obtain that

fd+1 = (−q)1+s−r (1 − a0qd)⋯(1 − arqd)(1 − qd+1)(1 − b0qd)⋯(1 − bsqd)
From this recursion relation, by setting the initial condition f0 = 1, we deduce that the function fq corresponds
to the q-hypergeometric series (VI.3.1.24). In particular, the factor (1−qQ∂Q) inside the q-difference equation
(VI.3.1.21) implies that a−1(q) = 0.

Next, we compute the convergence ray of the Taylor series (VI.3.1.24). We have

∣ad+1
ad
∣ d→∞ (qd)1+r−s

We conclude by ratio test.

Proposition VI.3.1.26 ([Ada29]). Assume in this proposition that r = s + 1. Then, the q-difference equa-

tion VI.3.1.21 is singular regular at Q = 0,∞ of degree r. Assume furthermore that if i ≠ j, k ≠ l, then

ai/aj , bk/bl, q/b1 ∉ qZ. A basis of independent solutions at Q = 0 is given by taking the convergent power series

(VI.3.1.24) as a first solution and adding the functions indexed by j ∈ {1, . . . , s}

y0j (Q) = θq(−bjQ/q)
θq(−Q) ϕs+1 s

⎛⎜⎜⎜⎜⎝

qa1

bj
⋯

qar

bj

q2

bj

qb1

bj
⋯

q̂bj

bj
⋯

qbs

bj

RRRRRRRRRRRRRRRRRRR
q,Q

⎞⎟⎟⎟⎟⎠
Where ⋅̂ means that this element is omitted.

A basis of independent solutions at Q =∞ is given by the solutions indexed by i ∈ {1, . . . , r}

y∞i (Q) = θq(−aiQ)
θq(−Q) ϕs+1 s

⎛⎜⎜⎜⎝
ai

aiq

b1
⋯

aiq

bs
aiq

a1
⋯

âiq

ai
⋯

aiq

ar

RRRRRRRRRRRRRRRRR
q,
qb1⋯bs
a1⋯arQ

⎞⎟⎟⎟⎠
Proof. Our starting function was

ϕr r−1

⎛
⎝
a1 ⋯ ar

b1 ⋯ br−1

RRRRRRRRRRRR
q,Q
⎞
⎠

It is obtained by looking a Taylor series solution ∑d≥0 fk(q)Qk to the equation VI.3.1.21 and setting the

initial condition f(0) = 1.
To obtain the other solutions, we observe that if b ∈ C∗ − qZ and gb is a solution of the q-difference

equation (1 − λ
b
qQ∂Q) gb = 0, then the function f(Q) = eq,b−1(Q)gb(Q) is a solution of the q-difference equation

(1 − λqQ∂Q) f = 0.
The independence of the families overM(Eq) is a consequence of the hypothesis ai/ai+1, bj/bj+1, q/b1 ∉

qZ.
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VI.3.2 Statement of the equivariant comparison theorem

We are going to relate Givental’s equivariant K-theoretical J-function to its cohomological analogue by

confluence. Before stating the theorem, we define the equivariant cohomological J-function.

Definition VI.3.2.1 ([Giv96]). The small equivariant cohomological J-function is given by the expression

Jcoh,eq(z,Q) =QH
z ∑
d≥0

Qd

∏dr=1 (H − λ0 + rz)⋯ (H − λN + rz) ∈H
∗

TN+1 (PN)⊗C[[z, z−1]]
Proposition VI.3.2.2. The function Jcoh,eq is a solution of the differential equation

[(−λ0 + zQ∂Q)⋯(−λN + zQ∂Q) −Q]Jcoh,eq(z,Q) = 0 (VI.3.2.3)

Recall that the equivariant cohomology of projective spaces has a basis given by

Lagi =∏
j≠i

H − λj
λi − λj

∈H∗TN+1 (PN ;Q)
Proposition VI.3.2.4 ([CK99], Proposition 9.1.2). The function Jcoh,eq is decomposed in the basis (Lagi)
by the formula

Jcoh,eq(z,Q) = N

∑
i=0
J
coh,eq
∣H=λi

(z,Q)Lagi (VI.3.2.5)

For this the comparison theorem to make sense, we need to see the classes q, z, λi,Λi as complex numbers.

