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PARTITIONS INTO PARTS SIMULTANEOUSLY REGULAR,

DISTINCT, AND/OR FLAT

WILLIAM J. KEITH

Abstract. We explore partitions that lie in the intersection of several sets
of classical interest: partitions with parts indivisible by m, appearing fewer
than m times, or differing by less than m. We find results on their behavior
and generating functions: more results for those simultaneously regular and
distinct, fewest for those distinct and flat. We offer some conjectures in the
area.

1. Introduction

A partition of n is a nonincreasing sequence of positive integers which sums to
n, i.e. λ ⊢ n if λ1 ≥ λ2 ≥ · · · ← λk and λ1+ · · ·+λk = n. Their study was initiated
by Euler, who proved the usual first result seen by a student of the area, namely

Theorem 1. The number of partitions of n in which all parts are odd equals the
number of partitions of n in which parts are distinct.

The theorem was proved by a hands-on combinatorial mapping found by J. J.
Sylvester, and then generalized to all moduli by a more general mapping given by
his student Glaisher:

Theorem 2. The number of partitions of n in which no part is divisible by m

equals the number of partitions of n in which parts appear fewer than m times.

The map of Glaisher’s proof can be extended to a general mapping on all parti-
tions: if, given j not divisible by m, the part jmk appears

∑

∞

ℓ=0 ak,ℓm
ℓ times in λ,

written in the base m expansion, then in φ(λ) write the part jmℓ appearing ak,ℓm
k

times for each nonzero ak,ℓ. If no part in λ is divisible by m (ak,ℓ = 0 for k > 0),
then in φ(λ) no part will appear m or more times, and vice versa.

The fixed points of the map are precisely those partitions in which parts are not
divisible by m (called m-regular partitions) and in which no part appears m or
more times (a partition with the latter property we will call m-distinct).

The fixed points of an interesting map ought to be of interest, but a search of
the literature suggests that little work has been done with these partitions, with
the strong exception of the m = 2 case, partitions into distinct odd parts. Denoting
the number of such partitions of n by p2,2(n), we have that p2,2(n) ≡ p(n) (mod 2),
and since the parity of p(n) is a longstanding question of great interest, p2,2(n) has
been much studied, often for its parity properties.

Equal in number with these subsets of partitions of n is the set of those in which
the differences between consecutive parts are less than m, and the smallest part is

2010 Mathematics Subject Classification. 05A17, 11P83.
Key words and phrases. partitions.

1

http://arxiv.org/abs/1911.04755v1
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less than m. The proof is by conjugation, which is defined in terms of the Ferrers
diagram of a partition: a set of unit squares justified to the origin in the fourth
quadrant, in which the i-th row below the x axis has λi squares. The conjugate of
λ, λ′, is the partition with Ferrers diagram given by the reflection of the diagram
of λ across the diagonal. An example:

λ = (4, 4, 3, 1, 1, 1) ⊢ 14 λ′ = (6, 3, 3, 2)

Now it is easy to see that partitions with parts appearing fewer then m times
conjugate to partitions with differences less than m and smallest part less than m.
For the remainder of this paper we will call the latter m-flat partitions, after [8].

Remark: A direct map between m-flat and m-regular partitions was developed in
[8], translated from the German in an appendix to [1]. (Rather, several involutions
on all partitions were constructed, some of which restrict to a map between these
sets.) The fixed points are, again, those that simultaneously satisfy both conditions.

Conjugation does not fix those partitions simultaneously m-flat and m-distinct,
but it does fix the class. In fact, the fixed points of conjugation are in bijection
with partitions into distinct odd parts (read vertical-to-horizontal hook lengths).
It might be of interest to develop an involution on partitions which does fix this
class; given the utility of conjugation as a theorem-proving tool, its other properties
might be of great use. (If the involution fixes all m-flat, m-distinct partitions, it
will necessarily have at least some other fixed points, as the parity of this subset
does not necessairily match that of the number of partitions of n.)

