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ENUMERATION OF RACKS AND QUANDLES UP TO ISOMORPHISM

PETR VOJTĚCHOVSKÝ AND SEUNG YEOP YANG

Abstract. Racks and quandles are prominent set-theoretical solutions of the Yang-Baxter equa-
tion. We enumerate racks and quandles of orders n ≤ 13 up to isomorphism, improving upon the
previously known results for n ≤ 8 and n ≤ 9, respectively. The enumeration is based on the clas-
sification of subgroups of small symmetric groups up to conjugation, on a representation of racks
and quandles in symmetric groups due to Joyce and Blackburn, and on a number of theoretical
and computational observations concerning the representation. We explicitly find representatives
of isomorphism types of racks of order ≤ 11 and quandles of order ≤ 12. For the remaining orders
we merely count the isomorphism types, relying in part on the enumeration of 2-reductive racks
and 2-reductive quandles due to Jedlička, Pilitowska, Stanovský and Zamojska-Dzienio.

1. Introduction

A groupoid (X, ∗) is a left quasigroup if every left translation

Lx : X → X, y 7→ yLx = x ∗ y

is a bijection of X. A left quasigroup is a rack if the left self-distributive law

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

holds. A rack is a quandle if it is idempotent, i.e., if

x ∗ x = x

holds.
Racks and quandles form well-studied classes of set-theoretical solutions of the Yang-Baxter

equation [4]. Moreover, racks and quandles appear in low-dimensional topology as invariants of
oriented knots and links [12, 13]. The textbook [6] offers a friendly introduction to the theory of
quandles.

In this paper we enumerate racks and quandles of order n ≤ 13 up to isomorphism, improving
upon previously known enumerations for n ≤ 8 for racks and n ≤ 9 for quandles. We also make all
isomorphism types of racks of order n ≤ 11 and quandles of order n ≤ 12 available online.

1.1. Notation. Let X be a nonempty set and let SX be the symmetric group on X. If a group G
acts on X and x ∈ X, we denote by xG the orbit of x, by Gx the stabilizer of x, and by X/G a
complete set of orbit representatives. The set X/G is not uniquely determined but we will assume
that one such set has been fixed whenever X and G are given.

For f , g ∈ SX and G ≤ SX , we let gf = f−1gf , Gf = f−1Gf and fG = {f g : g ∈ G}. As usual,
let CG(H) and NG(H) be the centralizer and the normalizer of H ⊆ SX in G.

For a groupoid (X, ∗) and x ∈ X, let Lx or L∗
x be the left translation by x, the latter notation

being used when we need to keep track of the operation. Similarly, Rx or R∗
x will denote the right

translation by x in (X, ∗). The automorphism group of (X, ∗) will be denoted by Aut(X, ∗).
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For a left quasigroup (X, ∗), let

Mltℓ(X, ∗) = 〈Lx : x ∈ X〉 ≤ SX ,

Dis(X, ∗) = 〈L−1
x Ly : x, y ∈ X〉 ≤ Mltℓ(X, ∗)

be the left multiplication group and the displacement group of (X, ∗), respectively.1 Note that racks
can be equivalently defined as groupoids (X, ∗) satisfying Mltℓ(X, ∗) ≤ Aut(X, ∗).

A rack (X, ∗) is said to be 2-reductive if

(1.1) (x ∗ u) ∗ v = (y ∗ u) ∗ v

holds for every x, y, u, v ∈ X. A rack that is not 2-reductive will be called non-2-reductive.
It is not difficult to see that the following conditions are equivalent for a rack (X, ∗):

• (X, ∗) is 2-reductive, that is, the identity (1.1) holds,
• (X, ∗) satisfies the identity (x ∗ u) ∗ v = u ∗ v,
• Mltℓ(X, ∗) is commutative.

A rack (X, ∗) is medial if it satisfies the medial law

(x ∗ u) ∗ (v ∗ y) = (x ∗ v) ∗ (u ∗ y).

One can show (see for instance [10, Proposition 2.4]) that a rack (X, ∗) is medial if and only if
Dis(X, ∗) is commutative. In particular, every 2-reductive rack is medial.

A medial rack (X, ∗) is 2-reductive if and only if it satisfies the identity (x∗y)∗y = y∗y. Therefore,
a medial quandle (X, ∗) is 2-reductive if and only if it satisfies the identity (x ∗ y) ∗ y = y. This
last identity is used in [11] as a definition of 2-reductivity in the context of medial quandles.

1.2. Asymptotic growth. The asymptotic growth of racks and quandles is known. Due to the
nature of the estimate, it does not matter whether the algebras in question are counted up to
isomorphism or absolutely on a fixed set.

Denote by r(n) (resp. q(n)) the number of racks (resp. quandles) of order n up to isomorphism.
Blackburn [2] proved that there are constants c1 = 1/4 and c2 = (1/6) log2(24)+ (1/2) log2(3) such
that for every ε > 0 and for all sufficiently large orders n we have

2c1n
2−ε ≤ q(n) ≤ r(n) ≤ 2c2n

2+ε.

The lower bound is obtained by exhibiting a large class of racks with Mltℓ(X, ∗) isomorphic to
an elementary abelian 2-group, while the upper bound is based on an estimate for the number of
subgroups of symmetric groups and on a relatively straightforward analysis of partitions of n. In
the same paper, Blackburn also developed a representation of racks and quandles in symmetric
groups that deserves to be better known and that we recall in Section 3.

Ashford and Riordan [1] improved Blackburn’s upper bound and showed that for every ε > 0
and for all sufficiently large orders n we have

2n
2/4−ε ≤ q(n) ≤ r(n) ≤ 2n

2/4+ε.

The main idea for their upper bound is harder to convey. Roughly speaking, a small amount of
global information partitions the class of all racks defined on {1, . . . , n} into relatively small subsets,
and the racks in each of those subsets can then be fully determined by an additional small set of
parameters.

1In rack and quandle literature, the left multiplication group Mltℓ(X, ∗) of a rack (X, ∗) is often denoted by
Inn(X, ∗) and is called the inner automorphism group of (X, ∗), a terminology that is in conflict with older conventions
for quasigroups and loops [3].
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1.3. Exact enumeration. The exact values of r(n) and q(n) are known only for very small values
of n.

