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Abstract

Abstract The aim of this paper is to provide an atlas of iden-
tity bases for varieties generated by small semigroups and groups. To
help the working mathematician easily find information, we provide a
companion website that runs in the background automated reasoning
tools, finite model builders, and GAP, so that the user has an auto-
matic intelligent guide on the literature.

This paper is mainly a survey of what is known about identity bases
for semigroups or groups of small orders, and we also mend some gaps
left unresolved by previous authors. For instance, we provide the first
complete and justified list of identity bases for the varieties generated
by a semigroup of order up to 4, and the website contains the list of
varieties generated by a semigroup of order up to 5.

The website also provides identity bases for several types of semi-
groups or groups, such as bands, commutative groups, and metabelian
groups. On the inherently non-finitely based finite semigroups side, the
website can decide if a given finite semigroup possesses this property
or not. We provide some other functionalities such as a tool that out-
puts the multiplication table of a semigroup given by a C-presentation,
where C is any class of algebras defined by a set of first order formulas.

The companion website can be found here
http://sgv.pythonanywhere.com

Please send any comments/suggestions to jj.araujo@fct.unl.pt

1 Introduction

We assume familiarity with the general theory of varieties, semigroups, and
groups. For general references, we suggest the monographs of Almeida [1],
Burris and Sankappanavar [7], Howie [20], McKenzie et al . [53], and H.
Neumann [57].

Studying the lattice of varieties of semigroups is an old area of research,
but given its complexity, this topic remains very active up to the present and
certainly will continue into the foreseeable future. There are several very
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good surveys, such as Evans [13], Shevrin et al . [70], and Vernikov [86], that
allow the reader to become familiar with the main results and problems;
our goal is different. We aim at a living survey powered by a companion
computational tool that helps the working mathematician finding either new
results or locate old ones in the literature.

As an illustration, suppose that we are researchers in some area of math-
ematics who, for some reason, need to investigate semigroups satisfying the
implication

xy ≈ yx =⇒ x ≈ y,

objects we might call anti-commutative semigroups. To understand their
properties, we could use GAP to find some small models, as for example, the
semigroup U1 in Table 1. At a certain point, we observe that all elements
of U1 are idempotents—such a semigroup satisfies the idempotency identity
x2 ≈ x and is commonly called a band—and searching for varieties of bands
we find a reference [14] that contains the lattice L (B) of varieties of bands,
as shown in Figure 1.

U1 1 2 3 4

1 1 1 3 3
2 2 2 4 4
3 1 1 3 3
4 2 2 4 4

U2 1 2 3 4 5

1 1 1 1 1 5
2 1 2 3 4 5
3 1 3 4 2 5
4 1 4 2 3 5
5 1 5 5 5 5

Table 1: The semigroups U1 and U2

Again we could use GAP to see that our semigroup U1 violates the identi-
ties xy ≈ x and xy ≈ y but satisfies the identity xyx ≈ x. Therefore the va-
riety var{U1} generated by U1 is contained in the variety of bands defined by
the identity xyx ≈ x—the variety RB of rectangular bands—but is excluded
from its two maximal subvarieties LZ and RZ, whence var{U1} = RB. Now
an easy exercise shows that a semigroup is anti-commutative if and only if it
satisfies the identity xyx ≈ x, and from here we get access to an enormous
amount of literature on our original object. The key steps in the above
process were the observation that U1 is a band and the complete knowledge
of the lattice of varieties of bands.

Now suppose that we are working with a different theory and our test
semigroup is U2 in Table 1. Since U2 is not a band, there is no general
lattice, similar to Figure 1, that allows us to repeat what we have done
with U1. It turns out that the variety var{U2} is defined by the identities
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[G5G4 ≈ H5I4]B [G4G5 ≈ I4H5]B

[G4G4 ≈ I4H4]B [G4G4 ≈ H4I4]B

[G4G3 ≈ H4I3]B [G3G4 ≈ I3H4]B

[G3G3 ≈ I3H3]B [G3G3 ≈ H3I3]B

[G4 ≈ H4]B [G4G4 ≈ I4I4]B [G4 ≈ H4]B

[G3 ≈ I3]B [G4G4 ≈ H4H4]B [G3 ≈ I3]B

[G3 ≈ H3]B [G3G3 ≈ I3I3]B [G3 ≈ H3]B

[G2 ≈ I2]B N [G2 ≈ I2]B

LN RB RN

LZ SL RZ

0

B = [x2 ≈ x]

N = [xyzx ≈ xzyx]B

LN = [xyz ≈ xzy]B

RN = [xyz ≈ zyx]B

SL = [xy ≈ yx]B

RB = [xyx ≈ x]

LZ = [xy ≈ x]

RZ = [xy ≈ y]

0 = [x ≈ y]
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Figure 1: The lattice L (B) of varieties of bands, where [u ≈ v]B = B∩[u ≈
v] and details on the words Gn, Hn, In, Gn, Hn, In are given in Subsection 2.4.

{x4 ≈ x, xyx ≈ yx2}, but only a substantial search would allow us to locate
a reference [77, Proposition 3.16].

In general, given a semigroup S of order up to 6, there is still a good
chance that information on the variety var{S} and its subvarieties can be
found in the literature, since such varieties have received much attention over
the years [12,30–39,42,46,47,54,77,89,92], especially in the investigation of
the finite basis problem for small semigroups [10, 11, 40, 43, 48, 59, 63, 64, 76,
79, 81–83, 93]. The first goal of this survey is to provide such information,
but we go far beyond that. The overall aim is to provide a survey on
identity bases defining varieties generated by finite semigroups and set up
a companion website, running GAP and automated reasoning tools in the
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background, that will be continuously updated to better assist the working
mathematician. Resources provided by the present survey and the website
so far are described as follows.

(a) Identity bases, and corresponding proofs or references, for all varieties
generated by a semigroup of order up to 4. This survey is the first
source providing this information.

(b) Identity bases for many varieties generated by semigroups of higher
orders, including all semigroups of order 5, the proofs of which will be
disseminated elsewhere.

Figure 2: Companion website: example of a reference given for an order 5
semigroup

(c) Identity bases for all varieties generated by a group that has abelian
normal and factor subgroups N and G/N such that gcd(|N |, |G/N |) =
1.

(d) For some classes of semigroups, including bands and some classes of
groups, the website finds identity bases for varieties generated by ar-
bitrarily large finite models; see Figure 3 on page 7.

(e) For a given finite semigroup S, the companion website gives biblio-
graphic information about the variety var{S}, its prime decomposi-

6



Figure 3: Companion website: the variety generated by an order 8 band

tion, varieties that cover it, and a generator for var{S} of minimal
order; see Figure 4 on page 34.

(f) The vector of a semigroup S of order n, denoted by ~v(S), is the vector
of dimension n2 that is formed by concatenating the n rows of the
Cayley table of S. For example, the vector ~v(J) of the semigroup J in
Table 2 is [1, 1, 1, 1, 1, 1, 1, 2, 3]; it is unambiguous, and in fact clearer,
to only use commas to separate different rows, that is,

~v(J) = [111, 111, 123].

The isomorphic copies of a given semigroup can then be lexicograph-
ically ordered as vectors; for example, the semigroup J ′ in Table 2 is
isomorphic to J , but since

~v(J) = [111, 111, 123] <lex [333, 123, 333] = ~v(J ′),

we place J before J ′. The companion website finds the smallest ele-
ment in each isomorphism class and this is the standard form of the
output; of course, this is an expensive feature that can only be applied
to semigroups of relatively small order (up to 11). See Figure 5 on
page 35.

(g) For any finitely generated variety V, there exist only finitely many
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J 1 2 3

1 1 1 1
2 1 1 1
3 1 2 3

J ′ 1 2 3

1 3 3 3
2 1 2 3
3 3 3 3

Table 2: The semigroups J and J ′

non-isomorphic generators of minimal order, say S1, S2, . . . , Sk with

~v(S1) <lex ~v(S2) <lex · · · <lex ~v(Sk).

Then S1 is called the primitive generator of V. Each variety has a
label V(n, k), where n is the order of its primitive generator S and k is
the number of primitive semigroups of order n for other varieties that
lexicographically precede S. For example, the variety var{J} is defined
by the identities {x2a ≈ xa, xy2 ≈ yx2} and is labeled V(3, 3), meaning
that its primitive generator has order 3—which happens to be J—and
there are two semigroups of order 3 with vectors preceding ~v(J) that
are primitive generators for two other distinct varieties, namely V(3, 1)
and V(3, 2). See Figure 6 on page 35.

(h) In many cases, the website provides a presentation for the primitive
generator of the given variety. Conversely, the user can introduce a
semigroup as a semigroup presentation in any variety or quasi-variety.
For instance, Kiselman [26] considered the semigroup with the presen-
tation〈

c, `,m

∣∣∣∣ c2 = c, `2 = `, m2 = m, c`c = `c, `c` = `c,
cmc = mc, mcm = mc, `m` = m`, m`m = m`

〉
while investigating some operators in convexity theory. In less than
a second the website shows that this semigroup has 17 elements as
a semigroup presentation (as shown in Kiselman [26]), 7 elements as
a band presentation, and 3 elements as a left cancellative semigroup
presentation, etc. See Figure 7 on page 36.

(i) The website does not provide an identity basis for the variety generated
by the Kiselman semigroup of order 17 computed above. However, it
will say that the Kiselman semigroup of order 7 generates the variety
of semilattices whose primitive generator is the chain of length two.
If a given semigroup S of arbitrarily finite order generates a variety
whose primitive generator has order 5 or less, then the website will

8



automatically provide an identity basis for the variety var{S}. See
Figure 8 on page 37.

(j) In addition to presentations, the user can input semigroups by giv-
ing the Cayley table, with several formats and on different sets that
one can define, or by introducing identification numbers in the GAP
libraries of small groups or small semigroups. See Figure 9 on page 38.

(k) The companion website also provides information on dual varieties or
self-dual ones when applicable. Recall that a variety of semigroups is
self-dual if it is closed under anti-isomorphism.

(l) Let En denote the variety of unary semigroups defined by the identities

xx∗ ≈ x∗x, x(x∗)2 ≈ x∗, xn+1x∗ ≈ xn.

Then the proper inclusions E1 ⊂ E2 ⊂ E3 ⊂ · · · hold, and for any
finite semigroup S, there exist a unary operation ∗ on S and some min-
imal n ≥ 1 such that (S, ∗ ) is a unary semigroup in En; the companion
website finds this natural number n. For more information on the op-
eration ∗ and the varieties En, see Subsection 2.6 and Shevrin [69].

