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Pattern distributions in Dyck paths with a first

return decomposition constrained by height
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Abstract

We provide generating functions for the popularity and the distribution
of patterns of length at most three over the set of Dyck paths having a
first return decomposition constrained by height.

Keywords: Dyck and Motzkin paths, pattern statistic, distribution, popularity

1 Introduction and notation

Dyck paths with a constrained first return decomposition were introduced in [3]
where the authors present both enumerative results using generating functions
and a constructive bijection with the set of Motzkin paths. In [4], a similar
study has been conducted for Motzkin, 2-colored Motzkin, Schröder and Riordan
paths. In the literature, many papers deal with the enumeration of classical
Dyck paths according to different parameters, e.g. length, number of peaks,
valleys, double rises and other pattern occurrences [9, 14, 15, 17, 18, 19, 20, 23].
Restricted classes of Dyck paths have also been considered, for instance Barcucci
et al. [1] consider Dyck paths having a non-decreasing height sequence of valleys
(see also [7, 8]). Other papers deal with Motzkin paths using similar methods [2,
5, 10, 11, 16, 21, 24]. Motzkin and Catalan numbers appear alongside in many
situations [10] and several one-to-one correspondences exist between restricted
Dyck paths and Motzkin paths. For instance, Dyck paths avoiding a triple rise
are enumerated by the Motzkin numbers [6].

In this paper, we focus on the distribution and the popularity of patterns
of length at most three in constrained Dyck paths defined in [3]. Our method
consists in showing how patterns are getting transferred from constrained Dyck
paths to Motzkin paths, which settles us in a more suitable ground in order to
provide generating functions for the distribution and the popularity.

A Motzkin path of length n ě 0 is a lattice path consisting of flat steps
F “ p1, 0q, up steps U “ p1, 1q and down steps D “ p1,´1q, starting at p0, 0q,
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ending at pn, 0q and never going below the x-axis. For n ě 0, we denote by
Mn the set of all Motzkin paths of length n and we set M “ Ť

ně0
Mn. A

Motzkin path of length 2n with no flat steps is a Dyck path of semilength n. For
n ě 0, let Dn be the set of all Dyck paths of semilength n and D “ Ť

ně0
Dn.

The cardinality of Dn is given by the nth Catalan number cn “ 1

n`1

`

2n

n

˘

, which
is the general term of the sequence A000108 in the On-line Encyclopedia of
Integer Sequences of N.J.A. Sloane [22]. The cardinality of Mn is given by the

nth Motzkin number
řtn{2u

k“0

`

n
2k

˘

ck (see A000108 in [22]).
Any non-empty Dyck path P P D has a unique first return decomposition [9]

of the form P “ UαDβ where α and β are two Dyck paths in D. In [3], the
authors introduced the set Dh,ě constituted of the empty Dyck path and the
Dyck paths in D having a first return decomposition satisfying

hpUαDq ě hpβq

where α, β P Dh,ě and h returns the maximal height of a Dyck path. For
n ě 0, let Dh,ě

n be the subset of Dyck paths of semilength n in Dh,ě. For

instance, Dh,ě
3

consists of four Dyck paths UDUDUD, UUDDUD, UUDUDD

and UUUDDD. In [3], the authors prove, using generating functions, that Dh,ě
n

and Mn have the same cardinality, and they present also the following bijection
φ between these sets.

For P P Dh,ě,

φpP q “

$

’

’

&

’

’

%

ǫ if P “ ǫ,

φpαqF if P “ αUD,

φpαqφpγqUφpβqD if P “ αUUβDγD.

For instance, the images by φ of UDUDUD, UUDDUD, UUDUDD, UUUDDD,
UUUUDDDDUUUDDUDD are respectively FFF , UDF , FUD, UFD and
UUDDFUFD. We refer to Figure 1 for an illustration of this mapping.

α
ÝÑ

φpαq

α β γ

ÝÑ
φpαq φpγq φpβq

Figure 1: Illustration of the bijection φ between Dh,ě
n and Mn.

A statistic on a set S of paths is an association of an integer in Z to each
path in S. For instance the map that returns the number of steps is a statistic,
and we denote by 1 (resp. 0) the constant statistic that sends any path on 1
(resp. 0). Let S be the set of all statistics on a set S. For X,Y P S, we define
the statistic X ` Y so that pX ` YqpP q “ XpP q ` YpP q for any P P S, which
endows S with a Z-vector space structure. Let S and T be two sets of paths,
and let S and T be the associated statistic sets. Two statistics X P S and
Y P T have the same distribution if and only if there exists a bijection f from
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S to T such that for any P P S we have XpP q “ YpfpP qq. In this case, we say
that f transports the statistic X into Y, which can be shortly written with the
statistic equation fpXq “ Y (or X “ Y whenever f is the identity).

