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Abstract. In this article, we establish a total lexicographical order on the set of Motzkin 

words. Elements are ordered similarly to Natural Numbers in accordance with known 

rules (axioms). As a result, we were able to obtain arithmetic and logical operations on 

the elements of the ordered sequence, Motzkin Row. This sequence consists of balanced 

brackets without leading zeros, with the exception of the initial word "0". It is the word 

"0" as well as the alphabetical symbol "0" that are analogues of numeric zero in the cor-

responding operations. Logical operations allow you to navigate Motzkin Row. Opera-

tions on words are accompanied by index equations, index polynomials. 
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1 Introduction  

There is a growing interest in ordered non-numerical sets. We note two papers 

[BP14, Fan19] in which the authors investigate a partial order on well-formed pa-

rentheses strings (Dick words and Motzkin words). For example, Pallo and Baril 

[BP14] determine the distance between the specific Motzkin words in the Tamari 

lattice. 

The author establishes a total order on balanced brackets in accordance with the 

alphabetical order (see order on Dyck words [Ere19]). In this paper, we work with 

unique Motzkin words (without leading zeros). The lexicographic sequence is con-

structed in accordance with the rules (axioms) of the set of natural numbers. As a 

result, partial operations of addition and subtraction of Motzkin words began to 

work. Logical operations also appeared. 

1.1. Motzkin words.  In discrete mathematics, Motzkin words (named after Theo-

dore Motzkin) are of particular interest. We will treat a Motzkin word as balanced 

parentheses supplemented by zeros. Let’s convert the simple arithmetic expression 

y × [(82 − z) / (m + t) − 7] + 359 – x. 

First, replace the operations and operands with zeros. Next, we change all the 

brackets to parentheses, keeping the orientation. The result is Motzkin word 

(1.1)  00((000)0(000)00)0000.  

Two conditions are true for such a string: 

mailto:ergenns@gmail.com
http://jl.baril.u-bourgogne.fr/Motzkin.pdf
https://arxiv.org/abs/1801.04809
http://jl.baril.u-bourgogne.fr/Motzkin.pdf
https://arxiv.org/abs/1909.07675
https://en.wikipedia.org/wiki/Theodore_Motzkin
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 the number of left and right parentheses is the same (a Motzkin word can con-

sist of only zeros, no parentheses, or of only parentheses, no zeros); 

 every substring must contain at least as many open parentheses as closed ones. 

For any Motzkin word, we can one way to highlight matched pairs of bidirec-

tional parentheses. In (1.1) one matched pair is shown in red. Matched pairs must 

be correctly nested. For the matched pair two conditions are met: 

 the left parentheses precedes the right one;  

 inside the matched pair, it’s either a Motzkin word or nothing (the case of adja-

cent parentheses).  

The set of consecutive Motzkin words is also a Motzkin word. Any Motzkin 

word is created using "building blocks" of the following three types: a left paren-

thesis, a right parenthesis, and zero. The simplest word contains only zeros. Fur-

ther, analyzing Motzkin words, we will focus on leading (initial) and final zeros. 

For example, the Motzkin word (1.1) has two leading and four final zeros.  

In enumerative problems of combinatorics, we usually count the number of ele-

ments of some set. There are only two Motzkin words of size 2, 2-word, namely: 

00,  ( ). 

The three-character Motzkin word, 3-word, can be obtained in four variants:  

000,  0( ),  (0), ( )0. 

The first two 3-words  (highlighted in green) are inherited from the 2-words by 

adding one leading zero (concatenation of zero and a 2-word). The last two 3-

words are unique. In the set of Motzkin 4-words there are the following nine ele-

ments: 

0000,  00( ),  0(0),  0( )0,  (00),  (0)0,  (( )),  ( )00,  ( )( ). 

Similarly, the first four 4-words (again green) are inherited from the 3-words (extra 

zero at the beginning). The last five 4-words are unique. Naturally, this procedure 

can be continued. Note that if we denote by Un the number of the unique n-words, 

then the number of all Motzkin 4-words, M4, is 

(1.2)   M4 = M3 + U4 = M2 + U3 + U4 = M1 + U2 + U3 + U4 = 1+1+2+5 = 9.  

Thus, the set of Motzkin n-words can be divided into two disjoint subsets. The 

first subset combines the inherited elements; these are Motzkin (n–1)-words with 

an extra zero at the beginning of the code. The elements of the second subset are 

unique, their codes begin with the left parenthesis, and these elements are usually 

the majority. It is easy to check, if to analyze Motzkin numbers [Slo19, sequence 

A001006].  Here is the first Motzkin numbers Mn  for n = 0, 1, 2, …:    

(1.3)   [1,] 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835 …  

https://oeis.org/
http://oeis.org/A001006
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We have enclosed the initial integer in brackets because some authors omit the 0th   

element (see [Wei19] or [Fan19, page 3]).  Easy to see,  Mn > 2Mn–1, n ≥ 4. Usually 

there are more unique Motzkin n-words than inherited ones.  But for the first 

Motzkin numbers we have  M3 = 2M2 = 4 and M2 = 2M1 = 2. The 2-word "00" is 

inherited from the Motzkin 1-word "0" and the other 2-word "( )" is unique.  

Let’s go down another step, here we have M1 = M0 =1. What about the 1-word 

"0"? Is this word inherited or unique? If Motzkin numbers are indexed from 0, then 

we allow the empty word ϵ (virtual 0-word). It is logical to consider "0" as the in-

herited 1-word, since "0 ϵ " = "0". But in this paper, we work with the real Motzkin 

words, we do not use the empty word and number M0 . In this regard, the 1-word 

"0" is considered unique, and this is the only unique Motzkin word with a leading 

zero. 

1.2. Axioms of the lexicographic sequence.  In [Ere19],  the author proposes to 

establish a lexicographical order using the external features of the sequence of natu-

ral numbers. Let’s briefly repeat the relevant axioms; these axioms we put in the 

basis of Motzkin Row. The first axiom is obvious: there are no repeats among natu-

ral numbers. We can add leading zeros to any integer, but in this case the value of the 

number will not change.  So the first axiom is about the uniqueness of the elements. 

Axiom 1.1 (unique elements). In the lexicographical sequence, all elements are 

unique. 

Next, natural numbers are listed in increasing order and, at first glance, the order 

is determined by the code length. Integers are distributed over ranges. Single-digit 

numbers, 1-range, are listed first, followed by double-digit integers, 2-range, and 

so on. Let’s call it a primary order.   

Again, adding leading zeros only formally changes the code length for an inte-

ger (the number remains the same). Copies with leading zeros do not modify the 

set of natural numbers. Leading zeros can be added temporarily for some proce-

dures, for example, summing columns.  

The following axiom fixes the primary (external) order. 

Axiom 1.2 (primary order). In the lexicographic sequence, elements are arranged 

in increasing order of the code length. 