Because of the Equation VI.3.1.10, we assume that if i ≠ j, then λi − λj ≠ Z and ask the parameters Λi to

satisfy

Λi = q−λi
z (VI.3.2.6)

This relation will be necessary for confluence to work correctly.

Theorem VI.3.2.7. Denote by TN+1 the torus (C∗)N+1 and let JKth,eq (resp. Jcoh,eq) be the small equiv-

ariant K-theoretical (resp. cohomological) J-function of PN .

(i) There is a q-pullback making the q-difference system (VI.3.1.14) satisfied by JKth,eq confluent. Its

confluence yields the differential system satisfied by Jcoh,eq, (VI.3.2.3).

(ii) Consider the isomorphism of rings γeq ∶ KTN+1 (PN) → H∗
TN+1 (PN ;Q) given by γeq(Ψi) = Lagi for all

i ∈ {0, . . . ,N} and let confluence (JKth) be the result of confluence applied to the solution JKth of the

above q-difference system. Then, we have

γeq (confluence(JKth,eq)) (z,Q) = Jcoh,eq(z,Q)
For the formal definition of the function confluence (JKth,eq), see Definition VI.3.5.2. The proof of this

theorem will again be in three steps:

(i) Confluence of the q-difference equation (see Subsection VI.3.3 and Proposition VI.3.3.2).

(ii) Confluence of the fundamental solution (see Subsection VI.3.4 and Proposition VI.2.3.3)

(iii) Comparison between the confluence of the solution and the cohomological J-function (see Subsection

VI.3.5 and Proposition VI.3.5.3).
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VI.3.3 Confluence of the equation, equivariant version

Before giving a statement on the confluence of the q-difference equation (VI.3.1.14), let us write it in its

matrix form. We look for a matrix Bq ∈MN+1(C(Q)) such that

δq

⎛⎜⎜⎜⎜⎜⎝

JKth,eq(q,Q)
δqJ

Kth,eq(q,Q)
⋮

(δq)N JKth,eq(q,Q)

⎞⎟⎟⎟⎟⎟⎠
= Bq(Q)

⎛⎜⎜⎜⎜⎜⎝

JKth,eq(q,Q)
δqJ

Kth,eq(q,Q)
⋮

(δq)N JKth,eq(q,Q)

⎞⎟⎟⎟⎟⎟⎠
We rewrite the q-difference equation (VI.3.1.14) as

[(1 −Λ0 + (1 − q)Λ0δq)⋯ (1 −ΛN + (1 − q)ΛNδq) −Q]JKth,eq(q,Q) = 0
We see the expression in the square brackets as a polynomial in δq. For i ∈ {0, . . . ,N + 1}, the coefficient in

front of δiq in this polynomial, which we denote by pi, is given by

pi ∶= −δi,0Q + (1 − q)i ∑
0≤j1<⋯<ji≤N

Λj1⋯Λji ∏
k∈{0,...,N}−{j1,...,ji}

(1 −Λk)
Where δi,0 is the Kronecker symbol which is zero unless i = 0. In particular, we have

p0 = −Q +
N

∏
i=0
(1 −Λi)

pN+1 = (1 − q)N+1Λ0⋯ΛN

So the q-difference equation (VI.3.1.14) has the matrix form

qQ∂QX =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 ⋱ 0

⋮ ⋮ ⋮
0 0 ⋯ 1
p0

(1−q)N+1Λ0⋯ΛN

p1
(1−q)N+1Λ0⋯ΛN

⋯ pN
(1−q)N+1Λ0⋯ΛN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
X (VI.3.3.1)

Where

X =
⎛⎜⎜⎜⎜⎜⎝

JKth,eq(q,Q)
δqJ

Kth,eq(q,Q)
⋮

(δq)N JKth,eq(q,Q)