(m) A semilattice Y is a partially ordered set in which every pair i, j ∈ Y
of elements has a greatest lower bound i∧j, called the meet of i and j.
A semigroup S is a semilattice of semigroups if there exist a semilat-
tice (Y,≤) and a family {Si}i∈Y of semigroups indexed by Y such that
S =

⋃
i∈Y Si and SiSj ⊆ Si∧j . Every semigroup can be decomposed

as a semilattice of semigroups {Si}i∈Y with each Si being semilattice
indecomposable [73]. Based on results from Tamura [74], the com-
panion website finds the largest semilattice decomposition of a given
semigroup S into semilattice indecomposable semigroups {Si}i∈Y , and
provides the variety generated by each Si. This tool can be used on
a relatively large semigroup S, even when we cannot determine an
identity basis for the variety var{S}.

(n) Let Σ be some given first order theory. The companion website can
find all the varieties V in the database such that Σ ` V or V |= Σ.

9



Figure 11: Companion website: a set of identities entered by the user is
found to be equivalent to an identity basis for a variety in the database

Figure 12: Companion website: finding all varieties in the database that
satisfy some given conditions

(o) The companion website can provide conjectures for the variety gener-
ated by a large semigroup, using an algorithm that gave the correct
result on all semigroups up to order 5. However, given the compu-
tational cost of this algorithm, anyone interested should first contact
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one of the authors.

Let S be the semigroup with universe {1, . . . , 5} and whose Cayley
table has the following rows: 11111, 11111, 11113, 44444, 12345. The
variety generated by S is defined by the identities:

x3 = x2 x2yx = xyx xyxz = x2yz xyz2x = x2yz2.

Our algorithm produced the following candidate:

x3 = x2 x2yx = xyx xyxz = x2yz xy2x = x2y2.

It is easy to see that the two sets are equivalent and hence our candi-
date base is in fact a base for the variety generated by S. Note that
the two bases differ only on the last identity, with the elegance prize
going to the one found by the computer.

(p) In particular, the companion website can give some information about
user’s conjectures. Suppose that we have a semigroup S and guess
that a certain set Σ of identities is an identity basis for var{S}. Then
the website will try to see if var{S} is in the database; if yes, it will try
to prove if the stored identity basis is equivalent to the given one and
return the result; it is very unlikely that no result is returned in such a
case. If var{S} does not belong to the database, then the website will
try to find identities holding in S, but not provable from Σ. If some
are found, then the result is returned. Otherwise, the user’s conjecture
is returned as a reasonable one.

(q) We will keep the website updated with new discovered results in order
to have a state of the art tool assisting the work of mathematicians.

In Section 2, we give some background material on varieties of groups
and of semigroups, the lattice of varieties of bands, varieties with infinitely
many subvarieties, an infinite chain of varieties of epigroups, and semilattice
decompositions of semigroups. Section 3 is dedicated to a survey of some
known results on varieties generated by small groups; it consists of mostly old
material and we collect the main results here to highlight the gaps waiting
to be filled. It is our conviction that the topic was more or less abandoned,
not because everything was too easy, but exactly the opposite. Given the
classification of finite simple groups, perhaps it is time for group theorists
to start looking into varieties of groups again. In addition, for experts in
semigroup theory, it might be useful to know to which varieties of groups

11



belong the maximal subgroups (the H-classes) of the semigroup. Section 4
deals with varieties generated by semigroups of order 5, and also treats the
case of inherently non-finitely based finite semigroups. Section 5 introduces
the features of the companion website and explains how to use it. Section 6
provides the database of varieties generated by semigroups of orders up to 4.
Then we have a section on problems, and three appendix sections providing
justifications of results in Section 6.

2 Preliminaries

2.1 Isomorphic semigroups and lexicographic minimum

Two algebras A and B of the same type are said to be isomorphic, indicated
by A ∼= B, if there exists an isomorphism between them. The relation ∼= is
an equivalence relation on any class of algebras of the same type. Occasion-
ally, given a finite algebra A, it is practical to have a canonical representative
of the equivalence class [A]∼=. For a semigroup S, an obvious choice for the
representative of the class [S]∼= is the semigroup whose vector lexicograph-
ically precedes the vectors of all other semigroups in [S]∼=. For instance,
consider the semigroup

P = 〈a, b | ab = a, ba = 0, b2 = b〉 = {0, a, b}.

Then there are six semigroups on the set {1, 2, 3} that are isomorphic to P ,
as shown in Table 3. Since ~v(S1) ≤lex ~v(Si) for all i 6= 1, the semigroup S1
is the representative of the class [P ]∼=.

S1 1 2 3

1 1 1 1
2 1 1 2
3 1 1 3

S2 1 2 3

1 1 1 1
2 1 2 1
3 1 3 1

S3 1 2 3

1 1 2 2
2 2 2 2
3 3 2 2

S4 1 2 3

1 1 3 3
2 2 3 3
3 3 3 3

S5 1 2 3

1 2 2 1
2 2 2 2
3 2 2 3

S6 1 2 3

1 3 1 3
2 3 2 3
3 3 3 3

Table 3: Semigroups isomorphic to P

The dual of a semigroup S, denoted by
←−
S , is the semigroup obtained

from S by reversing its operation, that is, for any a, b ∈
←−
S = S, the prod-

uct ab in
←−
S is equal to the product ba in S. The Cayley table of

←−
S is

12



obtained simply by transposing the Cayley table of S. For instance, the

semigroup
←−
S1 is isomorphic to the semigroup J in Table 2. The dual of

a variety V is the variety
←−
V = {

←−
S |S ∈ V}. A variety V is self-dual if

V =
←−
V.

Two semigroups S and T are equivalent if either S ∼= T or
←−
S ∼= T . In the

GAP package Smallsemi, semigroups are stored up to equivalence but not up
to isomorphism, a decision not without some disadvantages. In this paper,
unless otherwise stated, we work with semigroups up to isomorphism.

2.2 Varieties of semigroups

The variety generated by an algebra A, denoted by var{A}, is the smallest
class of algebras of the same type containing A that is closed under the for-
mation of homomorphic images, subalgebras, and arbitrary direct products.
Since a variety var{A} coincides with the class of all algebras that satisfy
the identities of A, two algebras generate the same variety if and only if
they satisfy the same identities. It is clear that if A and B are isomorphic
algebras, then var{A} = var{B}; however, the converse does not hold in
general, even if the algebras A and B have the same order. For example,
the dihedral group D4 and the quaternion group Q are groups of order 8
that generate the same variety [91], but they are not isomorphic.

Up to isomorphism, the number of semigroups of order up to five is 2,133
[96, A027851], while the number of varieties generated by these semigroups
is only 218.

A identity basis for a variety V is a set of identities holding in V from
which all other identities of V can be deduced. A variety is finitely based
if it possesses a finite identity basis. Since a semigroup satisfies the same
identities as the variety it generates, it is unambiguous to define an identity
basis for a semigroup S to be an identity basis for var{S}, and say that S
is finitely based whenever var{S} is finitely based. Every variety generated
by a semigroup of order at most 5 is finitely based, but up to isomorphism,
precisely four semigroups of order 6 are non-finitely based [44]; see Subsec-
tion 4.2

2.3 Varieties of groups

For a general reference on varieties of groups, we recommend the monograph
of H. Neumann [57]. Unlike what happens in semigroups, every variety
generated by a finite group has a finite identity basis, and in group theory,
every finite set of identities is equivalent to a single identity. Therefore every

13



variety generated by a finite group can be defined by a single identity. We
will see a similar phenomenon in the variety of bands below. More details
on varieties of groups can be found in Section 3.

2.4 The lattice of varieties of bands

A description of the lattice L (B) of varieties of bands can be found in
Birjukov [3], Fennemore [14], Gerhard [15], Gerhard and Petrich [17], and
Howie [20]; see Figure 1. At the very top of the lattice is the variety B =
[x2 ≈ x] of all bands. In the lower region is the sublattice L (N) of L (B)
consisting of eight varieties:

N = [xyzx ≈ xzyx]B, normal bands;

LN = [xyz ≈ xzy]B, left normal bands;

RN = [xyz ≈ yxz]B, right normal bands;

SL = [xy ≈ yx]B, semilattices;

RB = [xyx ≈ x], rectangular bands;

LZ = [xy ≈ x], left zero bands;

RZ = [xy ≈ y], right zero bands;

0 = [x ≈ y], trivial bands.

The remaining varieties in the lattice L (B) are defined by identities that
are formed by the words {Gn, Hn, In |n ≥ 2} inductively defined as follows:

G2 = x2x1, H2 = x2, I2 = x2x1x2,

and Gn = xnGn−1, Hn = GnxnHn−1, In = GnxnIn−1, for all n ≥ 3,

where X is the word X written in reverse. For example,

[G3 ≈ H3]B = [x3x1x2 ≈ x3x1x2x3x2, x2 ≈ x].

By simple inspection of the identities in Figure 1, it is clear that the varieties
in column 3 are self-dual, the varieties in columns 1 and 5 are dual to each
other, and the varieties in columns 2 and 4 are dual to each other.

The variety generated by a band B is the variety V of bands that satisfies
both of the following properties: B belongs to V and B is excluded from
every maximal subvariety of V. When a semigroup S is entered into the
companion website, there is a first test to check if S is a band. In the
affirmative case, the website crawls up the lattice in Figure 1; the first
identity satisfied by S defines the variety var{S}.

14



2.5 Varieties with infinitely many subvarieties

A variety that contains only finitely many subvarieties is said to be small.
It easily follows from the well-known theorem of Oates and Powell [58] that
every finite group generates a small variety of semigroups. But this result
does not hold in general. A small counterexample is the monoid N1

2 obtained
by adjoining an identity element to the nilpotent semigroupN2 = 〈a | a2 = 0〉
of order 2; see Figure 13 on page 40. Not only is the variety N1

2 = var{N1
2 }

not small [13], it is the only non-small variety among all varieties generated
by a semigroup of order 3 or less; see Section 6.

As for the variety generated by a semigroup of order greater than 3,
properties more extreme than being non-small can be satisfied. For instance,
there exist

• semigroups of order 4 that generate varieties that are finitely univer-
sal [32] in the sense that their lattices of subvarieties each embeds all
finite lattices;

• semigroups of order 6 that generate varieties with continuum many
subvarieties [12,22].

All examples of varieties with continuum many subvarieties discovered so
far are also finitely universal. It is unknown if there exists a variety with
continuum many subvarieties that is not finitely universal. Refer to Shevrin
et al . [70] for a survey of results regarding other properties satisfied by
lattices of varieties.

Given a finite semigroup, it is of natural interest to determine if it gen-
erates a small variety. Whether or not smallness of a variety is decidable
remains open, but some special case has been found. Recall that an identity
of the form

x1x2 · · ·xn ≈ xπ(1)xπ(2) · · ·xπ(n),

where π is some nontrivial permutation on {1, 2, . . . , n}, is called a permu-
tation identity, while a nontrivial identity of the form

x1x2 · · ·xn ≈ w

that is not a permutation identity is said to be diverse.