In ranges, integers are sorted according to the alphabetical order 0 < 1 < 2 < ...  

< 9. In the k-range, k > 1, a minimum element is 10...0 (k–1 of zeros), a maximum    

element is 99…9 (k of nines), and the number of elements is 10
k
–10

k–1
 = 9×10

k–1
.  

It is logical to call sorting in ranges an internal order.  

An alphabet of the Motzkin word is ternary: { 0, (, ) }; we have to choose a total 

alphabetical order to sort the elements within the ranges of Motzkin Row. The 

third axiom establishes the order in ranges.   

http://mathworld.wolfram.com/MotzkinNumber.html
https://arxiv.org/abs/1801.04809
https://arxiv.org/abs/1909.07675
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Axiom 1.3 (internal order). In each range of the lexicographic sequence, objects 

are sorted according to the given total alphabetical order.  

In a natural number, alphabet symbols are free, their location is arbitrary. Digits 

are not related to each other (unlike the brackets in a Motzkin word where each left 

parenthesis must have a paired right one and vice versa). However, there is some 

limitation for zero, the smallest symbol of the alphabet. The next Axiom 1.4 is re-

lated to the special status of zero in natural numbers.  

A natural number does not start with zero. The singular 0 is an exception to the 

rule (if zero is a natural number). In Motzkin word, zero is also present, and this 

symbol is located freely within the code. Motzkin words often begin with zero, and 

something needs to be done. In the meantime, we formulate the last axiom based 

on the rule of using zero in the code of integers. 

Axiom 1.4 (about minimal free symbol). In the lexicographic sequence, an element 

with code length ≥ 2 cannot begin with a free character that has the least weight in 

the alphabet. 

2 Motzkin Row  

We have removed the empty word ϵ from our analysis (and respectively we got 

rid of the element M0 in A001006);  the axioms described above are generally ap-

plicable to construct a lexicographical sequence of Motzkin words. However, we 

still need a total alphabetical order; this order is natural:  

(2.1)  0  <  (  <  ) 

In a Motzkin word, any matched pair of brackets starts with the left parenthesis, 

so it’s logical to take the weight of the left parenthesis less than the right one. The 

symbol "0" resembles zero in integers (it has a minimum weight and is free). It re-

mains for us to decide what to do with leading zeros (except for the 1-word "0").  

The order (2.1) allows us to place Motzkin words within a range. In two differ-

ent words of the same size (without leading zeros), let’s look at the characters in 

pairs from left to right; then the first mismatch will determine the smaller (larger) 

element in according to (2.1). To determine the next / previous element for a given 

Motzkin word, we look through the characters from right to left and select the first 

character that can be replaced with a larger / smaller one. In this case, the tail of the 

word is selected accordingly. 

2.1. Ranges.  Let’s write out the set of Unique Motzkin Words, Motzkin Row, in 

order of increasing size and in accordance with the order (2.1) in the ranges: 

  𝔐 = {0,  ( ),  (0),  ( )0,  (00),  (0)0,  (( )),  ( )00,  ( )( ),  (000),  (00)0,  (0( )),  (0)00,   

  (0)( ),  ((0)),  (( )0),  (())0,  ( )000,  ( )0( ),  ( )(0),  ( )( )0,  (0000),  (000)0, …} 

http://oeis.org/A001006
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Elements of the infinite set 𝔐 are indexed starting from zero:  w0 ≡ 0, w1 ≡ ( ), 

w2 ≡ (0), and so on. We identify wi (i is a specific nonnegative integer) and the i-th 

word of 𝔐. Let’s call words of 𝔐 constants. For example, constant (000)0 ≡ w22 .  

Let’s denote by Un the cardinality of unique Motzkin words of size n, i.e., the 

length of the n-range 𝔐 n (or # 𝔐 n ). We highlighted in red the first elements in 

ranges. Obviously (see (1.2)),  

𝔐 = ⋃n ≥1 𝔐 n ;   # 𝔐 1 = U1 = 1,  # 𝔐 n = Un = Mn – Mn–1 , n ≥ 2. 

The numbers Un  for n = 1, 2, ... form the sequence: 

(2.2)       1, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799, 196938, …. 

Each n-range, n ≥ 2, has the following minimum and maximum n-words: 

min 𝔐 n = (00…0), n–2 of zeros,  and   max 𝔐 n = ( )( )…( )[0],  n ≥ 2. 

The maximum element of size n ends with zero if n is odd, and the number of pairs 

of adjacent parentheses is  n/2  (we discard half). The maximum and minimum 

are coincide in singleton ranges   𝔐 1 = {0}  and  𝔐 2 = {( )}.  

We construct 𝔐 in the image and likeness of natural numbers   

ℕ0 = {0, 1, 2, …, 9, 10, …, 99, 100, …, 999, 1000, …, 9999, 10000, …}. 

We add that both sets 𝔐 and ℕ0 have the same 0th elements w0 = n0 = 0, which 

have similar properties (and we’ll talk about this later). There are other coincidenc-

es as well, and we will discuss them in connection with arithmetic and logical op-

erations.  

The indices of the elements of 𝔐 are natural numbers. We can say that the set 

ℕ0 indexes the set 𝔐, or ℕ0 is an index set of 𝔐. (The set of natural numbers is 

self-indexing; the index of the element is equal to its value, i.e., ni = i.) In the rang-

es of Motzkin Row, minimal and maximum elements are indexed by Motzkin 

numbers. For any x  𝔐, let  ind x  denote the index of x in 𝔐. Easy to see  

(2.3)  ind min 𝔐 n = Mn–1   and   ind max 𝔐 n = Mn – 1,  n ≥ 2.  

Definition 2.1. Index expressions in which Motzkin numbers appear are called 

index polynomials. 

In the general case, for  x, y  𝔐, we will write x > y if ind x > ind y. About a 

thousand elements of Motzkin Row are given in the Addendum, which we will use 

from time to time.  

2.2. Blocks.  Recall that in a Motzkin word, all parentheses are divided into 

matched pairs. A matched pair of parentheses and everything inside is called a 

block. Matched pairs can be nested. A block that is not contained within another 
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one is called an outer block. For example, in each n-range of  , the minimum ele-

ment consists of a single (outer) block, and the maximum element has n/2 outer 

blocks. Another example, element w421 ≡ (0(0))0() contains two outer blocks: left 

block (0(0)) and right one (); and the first block also contains an inner block (0). In 

this section, we work only with outer blocks, hereinafter just blocks.  

Definition 2.2. Let x be a nonzero word in 𝔐, and let’s select an arbitrary (outer) 

block into x and replace all external parentheses with zeros. As a result, we get an 

extended block of same length with leading and trailing zeros in the general case. 

We assume that leading zeros only formally extend the code without changing 

Motzkin words themselves (as in the case of natural numbers). In other words, in 

the extended block, we can add or remove arbitrarily leading zeros if necessary. 

In the example below, we introduce addition ⊕ and subtraction ⊖ for the 

Motzkin words. 