⎞⎟⎟⎟⎟⎟⎠
And

pi = −δi,0Q + (1 − q)i ∑
0≤j1<⋯<ji≤N

Λj1⋯Λji ∏
k∈{0,...,N}−{j1,...,ji}

(1 −Λk)
Proposition VI.3.3.2. Consider the q-difference equation (VI.3.1.14)

[(1 −Λ0q
Q∂Q)⋯ (1 −ΛNqQ∂Q) −Q]JKth(q,Q) = 0

Let ϕq,z be the function

ϕq,z ∶

RRRRRRRRRRRRRR
C C

Q ( z
1−q
)N+1Q

Then, the q-pullback of the q-difference equation (VI.3.1.14) by ϕq,z is confluent, and its formal limit is the

differential system satisfied by the small equivariant cohomological J-function (VI.3.2.3).
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Proof. We consider the q-difference system (VI.3.3.1). We recall that its coefficients on the last line are given

by, for i ∈ {0, . . . ,N}
pi

pN+1
= −δi,0Q + (1 − q)i∑0≤j1<⋯<ji≤N Λj1⋯Λji∏k∈{0,...,N}−{j1,...,ji}(1 −Λk)(1 − q)N+1Λ0⋯ΛN

For i ≠ 0, we have

pi

pN+1
= 1

Λ0⋯ΛN
∑

0≤j1<⋯<ji≤N
Λj1⋯Λji ∏

k∈{0,...,N}−{j1,...,ji}

1 −Λk
1 − q

Using Equation (VI.3.2.6) : Λi = q−λi/z, we have

lim
q→1

pi

pN+1
= 1

(−z)N+1−i ∑
0≤j1<⋯<jN+1−i≤N

λj1⋯λjN+1−i

The remaining coefficient is

p0

pN+1
= 1

Λ0⋯ΛN

⎛
⎝−

Q

(q − 1)N+1 +
N

∏
j=0

1 −Λj
1 − q

⎞
⎠

Which has no limit as it stands.

The q-pullback of this system only change the only coefficient of the matrix which depends on Q. The

q-pullback is given by the system

qQ∂QX =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 ⋱ 0

⋮ ⋮ ⋮
0 0 ⋯ 1

aN0(z, q,Q) p1
(1−q)N+1Λ0⋯ΛN

⋯ pN
(1−q)N+1Λ0⋯ΛN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
X

Where

aN0(z, q,Q) = 1

Λ0⋯ΛN

⎛
⎝−

Q

zN+1
+
N

∏
j=0

1 −Λj
1 − q

⎞
⎠

We have

lim
q→1

aN0(z, q,Q) = 1

zN+1
((−1)N+1λ0⋯λN −Q)

Which is well defined. Therefore, the q-pullback by ϕq,z of the system (V I.3.3.1) is confluent. Moreover, its

formal limit is the differential system associated to the differential equation

[(−λ0 + zQ∂Q)⋯(−λN + zQ∂Q) −Q]f(z,Q) = 0
Which is the differential equation satisfied by Jcoh,eq (VI.3.2.3).

Remark VI.3.3.3. The q-pullback ϕq,z defined in Proposition VI.3.3.2 is the only q-pullback of the form

Q↦ ( z
1−q
)λQ, with λ ∈ Z, which defines a confluent q-difference system whose formal limit is non zero.

The proof of this statement is the same as in Remark VI.2.2.6.
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VI.3.4 Confluence of the solution, equivariant version

Let us mention a reason why confluence of the solution in the equivariant case should be easier than in the

previous setting. We recall that in Remark VI.3.1.17, we had the non equivariant limit

(JKth,eq
∣P=Λi

)
∣Λ0=⋯=ΛN=1

(q,Q) = ∑
d≥0

Qd

(q; q)N+1d

In the proof of Proposition VI.2.3.3, the right hand side above had a well defined limit after the q-pullback

without the need of a transformation. We could expect that the limit when q tends to 1 of the functions

J
Kth,eq
∣P=Λi

(q,Q) to be well defined without the need of a gauge transform.