In the remainder of the paper we explore those partitions that simultaneously
satisfy two of these three conditions, generalizing the question to moduli not neces-
sarily equal for the two conditions. In Section 2 we discuss partitions simultaneously
s-regular and t-distinct; we can say the most about these. In Section 3 we discuss
s-regular, t-flat partitions; we can say a few things about these, mostly when s|t.
In Section 4 we discuss s-distinct, t-flat partitions; about these we can say little,
despite the fact that they have the simplest diagrammatic interpretation. In the
last section we close with some comments and possible lines of future investigation.

2. Regular and distinct

The generating function for partitions which are s-regular and t-distinct is easy
to write down: it is

Theorem 3.

P
(s,t)
R,D (q) =

∞
∑

n=0

p
(s,t)
R,D(n)qn =

∞
∏

k=1

(1− qsk)(1 − qtk)

(1− qk)(1 − qstk)
.

P
(s,t)
R,D (q) is an η-quotient, i.e. (up to a factor of a power of q) a quotient of

functions of the form η(z) = q1/24
∏

∞

n=1(1 − q
n), q = e2πiz . By work of Stephanie

Treneer [9], it is known that all such functions are weakly holomorphic modular
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forms, and so it is likely that they will exhibit many congruences. Numerical
experimentation quickly finds many. For instance,

Theorem 4. For n ≥ 0,

p
(2,2)
R,D (125n+ 99) ≡ 0 (mod 5) (Rødseth)(1)

p
(3,3)
R,D (4n+ 2) ≡ 0 (mod 2)(2)

p
(2,5)
R,D (4n+ 3) ≡ 0 (mod 2) and(3)

∞
∑

n=0

p
(2,5)
R,D (4n+ 1)qn ≡ f5 (mod 2).(4)

Here and in the remainder of the paper we employ the shorthand notation fk for

fk =

∞
∏

n=1

(1− qnk) = q−k/24η(kz) = (qk; qk)∞.

Furthermore, when we state for two power series f(q) =
∑

∞

n=n0
a(n)qn and g(q) =

∑

∞

n=n1
b(n)qn that f(q) ≡p g(q), we mean that a(n) ≡ b(n) (mod p) for all n.

Proof. As noted, the first clause of Theorem 4 was proved by Øystein Rødseth [6],
who was studying the properties of p2,2(n).

To prove the other clauses we use several identities that dissect various η-
products. All of the ones we use here can be found in [10]. In addition, it is
useful to note that fp

k ≡p fkp for p any prime.
For clause (2) we will need:

f3
3

f1
=

f3
4 f

2
6

f2
2 f12

+ q
f3
12

f4
(5)

1

f1f3
=

f2
8 f

5
12

f2
2 f4f

4
6f

2
24

+ q
f5
4 f

2
24

f4
2 f

2
6 f

2
8f12

.(6)

Now observe that

P
(3,3)
R,D (q) =

f2
3

f1f9
=
f3
3

f1
·

1

f3f9
=

(

f3
4 f

2
6

f2
2 f12

+ q
f3
12

f4

)(

f2
24f

5
36

f2
6 f12f

4
18f

2
72

+ q3
f5
12f

2
72

f4
6f

2
18f

2
24f36

)

.

Expanding out the multiplication and reducing modulo 2 where possible, we find

P
(3,3)
R,D (q) ≡2

f3
4 f

2
24f

5
36

f2
2 f

2
12f

4
18f

2
72

+ q (. . . ) + q3 (. . . ) + q4
f8
12f

2
72

f4f
4
6f

2
18f

2
24f36

.

The elided terms are all of the form q2n+1 and so are irrelevant to the theorem.
Furthermore, neither of the other summands contains powers of the form q4n+2

with odd coefficients, since all factors of f2, f4, and f18 are raised to even powers,
and we may invoke f2

2 ≡2 f4. Hence only powers q4n in these summands may have

noneven coefficients, and hence any coefficient p
(3,3)
R,D (4n+ 2) ≡ 0 (mod 2).

For clauses (3) and (4), we additionally require the identity

f5

f1
=
f8f

2
20

f2
2 f40

+ q
f3
4 f10f40

f3
2 f8f20

.

Thus
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P
(2,5)
R,D (q) =

f2f5

f1f10
=

f8f
2
20

f2f10f40
+ q

f3
4 f40

f2
2 f8f20

.