Proposition 2.1 (Malyshev [51]). Any variety that satisfies some permu-
tation identity and some diverse identity is small.
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2.6 Epigroups

Let S be a semigroup. An element a ∈ S is an epigroup element if there
exists an integer n ≥ 1 such that an belongs to a subgroup of S, that is, the
H-class Han of an is a group; if n = 1, then a is said to be completely regular.
If we denote by e the identity element of Han , then ae is in Han and we define
the pseudo-inverse a′ of a by a′ = (ae)−1, where (ae)−1 denotes the inverse
of ae in the group Han [69, Subsection 2.1]. An epigroup is a semigroup
consisting entirely of epigroup elements, and a completely regular semigroup
is a semigroup whose elements are all completely regular. The important
fact for us is that all finite semigroups are examples of epigroups. Following
Petrich and Reilly [62] for completely regular semigroups and Shevrin [69]
for epigroups, it is now customary to consider an epigroup or a completely
regular semigroup (S, · ) as a unary semigroup (S, · , ′ ), where x 7→ x′ is the
map sending each element to its pseudo-inverse.

For any semigroup S, let Epi(S) denote the set of all epigroup elements
of S and let Epin(S) denote the subset of Epi(S) consisting of elements of
index bounded by n. Then the inclusions

Epi1(S) ⊆ Epi2(S) ⊆ · · · ⊆
⋃
n≥1

Epin(S) = Epi(S)

hold, where Epi1(S) consists of completely regular elements of S, and Epi(S) =
S if and only if S is an epigroup.

For any a ∈ Epin(S), let ea denote the identity element of the group Han .
Then aea = eaa is in Han and the definition of pseudo-inverse introduced
above leads to a characterization of the epigroup elements of the semigroup:
a ∈ Epi(S) if and only if there exist some n ≥ 1 and some (necessarily
unique) element a′ ∈ S such that

a′aa′ = a′, aa′ = a′a, an+1a′ = an; (2.1)

see Shevrin [69, Section 2]. If a is an epigroup element, then so is a′ with
a′′ = aa′a. The element a′′ is always completely regular and a′′′ = a′. A
standard notation in finite semigroup theory is to write aω = aa′ for an
epigroup element a; see, for example, Almeida [1]. Then

aω = a′′a′ = a′a′′, (a′)ω = (a′′)ω = aω,

and more generally, for any m ≥ 1,

aω = (aa′)m = (a′)mam = am(a′)m.
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For each n ≥ 1, the class En consisting of all epigroups S such that
S = Epin(S) is a variety; in particular, E1 is the class of completely regular
semigroups. The chain E1 ⊂ E2 ⊂ E3 ⊂ · · · of varieties has the following
property [69]: for any variety V of epigroups, there exists a smallest n ≥ 1
such that V ⊆ En. Given a finite semigroup S, the companion website
finds the smallest n such that S ∈ En. This gives some occasionally useful
information about the given semigroup, but of course it does not match
knowing an identity basis for var{S}.

2.7 Semilattice decompositions of semigroups

There are many ways that a semigroup can be decomposed into smaller sub-
semigroups, for example, direct products, subdirect products, and Zappa–
Szép extensions. Some has the property that each component cannot be
further decomposed using the same tool, in which case the decomposition is
said to be atomic. An obvious example of atomic decompositions for finite
algebras is the direct product decomposition as, resorting on an argument
similar to the one used to prove that every natural number is a product
of prime numbers, we can easily show that every finite algebra can be de-
composed in a direct product of directly indecomposable algebras. Finding
atomic decompositions of infinite semigroups is more difficult; according
to Bogdanović et al . [5], there are only five known atomic decompositions
of general semigroups: semilattice decompositions [73], ordinal decomposi-
tion [50], U -decomposition [68], orthogonal decomposition [6], and the gen-
eral subdirect decomposition whose atomicity was proved by Birkhoff.

Here we will concentrate on semilattice decompositions of semigroups.
We saw above that a semilattice is a commutative band. It is easy to prove
that every semilattice Y induces a partially ordered set in which every pair
i, j ∈ Y of elements has a meet i∧j; conversely, every such partially ordered
set induces a semilattice. Therefore, the term semilattice is commonly used
to refer to a commutative band or a partially ordered set admitting meet of
every pair of elements. In this subsection it is more convenient to use it in
the latter sense.

A semigroup S is a semilattice of semigroups if there exist a semilat-
tice (Y,≤) and a collection {Si}i∈Y of semigroups indexed by Y such that
S =

⋃
i∈Y Si and SiSj ⊆ Si∧j . Every semigroup can be decomposed as

a semilattice {Si}i∈Y of semigroups Si that are semilattice indecompos-
able [73].

In Tamura [74], two equivalent ways of finding the smallest semilattice
congruence are provided. For any semigroup S, let S1 denote the smallest
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monoid containing S, that is,

S1 =

{
S if S is not a monoid,

S ∪ {1} otherwise.

Then the smallest semilattice decomposition of S is the smallest partition
containing the sets {

(x, y) ∈ S1 × S1
∣∣ {xy, yx, xyx}}.

The companion website finds the largest semilattice decomposition of
a given semigroup S into semilattice indecomposable semigroups {Si}i∈Y ,
and provides the variety generated by each Si. This tool can be used on a
semigroup S of relatively large order, even when we cannot determine an
identity basis for the variety var{S}.

Figure 14: Companion website: semilattice decomposition of an order 7
semigroup

3 Varieties of groups

The theory of varieties of groups differs from that of semigroups in several
ways, which will be briefly mentioned here. In particular, after a decade of
activity, the monograph [57] of H. Neumann was published; this is still the
best reference for the subject. Also, the notation used in H. Neumann [57]
became standard among group theorists: we will point out some of the dif-
ferences. In particular, varieties of groups are typically denoted by Fraktur
capital letters, such as A for the variety of abelian groups; following the
usage established earlier, we will use bold-face letters such as A instead.
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3.1 The basics

As briefly noted in Section 2.3, every group identity can be put into the
form w ≈ 1, where w is a word in the variables and their inverses. We
can regard w as an element of the free group F (X) over a countable set X
of variables. The identities satisfied by a variety V form a fully invariant
subgroup of F (X), one mapped into itself by all endomorphisms of the group.
Thus there is a bijection between varieties of groups and fully invariant
subgroups of F (X).

Each finite nontrivial group with finite exponent e ≥ 2 satisfies the
identity xe ≈ 1 and so also the identity xe−1 ≈ x−1. Therefore any identity of
a finite group is equivalent to one of the form w ≈ 1, where w is a semigroup
word. In fact, a more specific result holds. Recall that a commutator word
is an element of the derived subgroup of the free group. Alternatively, a
commutator word can be described as one in which the sum of the exponents
of every variable is 0.

Theorem 3.1 (B. H. Neumann [56]). Every identity of a finite group with
exponent e is equivalent to {xe ≈ 1, w ≈ 1} for some commutator word w.

A factor of a group G is a quotient of a subgroup of G, that is, H/K
whereKEH ≤ G; it is proper unlessH = G andK = 1. A chief factor is one
where KEG and H/K is a minimal normal subgroup of G/K; a composition
factor is a factor H/K, when H and K subnormal in G (that is, terms in a
descending series in which each term is normal in its predecessor) and K is
a maximal normal subgroup of H.

If A and B are subgroups of G, then [A,B] is the subgroup generated by
the commutators in {[a, b] | a ∈ A, b ∈ B}. The lower central series is the
descending series G = G1 > G2 > · · · with Gi+1 = [Gi, G]; G is nilpotent of
class c if Gc+1 = 1 (and c is minimal subject to this). The derived series is
the descending series G = G(0) > G(1) > · · · with G(i+1) = [G(i), G(i)]; G is
solvable of derived length ` if G(`) = 1 (and ` is minimal subject to this).

The product UV of varieties U and V consists of all groups G which are
extensions of a group H ∈ U by a group K ∈ V, that is, G has a normal
subgroup isomorphic to H with quotient isomorphic to K. The product
of two varieties is a variety, and the product operation is associative. But
product varieties are not usually generated by finite groups.

Theorem 3.2 (Šmel’ken [71]). A product of three or more nontrivial vari-
eties is not generated by a finite group. A product UV is generated by some
finite group if and only if U and V have coprime exponents, U is nilpotent,
and V is abelian.
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The variety UV has an identity basis of the form u(v1,v2, . . . ,vn) ≈ 1,
where u(x1, x2, . . . , xn) ≈ 1 is an identity of U and each vi ≈ 1 is an
identity of V. (Note that, even if for some cases we can do better, usually
all identities of V are needed, not just an identity basis.)

Many further results about varieties of groups are known, but the interest
of the present survey lies in those that are finitely generated.

The most important result about varieties of finite groups is the Oates–
Powell Theorem, asserting that, for any finite group G, the variety var{G}
is finitely based. Actually it is a little stronger. A variety of groups is Cross
if it is finitely based, finitely generated, and small. (Recall that a variety
of algebras of any type—in particular, groups—is finitely generated if it is
generated by one of its finite algebras.)

Theorem 3.3 (Oates and Powell [58]). The variety generated by any finite
group is Cross.

A group is critical if it does not lie in the variety generated by all of
its proper factors. It is known that, if two non-isomorphic critical groups
generate the same variety, then they have abelian monoliths. Hence non-
isomorphic finite simple groups generate different varieties.

3.2 Abelian groups

The structure of varieties generated by abelian groups is very simple. The
class A of all abelian groups is the variety defined by the identity [x, y] ≈ 1;
for each integer m ≥ 1, the class Am of abelian groups of exponent m is the
variety defined by the commutator identity and the identity xm ≈ 1. Hence
the lattice of varieties of abelian groups is isomorphic to the set of positive
integers ordered by divisibility, with a top element added. We remark that
GAP includes commands IsAbelian and Exponent, so these conditions are
easily checked.

Inclusions in the other direction are more problematic. For sufficiently
large m, there are uncountably many varieties of groups covering Am [21,29].

3.3 Metabelian groups

A group is metabelian if it lies in the product variety AA, that is, it has an
abelian normal subgroup with abelian quotient. Among small groups, many
are metabelian; for example, 1,005 of the 1,048 groups of order up to 100
are metabelian. The smallest non-metabelian groups are the groups S4 and
SL(2, 3) of order 24.
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A finite metabelian group lies in the variety AmAn for some m,n ≥ 1.
The smallest subgroup of a group G whose quotient is abelian of exponent
dividing n is generated by the nth powers and commutators in G, so the
variety AmAn is defined by the identities

xmn ≈ [x, y]m ≈ [xn, yn] ≈
[
xn, [y, z]

]
≈
[
[x, y], [z, w]

]
≈ 1.

