Note on sequences A123192, A137396 and A300453

Franck Ramaharo
Département de Mathématiques et Informatique
Université d'Antananarivo
101 Antananarivo, Madagascar
franck.ramaharo@gmail.com

November 13, 2019

Abstract

We give the connection between three polynomials that generate triangles in The On-Line Encyclopedia of Integer Sequences (A123192, A137396 and A300453). We show that they are related with the bracket polynomial for the $(2, n)$-torus knot.

Keywords: bracket polynomial, torus knot, cycle graph.

1 Introduction

Let K_{n} denote the ($2, n$)-torus knot diagram (Figure 1 (a)). The corresponding bracket polynomial is given by the formula [2]

$$
\begin{equation*}
K_{n}(A, B, d)=\frac{(A+B d)^{n}+\left(d^{2}-1\right) A^{n}}{d} \tag{1}
\end{equation*}
$$

The following triangles are in The On-Line Encyclopedia of Integer Sequences [4], and consist of the coefficients in the expansion of $g K_{n}(A, B, d)$ for some values of A, B, d and g (see Table 1, Table 2 and Table 3).

- Row n in $\underline{\text { A123192 }}$ is generated by

$$
x^{|3 n-2|} K_{n}\left(x, x^{-1},-x^{-2}-x^{2}\right)= \begin{cases}\frac{\left(x^{8}+x^{4}+1\right) x^{4 n}+(-1)^{n} x^{4}}{x^{8}+x^{4}} & \text { if } n \geq 1 \tag{2}\\ -x^{4}-1 & \text { if } n=0\end{cases}
$$

The interpretation for the choice of A, B, d and g is given in section 2 .

Figure 1: (a) (2, n)-torus knot diagram, (b) n-cycle graph and its "medial graph", (b) ($2, n$)torus knot shadow diagram.

$$
\begin{array}{c|rrrrrrrrrrrrrrrrr}
n \backslash k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline 0 & -1 & 0 & 0 & 0 & -1 & & & & & & & & & & & & \\
1 & 0 & 0 & 0 & 0 & -1 & & & & & & & & & & & & \\
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & & & & & & & & \\
3 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & & & & & \\
4 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}
$$

Table 1: First 5 rows in A123192.

- Row n in $\underline{\text { A137396 }}$ is generated by the chromatic polynomial of the n-cycle graph.

$$
\begin{equation*}
x^{\frac{1}{2}} K_{n}\left(-1, x^{\frac{1}{2}}, x^{\frac{1}{2}}\right)=(x-1)^{n}+(x-1)(-1)^{n} . \tag{3}
\end{equation*}
$$

In this note, we consider the n-cycle graph to be the planar graph associated with the $(2, n)$-torus knot diagram (Figure 1 (b)).

$n \backslash k$	0	1	2	3	4	5	6	7
1	0							
2	0	-1	1					
3	0	2	-3	1				
4	0	-3	6	-4	1			
5	0	4	-10	10	-5	1		
6	0	-5	15	-20	15	-6	1	
7	0	6	-21	35	-35	21	-7	1

Table 2: First 7 rows in A137396.

- Row n in $\underline{\text { A300453 }}$ is generated by

$$
\begin{equation*}
x K_{n}(1,1, x)=(x+1)^{n}+x^{2}-1 \tag{4}
\end{equation*}
$$

We referred to the polynomial in (4) as "generating polynomial" [3]. This is, in fact, the expression of the bracket evaluated at the shadow diagram (Figure 1 (c)).

$n \backslash k$	0	1	2	3	4	5	6	7
0	0	0	1					
1	0	1	1					
2	0	2	2					
3	0	3	4	1				
4	0	4	7	4	1			
5	0	5	11	10	5	1		
6	0	6	16	20	15	6	1	
7	0	7	22	35	35	21	7	1

Table 3: First 8 rows in A300453.

We show in the next section the connection between these polynomials.

2 Construction and interpretation

2.1 Bracket polynomial

The bracket polynomial for the knot diagram K is defined by

$$
\begin{equation*}
\langle K\rangle=K(A, B, d)=\sum_{s}\langle K \mid s\rangle d^{|s|-1}, \tag{5}
\end{equation*}
$$

where $\langle K \mid s\rangle$ denotes the product of the splitting variables (A and B) associated with the state s, and $|s|$ denotes the number of circles (or loops) in s.

Formula (5) can also be expressed as

- $\langle K\rangle=A\left\langle K^{\prime}\right\rangle+B\left\langle K^{\prime \prime}\right\rangle$,
- $\langle\bigcirc \bigcirc \cdots \bigcirc\rangle=d^{k-1}$ (disjoint union of k circles),
where K^{\prime} and $K^{\prime \prime}$ are obtained from K by performing A and B splits at a given crossing in K, see Figure 2. Last formula reads as well as $\langle\bigcirc K\rangle=d\langle K\rangle$ and $\langle\bigcirc\rangle=1$.