A pattern X of length k ě 1 occurs in a path P if and only if P contains
X as a sequence of consecutive steps. From a given pattern X and a set S of
paths, we associate the statistic X from S to N such that XpP q is the number
of occurrences of the pattern X in P . The popularity of a pattern X in S is
the total number of occurrences of the pattern X in all paths P P S, that is
ř

PPS XpP q.
For instance, if P “ UUUDDUDD then we have UDpP q “ UUpP q “ 2,

DDDpP q “ 0. Moreover, if S “ tUUDD,UDUDu then the popularity of the
pattern UD in S is 3. Also, for any subset S of M, we have the statistic equation
U “ D since for any path in S the number of up steps equals to the number
of down steps. If we restrict S to Dn (resp. Mn), then we have U ` D “ 2n

(resp. U ` F ` D “ n), where n is the constant statistic P ÞÑ n.
Considering the above bijection φ from Dh,ě

n to Mn, the length of φpP q is
the semilength of P and we easily deduce the statistic equation:

φpUq “ φpDq “ U ` D ` F “ n. (1)

In this paper, we present statistic equations showing how φ: Dh,ě
n Ñ Mn

transports statistics associated to patterns of length at most three into linear
combinations of other statistics. Then, this allows us to conduct our enumera-
tive study in the more natural and simpler context of Motzkin paths, while a
direct study on Dh,ě

n is complicated due to the lack of an adequate recursive
decomposition. So, we use statistic equations in order to derive bivariate gener-
ating functions for the distribution of patterns of length at most three, and we
deduce the pattern popularity thereafter. Section 2 deals with patterns of length
2 while Section 3 deals with patterns of length 3. Many of resulting sequences
correspond to existing entries in the On-line Encyclopedia of Integer Sequences
of N.J.A. Sloane [22] enumerating a quantity of already known combinatorial
structures, and we also obtain new sequences not yet known in [22].

2 Patterns of length 2

In this part, we provide statistic equations showing how patterns of length two
behave through φ : Dh,ě

n Ñ Mn, which allows us to deduce generating functions
for the distribution and the popularity of such patterns. See Table 1 for an
illustration of the distributions and Table 2 for the first terms of popularity
sequences.

Theorem 1. For n ě 0, the bijection φ from Dh,ě
n to Mn transports statistics

associated to patterns of length two as follows:

φpUDq “ F ` UD, (2)

φpUUq “ φpDDq “ U ` UU ` UF, (3)

φpDUq “ FF ` FU ` DF ` DU. (4)

3



Proof. For equation (2), we refer to [3].
For equation (3), we observe that for any Dyck path of semilength n an up

step U is always followed by U or D, which implies the equality UU`UD “ n on
Dh,ě

n . With a similar argument and U “ D, we have F`U`UD`UU`UF “ n

on Mn. Using eq. (2) we obtain φpUUq “ n ´ φpUDq “ n ´
`

F ` UD
˘

“
U ` UU ` UF.

For equation (4), we observe on Dh,ě
n that the statistic UU`UD`DU`DD

equals to 2n´1. Using the straightforward equalityUU “ DD on Dn, we obtain
DU “ 2n´1´2UU´UD. Applying the bijection φ and using eqs. (2) and (3)
we obtain φpDUq “ 2n ´ 1 ´ 2pU ` UU ` UFq ´ pF ` UDq. On the other
hand, on the set of Motzkin paths of length n we have the statistic equations
U`F`D “ n and FD`FU`FF`DD`DU`DF`UD`UU`UF “ n´1,
which induces 2n ´ 1 “ U ` F ` D ` FD ` FU ` FF ` DD ` DU ` DF `
UD ` UU ` UF. Also, for any Motzkin path we have U “ D which implies
UU ` UF ` UD “ UD ` FD ` DD, and thus UU ` UF “ FD ` DD. So,
combining all these equations, we obtain φpDUq “ U`F`D`FD`FU`FF`
DD`DU`DF`UD`UU`UF´U´D´UU´UF´FD´DD´F´UD “
FF ` FU ` DF ` DU.

Theorem 2. The bivariate generating functions Fppx, yq where the coefficient
of xnyk is the number of Dyck paths in Dh,ě

n containing exactly k occurrences
of the pattern p P tUD,UU,DD,DUu are

FUDpx, yq “
x2 ´ x2y ´ xy ` 1 ´

b

´4x2 ` px2 py ´ 1q ` xy ´ 1q2

2x2
,

FUU px, yq “ FDDpx, yq “
x2y2 ´ x2y ´ x ` 1 ´

b

´4x2y2 ` px2y py ´ 1q ´ x ` 1q2

2x2y2
,

FDU px, yq “
x2y ´ x2 ´ xy ` 1 ´

b

´4x2 ` px2 py ´ 1q ` xy ´ 1q2

2x2y
.