However, finding an identity basis for individual finite metabelian groups is
more difficult.

Higman [19] showed that for each prime p and n ≥ 1, the proper sub-
varieties of ApAn containing Apn are characterized by an identity of the
form

[xn, yd1 , yd2 , . . . , ydk ] ≈ 1,

where d1 > d2 > · · · > dk ≥ 1 are divisors of n such that di does not
divide dj whenever i > j.

As an example which we will examine later, consider the subvariety
var{A4} of A2A3. The only possible Higman identity is [x3, y] ≈ 1, which
does not hold in A4. Therefore var{A4} = A2A3.

H. Neumann [57, p.179] quotes a generalization of this, an unpublished
result of C. H. Houghton according to which, assuming that gcd(m,n) = 1,
any such variety lies between Ars and ArAs for some r, s ≥ 1 such that r
divides m and s divides n. Moreover, such a variety is defined by identities
of the form

[xs, yd1 , . . . , ydk ]t ≈ 1,

where t is a divisor of r and d1 > d2 > · · · > dk ≥ 1 are divisors of n such
that di does not divide dj whenever i > j.

Houghton did not publish the proof of his result. The proof, and a
generalization that determines when the equality var{A} var{B} = var{Awr
B} holds for abelian groups A and B, can be found in Mikaelian [55].

There are also some results for the case when the condition gcd(m,n) = 1
is relaxed.

For an example, consider SmallGroup(12,1) in GAP with presentation

〈a, b | a3 = 1, b4 = 1, b−1ab = a2〉.

Clearly, this group lies in A3A4 (as gcd(m,n) = 1, this group can be handled
with Higman’s Theorem), and the possible Higman identities are [x4, y] ≈ 1
and [x4, y2] ≈ 1. It is readily shown that the second is satisfied but the first
is not. Adding [x4, y2] ≈ 1 to the identity basis we see that the identity
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[x4, y4] ≈ 1 is now redundant and can be discarded. Further reductions are
possible, but we do not strive for the simplest identity basis.

A result of Kovács [27] describes the variety generated by a finite dihedral
group. We have restated his theorem in a way which is more useful for us.

Theorem 3.4 (Kovács). Let D2n denote the dihedral group of order 2n,
where n = 2dm and m is odd.

(a) If d ≤ 1, then var(D2n) = AmA2.

(b) If m = 1 and d > 2, then var(D2n) = A2d−1A2 ∩Nd, where Nd is the
variety of nilpotent groups of class at most d.

(c) If m > 1 and d > 2, then var(D2n) = var(D2m, D2d+1).

Now it follows from our general remarks on metabelian groups that an
identity basis for AnA2is given by x2n = [x2, y2] = 1. (For a group lies
in this variety if and only if the squares commute and have orders divid-
ing n.) An identity basis for Nd is given by the left-normed commutator
[x1, x2, . . . , xd+1] = 1 (this means [[. . . [[x1, x2], x3], . . .], xd+1] = 1). Given
varieties V and W, an identity basis for V∩W consists of the union of the
identity bases for V and W. Finally, the identities of var(G,H) consist of
all products of an identity for G and an identity for H. So the identities for
varieties of dihedral groups can be described explicitly.

3.4 Other groups

Apart from the above, results about particular finite groups are fairly scarce.
Cossey and Macdonald [8] and Cossey et al . [9] found explicit identity bases
for the varieties var{G}, where G ∈ {S4, A5,PSL(2, 7)}; they also found
identities that hold in PSL(2, pm) with prime p, but without proof that
these identities form an identity basis. In the case p = 2, an identity basis
was found by Southcott [72].

Such cases are best dealt with by database lookup.
Description for the identities of the groups SL(2, q) in some cases—when

q = 9 or q = pm for some odd prime p 6≡ ±1 (mod 16) and odd m ≥ 1—are
also available. In these cases, the identities are of the form [w, x] ≈ 1 and
w2 ≈ 1, where w ≈ 1 ranges over an identity basis for PSL(2, q) and x is a
variable not occurring in w.

In particular, this result holds for SL(2, 3) and PSL(2, 3) ∼= A4, where
identities of the latter group have been described in Subsection 3.3.
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3.5 Non-metabelian groups of order 24

As noted earlier, S4 and SL(2, 3) are the only non-metabelian groups of
order 24. An identity basis for the variety var{S4} can be found in Cossey
et al . [9]:

x12 ≈
(
(x3y3)4[x3, y6]3

)3 ≈ [x2, y2]2 ≈ [x, y]6 ≈ [x6, y6] ≈
[
[x, y]3, y3, y2

]
≈ 1.

The goal of this subsection is to describe the subvarieties of the varieties
var{S4} and var{SL(2, 3)}, and to show that their proper subvarieties are
all metabelian.

Lemma 3.5. Let G be any non-abelian group in var{S3}. Then G has a
subgroup isomorphic to S3.

Proof. We know that G′ is a nontrivial elementary abelian 3-group while
G/G′ is an abelian group that is a direct product of elementary abelian
2-groups and 3-groups. Since G is non-abelian, there must be elements
a, b ∈ G that fail to commute. We consider various cases, assuming that
there is no subgroup isomorphic to S3 and aiming for a contradiction. Note
that any two elements of order 3 commute, since [x2, y2] ≈ 1 is an identity
of S3.

• a and b have order 2. Then 〈a, b〉 is a dihedral group of order 6 or 12
and so contains a subgroup isomorphic to S3. So we may assume that
involutions commute.

• a has order 2 and b has order 3. Then c = ba is another element of
order 3 and c commutes with b. Since (bc−1)a = cb−1 = (bc−1)−1,
the subgroup 〈a, b〉 is isomorphic to S3. Hence we can assume that
elements of prime orders commute.

• a has order 2 or 3 and b has order 6. Then a commutes with b2 and
b3, and so with b.

• a and b have order 6. Then a2 and a3 both commute with b, so that a
and b commute.

The proof is thus complete.

Theorem 3.6. Let G be any critical group in var{S4} that is not metabelian.
Then var{G} = var{S4}.

Proof. Let N be the verbal subgroup of G corresponding to the identities
of var{S3}, that is, the subgroup generated by values in G of the identities
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of S3. Then N is an elementary abelian 2-group, and it is nontrivial because
1 6= G′′ ≤ N . Further, G/N belongs to var{S3}.

If G/N is abelian, then G′ ≤ N , so that the contradiction G′′ = 1 is
deduced. Therefore G/N is non-abelian. Further, G/N has order divisible
by 3, since otherwise G is a 2-group; but 2-groups in var{S4} belong to
var{D8} and so are metabelian. Therefore by Lemma 3.5, the group G/N
must contain a subgroup K isomorphic to S3.

Moreover, such a subgroup in G/N cannot centralize N . For if it did,
then CG(N) (and hence G) would have a normal 3-subgroup; but G is critical
and therefore monolithic (it contains a unique minimal normal subgroup,
which is a 2-group) [57, 51.32].

An orbit of K on N has order at most 6, and so generates a subgroup
of order at most 26. We show there must be such a subgroup of order 22.
First, consider the action of an element of order 3 in K; let {x1, x2, x3} be
an orbit. The subgroup 〈x1, x2, x3〉 has order 22 or 23; in the latter case, the
subgroup 〈x1x2, x2x3, x3x1〉 has order 22.

If such a subgroup {1, y1, y2, y3} of order 22 is invariant under an ele-
ment t of order 2 in K, our claim is proved; so suppose not. Let zi = yti
where i = 1, 2, 3. Then the group generated by the ys and zs has order 24 and
is invariant under S3. We can assume that conjugation by an element u of or-
der 3 in K induces the permutation (y1, y2, y3)(z1, z3, z2) (since t inverts u).
Then the subgroup 〈y1z1, y2z3, y3z2〉 has order 22 and is S3-invariant.

Now the group generated by K together with this K-invariant subgroup
of N is isomorphic to S4, and belongs to var{G}. So var{S4} ⊆ var{G}, and
we have equality as required.

Corollary 3.7. Any proper subvariety of var{S4} is metabelian.

The analogous result for SL(2, 3) is similar but easier to establish. We
have noted in Subsection 3.4 that the identities of SL(2, 3) have the form
[w, x] ≈ w2 ≈ 1, where w ≈ 1 ranges over the identities of A4 and x is a
variable not in w.

Theorem 3.8. Let G be any critical group in var{SL(2, 3)} that is not
metabelian. Then var{G} = var{SL(2, 3)}.

Proof. The preliminary result, that a non-abelian group in var{A4} contains
a subgroup isomorphic to A4, is proved similarly to the analogous result
for S3.

Now let G ∈ var{SL(2, 3)} and suppose that G is critical and not
metabelian. Then G′′ is an elementary abelian 2-group and is contained
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in Z(G), so all its subgroups are normal in G. Since G is monolithic, we
find that |G′′| = 2. Now G/G′′ has a subgroup isomorphic to A4, and it is
easy to see that this lifts to a subgroup of G isomorphic to SL(2, 3).

Corollary 3.9. Any proper subvariety of var{SL(2, 3)} is metabelian.

3.6 Toward an explicit bound

It follows from Theorem 3.3—the Oates–Powell Theorem—that the variety
generated by a finite group is finitely based and small. Can explicit bounds
for the orders of critical groups in such a variety be extracted from the proof
of this result?

The proof of the Oates–Powell Theorem rests on three lemmas, of which
the third concerns the class C(e,m, c) of finite groups G such that

• G has exponent dividing e;

• the order of any chief factor of G is at most m;

• the nilpotency class of any nilpotent factor of G is at most c.

Then C(e,m, c) is a class of finite groups in a variety, whence if G ∈
C(e,m, c) then every critical group in var{G} belongs to C(e,m, c).

Lemma 3.10 (H. Neumann [57, 52.23]). The class C(e,m, c) contains only
a finite number of (non-isomorphic) critical groups.

Lemma 3.11 (H. Neumann [57, 52.5]). If G ∈ C(e,m, c) is critical and has
non-abelian monolith, then |G| ≤ m!.

The abelian monolith case is much harder. Neumann [57] says:

If a bound for the index of Φ(G) in G is found, then a bound for
|G| can be derived. For, since Φ(G) consists of all non-generators
of G, the number of elements needed to generate G can be at
most |G/Φ(G)|. But from bounds for the number of generators
of G and the index of Φ(G) in G, one obtains a bound for the
number of generators of Φ(G) by means of Schreier’s formula.
As Φ(G) is nilpotent, of class at most c and exponent dividing e,
this leads to a bound for the order of Φ(G), and so for the order
of G.
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Suppose that we can show that |G/Φ(G)| ≤ b. Then G has at most
log2 b generators, so our bound for the number of generators of Φ(G) is
(b − 1) log2 b + 1, or in broad brush terms, d ≤ b log b. This gives a bound
for the order of Φ(G) which is roughly ed+d

2+···+dc , since the lower central
factors are generated by commutators.