A brute-force approach (constructing one row of the multiplication table at a time and checking
whether the resulting partial groupoid is a partial rack) is feasible for n ≤ 7 or so. Henderson,
Macedo and Nelson determined q(n) for n ≤ 8 [8]. McCarron reported the values r(n) for n ≤ 8
and q(n) for n ≤ 9 in the Online Encyclopedia of Integer Sequences [14]. Elhamdadi, Macquarrie
and Restrepo [5] also calculated the values q(n) for n ≤ 9 while investigating automorphism groups
of quandles.

Jedlička, Pilitowska, Stanovský and Zamojska-Dzienio [11] developed a theory of so-called affine
meshes in order to construct and enumerate medial and 2-reductive quandles of small orders. This
allowed them to count medial quandles of order n ≤ 13 and 2-reductive quandles of order n ≤ 16
up to isomorphism.

A quandle is said to be connected if its left multiplication group acts transitively on the underlying
set. All connected quandles of order less than 36 (resp. 48) were obtained by Vendramin [15] (resp.
in [10]). A library of connected quandles of order less than 48 is available in Rig, a GAP [7] package
developed by Vendramin.

n 1 2 3 4 5 6 7
r(n) 1 2 6 19 74 353 2080

rmed(n) 1 2 6 18 68 329 1965
r2-red(n) 1 2 5 17 65 323 1960

rnon-2-red(n) 0 0 1 2 9 30 120
n 8 9 10 11 12 13 14

r(n) 16023 159526 2093244 36265070 836395102 25794670618 ?
rmed(n) 15455 155902 2064870 35982366 832699635 25731050872 ?
r2-red(n) 15421 155889 2064688 35982357 832698007 25731050861 1067863092309

rnon-2-red(n) 602 3637 28556 282713 3697095 63619757 ?

Table 1. The number of racks r(n), medial racks rmed(n), 2-reductive racks
r2-red(n) and non-2-reductive racks rnon-2-red(n) of order n up to isomorphism.

n 1 2 3 4 5 6 7
q(n) 1 1 3 7 22 73 298

qmed(n) 1 1 3 6 18 58 251
q2-red(n) 1 1 2 5 15 55 246

qnon-2-red(n) 0 0 1 2 7 18 52
n 8 9 10 11 12 13 14

q(n) 1581 11079 102771 1275419 21101335 469250886 ?
qmed(n) 1410 10311 98577 1246488 20837439 466087635 ?
q2-red(n) 1398 10301 98532 1246479 20837171 466087624 13943041873

qnon-2-red(n) 183 778 4239 28940 264164 3163262 ?

Table 2. The number of quandles q(n), medial quandles qmed(n), 2-reductive quan-
dles q2-red(n) and non-2-reductive quandles qnon-2-red(n) of order n up to isomor-
phism.

1.4. Summary of results. Our enumerative results are summarized in Tables 1 and 2. In Table
1, r(n) (resp. rmed(n), r2-red(n) and rnon-2-red(n)) is the number of racks (resp. medial racks,
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2-reductive racks and non-2-reductive racks) of order n up to isomorphism. Obviously, r(n) =
r2-red(n)+ rnon-2-red(n), but we report all three numbers for the convenience of the reader, to better
indicate which results are new, and for future reference. The notation in Table 2 is analogous but
for quandles instead of racks.

New results are reported in shaded cells. If a number in the tables is in roman font, representatives
of isomorphism types can be downloaded from the website of the first author. If a number in the
tables is in italics, representatives of isomorphism types are not available. The numbers that are
both in unshaded cells and it italics are either taken from [11] or they were provided to us by Jedlička
in personal communication. For instance, we constructed 3163262 representatives of isomorphism
types of non-2-reductive quandles of order 13, the number 466087624 of 2-reductive quandles of
order 13 is taken from [11], resulting in the 469250886 quandles of order 13 up to isomorphism.

1.5. Commented outline of the paper. In Section 2 we show that a classification of left quasi-
groups up to isomorphism defined on X can be accomplished by independent classifications of
left quasigroups with a given left multiplication group G ≤ SX . Crucially, it suffices to consider
subgroups G of SX up to conjugation in SX , rather than all subgroups of SX .

n 1 2 3 4 5 6 7 8 9 10 11 12 13
a(n) 1 2 4 11 19 56 96 296 554 1593 3094 10723 20832
b(n) 0 0 1 4 10 36 70 235 472 1413 2858 10129 20070

Table 3. The number a(n) of subgroups of the symmetric group Sn up to conjugacy
in Sn, and the number b(n) of nonabelian subgroups of Sn up to conjugacy.

The first step of our algorithm therefore consists of a determination of subgroups of the symmetric
group Sn up to conjugation. This is a nontrivial task. Fortunately, GAP [7] can determine these
subgroups for n ≤ 12 in a matter of minutes and for n = 13 in a matter of a few hours. The results
are summarized in Table 3. The state of the art results in this area are due to Holt [9] who counted
(but did not list) subgroups of Sn for n ≤ 18, both absolutely and up to conjugation in Sn. To
illustrate Holt’s results, there are 7598016157515302757 subgroups of S18 partitioned into 7274651
conjugacy classes.

In Section 3 we prove that there is a one-to-one correspondence between racks (resp. quandles)
defined on X and so-called rack envelopes (resp. quandle envelopes) defined on X. A rack envelope
(resp. quandle envelope) is a tuple

(G, (λx : x ∈ X/G))

such that G ≤ SX , λx ∈ CG(Gx) (resp. λx ∈ Z(Gx)) for every x ∈ X/G, and 〈
⋃

x∈X/G λG
x 〉 = G. If

the last condition is dropped, we speak of rack and quandle folders. It does not seem to be easy
to determine without an explicit check if a given folder is in fact an envelope, greatly complicating
our enumeration.

The main idea behind rack and quandle envelopes is due to Blackburn [2, Section 2] who attrib-
uted it in part to Joyce. A special case of quandle envelopes for connected quandles was described
in [10], where the “envelope” terminology for quandles originated. Although we have independently
rediscovered Blackburn’s representation of racks and quandles while working on this project, the
full credit for the results of Subsection 3.1 should go to Blackburn [2].