Proof. For p “ UD, Corollary 3 in [3] provides directly the bivariate generating
function as a solution of a functional equation on Motzkin paths with respect
to the number of occurrences of patterns F and UD (see eq. (2)).

For p “ UU , there are two ways to obtain the generating function. Firstly,
we know that UU`UD “ n for Dyck paths of semilength n. So, we can obtain
directly the generating function by calculating FUDpxy, 1

y
q. Secondly, we know

that φpUUq “ U ` UU ` UF (see eq. (3)). Decomposing the set M of all
Motzkin paths in the following way

M “ ǫ ` FM ` UDM ` UpM ´ ǫqDM,

we obtain the functional equation

Mpx, yq “ 1 ` xMpx, yq ` x2yMpx, yq ` x2y2pMpx, yq ´ 1qMpx, yq,
which also gives the expected result.

For p “ DU , the result is obtained using the equality DU “ UD ´ 1 and

after evaluating FDU px, yq “ 1 ` FUDpx,yq´F px,0q
y

. Note that we can obtain this

result using eq. (4).
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Applying standard techniques from generating function theory, we verify
that the second row of Table 1 corresponds to the sequence of quarter-squares
numbers, tpn2{4qu, which is the third row of Lozanić’s triangle (see A034851 and
[13]). The third row is a shift of the sequence A005994 corresponding to alkane
numbers lp7, nq from fifth row of Lozanić’s triangle, which enumerates certain
symmetries exhibited by chemical entities (alkane) consisting of hydrogen and
carbon atoms arranged in a tree-like structure. Third diagonal corresponds to
the squares, while fourth diagonal generates octahedral numbers, np2n2 ` 1q{3
(see A005900).

kzn 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 4 6 9 12 16 20 25 30

3 1 3 9 19 38 66 110 170 255

4 1 4 16 44 111 240 485 900

5 1 5 25 85 260 676 1615

6 1 6 36 146 526 1602

7 1 7 49 231 959

8 1 8 64 344

9 1 . . . . . .

Σ 1 2 4 9 21 51 127 323 835 2188 5798

Table 1: Number of paths in Dh,ě
n having k peaks UD, or equivalently k ´ 1

valleys DU , or equivalently n ´ k double rises UU .

Corollary 1. For n ě 0, the popularity of pattern p P tUU,UD,DD,DUu in
Dh,ě

n is given by the generating function Gppxq:

GUDpxq “ px ´ 1q
?

´3x2 ´ 2x ` 1 ´ 3x2 ´ 2x ` 1

2x p3x ´ 1q ,

GUU pxq “ GDDpxq “
?

´3x2 ´ 2x ` 1
`

x2 ` 2x ´ 2
˘

` x3 ´ 3x2 ´ 4x ` 2

2x2
?

´3x2 ´ 2x ` 1
,

GDU pxq “
`

x2 ´ 1
˘ ?

´3x2 ´ 2x ` 1 ´ x3 ´ 3x2 ´ x ` 1

2x2
?

´3x2 ´ 2x ` 1
.

Proof. The generating function Gppxq of popularity is directly deduced from the
bivariate generating function of pattern distribution

Gppxq “ BFppx, yq
By

ˇ

ˇ

ˇ

ˇ

y“1

.

See Table 2 for the first terms of the popularity sequences. The popularity of
the pattern UD generates a shift of the sequence A025566 in [22]. As suggested

5

https://oeis.org/A034851
https://oeis.org/A005994
https://oeis.org/A005900
https://oeis.org/A025566


in [22], the same sequence enumerates the first differences of the directed ani-
mals sequence A005773, and also Motzkin paths of length 2n whose last weak
valley occurs immediately after step n.

The popularity sequence for DU is the sequence A025567. As mentioned
in [12] by Ferrari and Munarini, this sequence corresponds to the number of
edges in Hasse diagram of Motzkin paths, where the partial order is defined by
the coverings FF ÞÑ UD, FU ÞÑ UF, DF ÞÑ FD, DU ÞÑ FF. This is an
immediate consequence of the fact that φ maps pattern DU from constrained
Dyck paths to the patterns FF, FU,DF,DU in Motzkin paths.

The popularity sequence for UU (or DD) does not yet appear in [22].

Pattern Popularity sequence OEIS

UD 1, 3, 8, 22, 61, 171, 483, 1373, 3923, 11257, 32418, 93644 A025566

DU 0, 1, 4, 13, 40, 120, 356, 1050, 3088, 9069, 26620, 78133 A025567

UU, DD 0, 1, 4, 14, 44, 135, 406, 1211, 3592, 10623, 31260, 92488

Table 2: Popularity of length two patterns in Dh,ě
n for 1 ď n ď 12.