Again, since f2
2 ≡2 f4, no term in the latter summand has a noneven coefficient

on a power q4n+3, and so claim (3) holds. Further using this identity to reduce the
summand, we find that

P
(2,5)
R,D (q) ≡2 · · ·+ qf20,

where the elided terms are even powers. Extracting terms of the form q4n+1 and
making the substitution q4 → q, we obtain clause (4), and the theorem holds.

�

Many other such congruences can easily be found and proved through similar
methods.

2.1. Symmetry. Another observation of interest is the symmetry of the generating
function, which yields the immediate result

Theorem 5. The number of partitions of n which are s-regular and t-distinct equals
the number of partitions of n which are t-regular and s-distinct.

It is then reasonable to ask for a map that realizes this equality: as it turns out,
if s and t are coprime, a double use of Glaisher’s bijection does the job. Denote by
φm Glaisher’s involution with modulus m. Then we have the following.

Theorem 6. If s and t are coprime, then φsφt maps s-regular, t-distinct partitions
to t-regular, s-distinct partitions.

Although this could have been observed earlier, we will see in the midst of this
proof that

Corollary 1. If s and t are coprime, the number of s-regular, t-distinct partitions
is equal to the number of partitions simultaneously s-regular and t-regular.

However, the s-distinct, t-distinct partitions are merely the s-distinct partitions
assuming s is the smaller of the two values.

Proof. If s and t are coprime, then let λ be an s-regular, t-distinct partition. The
first step φt replaces parts of sizes jtk with appearances of the part j; since jtk

was not divisible by s, neither is j, and so the result is also an s-regular, t-regular
partition; all such partitions can arise this way (φs or φt reverses the map in the
desired direction) and so the corollary follows. At this point, applying φs produces
an s-distinct partition which is still t-regular, since j is not divisible by t and jsk

is also not divisible by t, as these are coprime.

Example: Consider λ = (4, 2, 1) as a 7-regular, 2-distinct partition. Then φ2((4, 2, 1)) =
(1, 1, 1, 1, 1, 1, 1), which is both 7-regular and 2-regular. Then φ7((1, 1, 1, 1, 1, 1, 1)) =
(7), which is 2-regular and 7-distinct.

�

If s and t are not coprime, then, during a visit to Michigan Tech it was conjec-
tured by Bridget Tenner of DePaul University that



PARTITIONS INTO PARTS SIMULTANEOUSLY REGULAR, DISTINCT, AND/OR FLAT 5

Conjecture 1. Iteration of the previous map suffices to produce a bijection. That
is, there exists ℓ, varying with λ, such that (φsφt)

ℓ maps an s-regular, t-distinct
partition λ to a unique s-distinct, t-regular partition, with no intervening (φsφt)

k

being s-regular and t-distinct.

Since φs and φt are involutions and the set of partitions of n is finite, the sequence
of images (φsφt)

ℓ(λ) eventually cycles for any λ; the claim then becomes that such
a sequence starting at an s-regular, t-distinct partition will encounter a t-regular, s-
distinct partition before encountering another s-regular, t-distinct partition. (The
author must retract a claim made during the presentation at CANT 2016 that
the proof of this conjecture is nontrivial but straightforward. For an indication of
the curious behavior that such a sequence can display, the reader might examine
the behavior of (50, 50, 50, 50, 50, 50) as a 6-regular, 10-distinct partition; the map
works, but requires 65 iterations, and actually passes through (50, 50, 50, 50, 50, 50)
again halfway through the 63rd step.)

2.2. McKay-Thompson Series. For a final comment on the P
(s,t)
R,D partitions,

there is a connection which may be spurious but could be very interesting if it is
true in any depth.

To first give some background, recall the j-invariant

j(τ) =
1

q
+ 196884q+ 21493760q2 + . . . .

Monstrous Moonshine [2] is the conjecture, now theorem [3], that the coefficients
of this function are sums of the dimensions of irreducible representations of the
Monster group M : 1 = 1, 196884 = 196883+ 1, 21296876+ 196883 + 1, etc. That
is, there is an ∞-dimensional graded representation of M whose graded dimension
is given by these coefficients, and whose lower-weight pieces decompose into irreps
of dimension 1, 196883, 21296876, etc, which sum in fairly simple ways to the
coefficients of j. The graded dimension is the graded trace of the identity element
e ∈ M ; the McKay-Thompson series Tg is the generating function for the graded
traces of nontrivial elements g ∈M .