A small improvement is possible. If Φ(G) is not a p-group, then it is the
direct product of its Sylow p-subgroups, each of which contains a nontrivial
normal subgroup of G, contradicting the fact that G is monolithic. So we
can replace e in the above bound by the largest prime divisor of e.

Continuing, the proof considers a series

Φ(G) < F < C < G,

and shows that |G/C| ≤ (m!)c and |F/Φ(G)| ≤ mc, while |C/F | ≤ (m!)t,
where t ≤ 1 + ce(m!). The bound for b is the product of these numbers.

Even for very moderate values of e, m, and c, the resulting bound is
going to be rather large!

4 The database of varieties generated by small
semigroups

4.1 The library of varieties generated by a semigroup of or-
der up to 5

We produced a database containing all the semigroups up to order 5 and
an identity basis for the variety generated by each of them. All the proofs
regarding semigroups up to order 4 appear (or are referred to) in this paper.
The proofs regarding semigroups of order 5 will be published elsewhere.

4.2 Non-finitely based varieties generated by a semigroup of
order 6

Every variety generated by a semigroup of order up to 5 is finitely based [40,
80, 82]. Among all varieties generated by a semigroup of order 6, precisely
four are non-finitely based [43, 48]; these varieties are generated by the fol-
lowing semigroups:

• the monoid B1
2 obtained from the Brandt semigroup

B2 = 〈a, b | a2 = b2 = 0, aba = a, bab = b〉 = {0, a, b, ab, ba};
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n
Number of semi-

groups of order n,
up to equivalence

Number of semi-
groups of order n,
up to isomorphism

Number of varieties
with a primitive

generator of order n

1 1 1 1
2 4 5 5
3 18 24 14
4 126 188 53
5 1,160 1,915 145
6 15,973 28,634 At least 461
7 836,021 1,627,672 Unknown
8 1,843,120,128 3,684,030,417 Unknown
9 52,989,400,714,478 105,978,177,936,292 Unknown

Table 4: Some numerical data

• the monoid A1
2 obtained from the 0-simple semigroup

A2 = 〈a, b | a2 = aba = a, bab = b, b2 = 0〉 = {0, a, b, ab, ba};

• the semigroup Ag2 obtained by adjoining a new element g to A2 with
g2 = 0 and gA2 = A2g = {g};

• the J -trivial semigroup

L3 = 〈a, b | a2 = a, b2 = b, aba = 0〉 = {0, a, b, ab, ba, bab}.

The Cayley tables of these semigroups are given in Table 5; refer to Lee
et al . [44] for more historical information on their discovery.

Besides the four non-finitely based semigroups of order six, many other
non-finitely based finite semigroups have been discovered since the 1970s;
see the survey by Volkov [88]. But explicit identity bases have not been
found for varieties generated by most of these semigroups because the task
is neither necessary (in establishing the non-finite basis property) nor trivial.
Nevertheless, explicit identity bases are available for a few non-finitely based
varieties.

Proposition 4.1 (Jackson [24, Proposition 4.1]). The identities

x4 ≈ x3, x3y ≈ yx3, x2yx ≈ x3y, xyx2 ≈ x3y, xyxzx ≈ x3yz,( m∏
i=1

xi

)( 1∏
i=m

xi

)
y2 ≈ y2

( m∏
i=1

xi

)( 1∏
i=m

xi

)
, m = 1, 2, 3, . . .
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B1
2 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 1 1 2 2 3
3 1 2 3 1 3 1
4 1 1 1 4 4 6
5 1 2 3 4 5 6
6 1 4 6 1 6 1

A1
2 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 1 1 2 2 3
3 1 2 3 2 3 3
4 1 1 1 4 4 6
5 1 2 3 4 5 6
6 1 4 6 4 6 6

Ag2 1 2 3 4 5 6

1 1 1 1 1 1 6
2 1 1 1 2 3 6
3 1 2 3 2 3 6
4 1 1 1 4 5 6
5 1 4 5 4 5 6
6 6 6 6 6 6 1

L3 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 1 1 1 1 2
3 1 1 1 1 1 3
4 1 1 2 1 4 2
5 1 1 3 1 5 3
6 1 2 2 4 4 6

Table 5: Non-finitely based semigroups of order 6

constitute an identity basis for a non-finitely based variety generated by a
certain semigroup of order 211.

Proposition 4.2 (Lee and Volkov [47, Section 1]). For each n ≥ 2, the
identities

xn+2 ≈ x2, (xy)n+1x ≈ xyx, xyxzx ≈ xzxyx,( m∏
i=1

xni

)3

≈
( m∏
i=1

xni

)2

, m = 2, 3, 4, . . .

constitute an identity basis for the non-finitely based variety var{A2,Zn}. In
particular, var{A2,Z2} = var{Ag2}.

Proposition 4.3 (Lee [41, Corollary 3.5]). For each n ≥ 1, the identities

xn+2 ≈ x2, xn+1yxn+1 ≈ xyx, xhykxty ≈ yhxkytx,

x

( m∏
i=1

(yihiyi)

)
x ≈ x

( 1∏
i=m

(yihiyi)

)
x, m = 2, 3, 4, . . .

constitute an identity basis for the non-finitely based variety var{L3,Zn}.

4.3 Inherently non-finitely based finite semigroups

The finite basis problem—first posed by Tarski [75] in the 1960s as a decision
problem—questions which finite algebras are finitely based. This problem is
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undecidable for general algebras [52] but remains open for finite semigroups.
In contrast, it is decidable if a finite semigroup S is inherently non-finitely
based in the sense that every locally finite variety containing S is non-finitely
based. This result follows from the work of Sapir [63, 64], a description of
which requires the following concepts:

• the period of a semigroup S is the least number d such that S satisfies
the identity xm+d ≈ xm for some m ≥ 1;

• the upper hypercenter of a group G, denoted by Γ(G), is the last term
in the upper central series of G;

• a word w is an isoterm for a semigroup S if S violates every nontrivial
identity of the form w ≈ w′;

• the Zimin words z1, z2, z3, . . . are words over the variables {x1, x2, x3, . . .}
defined inductively by z1 = x1 and zk+1 = zkxk+1zk for each k ≥ 1.

Theorem 4.4 (Sapir [66, Theorem 3.6.34]). (i) A finite semigroup S is
inherently non-finitely based if and only if there exists some idempo-
tent e ∈ S such that the submonoid eSe of S is inherently non-finitely
based.

(ii) A finite monoid M with period d is inherently non-finitely based if
and only if there exist a ∈ M and an idempotent e ∈ MaM such
that the elements eae and ead+1e do not belong to the same coset of
the maximal subgroup Me of M containing e with respect to the upper
hypercenter Γ(Me).

(iii) A finite semigroup S is inherently non-finitely based if and only if the
Zimin words z1, z2, . . . , zm, where m = |S|3, are isoterms for S.

The non-finitely based semigroups Ag2 and L3 are not inherently non-
finitely based because they satisfy the identities z2 ≈ x1(x2x1)

3 and z2 ≈
x1x2x

2
1, respectively. On the other hand, the semigroups A1

2 and B1
2 are in-

herently non-finitely based since all Zimin words are isoterms [64, Lemma 3.7].
It follows that a finite semigroup S is inherently non-finitely based if either
A1

2 ∈ var{S} or B1
2 ∈ var{S}. Observe that the condition in Theorem 4.4(ii)

can hold in a trivial way, namely when eae or ead+1e does not belong to
Me, so that both elements do not belong to the same coset of Me. This is
the case for B1

2 ; see, for example, Volkov and Gol’berg [90, observation after
Proposition 1].

For certain finite monoids M , the condition B1
2 ∈ var{M} is not only

sufficient, but also necessary for M to be inherently non-finitely based.
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Lemma 4.5. Let M be any finite monoid that satisfies the identity x2n ≈ xn
for some n ≥ 2. Suppose that M satisfies at least one of the following four
conditions: |M | ≤ 55, M is regular, the idempotents of M form a sub-
monoid, and all subgroups of M are nilpotent. Then the following conditions
are equivalent :

(a) M is inherently non-finitely based ;

(b) B1
2 ∈ var{M};

(c) M violates the identity(
(xy)n(yx)n(xy)n

)n ≈ (xy)n. (4.1)

Proof. (a)⇔ (b): This holds by Jackson [23, Theorems 1.4 and 2.2] and
Sapir [63, Theorem 2].
(c)⇒ (b): If M violates the identity (4.1), then B2 ∈ var{M} by Sapir and
Suhanov [67, Theorem 1], so that B1

2 ∈ var{M} by Jackson [25, Lemma 1.1].
(b)⇒ (c): It is routinely verified that B1

2 violates the identity (4.1). There-
fore if M satisfies the identity (4.1), then B1

2 /∈ var{M}.

There is yet another method to check if a finite monoid is inherently
non-finitely based. For each n ≥ 2, define the words [x, y]n1 , [x, y]n2 , [x, y]n3 , . . .
over {x, y} inductively by [x, y]n1 = xn−1yn−1xy and [x, y]nk+1 =

[
[x, y]nk , y

]n
1

for each k ≥ 1. Then for any variety V generated by a finite semigroup
that satisfies the identity x2n ≈ xn, the subsequence {[x, y]nk!} converges
in the V-free semigroup over {x, y}; let [x, y]n∞ denote the limit of this
subsequence [87, Subsection 4.4].

Lemma 4.6 (Volkov [87, Proposition 4.4]). Let M be any finite monoid
that satisfies the identity x2n ≈ xn for some n ≥ 2. Then M is inherently
non-finitely based if and only if it violates either (4.1) or

[eze, (eye)n−1eyn+1e]n∞ ≈ e with e = (xyzt)n.

The companion website checks if an input finite semigroup S is inher-
ently non-finitely based in the following manner. Suppose that e1, e2, . . . , er
are all the idempotents of S. Then by Theorem 4.4(i), it suffices to check
if some submonoid Mi = eiSei of S is inherently non-finitely based; this
can be achieved by applying Theorem 4.4(ii). As this is the most general
result, the website can handle semigroups of order higher than 55; if the
semigroup is inherently non-finitely based, then the website provides the
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relevant information such as the hypercenter. The website also allows the
user to check if a semigroup is inherently non-finitely based with Lemma 4.5.
Results on isoterms are computationally demanding and hence are not used.