3 Patterns of length 3

In this part we investigate how φ transports statistics associated to patterns
of length three, and for each of them we provide generating functions for the
distribution and popularity.

We need the following notations. For a step X P tU,D, F u, we will say
that a path P contains the pattern X˚ if and only if there is k ě 1 such
that P contains the pattern Xk which consists of k consecutive repetitions of
X . The associated statistic of X˚ (denoted X

˚) will be equal to
ř

kě1
X

k

where Xk is the statistic giving the number of occurrences of Xk. More gener-
ally, for two possibly empty sequences of steps Y and Z we define the pattern
Y X˚Z as patterns of the form Y XkZ for k ě 1, and its associated statistic
as YX˚Z “ ř

kě1
YXkZ. For instance, an occurrence of the pattern DU˚D

can be an occurrence of DUD, DUUD, DUUUD, and so on... In the path
UUFDUUDFDUDUUUDDFFDD we count three occurrences of the pat-
tern DU˚D. A path contains a dotted pattern ‚Y (resp. Y ‚) if and only if it
starts (resp. ends) by Y , and we use the notations ‚Y, Y‚ for the associated
statistics.

Any pattern UU in a Dyck path is immediately followed by an up step or
a down step, implying the statistic equation UU “ UUU ` UUD. Also, any
pattern UU in a Dyck path P is either at the beginning of P or immediately
preceded by an up or a down step, so UU “ ‚UU ` UUU ` DUU. Using
similar arguments we obtain the two following systems of statistic equations.

paq

$

’

’

’

&

’

’

’

%

UU “ UUU ` UUD

UU “ UUU ` DUU ` ‚UU

UD “ UUD ` DUD ` ‚UD

DU “ DUU ` DUD

, pbq

$

’

’

’

&

’

’

’

%

DD “ DDD ` UDD

DD “ DDD ` DDU ` DD‚
UD “ UDD ` UDU ` UD‚
DU “ DDU ` UDU

.
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Observe that for any P P Dh,ě
n , n ě 1, we have ‚UDpP q “ 1 (resp.

‚UUpP q “ 0) when P “ pUDqn, and ‚UDpP q “ 0 (resp. ‚UUpP q “ 1)
otherwise. So, we have the statistic equations φp‚UDq “ δFn and φp‚UUq “
1 ´ φp‚UDq, where δFn is the Dirac statistic defined by δFnpP q “ 1 whenever
P “ Fn, and 0 otherwise.

Knowing the image by φ of only one statistic X P tUUU,UUD,DUU,DUDu
and using results from Section 2, we can obtain the expressions of the images
of the three other statistics from the system paq. The same reasoning holds for
the second system pbq. So, we split Section 3 in two subsections according to
the systems paq and pbq.

3.1 The patterns UUU, UUD,DUU,DUD

Theorem 3. For n ě 0, the bijection φ from Dh,ě
n to Mn transports the statistic

UUD as follows:
φpUUDq “ UF˚D ` UD.

Proof. We proceed by induction on n. For n “ 1, we have UUDpUDq “ 0.
With φpUDq “ F we obtain UF˚DpF q `UDpF q “ 0, and the result holds. We
assume the result for k ď n, and we will prove it for n` 1 by distinguishing two
main cases.

- Whenever P “ αUD, we have φpP q “ φpαqF , and pUF˚D`UDqpφpP qq “
pUF˚D ` UDqpφpαqq. Using recurrence hypothesis, pUF˚D ` UDqpφpαqq “
UUDpαq which is also equal to UUDpαUDqq, proving the first case.

- Whenever P “ αUUβDγD, we have φpP q “ φpαqφpγqUφpβqD, and
pUF˚D`UDqpφpP qq “ pUF˚D`UDqpφpαqq` pUF˚D`UDqpφpγqUφpβqDq.
Using recurrence hypothesis, we obtain pUF˚D ` UDqpφpP qq “ UUDpαq `
pUF˚D ` UDqpφpγqUφpβqDq. Now we distinguish three subcases in order to
prove that pUF˚D ` UDqpφpγqUφpβqDq “ UUDpUUβDγDq.

If β is the empty path, then pUF˚D `UDqpφpγqUφpβqDq “ 1 ` pUF˚D `
UDqpφpγqq “ 1 ` UUDpγq “ UUDpUUDγDq.

If β “ pUDqk for some k ě 1, then pUF˚D ` UDqpφpγqUφppUDqkqDq “
pUF˚D ` UDqpφpγqUF kDq “ pUF˚D ` UDqpφpγqq ` 1 “ UUDpγq ` 1 “
UUDpUUpUDqkDγDq “ UUDpUUβDγDq.