The isomorphism problem for rack and quandle envelopes is solved in Subsection 3.2 in terms
of an explicit group action (3.2) of the normalizer NSX

(G). The same group also acts on rack and
quandle folders, where the orbits of the action are easier to understand (see Section 5).
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For any G ≤ SX the set of rack/quandle folders (G, (λx : x ∈ X/G)) is nonempty, containing at
least the trivial folder with λx = 1 for every x ∈ X/G. Call G ≤ SX rack/quandle admissible if
the set of rack/quandle envelopes over G is also nonempty. Equivalently, G ≤ SX is rack/quandle
admissible if and only if there is a rack/quandle (X, ∗) such that Mltℓ(X, ∗) = G. We touch upon
the question “Which subgroups G ≤ SX are rack/quandle admissible?” in Subsection 3.3 but
further investigation would be of considerable interest.

Our algorithm is presented in Section 4, first in a simplified form in Subsection 4.1 and then
with essential improvements. For racks, given a subgroup G of Sn, the algorithm returns orbit
representatives of the action (3.2) of the normalizer NSn(G) on the parameter space

Folr(G) =
∏

x∈X/G

CG(Gx)

consisting of rack folders, disqualifying those folders that are not envelopes. For quandles, we use
quandle folders

Folq(G) =
∏

x∈X/G

Z(Gx)

as the parameter space.
The main obstacle in the algorithm is the fact that the parameter spaces can be quite large.

For instance, there exists a subgroup G of S12 isomorphic to an elementary abelian 2-group for
which Folq(G) has over 1 billion elements. The default orbit-stabilizer theorem of GAP cannot
cope with spaces this large since it first attempts to convert the action into a permutation action.
Nevertheless, it is possible to determine the orbits by employing careful indexing of the space of
rack/quandle folders, using one bit of memory for every folder. This is described in Subsection 4.2.

We can further take advantage of the indexing (and other improvements) to minimize storage
space for the library of racks and quandles. For instance, the library of 36265070 racks of order 11
is stored in a compressed file of approximately 5.7 megabytes, with each rack requiring only 1.25
bits of storage on average. More details are given in the actual library.

The action (3.2) is of local character in the following sense. If f ∈ NSX
(G) and

(κx : x ∈ X/G) = (λx : x ∈ X/G)f,

a given κx can be calculated once a single λz is known, namely the λz with z in the same orbit of
G as xf−1. This observation is exploited in Subsection 4.3, where we show how to precalculate the
action to crucially speed up the algorithm.

The algorithm is powerful enough to construct all isomorphism types of racks of order n ≤ 8
and quandles of order n ≤ 9 in a matter of seconds, verifying the counts reported in [14]. It takes
about a day to determine isomorphism types of racks of order 11 and about three days to determine
isomorphism types of quandles of order 12.

The algorithm spends most of its running time dealing with elementary abelian 2-groups con-
tained in Sn and it is finally overwhelmed while trying to determine r(12) and/or q(13). Fortunately,
as far as counting of racks and quandles is concerned, all abelian subgroups of Sn can be excluded
from the search since they yield precisely 2-reductive racks and 2-reductive quandles, which can
be counted more efficiently by the methods of [11] using a different representation and Burnside’s
Lemma. As we have already mentioned, Jedlička provided us with the numbers r2-red(n) and
q2-red(n) for n ≤ 14. (We have independently verified r2-red(n) for n ≤ 11 and q2-red(n) for n ≤ 12.)

To determine r(12), r(13) and q(13), we therefore consider only nonabelian subgroups of symmet-
ric groups and obtain rnon-2-red(12), rnon-2-red(13) and qnon-2-red(13) together with the corresponding
representatives of isomorphism types. Memory management remains important even in the non-
abelian case. For instance, there is a nonabelian subgroup G of S13 for which Folr(G) has over 2
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billion elements. It took about two weeks of computing time to determine the most difficult case,
rnon-2-red(13), and thus r(13).

To determine rmed(n), we explicitly construct all non-2-reductive racks (X, ∗) of order n and
count only those with Dis(X, ∗) abelian. We add this count to r2-red(n) since every 2-reductive rack
is medial. We proceed similarly for medial quandles.

In Section 5 we show how to efficiently count the orbits of NSX
(G) on the space of rack or

quandle folders. The problem that we really need to solve, namely efficiently counting orbits of
NSX

(G) on the space of rack or quandle envelopes, remains open.
Recall that if a finite group F acts on a set Y and Fix(Y, f) = {y ∈ Y : yf = y} is the set of

f -invariant elements of Y , then Burnside’s Lemma states that

|Y/F | =
1

|F |

∑

f∈F

|Fix(Y, f)|.

In our setting we let F = NSX
(G) and Y = Folr(G), the quandle case being similar. For every

f ∈ NSX
(G) we then construct a certain |X/G|-partite digraph Γr(G, f) that encodes the action of

〈f〉 on Y . We describe the structure of Γr(G, f) in detail and prove that the elements of Fix(Y, f)
are in one-to-one correspondence with unions of certain short directed cycles of Γr(G, f). These
short cycles can be easily counted as long as X is not too large.

The paper concludes with several open problems.

2. Isomorphisms and conjugation for left quasigroups

For a subgroup G of SX let L(G) be the set of all left quasigroups defined on X whose left
multiplication group is equal to G.

The following result is likely well-known and it applies to the special cases of racks and quandles:

Proposition 2.1. Let X be a set and (X, ∗), (X, ◦) left quasigroups. Then:

(i) A bijection f ∈ SX is an isomorphism f : (X, ∗) → (X, ◦) if and only if L◦
xf = (L∗

x)
f for

every x ∈ X.
(ii) If f : (X, ∗)→ (X, ◦) is an isomorphism, then Mltℓ(X, ◦) = (Mltℓ(X, ∗))f .
(iii) If G, H are subgroups of SX that are not conjugate, then no left quasigroup in L(G) is

isomorphic to a left quasigroup in L(H).
(iv) If G, H are conjugate subgroups of SX , then L(G) and L(H) contain the same isomorphism

types of left quasigroups.

Proof. (i) We have xf ◦yf = (x∗y)f for every x, y ∈ X if and only if yL◦
xf = xf ◦y = (x∗yf−1)f =

yf−1L∗
xf = y(L∗

x)
f for every x, y ∈ X.