If we search the invaluable Online Encyclopedia of Integer Sequences [4] for the

coefficients of the generating function P
(3,3)
(R,D), we find that they match OEIS se-

quence A112194 [5]: “McKay-Thompson series of class 54c for the Monster group.”

McKay-Thompson series are often of the form fsft
f1fst

, usually shifted by a power of

q and with a substitution q → qℓ; for instance, the generating function for this

McKay-Thompson series is actually 1
qP

(3,3)
(R,D)(q

6). With a little more searching we

find many of these in the OEIS: (s, t) = (2, 5) gives class 60F; (s, t) = (3, 4) gives
48h; (s, t) = (5, 7) gives class 35B, but (s, t) = (3, 7) is not there.

So one wonders: is there is a simple, partition-theoretic interpretation of these
generating functions in terms of the dimensions being counted? That is:

Question 1: Are there structures inM or its representations which are in bijection
with partitions into, say, partitions into parts not divisible by 2 and appearing less
than 5 times, which yield the graded traces of elements in the apparently associated
conjugacy classes?
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Since any (s, t) is a permissible pair for P
(s,t)
R,D , but McKay-Thompson series are

restricted by the Monster group itself, such combinatorial descriptions might be
“coincidental”; but, given the great interest in the structure of the Monster group
and its subgroups, even descriptions in a few cases might be valuable and interesting
in their own right.

3. Regular and flat

In this section we discuss partitions simultaneously s-regular and t-flat. For
these, we can write down the generating function in some restricted cases: namely,
when s|t, much more easily if s = t.

We defined (q; q)∞ earlier; it now becomes useful for us to generalize to the

notation (a; q)n =
∏n−1

i=0 (1 − aqi), in which case (q; q)∞ = limn→∞(q; q)n. The
empty product is 1, so (a; q)0 = 1.

3.1. t-regular, t-flat partitions. When s = t our task is easiest.

Theorem 7. The generating function for partitions both t-regular and t-flat is

P
(t,t)
R,F =

∞
∑

j=0

j
∑

i=0

(−1)iq(
i+1

2 )t+j−i(q(i+1)t; qt)j−i

(q; q)j−i
.

Proof. The proof strategy is to note that a t-regular partition can be broken into
its flat part, plus differences of multiples of t:

a1 t t t

a2 t t

a3 t t

a4 t t

a5

where the ai are nonzero residues modulo t, and each t represents t added to the
part. If ai+1 ≤ ai, then the number of t units in the flat part of λi equals the number
of such units in λi+1, whereas if ai+1 > ai, the number of t units in λi is 1 greater
than the number in λi+1. For example, if the above diagram represents the 5-regular
partition (17, 13, 11, 11, 4), then the flat part of the partition is (12, 8, 6, 6, 4). An
amount 5 was added to parts 1 through 4. Notice that the t-flat part of a t-regular
partition is still t-regular; more generally, the s-flat part of a t-regular partition is
still t-regular if t divides s.

The amounts added will be multiples of t of sizes up to t times the number of
parts of the partition; thus, the generating function for t-regular partitions with
exactly j parts equals the generating function for t-flat, t-regular partitions with
exactly j parts, times the generating function for partitions into multiples of t no
larger than jt.

Thus, suppressing the t for now and referring only to the generating functions
for partitions of the desired type into exactly j parts, we have

P
(j parts)
R,F (q)×

1

(qt; qt)j
= P

(j parts)
R .

Next we must determine the generating function for t-regular partitions into
exactly j parts. We do so by considering all partitions of inclusion-exclusion on the
number of sizes of parts of λ divisible by t, obtaining the following:
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Lemma 1.

P
(j parts)
R =

j
∑

i=0

qj−i

(q; q)j−i
(−1)iq(

i+1

2 )t 1

(qt; qt)i
.