If β starts with a double rise UU , then φpβq contains at least one up step
(φpβq ‰ F ℓ for any ℓ ě 0). So, we have pUF˚D ` UDqpφpγqUφpβqDq “
pUF˚D ` UDqpφpγqq ` pUF˚D ` UDqpφpβqq “ UUDpγq ` UUDpβq, which
equals to UUDpUUβDγDq.

Considering these three cases, the second case is proved and the induction
is completed.

Theorem 4. For n ě 0, the bijection φ from Dh,ě
n to Mn transports the statistic

UUU as follows:

φpUUUq “ UF˚D ` 2
`

UF˚U ` UU
˘

.

Proof. Using Theorem 3 and the equation UU “ UUD `UUU of system paq,
we have φpUUUq “ φpUUq ´ φpUUDq “ φpUUq ´ UF˚D ´ UD, and using
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Theorem 1, we have φpUUUq “ U ` UU ` UF ´ UF˚D ´ UD. Since we
have U “ UD ` UU ` UF on Mn, we obtain φpUUUq “ 2pUU ` UFq ´
UF˚D. Using the trivial equation UF “ UF˚D ` UF˚U for Motzkin paths,
we complete the proof.

Theorem 5. For n ě 1, the bijection φ from Dh,ě
n to Mn transports the statistic

DUU as follows:

φpDUUq “ UF˚D ` UD ` δFn ´ 1,

where δFn is the Dirac statistic defined by δFnpP q “ 1 whenever P “ Fn, and
0 otherwise.

Proof. Using the difference of the first two equations of paq, we obtain DUU “
UUD ´ ‚UU, and finally, φpDUUq “ φpUUDq ´ φp‚UUq “ UF˚D ` UD ´
φp‚UUq. As discussed at the beginning of Section 3, φp‚UUq “ 1´δFn , which
completes the proof.

Theorem 6. For n ě 1, the bijection φ from Dh,ě
n to Mn transports the statistic

DUD as follows:
φpDUDq “ F ´ UF˚D ´ δFn

Proof. We have DUD “ UD ´ UUD ´ ‚UD, which implies that φpDUDq “
φpUDq´φpUUDq´φp‚UDq. Using the previous results, we obtain φpDUDq “
UD ` F ´ UD ´ UF˚D ´ δFn “ F ´ UF˚D ´ δFn .

Theorem 7. The bivariate generating functions Fppx, yq where the coefficient
of xnyk is the number of Dyck paths in Dh,ě

n containing exactly k occurrences of
the pattern p P tUUU,UUD,DUU,DUDu are given by the following expressions
in the order FUUU px, yq, FUUDpx, yq, FDUU px, yq and FDUDpx, yq.

x3y ´ x3 ´ x2y2 ` 2x ´ 1 `
a

px ´ xy ´ 1qpx2 ´ xy ` x ´ 1qpx3 ´ x3y ` x2y2 ` 2x2y ´ 2xy ´ 2x ` 1q

2x2y2px ´ 1q
,

x2y ´ 2x2 ` 2x ´ 1 `
a

px2y ´ 1q px2y ´ 4x2 ` 4x ´ 1q

2x2 px ´ 1q
,

2x ´ x2y ´ 1 `
a

px2y ´ 1q px2y ´ 4x2 ` 4x ´ 1q

2x2y px ´ 1q
,

x3y ´ x3 ´ x2y2 ` 2xy ´ 1 `
a

pxy ´ x ´ 1qpx2 ` yx ´ x ´ 1qpx3y ´ x3 ` x2y2 ` 2x2y ´ 2xy ´ 2x ` 1q

2x2pxy ´ 1q
.

Proof. For p “ UUU and using Theorem 4, we have φpUUUq “ UF˚D `
2pUF˚U ` UUq. So, we decompose Motzkin paths according to the patterns
UF˚D, UF˚U , and UU in order to exhibit a functional equation having Fppx, yq
as solution:

M “ ǫ ` FM ` UDM ` UM0DM ` UpM ´ M0 ´ 1qDM,

8



where M0 is the subset of M consisting of the form F k for k ě 1. So the
functional equation is:

FUUU px, yq “ 1 ` xFUUU px, yq`x2FUUU px, yq ` x2y
x

1 ´ x
FUUU px, yq`

`x2y2
ˆ

FUUU px, yq ´ 1

1 ´ x

˙

FUUU px, yq.

A simple calculation (with Maple for instance) provides the result.
All other generating functions are obtained using a similar method, so we

do not give the proofs here.