(ii) Using (i), we have Mltℓ(X, ◦) = 〈L◦
x : x ∈ X〉 = 〈(L∗

xf−1)
f : x ∈ X〉 = 〈L∗

xf−1 : x ∈ X〉f =

〈L∗
x : x ∈ X〉f = (Mltℓ(X, ∗))f . Part (iii) now follows, too.
For (iv), suppose that H = Gf for some f ∈ SX and let (X, ∗) ∈ L(G). Then f : (X, ∗) →

(X, ◦) is an isomorphism, where (X, ◦) is defined by x ◦ y = (xf−1 ∗ yf−1)f . Since Mltℓ(X, ◦) =
(Mltℓ(X, ∗))f = Gf = H by (ii), we have (X, ◦) ∈ L(H). This shows L(G) ⊆ L(H) and the other
inclusion is proved analogously. �

Consequently, to classify left quasigroups defined on X up to isomorphism, it suffices to:

• calculate subgroups of SX up to conjugacy,
• for each such subgroup, G, determine the isomorphism types in L(G),
• return the (necessarily disjoint) union of the isomorphism types.

Proposition 2.1 immediately implies:
6



Corollary 2.2. Let (X, ∗), (X, ◦) be left quasigroups such that Mltℓ(X, ∗) = Mltℓ(X, ◦) = G. Then
every isomorphism f : (X, ∗)→ (X, ◦) satisfies f ∈ NSX

(G).

3. Rack and quandle envelopes up to isomorphism

In this section we obtain a one-to-one correspondence between racks and quandles defined on X
and certain configurations in SX , called rack and quandle envelopes. We also solve the isomorphism
problem for envelopes.

3.1. Rack and quandle envelopes. For a rack (X, ∗) with Mltℓ(X, ∗) = G let

E(X, ∗) = (G, (Lx : x ∈ X/G)).

Lemma 3.1. Let (X, ∗) be a rack and G = Mltℓ(X, ∗). Then (X, ∗) is determined by E(X, ∗).
Moreover, Lx ∈ CG(Gx) for every x ∈ X and G = 〈

⋃
x∈X/G LG

x 〉. If (X, ∗) is a quandle then

Lx ∈ Z(Gx) for every x ∈ X.

Proof. If x ∈ X/G and y ∈ xG are given, let g ∈ G be such that xg = y. Since g ∈ G =
Mltℓ(X, ∗) ≤ Aut(X, ∗), we have (Lx)

g = Lxg = Ly. Hence (X, ∗) is determined by E(X, ∗).
Moreover, Lx ∈ CG(Gx) since for any g ∈ Gx we have (Lx)

g = Lxg = Lx. Finally, G = Mltℓ(X, ∗) =
〈Lx : x ∈ X〉 = 〈(Lx)

g : x ∈ X/G, g ∈ G〉 = 〈
⋃

x∈X/G LG
x 〉. If (X, ∗) is a quandle, we have also

Lx ∈ Gx (since x ∗ x = x) and thus Lx ∈ Z(Gx). �

Definition 3.2. Let G ≤ SX . Then (G, (λx : x ∈ X/G)) is a rack folder (resp. quandle folder) if
λx ∈ CG(Gx) (resp. λx ∈ Z(Gx)) for every x ∈ X/G. A rack folder (resp. quandle folder) is a rack
envelope (resp. quandle envelope) if 〈

⋃
x∈X/G λG

x 〉 = G.

Given G ≤ SX and Λ = (λx ∈ G : x ∈ X/G), we attempt to define a groupoid

R(G,Λ) = (X, ∗)

by setting
Ly = (λx)

gy ,

where x ∈ X/G, y ∈ xG and gy is any element of G such that xgy = y.

Proposition 3.3. Let G ≤ SX , Λ = (λx ∈ G : x ∈ X/G) and (X, ∗) = R(G,Λ). Then:

(i) (X, ∗) is well-defined if and only if (G,Λ) is a rack folder, in which case (X, ∗) is a rack
satisfying Lx = λx for every x ∈ X/G and Mltℓ(X, ∗) = 〈

⋃
x∈X/G λG

x 〉 ≤ G,

(ii) (X, ∗) is a well-defined quandle if and only if (G,Λ) is a quandle folder.

Proof. (i) Suppose that (X, ∗) is well-defined and let x ∈ X/G. For every gx ∈ Gx we have
λgx
x = Lx = λx, where the latter equality follows by taking gx = 1. Thus λx ∈ CG(Gx). Conversely,

suppose that λx ∈ CG(Gx) holds for every x ∈ X/G and let g, h ∈ G be such that xg = xh. Since

gh−1 ∈ Gx, we have λgh−1

x = λx, that is, λ
g
x = λh

x, and (X, ∗) is well-defined.
Now suppose that (X, ∗) is well-defined, necessarily a left quasigroup. We claim that (X, ∗) is a

rack. Fix u, v, w ∈ X and let x ∈ X/G, gv ∈ G be such that xgv = v. Since gvLu ∈ G satisfies

xgvLu = vLu = u ∗ v, we have Lu∗v = λgvLu
x = (λgv

x )Lu = LLu
v and hence

(u ∗ v) ∗ (u ∗ w) = wLuLu∗v = wLuL
Lu
v = wLvLu = u ∗ (v ∗ w).

We certainly have Mltℓ(X, ∗) = 〈
⋃

x∈X/G LG
x 〉 = 〈

⋃
x∈X/G λG

x 〉 ≤ G.

(ii) If (X, ∗) is a well-defined quandle then (G,Λ) is a rack folder by (i) and for every x ∈ X/G
we have xλx = x, that is, λx ∈ CG(Gx) ∩ Gx = Z(Gx). Conversely, if (G,Λ) is a quandle folder
then it is a rack folder, (X, ∗) is a rack by (i), and for every x ∈ X/G, y ∈ xG and gy ∈ G such
that xgy = y we have yLy = yλ

gy
x = yg−1

y λxgy = xλxgy = xgy = y, where we have used λx ∈ Gx in
the penultimate step. �
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Theorem 3.4 (Correspondence between racks/quandles and rack/quandle envelopes). Let X be a
nonempty set and G ≤ SX . There is a one-to-one correspondence between racks/quandles (X, ∗)
satisfying Mltℓ(X, ∗) = G and rack/quandle envelopes (G,Λ). Given a rack/quandle (X, ∗) with
Mltℓ(X, ∗) = G, the corresponding rack/quandle envelope is E(X, ∗). Given a rack/quandle enve-
lope (G,Λ), the corresponding rack/quandle is R(G,Λ).