Example 2.3.  Let’s choose  w736 ≡ ( )0(0( ))0.  In this case, we can get two extended 

blocks: the left block ( )0000000 ≡ w708 and the right one 000(0( ))0 = (0( ))0 ≡ w28 . And 

immediately we get the index equality  708 + 28 = 736. Let’s repeat this equality for 

Motzkin words in a column:  

      (  ) 0 0 0 0 0 0 0   

⊕  0 0 0 ( 0  (  )  ) 0   
=   (  ) 0 ( 0  (  )  ) 0 . 

The leading zeros came in handy in the second block. In fact, we decomposed one ele-

ment of 𝔐 into two words: w736 = w708 ⊕ w28 . Also in the column, we can write down 

two corresponding subtraction operations: w708 = w736 ⊖ w28  and w28 = w736 ⊖ w708 .   □ 

Note that when performing arithmetic operation, zero in Motzkin word is pro-

cessed like zero in integer. Let’s write it in the form of the following rules: 

  0 ⊕ 0  =  0,     0 ⊕ (  =  ( ⊕ 0  =  (,               0 ⊕ )  =  ) ⊕ 0  =  ),   

  0 ⊖ 0  =  0,      ( ⊖ 0  =  (,     ) ⊖ 0  =  ),     ( ⊖ (  =  0,     ) ⊖ )  =  0. 

Obviously, for w0 ≡ 0 and any x  𝔐, it is fair:   

    x ⊕ w0 = w0 ⊕ x = x,    

    x ⊖ w0 = x,   x ⊖ x = w0 . 

Now we can state the corresponding theorem.  

Theorem 2.4.  Let the element x  𝔐 be divided into k extended blocks xi , that is,  

(2.4)  x = x1 ⊕ x2 ⊕…⊕ xk =  ⊕
1 ≥ i ≥ k xi . 

Then the index equation takes the form  

(2.5)  ind  x = ∑ 
1 ≥ i ≥ k ind xi  . 



7 
 

Proof. In the case k = 1, the theorem is obvious. Let k > 1, and let  x1 > x2 >…> xk . 

Then in (2.4) the extended blocks are listed in descending order of ranges (leading 

zeros do not count). This means that the source element x and the first block x1 are 

the same length, i.e., are in the same range. Obviously, the first block has trailing 

zeros, and the size of the tail is not less than the length of the second block x2 . 

Let’s "walk" through Motzkin Row from x1 to x2 . Step by step we will iterate 

over the following elements: x1 ⊕ w1, x1 ⊕ w2, x1 ⊕ w3, and so on. With each step 

the index of the sum is incremented by 1. As a result, we get the element x1 ⊕ x2 

with index ind x1 + ind x2. Next, repeat the procedure with the passage of Motzkin 

Row from point x1 ⊕ x2 to point  (x1 ⊕ x2) ⊕ x3 = x1 ⊕ x2 ⊕ x3. The index new 

point is  ind x1 + ind x2 + ind x3. Further by induction, we obtain the final equality 

(2.5).                         □ 

In Example 2.3, we decomposed a word of 𝔐 into extended blocks. In the fol-

lowing example, we insert a block into the zero zone of a given element. 

Example 2.5.  The 9-word w710 ≡ ( )0000(0) has an inner fragment of four zeros. Let’s 

fill this place with the 7-word w72 ≡ (0)0000. First add the indices 710 + 72 = 782. The 

corresponding element is w782 ≡ ( )(0)0(0). Summing up the brackets, we get an identical 

result:  

              (  ) 0 0 0 0 (  0  )   

⊕   0 0 (  0 )  0 0 0 0   
 =   (   )  (  0 )  0  (   0  ). 

Again, for convenience, we put leading zeros in the second summand. Also we can write 

two subtraction operations:  w710 = w782 ⊖ w72  and  w72 = w782 ⊖ w710 .  Given element 

w710 contains two blocks  ( )0000000 ≡ w708 and  000000(0) = (0) ≡ w2 . So we can write 

down the sum with three extended blocks  w2 ⊕ w72 ⊕ w710 = w782 .          □ 

In the general case, any nonzero element of Motzkin Row can be decomposed 

into extended blocks, which can be further grouped arbitrarily.  

Definition 2.6.  The words x, y  𝔐, x < y, are called noncrossing if each outer 

block in x corresponds in y to the zero zone between the outer blocks in the same 

positions. In this case, addition ⊕ is defined for these words, i.e., x ⊕ y  𝔐. 

Noncrossing words have different sizes. The operation ⊕ has many properties 

of ordinary addition of numbers. This operation is symmetric, that is, for noncross-

ing x, y  𝔐   x ⊕ y = y ⊕ x  𝔐. Or here's another: the sum of two nonzero 

words is greater than each of the terms.    

Here is the definition associated with the subtraction operation.   

Definition 2.7.  Let x, y  𝔐, and let x > y. We say that y is included in x, y ⊏ x, if 

each extended block from y is also contained in x. In this case, subtraction ⊖ is de-

fined for these words, i.e., x ⊖ y  𝔐.  

It’s easy to see, for  x, y, z  𝔐,  if x ⊕ y = z  then  z ⊖ x = y  and  z ⊖ y = x . 
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Example 2.8. Let’s continue Example 2.5. We divided w782 = ( )(0)0(0) into three ex-

tended blocks w2 = (0), w72 = (0)0000 and w708 = ( )0000000. These blocks can be 

grouped in various ways  

 (w2 ⊕ w72) ⊕ w708  =  w2 ⊕ (w72 ⊕ w708)  =  (w2 ⊕ w708) ⊕ w72  =  w782 . 

Thus the result does not change when the extended blocks are regrouped.  Let’s write 

another equality: 

w2 ⊕ w708  =  w782 ⊖ w72 . 

The last equality contains both arithmetic operations on elements of 𝔐.          □ 

Theorem 2.4 implies the following corollary for disjoint and nested words. 

Corollary 2.9.  Let x, y  𝔐, and let x > y.  

   (i)  If x and y do not cross, then  x ⊕ y = z  𝔐  and  ind z = ind x + ind y. 

  (ii)  If y included in x, or y ⊏ x ,  then  x ⊖ y = z  𝔐  and  ind z = ind x – ind y. 

This concludes the arithmetic on the elements of 𝔐. Let’s move on to logical opera-

tions that allow you to modify words, i.e., to perform throws on Motzkin Row.  

3 Navigation along Motzkin Row 

In the previous section, we operated with words of Motzkin Row at the level of 

outer and extended blocks using arithmetic operations. Now we will modify blocks 

to move through Motzkin Row. All transformations in each block are reflected in 

the same way in the Motzkin word where this block is included.  For example, let 

x, y  𝔐, and let y ⊏ x ; then in accordance with Corollary 2.8, corrections in y will 

equally affect both index y and index x,  that is, the increments of both indices are 

the same:  Δ ind y = Δ ind x.   