The argument is as follows: begin with j − i guaranteed parts of size 1 and
add any desired amount; add exactly i sizes of part divisible by t, from t to it;
finally, add additional multiples of t to these parts alone. Count those in which we
guaranteed at least i different sizes of part divisible by t with (−1)i; by inclusion-
exclusion, the resulting sum counts exactly those partitions with no part divisible
by t.

So, combining identities,

P
(j parts)
R,F (q)×

1

(qt; qt)j
= P

(j parts)
R =

j
∑

i=0

qj−i

(q; q)j−i
(−1)iq(

i+1

2 )t 1

(qt; qt)i
.

Multiplying through, we obtain

P
(j parts)
R,F (q) =

j
∑

i=0

qj−i

(q; q)j−i
(−1)iq(

i+1

2 )t(q(i+1)t; qt)j−i.

Summing over numbers of parts j, we complete the proof.
�

An alternative version of this generating function has more terms but is combi-
natorially interesting. Observe that, given a vector ρ of nonzero residues modulo t,
the t-flat partition with residues equal to ρ when read in order is uniquely given.
The number of units of size t below residue ρi is precisely the number of pairs
(ρk, ρk+1) with k ≥ i for which ρk < ρk+1, i.e. the number of ascents in the
multiset permutation, identified by ρ, of the multiset of residues listed.

Example: Suppose that t = 3 and that ρ consists of two 1s and 2s each. The
possible partitions are:

2
2
1
1

,

2 3
1 3
2
1

,

2 3
1 3
1 3
2

,

1 3
2
2
1

,

1 3 3
2 3
1 3
2

,

1 3
1 3
2
2

The t-complement ρc of ρ is the vector (t+ 1− ρ1, . . . , t+ 1− ρk); since ascents
in ρ map to descents in ρc, the number of t units depending from the residue vector
is easily seen to be the major index of ρc. It is well known (see for instance [7])
that maj(ρc) is equidistributed with maj(ρ) over all permutations ρ of the same
multiset, and that if ρ contains i1 ones, i2 twos, . . . , and it−1 residues t− 1, then
the q-multinomial coefficient

[

i1 + · · ·+ it−1

i1, . . . , it−1

]

q

:=
(q; q)i1+···+it−1

(q; q)i1 . . . (q; q)it−1

is the generating function for the major index over all multiset permutations of ρ,
i.e.

[

i1 + · · ·+ it−1

i1, . . . , it−1

]

q

=
∑

σ(ρ)

qmaj(σ(ρ))
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where summation is over all multiset permutations of ρ.
Since the units are of size t, we find that the generating function for the t-regular,

t-flat partitions with residue vector some permutation of ρ, which we may denote

by P
(t,t;ρ)
R,F (q), is given by

Theorem 8.

P
(t,t;ρ)
R,F = qi1+···+(t−1)it−1

[

i1 + · · ·+ it−1

i1, . . . , it−1

]

qt
.

Finally, we note that if our partitions are s-regular and t-flat with s dividing t,
a small variation of the previous argument suffices; we are restricted to a subset of
the possible residues modulo t. In the first form of the generating function, when

constructing P
(j parts)
R , we additionally include-exclude parts with residues divisible

by s, producing additional summations. For instance, if 2s = t, we have

P
(j parts)
R =

∑

i,k

qj−i−k

(q; q)j−i−k
(−1)iq(

i+1

2 )t(−1)iq(
i

2)t+ks 1

(qt; qt)i(qt; qt)k

and hence

P
(j parts)
R,F =

∑

i,k

qj−i−k

(q; q)j−i−k
(−1)iq(

i+1

2 )t(−1)iq(
i

2)t+ks (qt; qt)j
(qt; qt)i(qt; qt)k

.

Other than restricting the permissible residue vectors ρ, the second form of the
generating function is unchanged.

3.2. Other observations. Unlike the other two classes discussed in this paper,
simple calculation shows us that s-regular, t-flat partitions are not symmetric in s
and t. For instance, (1, 1, 1) is 3-regular and 2-flat, and also 2-regular and 3-flat;
(2, 1) is 3-regular and 2-flat, but not 2-regular; and (3) is in neither class. Compara-
tively, it appears to be the case that the number of s-regular, t-flat partitions grows
faster when s < t than when s > t. An extreme example is the 2-regular, t-flat
partitions, which are partitions into odd parts not differing by too much, whereas
the s-regular, 2-flat partitions can only be partitions into consecutive parts up to
size s− 1. The asymptotics of these partitions is unexplored, however.