Proof. Suppose that (X, ∗) is a rack/quandle with Mltℓ(X, ∗) = G. By Lemma 3.1, E(X, ∗) =
(G, (L∗

x : x ∈ X/G)) is a rack/quandle envelope and G = 〈
⋃

x∈X/G(L
∗
x)

G〉. By Proposition 3.3,

(X, ◦) = R(E(X, ∗)) is a rack/quandle satisfying L◦
x = L∗

x for every x ∈ X/G and Mltℓ(X, ◦) =
〈
⋃

x∈X/G(L
∗
x)

G〉 = G. Lemma 3.1 then implies that (X, ∗) = (X, ◦).

Conversely, suppose that Λ = (λx : x ∈ X/G) and (G,Λ) is a rack/quandle envelope. By
Proposition 3.3, (X, ∗) = R(G,Λ) is a rack/quandle satisfying L∗

x = λx for every x ∈ X/G and
Mltℓ(X, ∗) = 〈

⋃
x∈X/G λG

x 〉 = G, where the last equality holds because (G,Λ) is an envelope.

Finally, we have E(R(G,Λ)) = E(X, ∗) = (G, (L∗
x : x ∈ X/G)) = (G,Λ). �

Note that we do not claim that there is a one-to-one correspondence between rack (or quandle)
folders (G,Λ) and racks (or quandles) (X, ∗) satisfying Mltℓ(X, ∗) ≤ G. Indeed, if (G,Λ) is a
rack folder then there might exist several racks (X, ∗) such that L∗

x = λx for every x ∈ X/G and
Mltℓ(X, ∗) ≤ G. (Let G = SX , X/G = {x0} and λx0

= 1. Then (G,Λ) is a rack folder and any rack
(X, ∗) satisfying L∗

x0
= 1 does the job.) Conversely, if (X, ∗) is a rack such that Mltℓ(X, ∗) ≤ G, it

might not be the case that L∗
x ∈ CG(Gx) for every x ∈ X/G. (Consider a rack with some L∗

x 6= 1
but take G = SX with |X| large enough so that CG(Gx) = 1.)

3.2. Envelopes up to isomorphism. We present a solution to the isomorphism problem for rack
and quandle envelopes. Thanks to Proposition 2.1, it suffices to consider the case when the two
corresponding racks have the same left multiplication groups.

Proposition 3.5. Let (G, (λx : x ∈ X/G)) and (G, (κx : x ∈ X/G)) be rack/quandle envelopes. For
every x ∈ X/G and y ∈ xG let gy ∈ G be such that xgy = y. Then the corresponding racks/quandles
are isomorphic if and only if there is f ∈ NSX

(G) such that

(3.1) κx = ((λyg−1
y
)gy)f

for every x ∈ X/G, where y = xf−1.

Proof. Let (X, ∗) and (X, ◦) be the racks/quandles corresponding to (G, (λx : x ∈ X/G)) and
(G, (κx : x ∈ X/G)), respectively. By Corollary 2.2, (X, ∗) is isomorphic to (X, ◦) if and only if
there is an isomorphism f : (X, ∗) → (X, ◦) such that f ∈ NSX

(G). By Proposition 2.1, f is an
isomorphism if and only if L◦

xf = (L∗
x)

f for every x ∈ X, or, equivalently, L◦
x = (L∗

xf−1)
f for every

x ∈ X. In fact, since (X, ◦) is determined by G and the left translations L◦
x with x ∈ X/G (see

Lemma 3.1), the last condition can be equivalently restated as L◦
x = (L∗

xf−1)
f for every x ∈ X/G.

Let x ∈ X/G. We certainly have κx = L◦
x. Now, y = xf−1 is not necessarily in X/G, but yg−1

y

is an element of X/G (possibly distinct from x), so

(L∗
xf−1)

f = (L∗
y)

f = ((L∗
yg−1

y
)gy)f = ((λyg−1

y
)gy)f ,

finishing the proof. �

For G ≤ SX , let

Folr(G), Folq(G), Envr(G), Envq(G)

be, respectively, the sets of all rack folders, quandle folders, rack envelopes and quandle envelopes
on X of the form (G,Λ). Given f ∈ NSX

(G) and an element (λx : x ∈ X/G) of one of the above
8



spaces, we define

(3.2) (λx : x ∈ X/G)f = (κx : x ∈ X/G),

where for every x ∈ X/G the bijection κx is obtained by (3.1).

Theorem 3.6 (Rack/quandle envelopes up to isomorphism). Let X be a nonempty set, G ≤ SX

and F = NSX
(G). Then:

(i) The group F acts on each of Folr(G), Folq(G), Envr(G) and Envq(G) via (3.2).
(ii) The orbits of F on Envr(G) (resp. Envq(G)) are in one-to-one correspondence with iso-

morphism types of racks (resp. quandles) defined on X with left multiplication groups equal
to G.

(iii) If an orbit of F on Folr(G) (resp. Folq(G)) contains an element of Envr(G) (resp. Envq(G)),
then the entire orbit is a subset of Envr(G) (resp. Envq(G)).

Proof. Proposition 3.5 settles part (ii) and also part (i) for the case of rack and quandle envelopes.
Does F act on rack/quandle folders? Suppose that (G,Λ) is a rack/quandle folder and let (X, ∗) =
R(G,Λ). Let f ∈ F and let (X, ◦) be such that f : (X, ∗) → (X, ◦) is an isomorphism. Using the
same notation as in the proof of Proposition 3.5, we have L◦

x = (L∗
xf−1)

f = ((λyg−1
y
)gy)f , which

means that (λx : x ∈ X/G)f = (L◦
x : x ∈ X/G). By Proposition 3.3, (G, (L◦

x : x ∈ X/G)) is a
rack/quandle folder. This proves (i). Part (iii) follows. �

3.3. Remarks on rack and quandle admissibility. A subgroup G ≤ SX is said to be rack
admissible (resp. quandle admissible) if there is a rack (resp. quandle) (X, ∗) such that Mltℓ(X, ∗) =
G. Note that it is necessary to keep track of the way G acts on X, not just of the isomorphism
type of G.

Proposition 3.7. Let G ≤ SX . If G is rack admissible then
⋃

x∈X/G(CG(Gx))
G generates G. If

G is quandle admissible then
⋃

x∈X/G Z(Gx)
G generates G.

Proof. If G is rack admissible then by Theorem 3.4 there is a rack envelope (G, (λx : x ∈ G/X)).
Since λx ∈ CG(Gx) for every x ∈ X/G, we have G = 〈

⋃
x∈X/G λG

x 〉 ≤ 〈
⋃

x∈X/G(CG(Gx))
G〉 ≤ G.