Let us introduce the fundamental solution of the q-pullback for which we want to compute the limit when

q tends to 1.

Remark VI.3.4.1. The q-pullback of the q-difference system (VI.3.3.1) has a fundamental solution obtained

from the equivariant J-function JKth,eq(q,Q), which is given by

XKth,eq (q,ϕ−1q,z(Q)) =
⎛⎜⎜⎜⎝
J
Kth,eq
∣P=Λ0

(q, ( 1−q
z
)N+1Q) ⋯ J

Kth,eq
∣P=ΛN

(q, (1−q
z
)N+1Q)

⋮ ⋱ ⋮

δNq J
Kth,eq
∣P=Λ0

(q, ( 1−q
z
)N+1Q) ⋯ δNq J

Kth,eq
∣P=ΛN

(q, ( 1−q
z
)N+1Q)

⎞⎟⎟⎟⎠
(VI.3.4.2)

Proposition VI.3.4.3. There exists a q-constant transformation Pq,z ∈ GLN+1 (M(Eq)) such that the fun-

damental solution XKth,eq (q,ϕ−1q,z(Q))Pq,z obtained from Equation VI.3.4.2 is given by

(XKth,eq (q,ϕ−1q,z(Q))Pq,z)li = (δq)lΛ−ℓq(Q)i ∑
d≥0

1

zd(N+1)
(1 − q)d(N+1)Qd

(qΛ0Λ−1i , . . . q, . . . , qΛNΛ−1i ; q)
d

Moreover, this fundamental solution has a non trivial limit when q tends to 1.

Proof. By the same argument as in Proposition VI.2.3.3, there is a transformation Pq,z ∈ GLN+1 (M(Eq))
which changes the q-logarithms ℓq ((1−qz )N+1Q) in the fundamental solution XKth,eq (q,ϕ−1q,z(Q)) into the

other q-logarithm ℓq(Q). Let us denote by (XKth,eq (q,ϕ−1q,z(Q))Pq,z)0i for i ∈ {0, . . . ,N} the elements on

the first row of the fundamental solution XKth,eq (q,ϕ−1q,z(Q))Pq,z . We have

(XKth,eq (q,ϕ−1q,z(Q))Pq,z)0i = Λ−ℓq(Q)i ∑
d≥0

1

zd(N+1)
(1 − q)d(N+1)Qd

(qΛ0Λ−1i , . . . q, . . . , qΛNΛ−1i ; q)
d

Therefore, the q-constant transformation Pq,z satisfies the condition of the Proposition on the coefficient

(XKth,eq (q,ϕ−1q,z(Q))Pq,z)li.
Let us compute the limit of this new fundamental solution. Using Equation VI.3.2.6, we have

lim
q→1

Λ
−ℓq(Q)
i = lim

q→1
e

λi
z

log(q)ℓq(Q) =Qλi
z

lim
q→1

1

zd(N+1)
(1 − q)d(N+1)

(qΛ0Λ−1i , . . . q, . . . , qΛNΛ−1i ; q)
d

= lim
q→1

d

∏
r=1

N

∏
j=0

1

z

1 − q
1 − qrΛjΛ−1i

= d

∏
r=1

N

∏
j=0

1

(λi − λj + rz)
Thus,

lim
q→1
(PqXKth,eq (q,ϕ−1q,z(Q)))0i = Qλi

z ∑
d≥0

Qd
d

∏
r=1

N

∏
j=0

1

(λi − λj + rz)
Since limq→1 δq =Q∂Q, the fundamental solution PqXKth,eq (q,ϕ−1q,z(Q)) is confluent.
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VI.3.5 Comparison between the confluence and the cohomological J-function

Definition VI.3.5.1. The first row of the fundamental solution XKth,eq (q,ϕ−1q,z(Q))Pq,z of Proposition

VI.3.4.3 defines a K-theoretical function, which we denote by Pq,z ⋅ ϕ∗q,zJ
Kth,eq.