In this section, we will discuss "floating" brackets, i.e. parentheses "drift" to-

wards adjacent zeros. Let’s start with the simplest, with the left parenthesis of the 

outer block of a word from 𝔐. 

3.1. Wandering left parenthesis.  Recall that in the n-range of Motzkin Row, the 

initial n-word (00…0) has an index of Mn–1;  in the next (n+1)-range, the minimum 

word has an index of Mn . To go from one element to another, you need to make a 

jump up the row by the value of Mn – Mn–1 . In this case, the left parenthesis of the 

Motzkin word moves one position to the left: from the n-th symbol to the (n+1)-th 

symbol. (The symbols are numbered from right to left as in natural numbers!) If we 

put the leading zero before the word (useless zero again came in handy), then we 

can say that the left parenthesis and the adjacent zero are reversed.  

Let’s explain again, in the outer block, we move the leftmost parenthesis to the 

left. In this case, the magnitude of the jump along Motzkin Row depends only on 

the position of a parenthesis in the word and the presence of an adjacent left-side 
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zero (possibly leading zero). We can say that in the corresponding extended block 

the range is increased by one. The contents of the outer block may be arbitrary, and 

the following obvious statement about this. 

Corollary 3.1.  Let x  𝔐 has the outer block with the leftmost parenthesis in the 

k-th position, and let the adjacent (or leading) zero be to the left of the parenthesis. 

Then a permutation of the bracket and zero increases the index of x by Mk – Mk–1, 

that is,  

Δ ind x  =  Mk – Mk–1 . 

Let’s display the procedure for moving the left parenthesis as follows: 

w4 ≡ (00) = 0(00)  ⟹   0(
+1

00) = (000) ≡ w9. 

We marked in red the movable parenthesis and plus one in the superscript (moving 

one position to the left with an increase of the word index). In this case, the jump is 

M4 – M3 = 9 – 4 = 5.  Let’s take two consecutive steps:  

 w4 ≡ (00) ⟹ (
+1

00) ⟹  (
+1

000) = (0000) ≡ w21   or   (
+2

00) = (0000).  

In this case, the jump is  (M4 – M3) + (M5 – M4) = M5 – M3 = 21 – 4 = 17.  

Obviously, you can move a parenthesis back from left to right (superscript nega-

tive), and then the word index decreases. The plus sign can be omitted in the super-

script. A similar notation can be used for words of indefinite length. For example, 

the minimum element of the n-range of Motzkin Row can be written as follows:  

min 𝔐 n  =  (
n-2 

),  n ≥ 2. 

It is easy to see when the left bracket from position k is shifted by  j positions 

(left +j or right – j), the index increment is  

(3.1)   δk 

j
 = Mk–1 j – Mk–1 ,   j ≥ 0. 

Consider the example. 

Example 3.2. Let’s fix the movable left bracket in the 6th position (k = 6).  Then, ac-

cording to (3.1), the increment of the index is  M5+ j – M5. Below, for the selected 

Motzkin words, we obtain the index increment for cases k = 1 and k = 2. 

w21  ≡ (0000)  ⟹  (
+1

0000) = (00000) ≡ w51;  Δ ind w21 = M6 – M5 = 51– 21 = +30. 

w28  ≡ (0( ))0   ⟹  (
-1

0( ))0 = (( ))0 ≡ w16;        Δ ind w28 =  M4 – M5 =  9 – 21 = –12. 

w50  ≡ ( )( )( )   ⟹  (
+2

 )( )( ) = (00)( )( ) ≡ w156;  Δ ind w50  = M7 – M5 = 127 – 21 = +106. 

w294 ≡ ()(000)0  ⟹ ()(
-2

000)0 = ( )00(0)0 ≡ w277;  Δ ind w294 = M3 – M5 = 4 – 21 = –17. 

w742 ≡ ( )0((0)0) ⟹ ( )0(
+1

(0)0) = ( )(0(0)0) ≡ w772; Δ ind w742 = M6 – M5 = 51– 21 = +30. 

Pay attention to the various elements of Motzkin Row, the index increments coincide if k 

and j are fixed (see w21 and w742).                       □ 
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3.2. Control points in Motzkin row. In Motzkin Row, we can consider the mini-

mum / maximum elements as control points (landmarks, pegs) since their indices 

are known.  Control points allow you to speed up the identification procedure:   

calculate the index of a given Motzkin word, or vice versa, construct an element  

of Motzkin Row using a given index. Our analysis allows us to obtain additional 

landmarks. 

(1)  Let a 
(n)

  be the n-word from 𝔐, and let’s define a 
(n)

  as follow: 

a 
(n)

 = max 𝔐 n ⊖ max 𝔐 n–2 = (n )( )… ⊖  (n–2 )( )… = (n ) 0…0.  

The subscript next to the bracket is the bracket position in the word. Obviously, 

 ind a 
(n)

 = (Mn –1) – (Mn–2 –1) = Mn – Mn–2 . 

 (2)  Let’s calculate another landmark in the n-range:  b 
(n)

 = (n 0) 0…0.  Take the 

intermediate (n–1)-word 

a 
(n–1)

 = (n–1 ) 0…0 = max 𝔐 n–1 ⊖ max 𝔐 n–3 ,   ind a 
(n–1)

 = Mn–1 – Mn–3 . 

In a 
(n–1)

, we move the left bracket by one position to the left. As a result, we get 

the following index polynomial (see Corollary 3.1):   

ind b 
(n)

 = (Mn–1 – Mn–3) + (Mn–1 – Mn–2) = 2Mn–1 – Mn–2 – Mn–3 . 

(3)  Here is one more landmark in the n-range:   

c 
(n)

 = (n 0) ( )( )… = b 
(n)

 ⊕ max 𝔐 n–3 ,   ind c 
(n)

 = ind b 
(n)

 + Mn–3 –1. 

Thus, for the n-range of Motzkin Row, there are different landmarks for solving 

the identification problem. In Table 1 below, we have listed the seven control 

points of the n-range in order of increasing indices. Five points we have consid-

ered, two points d 
(n) and h 

(n) will be considered further (so their indices are not 

specified).  If desired, the reader can independently calculate additional landmarks.  

Table 1. 

1 min 𝔐 n  = (00…0) ind min 𝔐 n   = Mn–1 

2 d 
(n)

         = (0 ( )) 00…0  

3 b 
(n)

      = (0) 00…0 ind b 
(n)

  = 2Mn–1 – Mn–2 – Mn–3 

4 c 
(n)

      = (0) ( ) ( )… ( ) [0]   ind c 
(n)

  = 2Mn–1 – Mn–2 – 1 

5 h 
(n)

         = ((0)) 00…0  

6 a 
(n)

      = ( ) 00…0 ind a 
(n)

  = Mn – Mn–2 

7 max 𝔐 n = ( ) ( )…( ) [0] ind max 𝔐 n   = Mn – 1 

3.3. Wandering right parenthesis.  As in the case with left brackets, we work on-

ly with external right brackets of blocks (both outer and extended). With the right 
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brackets, everything is not so obvious, and yet it is not difficult to obtain a formula 

similar to (3.1). As before, we will record the change in the word index when the 

parenthesis and adjacent zero are reversed. Note that, unlike left brackets, moving 

the right parentheses never changes the element range.  