The quandle case is similar. �

The necessary condition of Proposition 3.7 disqualifies many “large” subgroups of SX from the
search for racks and quandles. Certainly SX itself is disqualified:

Corollary 3.8. Let |X| ≥ 4. Then SX as a subgroup of itself is not rack admissible.

Proof. The group G = SX acts transitively on X. For x ∈ X, Gx is isomorphic to SX\{x}. Since

|X| ≥ 4, we have CG(Gx) ∼= CSX
(SX\{x}) = 1 and hence (CG(Gx))

G = 1 does not generate G. �

It is well-known that every rack (resp. quandle) of order n embeds into a rack (resp. quandle)
of order n+ 1, proving that both r and q are non-decreasing functions. We give a short argument
based on envelopes. It is certainly possible to give an elementary proof on the level of multiplication
tables.

Proposition 3.9. Let X be a set and z an element not contained in X. Every rack/quandle on X
embeds into a rack/quandle on X ∪ {z}.

Proof. Let X = X ∪ {z}. For σ ∈ SX define σ ∈ SX by xσ = x if x ∈ X and zσ = z. Let

(G, (λx : x ∈ X/G)) be a rack envelope. The orbits of G are the same as those of G, except for the
additional singleton orbit {z}. For x ∈ X/G let κx = λx and observe that κx ∈ CG(Gx) because

λx ∈ CG(Gx). Let κz be the identity on X = X ∪ {z}, clearly satisfying κz ∈ CG(Gz). Then

(G, (κx : x ∈ X/G)) is a rack envelope. The quandle case is similar. �
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4. The algorithm

4.1. A basic algorithm. It follows from Proposition 2.1, Theorem 3.4 and Theorem 3.6 that
the algorithm in Figure 1 returns a complete set of isomorphism types of racks of order n (more
precisely, rack envelopes on X = {1, . . . , n}).

01 X ← {1, . . . , n}
02 G ← subgroups of SX up to conjugation in SX

03 for G in G do

04 if MightBeRackAdmissible(G,X) then

05 Y ← Folr(G) =
∏

x∈X/GCG(Gx)

06 O ← orbit representatives of the action of NSX
(G) on Y given by (3.2)

07 RG ← {(G, (λx : x ∈ X/G)) ∈ O : 〈
⋃

x∈X/G λG
x 〉 = G}

08 else

09 RG ← ∅
10 end if

11 end for

12 return
⋃

G∈G RG

Figure 1. A basic algorithm for enumeration of racks and quandles up to isomorphism.

The function MightBeRackAdmissible(G,X) in line 04 returns true iff 〈
⋃

x∈X/G(CG(Gx))
G〉 =

G, cf. Proposition 3.7. Note that true might be returned even if G ≤ SX is in fact not rack
admissible.

Theorem 3.6(iii) guarantees that it is safe to discard the entire orbit of (G,Λ) in line 07 if (G,Λ)
is not a rack envelope.

For quandles, it suffices to modify the algorithm as follows:

• replace MightBeRackAdmissible(G,X) in line 04 with MightBeQuandleAdmissible(G,X),
which returns true iff 〈

⋃
x∈X/G Z(Gx)

G〉 = G, and

• populate the variable Y in line 05 with Folq(G) =
∏

x∈X/G Z(Gx).

We remark that the algorithm will struggle when NSX
(G) is large, which tends to happen when

G is either very small or very large. The extreme case G = 1 (which yields NSX
(G) = SX) can be

handled separately since then the set Folr(G) is a singleton. Large subgroups of SX are typically
disqualified by failing the necessary condition of Proposition 3.7.

4.2. Indexing. In some computational packages it is possible to define the action (3.2) on the
domain Y and then call standard methods for orbit representatives. We encounter two difficulties.
The space Y can be too large (more than billion elements for some G ≤ S12) to be stored in memory.
Even if Y can be stored in memory, the default methods of convert the action into a permutation
action on {1, . . . , |Y |} and the algorithm might run out of memory then. In this subsection we will
show how to make the algorithm work on larger domains than the default methods would allow.
A similar approach to indexing and actions on large domains is implemented in GAP, cf. methods
PositionCanonical and OrbitStabilizerAlgorithm.

Let G ≤ SX . We will efficiently index the space Y =
∏

x∈X/G CG(Gx) of rack folders, the

case of quandle folders being similar. (However, it is not easy to index elements of the subset of
rack envelopes or quandle envelopes.) Let < be a lexicographical order on Y inherited from an
linear order on SX . Let p(CG(Gx), λx) be the position of λx in CG(Gx) with respect to <. Then

10



Λ = (λx : x ∈ X/G) ∈ Y can be identified with the numerical vector (p(CG(Gx), λx) : x ∈ X/G),
which can in turn be identified with an element of the interval {1, . . . , |Y |}, for instance by using a
hybrid-base expansion. It is then easy to implement the conversion functions Element(Y, i) (that
returns the ith element of Y ) and Position(Y,Λ) (that returns the position of Λ in Y ).

Given G ≤ SX and Y = Folr(G), the algorithm in Figure 2 returns the desired orbit representa-
tives of the action of NSX

(G) on Y ; it can be used to replace lines 06 and 07 of the algorithm in
Figure 1. Note that thanks to the indexing functions described above we do not need to keep Y in
memory, only the much smaller subsets CG(Gx) and a binary vector of length |Y |.

06:01 V ← binary array of length |Y | with all values initialized to true

06:02 for i in {1, . . . , |Y |} do

06:03 if V [i] = true then

06:04 Λ = (λx : x ∈ X/G)← Element(Y, i)
06:05 if 〈

⋃
x∈X/G λG

x 〉 6= G then

06:06 V [i]← false

06:07 end if

06:08 for f in NSX
(G) do

06:09 p← Position(Y,Λf)
06:10 if p > i then

06:11 V [p]← false

06:12 end if

06:13 end for

06:14 end if

06:15 end for

06:16 RG ← {(G, Element(Y, i)) : 1 ≤ i ≤ |Y |, V [i] = true}
06:17 return RG

Figure 2. An algorithm for orbit representatives of NSX
(G) on Y = Folr(G).

The test in line 06:05 ensures that folders (G,Λ) that are not envelopes will not be returned.
Note that the value of p in line 06:09 can never be less than i.