Letting P
(s,t;k)
R,F (q) be the generating function for s-regular, t-flat partitions with

largest part at most k, we have that

P
(s,t;k)
R,F (q) = P

(s,t;k−1)
R,F (q) +

χ(s ∤ k)qk

1− qk

(

P
(s,t;k−1)
R,F − P

(s,t;k−t)
R,F

)

where χ(T ) is the indicator function of the truth of statement T .
Not many of these generating functions are in the OEIS. The 2-regular (i.e.,

partitions into odd parts), 3-flat partitions are partitions into odd parts with con-
secutive (among odds) sizes, starting with a minimum size of 1; these constitute
the mock theta function ψ(q), OEIS seuqence A053251. The 2-regular, 4-flat par-
titions are the same, except that a 1 need not appear (a 3 always will), and hence

p
(2,3)
R,F (n) = p

(2,4)
R,F (n − 1) for n > 0. As mentioned earlier, the s-regular, 2-flat par-

titions are just the partitions into consecutive parts from 1 to s− 1, such as OEIS
sequence A014591.
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4. Distinct and flat

For some reason we can say very little about partitions simultaneously distinct
and flat; except in the most restricted cases, we do not even have a generating
function written down for these partitions. Such observations as can be made are
collected below.

Recalling the definition of the Ferrers diagram of a partition, we see that par-
titions into parts s-distinct and t-flat can be described geometrically: they are
the partitions in which the vertical segments of the outer boundary of the Ferrers
diagram – the profile of the partition – are of length less than s, and horizontal
segments are of length less than t.

It is easy to see from this form that the generating function of the s-distinct,
t-flat partitions is symmetric in s and t: the s-distinct, t-flat partitions of n are
in bijection with the t-distinct, s-flat partitions of n by conjugation. One notes
that the class of t-distinct, t-flat partitions is preserved, but not the partitions
themselves; since the number of t-distinct, t-flat partitions of n is not necessarily
of the same parity as the number of partitions of n, it is too much to hope for an
involution that has only the t-distinct, t-flat partitions as its fixed points, but one
wonders if there is an involution which at least fixes all of these.

Despite the existence of this simple geometric description, it has been difficult to
assert any general form of the generating function. The s-distinct, 2-flat partitions
are simply those in which all parts from 1 to some k appear, but at most s − 1
times. Their generating function is

P
(s,2)
D,F =

∞
∑

k=0

q(
k+1

2 ) (q
s−1; qs−1)k
(q; q)k

.

In particular, the 3-distinct, 2-flat partitions are counted by OEIS sequence A053261,
the mock theta function ψ1(q).

More generally, one can write down various recurrences. For instance, if P
(s,t;k)
D,F (q)

is the generating function for s-distinct, t-flat partitions in which the largest part
is at most k, then

P
(s,t;k)
D,F (q) = P

(s,t;k−1)
D,F (q) +

(

qk
1− q(s−1)k

1− qk

)

(

P
(s,t;k−1)
D,F (q)− P

(s,t;k−t)
D,F (q)

)

with appropriate initial conditions. The standard techniques for solving generating
functions, however, do not seem to solve this recurrence very well.

By taking q → 1 in the previous recurrences, we obtain a solvable difference
equation, which can tell us something about the number of such partitions with
largest part at most k. For instance, if s = t = 3, the simplesst case not covered by
the generating function above, we are considering partitions in which parts differ

by no more than 2 and repeat no more than twice. Letting f(k) = P
(3,3;k)
D,F (1), we

find that we have the difference equation

f(k) = 3f(k − 1)− 2f(k − 3),

with initial conditions f(0) = 1, f(1) = 3, f(2) = 9, which yields OEIS sequence
A077846, (1, 3, 9, 25, 69, 189, 517, . . .). At the OEIS entry we find the expression

f(n) =
∑n

i,j=0 2
j
(

j
i−j

)

; this is sometimes suggestive of a form for the generating
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function for a combinatorial expression when one replaces
(

N
M

)

by
[

N
M

]

qk
for some

useful k, but nothing obvious seems to work along these lines for this problem.
The hooklength of a square in the Ferrers diagram, identified as position (i, j)

when the lower right-hand corner of the square is at (x, y) coordinates (−i,−j)
where the upper left corner is the origin, is the sum of the number of squares
directly right of and below the square at (i, j), plus 1. The hooklengths in the
partition (4, 4, 3, 1, 1, 1) are illustrated below.