Let’s choose a simple word from 𝔐 with the right parenthesis in the k-th posi-

tion and with zero in the (k +1)-th position. One of the control points discussed 

above will suit us: 

b 
(k+2)

 = (0)k 00…0,   ind b 
(k+2)

 = 2Mk+1 – Mk – Mk–1 . 

At the tail of this (k +2)-word, there are k –1 zeros. We again marked the right pa-

renthesis by its number.  The position of the left parenthesis is k+2.  After the per-

mutation of the right parenthesis with left zero, we get another control point (see 

Table 1):   

a 
(k+2)

 = ( )k +1 000…0,  ind a 
(k+2)

 = Mk+2 – Mk . 

The position of the right bracket is increased by one, and in the tail of a 
(k+2)

 there 

are k zeros. The index of b 
(k+2)

 has changed as follows: 

  Δ ind b 
(k+2)

 = ind a 
(k+2)

 – ind b 
(k+2)

  

= (Mk+2 – Mk) – (2Mk+1 – Mk – Mk-1)  

= Mk+2 – 2Mk+1 + Mk-1,  k ≥ 1. 

In this case, the selected control point b 
(k+2)

 is the simple extended block. It is 

easy to see that the resulting index polynomial is valid for more complex blocks.  

Corollary 3.3.  Let x  𝔐 has the outer block with the rightmost parenthesis in the 

k-th position, and let the adjacent zero be to the left of the parenthesis. Then a 

permutation of the bracket and zero increases the index of x by 

(3.2)  ξ k = Mk+2 – 2Mk+1 + Mk–1,  k ≥ 1. 

Naturally, the right bracket can drift to the right (if there is adjacent zero on the 

right). Then in the index polynomial (3.2), it is enough to change the signs and re-

duce k by one (to the right of the equal sign). Let us consider the following exam-

ple.  

Example 3.4.  Let’s choose the words with a movable right parenthesis in the same posi-

tion, and let k = 5.  We assume that the selected right parenthesis drifts to the left.  Then  

ξ 5 = M7 – 2M6 + M4 = 127 – 2×51+ 9 = 34. 

w72 ≡ (0)0000   ⟹  ( )00000 ≡ w106;  Δ ind w72 = 106 – 72 = 34; 

w154 ≡ (00)(( ))  ⟹  (0)0(( )) ≡ w188;  Δ ind w154 = 188 – 154 = 34; 

w658 ≡  (( )0)(0)0  ⟹  (( ))0(0)0 ≡ w692;  Δ ind w658 = 692 – 658 = 34. 

We highlighted in red the floating parenthesis and the left adjacent zero.       □ 



12 
 

 

The numbers  ξ k obtained by formula (3.2) for k = 1, 2, 3, ... form the sequence: 

(3.3)     1, 2, 5, 13, 34, 90, 240, 645, 1745, 4750, 13001, 35762, 98815, 274158, …  

Let’s summarize. In any word of Motzkin Row, we fix the n-th position of the 

rightmost bracket of an outer block; also zero is required to the left of the bracket. 

If the right parenthesis is swapped with zero, then the word index increases in ac-

cordance with the index polynomial (3.2).  

4  Merge and split blocks  

We examined simple operations on the elements of Motzkin Row. Maybe over 

time this lexicographic sequence will become popular, and then the study of the 

properties of Motzkin Row will be done by various mathematicians.  

Previously, we grouped outer blocks and moved their borders. In these cases, the 

range of words sometimes changed. Below we consider a few additional properties 

that allow you to change the number of blocks in the Motzkin word. By modifying 

the outer block inside, you can split it into several blocks.  Accordingly, reverse 

procedures work.  In the properties below, the range of words does not change.  So, 

let’s look inside the block. 

4.1. Remove parentheses / insert parentheses. Consider at the procedure for 

removing the extreme brackets of neighboring blocks, and the reverse procedure 

for restoring the brackets. First, consider a simple word with two blocks that are 

separated by zeros (see the index polynomials in Table 1): 

   x =  ( ) l 0…0 (k 0…0)  =  a 
(l+1)

 ⊕ min 𝔐 k ,   ind x = (M l +1 – M l –1) + Mk–1. 

In the (l+1)-word x, we have marked red brackets for deletion, namely: the last pa-

renthesis of the left block in the l-th position and the initial parenthesis of the right 

block in the k-th position,  l > k  (recall, the brackets are numbered from right to 

left, from the end of the word, as in integers).  

Replace the red parentheses with zeros. As a result, we get the word  min 𝔐 l+1 

with the index M l . It is obvious that the index of x is reduced by  

– Δ ind x  =  (M l +1 – M l –1 + Mk–1)  – M l. 

Let’s complicate the given word a bit (again, see Table 1): 

   x' = (0) l 0…0 (k 0…0) = b 
(l+2)

 ⊕ min 𝔐 k ,   ind x' = (2M l+1 – M l – M l–1) + Mk–1. 

After removing the red brackets, we get  min 𝔐 l+2 with the index M l+1 . In this 

case, the index of x' is reduced by 

– Δ ind x'  =  (2M l +1 – M l  – M l –1 + Mk–1)  – M l +1 . 
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As you can see, the same index polynomial is obtained. You can arbitrarily 

complicate the contents of neighboring blocks, add additional blocks in the word x 

both at the beginning and at the end, but the index polynomial will be the same. 

The result depends only on the location of the brackets to be removed. Let us for-

mulate an appropriate statement. 

Corollary 4.1.  In a word of Motzkin Row, let the neighboring outer blocks be sep-

arated by a zero zone in the boundaries of  l and k,  l > k. That is, the outer paren-

theses of the blocks are in the specified points. Then replacing these two brackets 

with zeros reduces the word index by  

(4.1)  ζ k, l  =  M l +1 – M l – M l –1 + M k–1,  l > k ≥ 2. 

Obviously, the index polynomial (4.1) works both ways. We can not only delete 

the extreme brackets of neighboring blocks, but also perform the reverse proce-

dure. You can insert a pair of oppositely directed parentheses in the zero zone of 

the selected block.  