4.3. Precalculating the action of NSX
(G). It is time consuming to calculate Λf in line 06:09,

inside the innermost cycle of the algorithm. In this subsection we will show how the algorithm can
be substantially improved by precalculating the action of NSX

(G) on the space Y . We will take
advantage of the fact that the action (3.2) can be localized, i.e., when

(κx : x ∈ X/G) = (λx : x ∈ X/G)f,

the value of κx depends only on y = xf−1, gy and λyg−1
y
, rather than on the entire folder (λx : x ∈

X/G).
Suppose that G ≤ SX is given. Given f ∈ NSX

(G) and x ∈ X/G, let y = xf−1 and z ∈
(X/G) ∩ yG, and for every λz ∈ CG(Gz) let us precalculate

I(f, x, λz) = p(CG(Gx), ((λz)
gy)f ).

Line 06:09 can then be replaced with the code in Figure 3.
We have now finished describing the main features of the algorithm by which we have obtained

the isomorphism types of racks (resp. quandles) of orders ≤ 11 (resp. ≤ 12). We have explained
in the Introduction how the cases r(12), r(13) and q(13) were handled.

11



06:09:01 for x ∈ X/G do

06:09:02 y ← xf−1

06:09:03 z ← the unique element of (X/G) ∩ yG
06:09:04 px ← I(f, x, λz)
06:09:05 end for

06:09:06 p← the index of (px : x ∈ X/G) as an element of {1, . . . , |Y |}

Figure 3. Code for the position of (λx : x ∈ X/G)f in Folr(G) with precalculated action.

5. Counting orbits of the action on rack and quandle folders

In this section we visualize the action (3.2) of NSX
(G) on Folr(G) and count its orbits, the case

of quandle folders being similar. Unfortunately, this approach does not solve the orbit counting
problem on the space of rack and quandle envelopes.

Let G ≤ SX , F = NSX
(G) and f ∈ F . Construct a digraph (possibly with loops) Γr(G, f) as

follows. The vertex set of Γr(G, f) is the disjoint union of the sets CG(Gx) for x ∈ X/G. (The sets
CG(Gx) are not disjoint as subsets of SX , but we will treat them as being formally disjoint for the
digraph construction.) Given not necessarily distinct x, z ∈ X/G and κx ∈ CG(Gx), λz ∈ CG(Gz),
we declare λz → κx to be a directed edge of Γr(G, f) if and only if with y = xf−1 we have z = yg−1

y

and κx = ((λz)
gy)f .

The digraph Γr(G, f) can be seen as a visualization of the action of 〈f〉 on Folr(G). The elements
(λx : x ∈ X/G) of Folr(G) correspond precisely to selections of vertices of Γr(G, f), one in each
vertex set CG(Gx). When (κx : x ∈ X/G) = (λx : x ∈ X/G)f , then the tuple (κx : x ∈ X/G)
is obtained from (λx : x ∈ X/G) by moving away from every λx along the (unique) directed edge
starting at λx.

Before we describe some properties of Γr(G, f), let us observe that f ∈ NSX
(G) induces a

permutation of X/G. Indeed, suppose that x, y ∈ G belong to the same orbit of G, so x = yg for
some g ∈ G. Then xff−1gf = xgf = yf and f−1gf ∈ G show that xf , yf belong to the same
orbit of G.

Proposition 5.1. Let X be a finite set, G ≤ SX , f ∈ NSX
(G) and Γ = Γr(G, f). Let f̄ be the

permutation of X/G induced by f . Then:

(i) Γ is an |X/G|-partite digraph with parts {CG(Gx) : x ∈ X/G}.
(ii) For x, z ∈ X/G, there exists an edge from CG(Gz) to CG(Gx) if and only if f̄ maps zG to

xG.
(iii) The digraph induced by Γ on X/G by collapsing every vertex set CG(Gx) into a single vertex

is a disjoint union of directed cycles, namely the cycle decomposition of f̄ .
(iv) Every vertex of Γ has indegree equal to 1 and outdegree equal to 1, so Γ is a union of disjoint

directed cycles.

Proof. Part (i) follows from the definition of Γ. For (ii), note that the identity permutation 1 is
present in every CG(Gx) and if y = xf−1, z = yg−1

y , κx = 1 and λz = 1, then κx = ((λz)
gy)f . Part

(iii) follows.
For (iv), suppose that λz → κx and µz → κx are edges and let y = xf−1 as usual. Then

((λz)
gy)f = κx = ((µz)

gy)f and therefore λz = µz. Dually, if λz → κx and λz → νx are edges, then
κx = ((λz)

gy)f = νx. Since the indegree and outdegree of every vertex is equal to 1, Γ is a disjoint
union of directed cycles. �
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Let us illustrate the digraph construction with two small examples.

Example 5.2. Let X = {1, . . . , 5} and let G = 〈(1, 2)(3, 4, 5)〉 ∼= C6 be a subgroup of SX . Then
G has orbits {1, 2}, {3, 4, 5} and we can take X/G = {1, 3}. We have CG(G1) = CG(G3) = G and
F = NS5

(G) = 〈G, (4, 5)〉. Consider f = (1, 2)(4, 5) ∈ F . The permutation f̄ on X/G induced by
f is trivial and the directed graph Γr(G, f) is as follows:

CG(G1) CG(G3)

()

(1,2)

(3,4,5)

(3,5,4)

(1,2)(3,4,5)

(1,2)(3,5,4)

()

(1,2)

(3,4,5)

(3,5,4)

(1,2)(3,4,5)

(1,2)(3,5,4)

For instance, there is a directed edge (3, 4, 5) → (3, 5, 4) in the vertex set CG(G1) because with
x = 1, y = xf−1 = 2 and gy = (1, 2) we have ((3, 4, 5)gy )f = (3, 4, 5)f = (3, 5, 4). (Since G is
abelian here, the conjugations by the gys can be omitted.)

Example 5.3. Let X = {1, . . . , 7} and let G = 〈(1, 2), (1, 2, 3), (4, 5), (4, 5, 6)〉 ∼= S3 × S3 be a
subgroup of SX . Then G has orbits {1, 2, 3}, {4, 5, 6}, {7} and we can take X/G = {1, 4, 7}. We
have CG(G1) = 〈(2, 3)〉, CG(G4) = 〈(5, 6)〉, CG(G7) = 1 and F = NS7

(G) = 〈G, (1, 4)(2, 5)(3, 6)〉.
Consider f = (1, 5)(2, 4)(3, 6) ∈ F . The permutation of X/G induced by f is given by (1, 4)(7) and
the directed graph Γr(G, f) is as follows:

CG(G1) CG(G4) CG(G7)

()

(2,3)

()

(5,6)
()

This must be the case because the cycle structure of permutations is preserved by conjugation. To
give a detailed calculation in one case, there is an edge from (5, 6) in CG(G4) to (2, 3) in CG(G1)
since with x = 1, y = xf−1 = 5 and gy = (4, 5) we have ((5, 6)gy )f = (2, 3).