Generating function Gppxq for the popularity of the pattern p P tUUU,UUD,

DUU,DUDu is obtained directly by evaluating
BFppx,yq

By

ˇ

ˇ

y“1
. Table 3 provides

the first terms of the generated sequences. See also Table 4 for an illustration
of the distribution of p P tUUU,UUD,DUU,DUDu.

Pattern Popularity sequence OEIS

UUU 0, 0, 1, 5, 19, 65, 210, 658, 2023, 6147, 18534, 55594

UUD 0, 1, 3, 9, 25, 70, 196, 553, 1569, 4476, 12826, 36894 A097861

DUU 0, 0, 0, 1, 5, 20, 70, 231, 735, 2289, 7029, 21384 A304011 ?

DUD 0, 1, 4, 12, 35, 100, 286, 819, 2353, 6780, 19591, 56749

Table 3: Popularity of p P tUUU,UUD,DUU,DUDu in Dh,ě
n for 1 ď n ď 12.

The popularity sequence for UUD in Dh,ě
n is the sequence A097861, corre-

sponding to the number of humps in all Motzkin paths of length n (a hump
equals UF˚D or UD in our notation). The popularity for DUU seems to gen-
erate the sequence A304011, but we do not succeed in proving this fact, so we
leave it as a conjecture.
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kzn 1 2 3 4 5 6 7 8 9

0 1 2 3 5 8 13 21 34 55

1 1 3 8 18 38 76 147

2 1 4 14 40 104 250

3 1 5 21 71 215

4 1 6 30 119

5 1 7 40

(a) UUU

kzn 1 2 3 4 5 6 7 8 9

0 1 1 1 2 3 6 10 20 36

1 1 2 3 7 13 30 58 130

2 1 3 6 16 35 91 199

3 1 4 10 30 75 216

4 1 5 15 50 140

5 1 6 21 77

(b) DUD

kzn 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 3 7 15 31 63 127 255

2 1 5 18 56 160 432

3 1 7 34 138

4 1 9

(c) UUD

kzn 1 2 3 4 5 6 7 8 9

0 1 2 4 8 16 32 64 128 256

1 1 5 18 56 160 432

2 1 7 34 138

3 1 9

4

(d) DUU

Table 4: Number of paths from Dh,ě
n having k occurrences of the considered

pattern.

Dyck paths from Dh,ě
n avoiding UUU , DUU respectively generate Fibonacci

numbers and integer squares. Those avoiding DUD seem to correspond to
A007562 (number of planted trees where non-root, non-leaf nodes an even dis-
tance from root are of degree 2). At the present time, there is no closed form
for a generating function of the sequence A007562. Note that any path avoiding
DUU has at most one occurrence of UUD. Also, Dyck paths containing two
occurrences of UUD in Dh,ě

n generate a shift of the sequence A001793, which
corresponds to a subsequence in the triangle of coefficients of Chebyshev’s poly-
nomials A053120.

3.2 The patterns DDD,DDU,UDD,UDU

Theorem 8. For n ě 0, the bijection φ from Dh,ě
n to Mn transports the statistic

UDU as follows:
φpUDUq “ FF ` FUD

Proof. We proceed by induction on n. For n “ 1, we have UDUpUDq “ 0.
With φpUDq “ F , we obtain FFpF q ` FUDpF q “ 0, and the result holds. We
assume the result for k ď n, and we will prove it for n ` 1.

- Whenever P “ αUD, we have φpP q “ φpαqF , and pFF ` FUDqpφpP qq “
FFpφpαqF q ` FUDpφpαqF q “ FFpφpαqF q ` FUDpφpαqq. We distinguish two
cases: (i) φpαq ends with F (or equivalently, α ends with UD), and (ii) oth-
erwise. In the case (i), α ends with UD, and thus pFF ` FUDqpφpP qq “
1 ` FFpφpαqq ` FUDpφpαqq. Using the recurrence hypothesis we have pFF `
FUDqpφpP qq “ 1 ` UDUpαq “ UDUpαUDq “ UDUpP q. In the case (ii),
α does not end with UD, and thus φpαq does not end with F . So, we have
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pFF ` FUDqpφpP qq “ FFpφpαqq ` FUDpφpαqq, and using the recurrence hy-
pothesis pFF ` FUDqpφpP qq “ UDUpαq “ UDUpαUDq “ UDUpP q.