For example, $\left\langle T_{n}\right\rangle=(A+B d)^{n}$, where $T_{n}:=\bigcirc$ (with n half-twists).
Indeed, we have

$$
\begin{aligned}
\langle\bigcirc \bigcirc\rangle \cdots\rangle & =A\langle\bigcirc\rangle+B\langle\bigcirc \bigcirc\rangle \cdots\rangle \\
& =A\left\langle T_{n-1}\right\rangle+B\left\langle\bigcirc T_{n-1}\right\rangle^{\prime} \\
& =(A+B d)\left\langle T_{n-1}\right\rangle \\
& =\cdots \\
& =(A+B d)^{n} .
\end{aligned}
$$

Figure 2: A-split and B-split.

Now, formula (2) is straightforward if we notice that,

$$
\begin{equation*}
\left\langle K_{n}\right\rangle=A\left\langle K_{n-1}\right\rangle+B\left\langle T_{n-1}\right\rangle, \text { with }\left\langle K_{0}\right\rangle=d \tag{6}
\end{equation*}
$$

Finally, set $B=A^{-1}$ and $d=-A^{-2}-A^{2}$ so that the bracket is invariant under Reidemeister moves II and III [1, p. 31-33]. For $n=0,1, \ldots, 5$ the corresponding bracket polynomial reads

$$
\begin{aligned}
\left\langle K_{0}\right\rangle & =-A^{2}-\frac{1}{A^{2}} \\
\left\langle K_{1}\right\rangle & =-A^{3} \\
\left\langle K_{2}\right\rangle & =-A^{4}-\frac{1}{A^{4}} \\
\left\langle K_{3}\right\rangle & =-A^{5}-\frac{1}{A^{3}}+\frac{1}{A^{7}} \\
\left\langle K_{4}\right\rangle & =-A^{6}-\frac{1}{A^{2}}+\frac{1}{A^{6}}-\frac{1}{A^{10}} \\
\left\langle K_{5}\right\rangle & =-A^{7}-\frac{1}{A}+\frac{1}{A^{5}}-\frac{1}{A^{9}}+\frac{1}{A^{13}} .
\end{aligned}
$$

The n-th row polynomial of triangle in A123192 is then obtained by multiplying the bracket $\left\langle K_{n}\right\rangle$ by $A^{|3 n-2|}$.

2.2 Chromatic polynomial

In the present framework, the splits of type A and B may be regarded in terms of graph as the "contraction" and "deletion" operations, respectively, as shown in Figure 3. Kaufman refers to the resulting states as "chromatic states" [1, p. 353-358].

Let $n \geq 1$, and let $G\left(K_{n}, x\right)=x K(A, B, x)=\sum_{s}\langle K \mid s\rangle x^{|s|}$. By (3), we can rewrite (5) as

$$
\begin{equation*}
G\left(K_{n}, x\right)=\sum_{s}(-1)^{A(s)}\left(x^{\frac{1}{2}}\right)^{B(s)}\left(x^{\frac{1}{2}}\right)^{|s|} \tag{7}
\end{equation*}
$$

Figure 3: Edge contraction and deletion.
where $A(s)$ and $B(s)=n-A(s)$ are the number of A-splits and B-splits in the state s, respectively. Furthermore, we have $|s|=2$ if $B(s)=0$, and $|s|=B(s)$ otherwise [3]. Hence

- $G\left(K_{1}, x\right)=(-1)^{1}\left(x^{\frac{1}{2}}\right)^{0}\left(x^{\frac{1}{2}}\right)^{2}+(-1)^{0}\left(x^{\frac{1}{2}}\right)^{1}\left(x^{\frac{1}{2}}\right)^{1}=0$;
- and for $n \geq 2$,

$$
\begin{aligned}
G\left(K_{n}, x\right) & =\sum_{s}(-1)^{n-B(s)} x^{\frac{1}{2}(B(s)+|s|)} \\
& =(-1)^{n} x+\sum_{|s| \geq 1}(-1)^{n-B(s)} x^{B(s)} \\
& =\sum_{s}(-1)^{i(s)} x^{B(s)},
\end{aligned}
$$

where $i(s)$ is the number of "interior vertices" in the chromatic state $s[1, \mathrm{p} .358]$ and $B(s)$ matches the number of shaded components in s [3] (with $i(s)=1$ if $|s|=1$, and $i(s)=n-B(s)$ otherwise $)$.

2.3 Generating polynomial

Now, what if we evaluate the bracket polynomial at the shadow diagram? Recall that a shadow is a knot diagram without under or over-crossing information. In such case, it is natural to set $A=B=1$ in (1). The bracket becomes

$$
K_{n}(1,1, d)=\frac{(d+1)^{n}+d^{2}-1}{d}
$$

and formula (4) implies

$$
x K_{n}(1,1, x)=\sum_{s} x^{|s|}=\sum_{k} s(n, k) x^{k},
$$

where $s(n, k)$ is the number of states having exactly k circles [3].

References

[1] Louis H. Kauffman, Knots and Physics, Third Edition, World Scientific, 2001.
[2] Kelsey Lafferty, The three-variable bracket polynomial for reduced, alternating links, Rose-Hulman Undergraduate Mathematics Journal 14 (2013), 98-113.
[3] Franck Ramaharo, A state enumeration of the foil knot, arXiv preprint, https://arxiv.org/abs/1712.04026, 2018.
[4] Neil J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2019.

2010 Mathematics Subject Classification: 05A10; 57M25.
(Concerned with sequences A123192, A137396 and A300453.)