Refer to the surveys by Volkov [87, 88] for more information on inher-
ently non-finitely based semigroups and the finite basis problem for finite
semigroups in general.

Based on results in this subsection, a description of inherently non-
finitely based semigroups of order up to 9 is possible. For this purpose,
the semigroup A1

2 and B1
2 , together with those given in Tables 6–8, are

required.

U7 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 3
3 1 2 3 1 1 3 1
4 4 4 4 4 4 4 4
5 4 4 4 4 5 5 7
6 1 2 3 4 5 6 7
7 4 5 7 4 4 7 4

V7 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 3
3 1 2 3 1 2 3 3
4 4 4 4 4 4 4 4
5 4 4 4 4 5 5 7
6 1 2 3 4 5 6 7
7 4 5 7 4 5 7 7

W7 1 2 3 4 5 6 7

1 1 1 1 1 5 5 5
2 1 2 1 2 5 5 7
3 1 1 3 3 5 6 5
4 1 2 3 4 5 6 7
5 5 5 5 5 1 1 1
6 5 6 5 6 1 1 3
7 5 5 7 7 1 2 1

Table 6: The semigroups U7, V7, and W7

U8 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 3 4
3 1 2 3 4 3 4 4 4
4 4 4 4 4 4 4 4 4
5 1 2 3 4 5 6 7 8
6 4 4 4 4 6 6 7 8
7 4 6 7 8 7 8 8 8
8 8 8 8 8 8 8 8 8

V8 1 2 3 4 5 6 7 8

1 1 1 1 1 5 5 7 7
2 1 2 1 2 5 5 7 8
3 1 1 3 3 5 6 7 7
4 1 2 3 4 5 6 7 8
5 5 5 5 5 7 7 1 1
6 5 6 5 6 7 7 1 3
7 7 7 7 7 1 1 5 5
8 7 7 8 8 1 2 5 5

Table 7: The semigroups U8 and V8

Since the semigroups in Tables 6–8 are monoids, it is routinely checked
by Lemma 4.5 that they are all inherently non-finitely based. With the
exception of V7 and U8, each of these semigroups is isomorphic to its dual.

Proposition 4.7. Let S be any inherently non-finitely based semigroup of
order 9 or less.

(i) If |S| ≤ 6, then S is isomorphic to one of the semigroups A1
2 and B1

2 .
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U9 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 2 3 4
3 1 2 3 4 4 3 4 4 4
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 1 2 3 4 5 6 7 8 9
7 5 5 5 5 5 7 7 8 9
8 5 7 8 9 9 8 9 9 9
9 9 9 9 9 9 9 9 9 9

V9 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 6 6 6 6
2 1 1 1 2 2 6 6 6 7
3 3 3 3 3 3 8 8 8 8
4 1 2 3 4 5 6 7 8 9
5 3 3 3 5 5 8 8 8 9
6 1 1 1 6 1 6 6 6 6
7 1 2 1 7 1 6 7 6 6
8 3 3 3 8 3 8 8 8 8
9 3 5 3 9 3 8 9 8 8

W9 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 6 6 6 6
2 1 1 1 2 2 6 6 6 7
3 3 3 3 3 3 8 8 8 8
4 1 2 3 4 5 6 7 8 9
5 3 3 3 5 5 8 8 8 9
6 1 1 1 6 1 6 6 6 6
7 1 2 1 7 2 6 7 6 7
8 3 3 3 8 3 8 8 8 8
9 3 5 3 9 5 8 9 8 9

Table 8: The semigroups U9, V9, and W9

(ii) If |S| = 7, then either S contains A1
2 or B1

2 as a subsemigroup or S is

isomorphic to one of the semigroups U7, V7,
←−
V 7, and W7.

(iii) If |S| = 8, then either S contains a proper subsemigroup that is inher-
ently non-finitely based or S is isomorphic to one of the semigroups U8,←−
U 8, and V8.

(iv) If |S| = 9 and S satisfies the identity x4 ≈ x2, then either S contains
a proper subsemigroup that is inherently non-finitely based or S is

isomorphic to one of the semigroups U9,
←−
U 9, V9, and W9.

It is long and well known that the semigroups A1
2 and B1

2 of order 6
are the smallest inherently non-finitely based semigroups. GAP’s package
SmallSemi contains all the semigroups of order up to 8 and hence we could
routinely run the algorithm outlined after Lemma 4.6.

To find inherently non-finitely based semigroups of order 9, we used the
following algorithm (which in fact uses different results and computations
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to double check Proposition 4.7 parts (ii) and (iii)):

(a) Use Mace4 [97] to generate all monoids of orders 6–9 that satisfy
the identity x4 ≈ x2 but violate the identity (4.1), thus resorting to
Lemma 4.5; this led to 457,745 semigroups.

(b) Use Isofilter to discard isomorphic copies; this led to 7,625 semigroups
which are all inherently non-finitely based, but many of which contain
proper subsemigroups that are inherently non-finitely based.

(c) Use GAP’s SmallSemi to discard the semigroups of order n ∈ {7, 8, 9}
that contain a proper subsemigroup that is inherently non-finitely
based; this left us with the semigroups in Tables 6–8.
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Figure 4: Companion website: example of information displayed if the iden-
tity basis for the variety generated by the given semigroup is found
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Figure 5: Companion website: computation of the smallest element in the
isomorphism class of [333,123,333]

Figure 6: Companion website: varieties V(3, 1), V(3, 2), and V(3, 3) in the
database
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Figure 7: Companion website: example of a presentation provided
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Figure 8: Companion website: Kiselman semigroup entered as a presenta-
tion
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Figure 9: Companion website: examples of input alternatives for semigroup
[123,231,312]
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Figure 10: Companion website: example of semitalattice decomposition of
a order 17 semigroup
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N1
2 = [x3 ≈ x2, xy ≈ yx]

N1
2 ∩ [x2y ≈ xy2]

N1
2 ∩ [x21x2x3 ≈ x1x2x3]

N1
2 ∩ [x21x2 ≈ x1x2]

SL = N1
2 ∩ [x21 ≈ x1]

N1
2 ∩ [x2 ≈ y2]

N1
2 ∩ [x1x2x3 ≈ y1y2y3]

N1
2 ∩ [x1x2 ≈ y1y2]

0 = [x1 ≈ y1]

Figure 13: The lattice of subvarieties of N1
2 = var{N1

2 }
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5 The companion webpage

In this section we will give some brief details on the architecture of the
website.

5.1 Multiplication table

A very flexible data entry tool was developed to allow the input of a multi-
plication table of a semigroup S. By default the elements of the semigroup
are assumed to be 1, 2, . . . ,N. This is convenient to use the multiplication
tables coming from GAP. Some other computational tools use the elements
0, 1, . . . ,N−1, and this can also be used, along with sets on different (given)
elements.

The entries of the Cayley table can be separated by commas or spaces,
and optionally can include [·] to bound each line and/or the full multiplica-
tion table. If the elements are all single-digit, all or part of the separators
can be omitted. For instance, all input strings below can be used as input
for the same multiplication table:

1 1 1 1 1 1 1 1 2 space separated
1,1,1,1,1,1,1,1,2 comma separated
1, 1, 1, 1, 1, 1, 1, 1, 2 mixed commas and spaces
[1, 1, 1, 1, 1, 1, 1, 1, 2] ”[” and ”]” enclosed
[ [ 1, 1, 1 ], [ 1, 1, 1 ], [ 1, 1, 2 ] ] GAP syntax
111 111 112 separators omitted (only for single digit elements)
111111112 separators omitted (only for single digit elements)

Using the GAP syntax option, it is possible to copy a multiplication table
from GAP and paste it here. For example, we can just copy and paste the
output of GAP coming from the following command:

gap> MultiplicationTable(SmallGroup(5,1));
[ [ 1, 2, 3, 4, 5 ], [ 2, 3, 4, 5, 1 ], [ 3, 4, 5, 1, 2 ], [ 4, 5, 1, 2, 3 ], [ 5, 1, 2, 3, 4
] ]

The number of the multiplication table entries must be a perfect square,
otherwise an error will be returned. Only semigroups will be accepted, so
the associativity property is checked by default.
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Semigroups up to order 100 are accepted, but the representative in the
isomorphism class of S, whose vector ~v(S) is lexicographically the least, will
only be computed in case the order of S is 10 or less.

5.2 Finding the least semigroup of its isomorphism class

Finding the semigroup S in its isomorphism class whose vector ~v(S) is the
least lexicographically is not necessary to access the main tools available on
the website; however, it is much more convenient and an essential part of
the way we name varieties.

An obvious algorithm would be to give to some model builder, such as
Mace4, the Cayley table of the semigroup and ask for all the isomorphic
models in the same underlying set. This gives a list of vectors that we only
need to order.

We decided to use our own algorithm that proved to deliver the result
for semigroups of order up to 10 in less than a second, and that we now
outline.

5.2.1 The presentation to semigroup algorithm

Input: order, mtable: order and multiplication table of a semigroup.
Output: minlex: multiplication table of the least (lexicographically)

semigroup isomorphic to the given semigroup.

routine Minlex (order mtable):
01: minlex = mtable
02: for i in 1 to order
03: newElem[i] = i
04: for x in order-permutations of order
05: for i = 1 to order
06: newElem[x[i]] = i
07: equal = True
08: stop = False
09: smaller = False
10: if newElem[mtable[x[1]][x[1]]] = 1
11: for l = 1 to order
12: for c = 1 to order
13: e = newElem[mtable[x[l]][x[c]]]
14: e0 = minlex[l][c]
15: if equal = True
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16: if e > e0
17: stop = True
18: exit for loop
19: else if e < e0
20: equal = False
21: menor = True
22: a1[l][c] = e
23: if stop = True
24: exit for loop
25: if smaller == True
26: minlex = a1
27: return minlex

5.3 Generating a semigroup from a given presentation

The presentation tool finds the multiplication table from a presentation.
One of the distinctive features of this tool is that it allows to define infinitely
many different presentations (semigroups, bands, etc.) defined as varieties
or quasi-varieties. The presentation (both theory and relations) must be
written in Prover9 syntax. A presentation has two ingredients: the theory
and some relations between the generators.
To specify the identities that define the theory and the relations, a subset
of Prover9 syntax is used:

• Variables (with names started by “u”, “v”, “w”, “x”, “y” and “z”).
No variables will be allowed at the relations window;

• Constants (with names started with a 0− 9, a− s, or A− Z);

• Binary operation character ∗;

• Equal sign =;

• Parentheses ( and );

• Each identity must end with a final mark.