Example 4.2. In the words below, modifiable characters are shown in red. Recall the first 

ten Motzkin numbers Mn , n = 1, 2, … : 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188. 

w278 ≡ ()00(()) ⟺ (0000())≡w129 ,  ζ 4,7 = M 8 –M 7 –M 6 +M 3 = 323–127–51+4 = 149. 

w491 ≡ (0)(00()) ⟺ (0)()(()) ≡ w516 ,  ζ 4,5 = M 6 –M 5 –M 4 +M 3 = 51–21–9+4 = 25. 

w1152 ≡ (0()00)000 ⟺ (0())()000 ≡ w1216 ,  ζ 5,6 = M 7 –M 6–M 5 +M 4 = 127–51–21+9 = 64. 

w2153 ≡ ()()0(())0 ⟺ ()(000())0 ≡ w1999 ,  ζ 5,7 = M 8 –M 7–M 6 +M 4 = 323–127–51+9 = 154. 

□ 

Adjacent blocks are often processed, this is when  l = k + 1. In this case  

(4.2)  ζ k, k+1  =  M k +2 – M k +1 – M k + M k–1,   k ≥ 2. 

The numbers  ζ k, k+1 obtained by (4.2) for  k =  2, 3, ... form the sequence: 

(4.3)      4, 10, 25, 64, 166, 436, 1157, 3098, 8360, 22714, 62086, 170614,  …  

4.2. Permutation of adjacent parentheses. Let x  𝔐, and let x contains two ad-

jacent outer blocks:  

  x  =  … ( … )
↔

(k … )…  

We have shown the outer parentheses of the blocks. Dots mark arbitrary fragments 

of x. The touching brackets (positions k and k+1) are highlighted in red.   

Let’s permute the marked brackets. In this case, two blocks are merged:  

y  =  … ( … ( )k … ) … 

Then the index y is calculated simply:   

(4.4)         ind y = ind x – Mk   or  Δ ind x  =  – Mk . 
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There is no strict proof of the property (4.4) yet. Let’s formulate a guess. 

Conjecture 4.3 (merging of blocks by reorienting brackets). Let x  𝔐, and let x 

has two adjacent outer blocks that contact at the positions k and k +1. Then a per-

mutation of the contact brackets reduces the index of x by M k , i.e., Δ ind x =  – Mk .  

Obviously, the reverse transition from y to x leads to splitting of the block. The au-

thor tested Conjecture 4.1 in the first ten ranges of Motzkin Row. 

In this regard, we consider example, in which an additional checkpoint between 

min 𝔐 n and b 
(n)

 is calculated (see Table 1 in section 3.2).  

Example 4.4.  Let’s sum up two noncrossing words  b 
(n)

  and  a 
(n–3)

 : 

r 
(n)

  =  b 
(n)

 ⊕ a 
(n–3)

  =  (n 0) 00…0  ⊕  (n–3 ) 00…0  =  (n 0) (n–3 )00…0. 

In the case of permutation of two red brackets, we obtain a new control point 

d 
(n)

 = (0( ))00…0,   ind d 
(n)

 = ind r 
(n)

 – Mn–3 . 

Let’s write the result below into the Table 1. 

   ind d 
(n)

  = (ind b 
(n)

 + ind a 
(n–3)

 ) – Mn–3  

        = (2Mn–1 – Mn–2 – Mn–3) + (Mn–3 – Mn–5) – Mn–3 

          = 2Mn–1 – Mn–2 – Mn–3 – Mn–5 .            □ 

4.3. Permutation of non-adjacent parentheses. Let x  𝔐, and let x contains two 

outer blocks with zero between them:  

 x  =  … ( … ) 0 (k … )…  

Again dots mark arbitrary fragments of x. The moving brackets are shown in red; 

in the (k +1)-position, there is a zero between the brackets.  

As a result of the permutation, we get the word with a smaller index:  

y  =  … ( … (0)k … ) … 

Let's denote such a change in index  ψk = ind x – ind y.  

The formula of ψk is unknown to the author. The analysis of the available ele-

ments of 𝔐 gives such a sequence of numbers for  ψk , k = 2, 3, ... :  

(4.5)  4, 10, 25, 65, 171, 456, 1227, 3328, 9084, … 

In the example below, using (4.5), we move the bracket inside the block to get 

the control point in the n-range between c 
(n) and a 

(n) (see Table 1 in section 3.2).  

Example 4.5.  In the n-word d 
(n)

 = (0 ( )) 00…0 (see Example 4.4), let’s rearrange the ze-

ro and the left parenthesis (marked in red) to get the control point  h 
(n)

 = ((0)) 00…0.  

Let's follow some steps.  

First (i) divide the block into two parts:  (0( )) ⟹ (0) ( ) (see Conjecture 4.1, k = n –3). 

As a result we obtain the intermediate point (see Example 4.4): 
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r 
(n)

 = (0) ( ) 00…0,   ind r 
(n)

 = ind d 
(n)

 + Mn–3 = 2Mn–1 – Mn–2 – Mn–5. 

Then (ii) we move the right parenthesis to the left  (see Corollary 3.3, k = n –2):  

   (0) ( ) 00…0  ⟹  ( ) 0 ( ) 00…0 = s 
(n)

,   

  ind s 
(n)

 = ind r 
(n)

 + Mn – 2Mn–1+ Mn–3 = Mn – Mn–2 + Mn–3 – Mn–5. 

In the last step (iii), combine the two blocks with zero between them:  

( ) 0 (n–3 ) 00…0  ⟹   ((0)) 00…0 = h 
(n)

,   ind h 
(n)

 = ind s 
(n)

 – ψn–3 . 

In Table 1 we can write the following index polynomial: 

ind h 
(n)

 = Mn – Mn–2 + Mn–3 – Mn–5 – ψn–3 . 

The index increment is    

Δ ind d 
(n)

 = ind h 
(n)

 – d 
(n)

 = Mn – 2Mn–1+ 2Mn–3 – ψn–3 . 

Check the result: 

(1)  w70 ≡ (0())00  ⟹  ((0))00 ≡ w88 ,  n = 7,  

      Δ ind w70  = M7 – 2M6+ 2M4 – ψ4 = 127– 2∙51+ 2∙9 – 25 = 18. 

(2)  w464 ≡ (0())(0)0  ⟹  ((0))(0)0 ≡ w584 ,  n = 9,  

       Δ ind w464  = M9 – 2M8+ 2M6 – ψ6  = 835– 2∙323+ 2∙51 – 171 = 120. 

(3)  w1502 ≡ ((0)k (( )))0  ⟹  ( )0((( )))0 ≡ w1958 , k = 7. Here, only the block is divided into   

       two pieces, between which there is a single zero. The index of w1502 is just increased    

       by  ψ7 = 456.                    □ 
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Addendum.  Motzkin Row (ranges 1 – 9). 