9 5 4 2

8 4 3 1

6 2 1

3

2

1

A partition is t-core if t is not among its hooklengths. The partition above is
7-core or t-core for t > 9. Since a partition in which parts differ by t or appear t
or more times would automatically have t among the hooklengths in its outermost
squares, the t-core partitions perforce form a subset of the t-distinct, t-flat partitions
of n. In the case of t = 2, the sets are equal, as the partitions involved are just
the triangular partitions (n, n − 1, . . . , 2, 1). It might have been hoped that this
observation would be useful in producing generating functions, but investigation
along this line did not pan out.

5. Further observations and questions

Clearly since little can be said about s-distinct, t-flat partitions, less can possibly
be said about partitions simultaneously r-regular, s-distinct, and t-flat. Those
that are 2-regular, 2-distinct and 3-flat are partitions consisting of consecutive odd
numbers starting from 1, so their generating function is the Jacobi theta function
∑

∞

n=0 q
n2

. Those that are 2-regular, 3-distinct and 3-flat permit an additional
appearance of each odd part, and these are the 5-th order mock theta function
φ0(q), OEIS entry A053258.

Several interesting open questions can be posed:

(1) The fact that mock theta functions arise in numerous contexts related to
these partitions might be spurious, but after all, a mock theta function has
coefficients that do not grow “too fast,” and the combination of flatness and
another condition restricts partitions rather heavily; while it is perhaps a
bit much to hope that the s-regular or s-distinct and t-flat partitions all
qualify as mock theta functions, perhaps there is a closer connection here.

(2) A full and careful proof of Tenner’s conjecture on φsφt for s and t not
coprime should be interesting to produce.

(3) What is the generating function for partitions with profile segments of
length less than 2, that is, into parts appearing not more than twice, with
parts differing by at most 2, including starting with 1 or 2?

(4) It is easy to show based on Ramanujan’s congruences that the number of
5-regular, 5-distinct partitions of 5n+4 is divisible by 5. Dyson’s rank and
the crank do not realize this congruence; is there another natural statistic
on this subset which does so?

For item 3, the set of partitions involved is of natural interest, the property
is invariant under the most natural involution on partitions, and it has at least a
potential relation to the much-studied 3-core partitions, and yet the simple question
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of writing down the generating function for the set seems to elude any of the basic
techniques for doing so. It would certainly be interesting to see this function written
down, and more generally that for the s-distinct, t-flat partitions.

Item 4 is of interest regarding congruences for the partition function such as
p(5n + 4) ≡ 0 (mod 5). One observes that if p(An + B) ≡ 0 (mod C) for all
n, it must also hold that the pA,A(An + B), the number of A-regular, A-distinct
partitions of An + B, possesses this congruence, i.e. pA,A(An + B) ≡ 0 (mod C).
This follows since one may write a recurrence, perhaps a complicated one but still
having integer coefficients, for pA,A(n) in terms of p(n), p(n−A), p(n−2A), etc, and
if the latter are all divisible by C, then pA,A(n) will be as well. Since p5,5(5n+ 4)
shares the congruence but the currently constructed statistics fail to realize the
congruence, perhaps another statistic exists that does so – and perhaps, due to the
set being considered, is somewhat more natural and susceptible to simpler proof of
its properties than the rank and crank. A really elementary combinatorial proof of
Ramanujan’s congruences does not yet exist in the literature.

There are certainly many other questions to be explored with these partitions;
it is somewhat surprising that they have escaped serious notice for so long, and it
is hoped that this paper will spur some interest in this area.
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