Examples:

Consider the following example presentations, and how to enter the cor-
responding theory:
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Presentation Theory Relations

〈a, e|ea2 = a2, e2 = ae = e〉 x ∗ (y ∗ z) = (x ∗ y) ∗ z. (e ∗ a) ∗ a = a ∗ a.
= {a, e, a2, ea} e ∗ e = a ∗ e.

a ∗ e = e.

〈a|a5 = 1〉 x ∗ (y ∗ z) = (x ∗ y) ∗ z. (((a ∗ a) ∗ a) ∗ a) ∗ a = 1.
= {a, a2, a3, a4, 1} x ∗ 1 = x. 1 ∗ x = x.

〈a, e|ae = 0, ea = a, e2 = e〉 x ∗ (y ∗ z) = (x ∗ y) ∗ z. a ∗ e = 0.
∪ {1} = {0, a, e, 1} x ∗ 0 = 0. 0 ∗ x = 0. e ∗ a = a.

x ∗ 1 = x. 1 ∗ x = x. e ∗ e = e.

The tool will try to close the multiplication table, but if more than 20
elements are reached, an error will be returned.

Entering a semigroup as a presentation (or using given identities to find
or filter varieties) demands the use of an automated theorem prover (in this
site Prover/Mace4), something usually very expensive (in time). Therefore
a strategy to limit calls and also to speed-up the use of Prover9/Mace4 was
implemented (see Table 11).

5.4 Finding an identity basis for a finitely generated variety

Let V be any finitely generated variety. Then the number of maximal sub-
varieties of V is some positive integer k ≥ 1; see Lee et al . [45, Proposi-
tion 4.1]. Let M1,M2, . . . ,Mk be these maximal subvarieties. By maximal-
ity, each Mi can be defined within V by some identity µi. If k ≥ 2, then
V = Mi ∨Mj for all distinct i and j; otherwise, V has a unique maximal
subvariety and is said to be prime. It follows that each finitely generated
variety is either prime or a join of some of its prime subvarieties.

Now it is clear that for any finite semigroup S, the equality var{S} =
V holds if and only if S ∈ V and S /∈ Mi for all i. However, if the
variety V is finitely based and a finite identity basis Σ is available, then
the equality var{S} = V holds whenever S |= Σ and S 6|= µi for all i.
Therefore the identity system (Σ;µ1, µ2, . . . , µk), called a Bas-Max system
for V, provides an easily verifiable sufficient condition to check if a finite
semigroup generates V. Presently, the website database contains Bas-Max
systems for all of the following varieties:

(a) varieties with a primitive generator of order up to 4;

44



# Step Description

User enters a presentation in Prover9/
1 Presentation Mace4 format (both the theory and

relations).

User formulas are normalized to
2 Normalization a internal notation and ordering

rules, to increase cache’s hit rate.

If a similar presentation (in
3 Presentation cache (SQL) normalized notation) is recorded

in SQL, its result will be used.

If the user had requested other similar
4 Proofs cache (user session) proofs during the session, the results are

used to reduce the number of proofs.

If all users had requested other similar
5 Proofs cache (SQL) proofs recorded in SQL, theirs result

will be used to speed the process.

Launched at the same time, but the
6 Launch Prover9/Mace4 first to find a proof or counterexample

(respectively) stops the other.

Table 11: Presentations algorithm

(b) proper subvarieties of Cross varieties in (a);

(c) varieties with a primitive generator of order 5.

Now when a semigroup S entered into the website is shown to generate a
variety V via its Bas-Max system (Σ;µ1, µ2, . . . , µk), then besides the iden-
tity basis Σ for var{S}, other important information, such as the primitive
generator for V, any decomposition of V into a join of its prime subvarieties,
and the number of subvarieties of V, will also be displayed by the website.

Bas-Max systems for varieties in (a) and (b), together with the afore-
mentioned properties, will be listed in Section 6, while their proofs will be
given in the appendix sections. Justification of the Bas-Max systems for
varieties in (c) will be disseminated elsewhere.

The website will be regularly updated with newly established Bas-Max
systems for varieties.
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5.5 Testing for equivalent identity bases

Suppose we have a finite set Σ of identities and would like to know infor-
mation about the variety [Σ] of semigroups, such as the primitive generator
for [Σ] and the varieties covered by [Σ]. If this variety happens to be in
our database, then many of these information is available. The question is
how do we identify [Σ] with a variety in the database. A tool was developed
that will, by specifying one or more identities in Prover9 format, retrieve
the variety whose identity basis is equivalent to Σ.

Figure 15: Companion website: example of testing for equivalent identity
basis

5.6 Filtering varieties using conditions

Suppose we have some property and want to check which varieties in the
database satisfy the property. This can be done on the website. To specify
the identities, a subset of Prover9 syntax is used. Only variables (with names
started by u− z, the operation character ∗, the equal sign =, parentheses (
and ), and final mark).

It is not necessary to specify associativity.
The automatic theorem prover Prover9 and its accompanying program

Mace4 that look for counterexamples will run simultaneously to check if the
identity basis for each variety in the database implies the identities provided.
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There exist four options to invoke:

Option Prover9/Mace4 status

Proofs • All varieties for which a proof was
found by Prover9 within 1 second.

No countermodels • The varieties for which a proof was
found by Prover9 within 1 second plus:

• The varieties where a proof was not
found by Prover9 within 1 second but
Mace4 also didn’t found a
countermodel within 1 second.

Countermodels • The varieties for which a countermodel
was found by Mace4 within 1 second;

No proofs • The varieties for which a countermodel
was found by Mace4 within 1 second,
plus:

• The varieties for which a countermodel
was not found by Mace4 within 1
second, but also a proof was not found
by Prover9 within 1 second.

It is possible to apply successive filters to the sets of varieties obtained.

5.7 Obtaining lattices of varieties

A tool was developed to obtain a lattice of a set of varieties created with
the filtering tool.
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It is also possible to filter the list of varieties by leaving only the maximal
varieties.
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Figure 16: Companion website: obtaining the lattice of varieties generated
by bands up to order 5
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5.8 Extending the database: finding identity bases for new
varieties

Suppose we have identity bases for all varieties generated by a semigroup of
order n− 1 and we want to find an identity basis for the variety generated
some semigroup S of order n. If S does not belong to any variety generated
by a semigroup of order less than n, then var{S} is a new variety and we
want to find an identity basis for it. The website has a tool to try to find
candidates of identities that can form an identity basis for var{S}. The
first thing it does is to check, based on results from Subsection 4.3, if S
is inherently non-finitely based. If the semigroup S is not inherently non-
finitely based, then the website searches, in some ad hoc intelligent ways, for
candidates of identities of S to form an identity basis for var{S}. Of course,
if S happens to be non-finitely based, then the process will not terminate.
But if we are lucky, then the website will produce a natural conjecture for
an identity basis Σ for var{S}. The variety defined by Σ coincides with
var{S} if the conjecture is correct, and properly contains var{S} otherwise.
We checked this procedure against all varieties generated by semigroups
of order up to 5 and in every case, the procedure gave an identity basis
equivalent to the known one.

6 Varieties generated by small semigroups

As mentioned in Subsection 5.4, the present section lists Bas-Max systems
for all varieties generated by a semigroup of order up to 4 and for some
that are their proper subvarieties. Important information such as primitive
generators, decompositions into joins of prime subvarieties, and number of
subvarieties are also given. To this end, the semigroups in Tables 13–15 play
a crucial role; these semigroups are primitive generators for the varieties
they generate, which are in fact precisely all prime varieties generated by a
semigroup of order up to 4.

N2 1 2

1 1 1
2 1 1

S`2 1 2

1 1 1
2 1 2

LZ2 1 2

1 1 1
2 2 2

RZ2 1 2

1 1 2
2 1 2

Z2 1 2

1 1 2
2 2 1

Table 13: Primitive generators of prime varieties generated by a semigroups
of order 2

Some well-known semigroups in Tables 13–15 are the semilattice S`2 of
order 2, the left zero band LZ2 of order 2, the right zero band RZ2 of order 2,
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N3 1 2 3

1 1 1 1
2 1 1 1
3 1 1 2

J 1 2 3

1 1 1 1
2 1 1 1
3 1 2 3

←−
J 1 2 3

1 1 1 1
2 1 1 2
3 1 1 3

N1
2 1 2 3

1 1 1 1
2 1 1 2
3 1 2 3

LZ1
2 1 2 3

1 1 1 1
2 1 2 3
3 3 3 3

RZ1
2 1 2 3

1 1 1 3
2 1 2 3
3 1 3 3

Z3 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2

Table 14: Primitive generators of all prime varieties generated by a semi-
groups of order 3

the monogenic nilpotent semigroup

Nn = 〈a | an = 0〉 = {a, a2, . . . , an−1, 0}

of order n, and the cyclic group

Zn = 〈a | an = 1〉 = {a, a2, . . . , an−1, 1}

of order n. Recall that for any semigroup S, the smallest monoid contain-

ing S is denoted by S1, and the dual of S is denoted by
←−
S .

In the remainder of the section, information on 88 varieties are grouped
by the order of their primitive generators and given below in four subsections;
these varieties are named Variety N, or simply VN, where N ∈ {1, 2, . . . , 88}.
Proofs and references for all results are deferred to the appendix sections.

To illustrate how information on each variety can be read, consider Va-
riety 43 in Subsection 6.3, repeated here for reader convenience.

Variety 43 (Subsection C.3).

(Gen) [1111, 1112, 3333, 1214]

(Bas) x3 ≈ x2, axy ≈ ayx

(Max) x2y2 ≈ y2x2; a2x2 ≈ a2x

(Dec) var{LZ2} ∨ var{N1
2 }

(Sub) Countably infinite
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F4 1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 2 1

G4 1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 2
4 1 1 2 1

N4 1 2 3 4

1 1 1 1 1
2 1 1 1 1
3 1 1 1 2
4 1 1 2 3

N1
3 1 2 3 4

1 1 1 1 1
2 1 1 1 2
3 1 1 2 3
4 1 2 3 4

B0 1 2 3 4

1 1 1 1 1
2 1 1 1 2
3 1 2 3 1
4 1 1 1 4

A0 1 2 3 4

1 1 1 1 1
2 1 1 1 2
3 1 2 3 2
4 1 1 1 4

J1 1 2 3 4

1 1 1 1 1
2 1 1 1 2
3 1 2 3 3
4 1 2 3 4

P2 1 2 3 4

1 1 1 1 1
2 1 1 1 3
3 3 3 3 3
4 4 4 4 4

←−
J1 1 2 3 4

1 1 1 1 1
2 1 1 2 2
3 1 1 3 3
4 1 2 3 4

O2 1 2 3 4

1 1 1 1 1
2 1 2 3 4
3 3 3 3 3
4 3 4 1 2

←−
O2 1 2 3 4

1 1 1 3 3
2 1 2 3 4
3 1 3 3 1
4 1 4 3 2

←−
P2 1 2 3 4

1 1 1 3 4
2 1 1 3 4
3 1 1 3 4
4 1 3 3 4

Z4 1 2 3 4

1 1 2 3 4
2 2 1 4 3
3 3 4 2 1
4 4 3 1 2

Table 15: Primitive generators of all prime varieties generated by a semi-
groups of order 4

The vector of the primitive generator of the variety V43 is given in (Gen).
The two identities in (Bas) form an identity basis for V43, while each iden-
tity in (Max) defines within V43 a maximal subvariety; in other words,
the identities in (Bas) and (Max) form a Bas-Max system for V43. The
join in (Dec) is a decomposition of V43 into the join of the prime subva-
rieties var{LZ2} and var{N1

2 }. As indicated in (Sub), the variety V43 has
countably infinitely many subvarieties. All these results regarding V43 are
established in Subsection C.3.