- Whenever P does not end with UD, we have P “ αUUβDγD, and
pFF ` FUDqpφpP qq “ pFF ` FUDqpφpαqφpγqUφpβqDq. Note that α can-
not end with UD, otherwise it would contradict P P Dh,ě

n . This means that
φpαq cannot end with F . So, the possible occurrences of FF in φpP q belong
necessarily to φpαq, φpβq and φpγq, which implies that FFpφpP qq “ FFpφpαqq`
FFpφpβqq `FF pφpγqq. On the other hand, the possible occurrences of FUD in
φpP q belong necessarily to φpαq, φpβq, φpγq, and eventually at the junction of
φpγq and UφpβqD whenever φpγq ends with F and φpβq “ ǫ. So, we distinguish
two cases: (a) φpγq ends with F and β “ ǫ, and pbq otherwise. In the case (a),
we have FUDpφpP qq “ 1`FFpφpαqq `FFpφpβqq `FFpφpγqq `FUDpφpαqq `
FUDpφpβqq ` FUDpφpγqq, and using the recurrence hypothesis, we obtain
FUDpφpP qq “ 1 ` UDUpαq ` UDUpβq ` UDUpγq “ UDUpαUUβDγDq “
UDUpP q. In the case (b), we have FUDpφpP qq “ FFpφpαqq ` FFpφpβqq `
FFpφpγqq ` FUDpφpαqq ` FUDpφpβqq ` FUDpφpγqq, and using the recur-
rence hypothesis, we obtain FUDpφpP qq “ UDUpαq `UDUpβq `UDUpγq “
UDUpαUUβDγDq “ UDUpP q. So, we complete the induction.

Theorem 9. For n ě 0, the bijection φ from Dh,ě
n to Mn transports the statistic

UDD as follows:

φpUDDq “ FD ` UD ` FUU ` FUF.

Proof. Considering the third equation of system (b), we have φpUDDq “ φpUDq´
φpUDUq ´ φpUD‚q. Using Theorems 1 and 8, we obtain φpUDDq “ F `
UD ´ FF ´ FUD ´ φpUD‚q. In any Motzkin path P , a flat step is either
at the end of P , or followed by F , or D, or UU , or UD, or UF , that is
F “ F ‚ `FF ` FD ` FUU ` FUD ` FUF. Then, we obtain φpUDDq “
F ‚ `UD ` FD ` FUU ` FUF ´ φpUD‚q. Since φ transports UD‚ into F‚,
the result holds.

Theorem 10. For n ě 0, the bijection φ from Dh,ě
n to Mn transports the

statistic DDU as follows:

φpDDUq “ DF ` DU ` FUU ` FUF.

Proof. Combining the fourth equation DU “ DDU`UDU of system (b) with
Theorems 1 and 8, we obtain φpDDUq “ FF`FU`DF`DU´FF´FUD “
FU ` DF ` DU ´ FUD. The proof is completed using the straightforward
equation FU “ FUU ` FUF ` FUD on Motzkin paths.

Theorem 11. For n ě 0, the bijection φ from Dh,ě
n to Mn transports the

statistic DDD as follows:

φpDDDq “ 2pUU ` UFq ´ FD ´ FUU ´ FUF.
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Proof. Combining the first equation DD “ DDD ` UDD of system (b) with
Theorems 1 and 9, we obtain φpDDDq “ U`UU`UF´FD´UD´FUU´
FUF. Using U “ UF ` UD ` UU on Motzkin paths, the result holds.

Theorem 12. The bivariate generating functions Fppx, yq where the coefficient
of xnyk is the number of Dyck paths in Dh,ě

n containing exactly k occurrences
of the pattern p P tUDU,UDD,DDU,DDDu are given by the following expres-
sions in the order FUDU px, yq, FUDDpx, yq, FDDU px, yq, FDDDpx, yq.

1 ` xpx2 ´ x2y ´ yq ´
?
A

2x2 px ´ xy ` 1q ,

1 ` xpx2y ´ x2 ´ xy ` x ´ 1q ´
?
B

2x2 pxy ´ x ` 1q2
,

1 ` xp2x2y2 ´ 3x2y ` x2 ` xy ´ x ´ 1q ´
?
C

2x2y pxy ´ x ` 1q ,

1 ´ x
`

x2y2 ´ x2y ´ xy2 ` x ` 1
˘

´
?
D

2x2 pxy ´ x ´ yq2

where

A “ px ` 1q
`

x2y ´ x2 ` xy ´ x ´ 1
˘ `

x3y ´ x3 ´ 2x2y ` 2x2 ` xy ` 2x ´ 1
˘

,

B “ px ` 1q
`

x2y ´ x2 ` 1
˘ `

x3y ´ x3 ´ 3x2y ` 3x2 ´ 3x ` 1
˘

,

C “ px ` 1q
`

x2y ´ x2 ` 1
˘ `

x3y ´ x3 ´ 3x2y ` 3x2 ´ 3x ` 1
˘

,

D “ pxy ` 1q
`

x2y ´ x2 ´ xy ` x ´ 1
˘ `

x3y2 ´ x3y ´ x2y2 ´ 2x2y ` 3x2 ` 2xy ` x ´ 1
˘

.