000: 0,  ( ),  (0),  ( )0,  (00),  (0)0,  (( )),  ( )00,  ( )( ),  (000),  (00)0,  (0( )),  (0)00,  (0)( ),  ((0)) 

015: (( )0),  (())0,  ( )000,  ( )0( ),  ( )(0),  ( )( )0,  (0000),  (000)0,  (00()),  (00)00,  (00)(),   (0(0)) 

027: (0()0),  (0())0,  (0)000,  (0)0(),  (0)(0),  (0)()0,  ((00)),  ((0)0),  ((0))0,  ((())),  (()00),  (()0)0 

039: (()()),  (())00,  (())(),  ()0000,  ()00(),  ()0(0),  ()0()0,  ()(00),  ()(0)0,  ()(()),  ()()00,  ()()() 

051: (00000),  (0000)0,  (000()),  (000)00,  (000)(),  (00(0)),  (00()0),  (00())0,  (00)000 

060: (00)0(),  (00)(0),  (00)()0,  (0(00)),  (0(0)0),  (0(0))0,  (0(())),  (0()00),  (0()0)0,  (0()()) 

070: (0())00,  (0())(),  (0)0000,  (0)00(),  (0)0(0),  (0)0()0,  (0)(00),  (0)(0)0,  (0)(()),  (0)()00 

080: (0)()(),  ((000)),  ((00)0),  ((00))0,  ((0())),  ((0)00),  ((0)0)0,  ((0)()),  ((0))00,  ((0))()   

090: (((0))),  ((()0)),  ((())0),  ((()))0,  (()000),  (()00)0,  (()0()),  (()0)00,  (()0)(),  (()(0)),  (()()0) 

101: (()())0,  (())000,  (())0(),  (())(0),  (())()0,  ()00000,  ()000(),  ()00(0),  ()00()0,  ()0(00) 

111: ()0(0)0,  ()0(()),  ()0()00,  ()0()(),  ()(000),  ()(00)0,  ()(0()),  ()(0)00,  ()(0)(),  ()((0)) 

121: ()(()0),  ()(())0,  ()()000,  ()()0(),  ()()(0),  ()()()0,  (000000),  (00000)0,  (0000()),  (0000)00 

131: (0000)(),  (000(0)),  (000()0),  (000())0,  (000)000,  (000)0(),  (000)(0),  (000)()0,  (00(00)) 

140: (00(0)0),  (00(0))0,  (00(())),  (00()00),  (00()0)0,  (00()()),  (00())00,  (00())(),  (00)0000 

149: (00)00(),  (00)0(0),  (00)0()0,  (00)(00),  (00)(0)0,  (00)(()),  (00)()00,  (00)()(),  (0(000)) 

158: (0(00)0),  (0(00))0,  (0(0())),  (0(0)00),  (0(0)0)0,  (0(0)()),  (0(0))00,  (0(0))(),  (0((0))) 

167: (0(()0)), (0(())0), (0(()))0, (0()000), (0()00)0, (0()0()), (0()0)00, (0()0)(), (0()(0)) 

176: (0()()0), (0()())0, (0())000, (0())0(), (0())(0), (0())()0, (0)00000, (0)000(), (0)00(0) 

185: (0)00()0, (0)0(00), (0)0(0)0, (0)0(()), (0)0()00, (0)0()(), (0)(000), (0)(00)0, (0)(0()) 

194: (0)(0)00, (0)(0)(), (0)((0)), (0)(()0), (0)(())0, (0)()000, (0)()0(), (0)()(0), (0)()()0 

203: ((0000)), ((000)0), ((000))0, ((00())), ((00)00), ((00)0)0, ((00)()), ((00))00, ((00))() 

212: ((0(0))), ((0()0)), ((0())0), ((0()))0, ((0)000), ((0)00)0, ((0)0()), ((0)0)00, ((0)0)() 

221: ((0)(0)), ((0)()0), ((0)())0, ((0))000, ((0))0(), ((0))(0), ((0))()0, (((00))), (((0)0)) 

230: (((0))0), (((0)))0, (((()))), ((()00)), ((()0)0), ((()0))0, ((()())), ((())00), ((())0)0 

239: ((())()), ((()))00, ((()))(), (()0000), (()000)0, (()00()), (()00)00, (()00)(), (()0(0)) 

248: (()0()0), (()0())0, (()0)000, (()0)0(), (()0)(0), (()0)()0, (()(00)), (()(0)0), (()(0))0 

257: (()(())), (()()00), (()()0)0, (()()()), (()())00, (()())(), (())0000, (())00(), (())0(0) 

266: (())0()0, (())(00), (())(0)0, (())(()), (())()00, (())()(), ()000000, ()0000(), ()000(0) 

275: ()000()0, ()00(00), ()00(0)0, ()00(()), ()00()00, ()00()(), ()0(000), ()0(00)0, ()0(0()) 

284: ()0(0)00, ()0(0)(), ()0((0)), ()0(()0), ()0(())0, ()0()000, ()0()0(), ()0()(0), ()0()()0 

293: ()(0000), ()(000)0, ()(00()), ()(00)00, ()(00)(), ()(0(0)), ()(0()0), ()(0())0, ()(0)000 

302: ()(0)0(), ()(0)(0), ()(0)()0, ()((00)), ()((0)0), ()((0))0, ()((())), ()(()00), ()(()0)0 

311: ()(()()), ()(())00, ()(())(), ()()0000, ()()00(), ()()0(0), ()()0()0, ()()(00), ()()(0)0 

320: ()()(()), ()()()00, ()()()(), (0000000), (000000)0, (00000()), (00000)00, (00000)() 

328: (0000(0)), (0000()0), (0000())0, (0000)000, (0000)0(), (0000)(0), (0000)()0, (000(00)) 

336: (000(0)0), (000(0))0, (000(())), (000()00), (000()0)0, (000()()), (000())00, (000())() 

344: (000)0000, (000)00(), (000)0(0), (000)0()0, (000)(00), (000)(0)0, (000)(()), (000)()00 

352: (000)()(), (00(000)), (00(00)0), (00(00))0, (00(0())), (00(0)00), (00(0)0)0, (00(0)()) 

360: (00(0))00, (00(0))(), (00((0))), (00(()0)), (00(())0), (00(()))0, (00()000), (00()00)0 

368: (00()0()), (00()0)00, (00()0)(), (00()(0)), (00()()0), (00()())0, (00())000, (00())0() 

376: (00())(0), (00())()0, (00)00000, (00)000(), (00)00(0), (00)00()0, (00)0(00), (00)0(0)0 

384: (00)0(()), (00)0()00, (00)0()(), (00)(000), (00)(00)0, (00)(0()), (00)(0)00, (00)(0)() 

392: (00)((0)), (00)(()0), (00)(())0, (00)()000, (00)()0(), (00)()(0), (00)()()0, (0(0000)) 

400: (0(000)0), (0(000))0, (0(00())), (0(00)00), (0(00)0)0, (0(00)()), (0(00))00, (0(00))() 

408: (0(0(0))), (0(0()0)), (0(0())0), (0(0()))0, (0(0)000), (0(0)00)0, (0(0)0()), (0(0)0)00 
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416: (0(0)0)(), (0(0)(0)), (0(0)()0), (0(0)())0, (0(0))000, (0(0))0(), (0(0))(0), (0(0))()0 