Definition VI.3.5.2. By Proposition VI.3.4.3, the limit when q tends to 1 of the function Pq,z ⋅ϕ∗q,zJ
Kth,eq

is well defined. We define the K-theoretical function confluence (JKth,eq) by
confluence (JKth,eq) (z,Q) = lim

t→0
Pqt,z ⋅ ϕ

∗

qt,zJ
Kth,eq(qt,Q)

Proposition VI.3.5.3. Consider the isomorphism of rings γeq ∶ KTN+1 (PN) → H∗
TN+1 (PN ;Q) given by

γeq(Ψi) = Lagi for all i ∈ {0, . . . ,N} Then, we have

γeq (confluence (JKth,eq) (z,Q)) = Jcoh,eq(z,Q)
Proof. On one hand, recall that by Equation VI.3.2.5, we have the decomposition

Jcoh,eq(z,Q) = N

∑
i=0
J
coh,eq
∣H=λi

(z,Q)Lagi
On the other hand we have

Pq,z ⋅ ϕ∗q,zJ
Kth,eq(t, z,Q) = N

∑
i=0

⎛
⎝Λ
−ℓq(Q)
i ∑

d≥0

1

zd(N+1)
(1 − q)d(N+1)Qd

(qΛ0Λ−1i , . . . q, . . . , qΛNΛ−1i ; q)
d

⎞
⎠Ψi

Thus,

confluence (JKth,eq) (z,Q) = N

∑
i=0

⎛
⎝Q

λi
z ∑
d≥0

Qd
d

∏
r=1

N

∏
j=0

1

(λi − λj + rz)
⎞
⎠Ψi

We conclude using γeq(Ψi) = Lagi and
J
coh,eq
∣H=λi

(z,Q) = Qλi
z ∑
d≥0

Qd
d

∏
r=1

N

∏
j=0

1

(λi − λj + rz)

We can now give a complete proof of Theorem VI.3.2.7

Proof of Theorem VI.3.2.7. Confluence of the equation. Using the q-pullback ϕq,z of Proposition VI.3.3.2,

we obtain a confluent q-difference system. Its limit is the differential equation associated to the small equiv-

ariant cohomological J-function. The naturality of the q-pullback ϕq,z is discussed in Remark VI.3.3.3.

Confluence of the solution. By Proposition VI.3.1.18, we can encode the equivariant K-theoretical J-

function as a fundamental solution of the q-pullback of the system (VI.3.3.1), which we denote by the matrix

XKth,eq (q,ϕ−1q,z(Q)) in Equation VI.3.4.2. By Proposition VI.2.3.3, there exists a q-constant transformation

Pq,z ∈ GLN+1 (M(Eq)) such that the fundamental solution XKth,eq (q,ϕ−1q,z(Q))Pq,z is confluent.

Comparison with quantum cohomology. The first row of the transformed fundamental solution

XKth,eq (q,ϕ−1q,z(Q))Pq,z defines another K-theoretical function, which we denote by Pq,z ⋅ϕ∗q,zJ
Kth,eq. Since

the fundamental solution was confluent, this function has a well defined limit when qt → 1, which we denote

by confluence (JKth,eq). Using Proposition VI.3.5.3, we have

γeq (confluence (JKth,eq) (z,Q)) = Jcoh,eq(z,Q)
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We remark that from this theorem we can recover the non equivariant version of the theorem, by taking

the non equivariant limits in cohomology and K-theory. The way to proceed can be summed up in the

informal diagram below.

QKTN+1 (PN) QHTN+1 (PN)

QK (PN) QH (PN)

V I.3.2.7

confluence

Λ→1 λ→0

V I.2.1.1

confluence

Note that non equivariant limits are only defined for the expressions of JKth,eq and Jcoh,eq which are not

decomposed in our bases, cf. Remarks VI.3.1.5 and VI.3.1.17.
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