Proof. Let Appx, yq (resp. Bppx, yq) be the bivariate generating function where
the coefficient of xnyk is the number of length n Motzkin paths ending with a flat
step (resp. down step) having exactly k occurrences of the patterns related to
the statistic φppq obtained in the right parts of equations of Theorems 8,9,10,11.
Using a refinement of the classical decompositions of non-empty Motzkin paths
by taking into account occurrences of considered patterns, we deduce functional
equations for Appx, yq and Bppx, yq. The method being classic, we do not give
any more details. The solutions are obtained by a simple calculation.

For p “ UDU :
$

’

&

’

%

Fppx, yq “ 1 ` Appx, yq ` Bppx, yq
Appx, yq “ x ` xyAppx, yq ` xBppx, yq
Bppx, yq “ x2 ` x2yAppx, yq ` x2Bppx, yq ` x2Fppx, yqpFppx, yq ´ 1q;
For p “ UDD:

$

’

’

’

&

’

’

’

%

Fppx, yq “ 1 ` Appx, yq ` Bppx, yq
Appx, yq “ xFppx, yq
Bppx, yq “ x2yFppx, yq ` x2yAppx, yq ` x2Bppx, yq`

`x2Bppx, yq2 ` x2yAppx, yqBppx, yq ` x2y2Appx, yq2 ` x2yAppx, yqBppx, yq;
For p “ DDU :
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$

’

’

’

&

’

’

’

%

Fppx, yq “ 1 ` Appx, yq ` Bppx, yq
Appx, yq “ x ` xAppx, yq ` xyBppx, yq
Bppx, yq “ x2Fppx, yq ` x2yAppx, yqpFppx, yq ´ 1q ` x2Appx, yq`

`x2yBppx, yqFppx, yq;
For p “ DDD:

$

’

’

’

&

’

’

’

%

Fppx, yq “ 1 ` Appx, yq ` Bppx, yq
Appx, yq “ xFppx, yq
Bppx, yq “ x2Fppx, yq ` x2y2Bppx, yq ` x2y2Appx, yq{y ` x2y2Appx, yq2{y2`

`x2y2Appx, yqBppx, yq{y ` x2y2Bppx, yq2 ` x2y2Appx, yqBppx, yq{y.
The above equations are intentionally left in non-simplified forms, in order to

allow the reader to retrieve easily the refined decompositions from the classical
decomposition of Motzkin paths M “ ǫ ` MF ` MUMD.

Generating function Gppxq for the popularity of a pattern p is obtained

directly by evaluating
BFppx,yq

By

ˇ

ˇ

y“1
. Table 6 provides the first terms of the gen-

erated sequences. See also Table 5 for an illustration of the distribution of
p P tUDU,UDD,DDU,DDDu.

Unlike what happens for classical Dyck paths, the popularity of UDU in
D

h,ě
n`1

is equal to the popularity of UD in Dh,ě
n , while the corresponding dis-

tributions are different. Dyck paths from Dh,ě
n avoiding a pattern UDU (resp.

DDD) are counted by the Generalized Catalan numbers (resp. by the num-
bers of ordered trees with n edges and having no branches of length 1), which
corresponds to the sequence A004148 (resp. A026418).

kzn 1 2 3 4 5 6 7 8 9

0 1 2 3 6 11 22 43 87 176

1 1 2 7 16 43 102 251

2 1 2 10 25 80 208

3 1 2 13 34 130

4 1 2 17 46

5 1 2 21

(a) DDD

kzn 1 2 3 4 5 6 7 8 9

0 1 1 2 4 8 17 37 82 185

1 1 1 3 7 17 41 102 252

2 1 1 4 10 28 73 200

3 1 1 5 13 41 113

4 1 1 6 16 56

5 1 1 7 19

(b) UDU

kzn 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

1 1 5 14 31 59 102 164

2 2 14 57 174 444

3 4 39 209

4 9

(c) DDU

kzn 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 3 6 10 15 21 28 36

2 2 10 31 75 156 292

3 4 30 129 417

4 9 89

(d) UDD

Table 5: Number of paths from Dh,ě
n having k occurences of the considered

pattern.
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Pattern Popularity sequence OEIS

DDD 0, 0, 1, 4, 14, 46, 145, 448, 1365, 4124, 12387, 37060

DDU 0, 0, 1, 5, 18, 59, 185, 567, 1715, 5146, 15363, 45715

UDD 0, 1, 3, 10, 30, 89, 261, 763, 2227, 6499, 18973, 55428

UDU 0, 1, 3, 8, 22, 61, 171, 483, 1373, 3923, 11257, 32418 A025566

Table 6: Popularity of 3-length patterns in Dh,ě
n for 1 ď n ď 12.
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