Note that a directed cycle of Γr(G, f) can visit a given vertex set CG(Gx) more than once before
closing upon itself. For instance, in Example 5.2, there is a cycle that starts in CG(G1) at (3, 4, 5),
returns to CG(G1) at (3, 5, 4), and only then closes itself. Call a cycle of Γr(G, f) short if it
intersects every vertex set CG(Gx) at most once.

Theorem 5.4. Let X be a finite set, G ≤ SX , Y = Folr(G), F = NSX
(G) and consider the action

(3.2) of F on Y .
For f ∈ F , let f̄ be the permutation of X/G induced by f , Cyc(f̄) a complete set of cycle

representatives of f̄ , and c(f̄ , x) the cycle of f̄ containing x ∈ Cyc(f̄). Then there is a one-to-
one correspondence between the fixed points Fix(Y, f) of the action of 〈f〉 on Y and the tuples
(cx : x ∈ Cyc(f̄)), where cx is a short directed cycle of Γr(G, f) with vertices in

⋃
y∈c(f̄ ,x)CG(Gy).
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Therefore, the number of orbits of F on Y is given by

|Y/F | =
1

|F |

∑

f∈F

|Fix(Y, f)| =
1

|F |

∑

f∈F

∏

x∈Cyc(f̄)

γr(G, f, x),

where γr(G, f, x) is the number of short directed cycles of Γr(G, f) with vertices in
⋃

y∈c(f̄ ,x)CG(Gy).

Proof. Let f ∈ NSX
(G) and let Λ = (λx : x ∈ X/G) be a rack folder realized as a selection of

vertices of the digraph Γ = Γr(G, f), one vertex in each part CG(Gx). Then Λf = Λ if and only
if all edges of Γ starting in Λ also terminate in Λ, or, in other words, if and only if Λ is a disjoint
union of short directed cycles. We are done by Burnside’s Lemma. �

Note that while Folr(G) is of size
∏

x∈X/G |CG(Gx)| and therefore possibly quite large, the vertex

set of every Γr(G, f) is only of size
∑

x∈X/G |CG(Gx)| so it is relatively easy to construct Γr(G, f)

explicitly. Due to the structure of Γr(G, f), it is not difficult to count its short directed cycles.
Indeed, since the outdegree and indegree of every vertex is equal to 1, it suffices to trace the cycles
starting at vertices of

⋃
x∈Cyc(f̄)CG(Gx) and keep only the short cycles. Of course, we can also

determine the number of short cycles from suitable powers of the adjacency matrix of Γr(G, f).

6. Open problems

We were not able to determine the numbers r(14) and q(14). Note that it suffices to find
rnon-2-red(14) and qnon-2-red(14) since r2-red(14) and q2-red(14) are known, cf. Tables 1 and 2. The
main obstacle in the enumeration is the size of the spaces of rack folders and quandle folders for
certain nonabelian permutation groups. For larger orders, it will not be feasible to consider all
subgroups of Sn up to conjugacy.

Problem 6.1. Determine the number of isomorphism types of racks and quandles of order 14.

It is to be expected that r(14) and q(14) will only slightly exceed r2-red(14) and q2-red(14),
respectively. However, the asymptotic proportion of 2-reductive racks and 2-reductive quandles is
less predictable:

Problem 6.2. What are the limits limn→∞
r2-red(n)
r(n) and limn→∞

q2-red(n)
q(n) , if they exist?

Let us now look at the structure of Mltℓ(X, ∗) for racks and quandles. Blackburn [2] proved
that for every group G there is a quandle (X, ∗) on some set X such that Mltℓ(X, ∗) is isomorphic
to G. But not every permutation group is rack/quandle admissible. In view of the results in
Section 3, a subgroup G ≤ SX is rack admissible (resp. quandle admissible) if and only if there are
(λx ∈ CG(Gx) : x ∈ X/G) (resp. (λx ∈ Z(Gx) : x ∈ X/G)) such that 〈

⋃
x∈X/G λG

x 〉 = G.

Problem 6.3. Describe a large or algebraically significant class of subgroups G of SX that are not
rack/quandle admissible, that is, for which there is no rack/quandle (X, ∗) such that Mltℓ(X, ∗) = G.

To shed some light on Problems 6.2 and 6.3, we offer the following observations about left
multiplication groups of quandles of order 10. These and similar facts can be verified using the
library of racks and quandles available on the web page of the first author.

There are 102771 quandles of order 10 and their left multiplication groups form a set of 471
non-equivalent permutation groups. The number of quandles associated with a given permutation
group varies greatly. There are 63 permutation groups with a unique quandle, 84 with 2 quandles
and 22 with 3 quandles. On the other side of the spectrum, there are five permutation groups that
account for 20084, 17336, 12033, 6359 and 6284 quandles, respectively. Up to isomorphism, these
groups are C3 ×C3

2 , C
4
2 , C3 ×C2

2 , C
2
3 ×C2 and C4 ×C2

2 , respectively. The most prolific group has
generators (2, 5, 3)(7, 9)(8, 10), (8, 10) and (4, 6)(7, 9).
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There is a unique non-solvable group among the 471 permutation groups, namely a copy of S5

generated by (1, 4, 6, 3, 2)(5, 8, 7, 10, 9) and (3, 8)(5, 9)(6, 10). There are 2 quandles associated with
this group. Furthermore, there are 247 non-nilpotent groups with 3383 associated quandles, 320
non-abelian groups with 4239 associated quandles, and 59 elementary abelian 2-groups with 35091
associated quandles.

Problem 6.4. Let G ≤ SX . Show how Burnside’s Lemma can be effectively used to count the
orbits of the action of NSX

(G) on Envr(G) or Envq(G).

Finally, our computational data support the following conjecture:

Conjecture 6.5. Let p be a prime. Then rmed(p)−r2-red(p) = p−2 and qmed(p)−q2-red(p) = p−2.
In particular, every medial rack of order p that is not 2-reductive is a quandle.
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