424: (0((00))), (0((0)0)), (0((0))0), (0((0)))0, (0((()))), (0(()00)), (0(()0)0), (0(()0))0 

432: (0(()())), (0(())00), (0(())0)0, (0(())()), (0(()))00, (0(()))(), (0()0000), (0()000)0 

440: (0()00()), (0()00)00, (0()00)(), (0()0(0)), (0()0()0), (0()0())0, (0()0)000, (0()0)0() 

448: (0()0)(0), (0()0)()0, (0()(00)), (0()(0)0), (0()(0))0, (0()(())), (0()()00), (0()()0)0 

456: (0()()()), (0()())00, (0()())(), (0())0000, (0())00(), (0())0(0), (0())0()0, (0())(00) 

464: (0())(0)0, (0())(()), (0())()00, (0())()(), (0)000000, (0)0000(), (0)000(0), (0)000()0 

472: (0)00(00), (0)00(0)0, (0)00(()), (0)00()00, (0)00()(), (0)0(000), (0)0(00)0, (0)0(0()) 

480: (0)0(0)00, (0)0(0)(), (0)0((0)), (0)0(()0), (0)0(())0, (0)0()000, (0)0()0(), (0)0()(0) 

488: (0)0()()0, (0)(0000), (0)(000)0, (0)(00()), (0)(00)00, (0)(00)(), (0)(0(0)), (0)(0()0) 

496: (0)(0())0, (0)(0)000, (0)(0)0(), (0)(0)(0), (0)(0)()0, (0)((00)), (0)((0)0), (0)((0))0 

504: (0)((())), (0)(()00), (0)(()0)0, (0)(()()), (0)(())00, (0)(())(), (0)()0000, (0)()00() 

512: (0)()0(0), (0)()0()0, (0)()(00), (0)()(0)0, (0)()(()), (0)()()00, (0)()()(), ((00000)) 

520: ((0000)0), ((0000))0, ((000())), ((000)00), ((000)0)0, ((000)()), ((000))00, ((000))() 

528: ((00(0))), ((00()0)), ((00())0), ((00()))0, ((00)000), ((00)00)0, ((00)0()), ((00)0)00 

536: ((00)0)(), ((00)(0)), ((00)()0), ((00)())0, ((00))000, ((00))0(), ((00))(0), ((00))()0 

544: ((0(00))), ((0(0)0)), ((0(0))0), ((0(0)))0, ((0(()))), ((0()00)), ((0()0)0), ((0()0))0 

552: ((0()())), ((0())00), ((0())0)0, ((0())()), ((0()))00, ((0()))(), ((0)0000), ((0)000)0 

560: ((0)00()), ((0)00)00, ((0)00)(), ((0)0(0)), ((0)0()0), ((0)0())0, ((0)0)000, ((0)0)0() 

568: ((0)0)(0), ((0)0)()0, ((0)(00)), ((0)(0)0), ((0)(0))0, ((0)(())), ((0)()00), ((0)()0)0  

576: ((0)()()), ((0)())00, ((0)())(), ((0))0000, ((0))00(), ((0))0(0), ((0))0()0, ((0))(00) 

584: ((0))(0)0, ((0))(()), ((0))()00, ((0))()(), (((000))), (((00)0)), (((00))0), (((00)))0 

592: (((0()))), (((0)00)), (((0)0)0), (((0)0))0, (((0)())), (((0))00), (((0))0)0, (((0))()) 

600: (((0)))00, (((0)))(), ((((0)))), (((()0))), (((())0)), (((()))0), (((())))0, ((()000)) 

608: ((()00)0), ((()00))0, ((()0())), ((()0)00), ((()0)0)0, ((()0)()), ((()0))00, ((()0))()  

616: ((()(0))), ((()()0)), ((()())0), ((()()))0, ((())000), ((())00)0, ((())0()), ((())0)00 

624: ((())0)(), ((())(0)), ((())()0), ((())())0, ((()))000, ((()))0(), ((()))(0), ((()))()0 

632: (()00000), (()0000)0, (()000()), (()000)00, (()000)(), (()00(0)), (()00()0), (()00())0 

640: (()00)000, (()00)0(), (()00)(0), (()00)()0, (()0(00)), (()0(0)0), (()0(0))0, (()0(())) 

648: (()0()00), (()0()0)0, (()0()()), (()0())00, (()0())(), (()0)0000, (()0)00(), (()0)0(0) 

656: (()0)0()0, (()0)(00), (()0)(0)0, (()0)(()), (()0)()00, (()0)()(), (()(000)), (()(00)0) 

664: (()(00))0, (()(0())), (()(0)00), (()(0)0)0, (()(0)()), (()(0))00, (()(0))(), (()((0))) 

672: (()(()0)), (()(())0), (()(()))0, (()()000), (()()00)0, (()()0()), (()()0)00, (()()0)() 

680: (()()(0)), (()()()0), (()()())0, (()())000, (()())0(), (()())(0), (()())()0, (())00000 

688: (())000(), (())00(0), (())00()0, (())0(00), (())0(0)0, (())0(()), (())0()00, (())0()() 

696: (())(000), (())(00)0, (())(0()), (())(0)00, (())(0)(), (())((0)), (())(()0), (())(())0 

704: (())()000, (())()0(), (())()(0), (())()()0, ()0000000, ()00000(), ()0000(0), ()0000()0  

712: ()000(00), ()000(0)0, ()000(()), ()000()00, ()000()(), ()00(000), ()00(00)0, ()00(0()) 

720: ()00(0)00, ()00(0)(), ()00((0)), ()00(()0), ()00(())0, ()00()000, ()00()0(), ()00()(0) 

728: ()00()()0, ()0(0000), ()0(000)0, ()0(00()), ()0(00)00, ()0(00)(), ()0(0(0)), ()0(0()0) 

736: ()0(0())0, ()0(0)000, ()0(0)0(), ()0(0)(0), ()0(0)()0, ()0((00)), ()0((0)0), ()0((0))0 

744: ()0((())), ()0(()00), ()0(()0)0, ()0(()()), ()0(())00, ()0(())(), ()0()0000, ()0()00() 

752: ()0()0(0), ()0()0()0, ()0()(00), ()0()(0)0, ()0()(()), ()0()()00, ()0()()(), ()(00000) 

760: ()(0000)0, ()(000()), ()(000)00, ()(000)(), ()(00(0)), ()(00()0), ()(00())0, ()(00)000 

768: ()(00)0(), ()(00)(0), ()(00)()0, ()(0(00)), ()(0(0)0), ()(0(0))0, ()(0(())), ()(0()00) 

776: ()(0()0)0, ()(0()()), ()(0())00, ()(0())(), ()(0)0000, ()(0)00(), ()(0)0(0), ()(0)0()0 

784: ()(0)(00), ()(0)(0)0, ()(0)(()), ()(0)()00, ()(0)()(), ()((000)), ()((00)0), ()((00))0 