For another example, consider Variety 78 in Subsection 6.4.
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Variety 78 (Zhang and Luo [92, Variety C in Figure 4]; Figure 20).

(Gen) [11111, 11113, 11133, 11144, 11155]

(Bas) ax2 ≈ ax, xyx ≈ x2y, a2xy ≈ a2yx

(Max) axy ≈ ayx

(Dec) None

(Sub) 11

The vector of the primitive generator of the variety V78 is given in (Gen).
The three identities in (Bas) form an identity basis for V78, while the identity
in (Max) define the unique maximal subvariety within V78. Since V78 has
only one maximal subvariety, it is prime and cannot be decomposed into a
join of two or more prime subvarieties, as indicated by “None” in (Dec). The
number 11 in (Sub) is the number of subvarieties of V78. Justification of the
all these results regarding V78 can be found in Zhang and Luo [92, Variety C
in Figure 4]. For any variety with finitely many subvarieties, its lattice of
subvarieties is given in Section B. Specifically, the lattice of subvarieties
of V78 can be found in Figure 20.

6.1 Varieties with primitive generator of order 2

Variety 1 (Evans [13, Figure 3]).

(Gen) [11, 11] = N2

(Bas) x2 ≈ xy, xy ≈ yx

(Max) x ≈ y

(Dec) None

(Sub) 2

Variety 2 (Evans [13, Figure 3]).

(Gen) [11, 12] = S`2

(Bas) x2 ≈ x, xy ≈ yx

(Max) x ≈ y
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(Dec) None

(Sub) 2

Variety 3 (Evans [13, Figure 3]).

(Gen) [11, 22] = LZ2

(Bas) ax ≈ a

(Max) x ≈ y

(Dec) None

(Sub) 2

Variety 4 (Evans [13, Figure 3]).

(Gen) [12, 12] = RZ2

(Bas) xa ≈ a

(Max) x ≈ y

(Dec) None

(Sub) 2

Variety 5 (Lee et al . [45, Proposition 5.4]).

(Gen) [12, 21] = Z2

(Bas) x2a ≈ a, xy ≈ yx

(Max) x ≈ y

(Dec) None

(Sub) 2
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6.2 Varieties with primitive generator of order 3

Variety 6 (Tishchenko [78, Variety CN3 on page 439]; Figures 22, 23, 24,
or 27).

(Gen) [111, 111, 112] = N3

(Bas) x3 ≈ xyz, xy ≈ yx

(Max) x3 ≈ x2

(Dec) None

(Sub) 4

Variety 7 (Evans [13, Figure 3]; Figures 17, 19, 20, 23, or 25).

(Gen) [111, 111, 113]

(Bas) x2a ≈ xa, xy ≈ yx

(Max) x2 ≈ x; x2 ≈ xy

(Dec) var{N2} ∨ var{S`2}

(Sub) 4

Variety 8 (Zhang and Luo [92, Variety D in Figure 2]; Figures 17, 19, 20,
or 25).

(Gen) [111, 111, 123] = J

(Bas) x2a ≈ xa, xy2 ≈ yx2

(Max) xy ≈ yx

(Dec) None

(Sub) 5

Variety 9 (Evans [13, Figure 3]; Figures 19, 20, or 22).

(Gen) [111, 111, 333]

(Bas) x2 ≈ xy

(Max) x2 ≈ x; xy ≈ yx

55



(Dec) var{N2} ∨ var{LZ2}

(Sub) 4

Variety 10 (Zhang and Luo [92, Variety E in Figure 2]; Figures 17, 19, 20,
or 25).

(Gen) [111, 112, 113] =
←−
J

(Bas) ax2 ≈ ax, x2y ≈ y2x

(Max) xy ≈ yx

(Dec) None

(Sub) 5

Variety 11 (Subsection C.1).

(Gen) [111, 112, 123] = N1
2

(Bas) x3 ≈ x2, xy ≈ yx

(Max) x2y ≈ xy2

(Dec) None

(Sub) Countably infinite

Variety 12 (Gerhard and Petrich [16, Variety LNB in Section 2]; Figures 18,
19, 20, or 21).

(Gen) [111, 121, 333]

(Bas) x2 ≈ x, axy ≈ ayx

(Max) xy ≈ x; xy ≈ yx

(Dec) var{S`2} ∨ var{LZ2}

(Sub) 4

Variety 13 (Gerhard and Petrich [16, Variety RNB in Section 2]; Figures 18,
19, 20, or 21).

(Gen) [111, 123, 123]

(Bas) x2 ≈ x, xya ≈ yxa

56



(Max) xy ≈ y; xy ≈ yx

(Dec) var{S`2} ∨ var{RZ2}

(Sub) 4

Variety 14 (Subsection B.9).

(Gen) [111, 123, 132]

(Bas) x3 ≈ x, xy ≈ yx

(Max) x2 ≈ x; x2y ≈ y

(Dec) var{S`2} ∨ var{Z2}

(Sub) 4

Variety 15 (Gerhard and Petrich [16, Variety LRB in Section 2]; Figures 18,
19, 20, or 21).

(Gen) [111, 123, 333] = LZ1
2

(Bas) x2 ≈ x, xyx ≈ xy

(Max) axy ≈ ayx

(Dec) None

(Sub) 5

Variety 16 (Evans [13, Figure 3]; Figures 19, 20, or 22).

(Gen) [113, 113, 113]

(Bas) x2 ≈ yx

(Max) x2 ≈ x; xy ≈ yx

(Dec) var{N2} ∨ var{RZ2}

(Sub) 4

Variety 17 (Subsection B.9).

(Gen) [113, 113, 331]

(Bas) x2ab ≈ ab, xy ≈ yx
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(Max) x3 ≈ x; x3 ≈ x2

(Dec) var{N2} ∨ var{Z2}

(Sub) 4

Variety 18 (Gerhard and Petrich [16, Variety RRB in Section 2]; Figures 18,
19, 20, or 21).

(Gen) [113, 123, 133] = RZ1
2

(Bas) x2 ≈ x, xyx ≈ yx

(Max) xya ≈ yxa

(Dec) None

(Sub) 5

Variety 19 (Lee et al . [45, Proposition 5.4]).

(Gen) [123, 231, 312] = Z3

(Bas) x3a ≈ a, xy ≈ yx

(Max) x ≈ y

(Dec) None

(Sub) 2

6.3 Varieties with primitive generator of order 4

Variety 20 (Tishchenko [78, Variety N3,2 on page 439]; Figures 17 or 22).

(Gen) [1111, 1111, 1111, 1121] = F4

(Bas) x2 ≈ yzt

(Max) xy ≈ yx

(Dec) None

(Sub) 4

Variety 21 (Tishchenko [78, Variety N3 on page 438]; Figure 22).

(Gen) [1111, 1111, 1111, 1122]
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(Bas) x3 ≈ yzt

(Max) x3 ≈ x2; xy ≈ yx

(Dec) var{N3} ∨ var{F4}

(Sub) 6

Variety 22 (Tishchenko [78, Variety CN3,2 on page 439] ; Figures 17, 22,
23, 24, or 27).

(Gen) [1111, 1111, 1112, 1121] = G4

(Bas) x2 ≈ xyz, xy ≈ yx

(Max) x2 ≈ xy

(Dec) None

(Sub) 3

Variety 23 (Lee et al . [45, Condition A8]; Figure 27).

(Gen) [1111, 1111, 1112, 1123] = N4

(Bas) x4 ≈ xyzt, x2y ≈ xy2, xy ≈ yx

(Max) x4 ≈ x3

(Dec) None

(Sub) 8

Variety 24 (Zhang and Luo [92, Variety D ∨E in Figure 2]; Figure 17).

(Gen) [1111, 1111, 1113, 1214]

(Bas) x3 ≈ x2, xyx ≈ x2y2, xyx ≈ y2x2, ax2b ≈ axb

(Max) xyx ≈ x2y; xyx ≈ yx2

(Dec) var{J} ∨ var{
←−
J }

(Sub) 13

Variety 25 (Subsection C.2).

(Gen) [1111, 1111, 1113, 1234]

59



(Bas) x3 ≈ x2, x2y2 ≈ y2x2, xya ≈ yxa

(Max) x2y ≈ yx2; xy2 ≈ yx2

(Dec) var{J} ∨ var{N1
2 }

(Sub) Countably infinite

Variety 26 (Lee et al . [45, Proposition 6.14]; Figure 23).

(Gen) [1111, 1111, 1121, 1114]

(Bas) x2ab ≈ xab, xy ≈ yx

(Max) x3 ≈ x2; x3 ≈ y3

(Dec) var{S`2} ∨ var{N3}

(Sub) 8

Variety 27 (Tishchenko [78, Variety L1,3 on page 438]; Figure 22).

(Gen) [1111, 1111, 1121, 4444]

(Bas) x3 ≈ xyz

(Max) x3 ≈ x2; x3 ≈ y3

(Dec) var{LZ2} ∨ var{N3}

(Sub) 10

Variety 28 (Evans [13, Figure 3]; Figures 19 or 20).

(Gen) [1111, 1111, 1131, 4444]

(Bas) x2a ≈ xa, ax2 ≈ ax, axy ≈ ayx

(Max) x2 ≈ x; x2 ≈ xy; xy ≈ yx

(Dec) var{N2} ∨ var{S`2} ∨ var{LZ2}

(Sub) 8

Variety 29 (Evans [13, Figure 3]; Figures 19 or 20).

(Gen) [1111, 1111, 1134, 1134]

(Bas) x2a ≈ xa, ax2 ≈ ax, xya ≈ yxa
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(Max) x2 ≈ x; x2 ≈ yx; xy ≈ yx

(Dec) var{N2} ∨ var{S`2} ∨ var{RZ2}

(Sub) 8

Variety 30 (Subsection B.9).

(Gen) [1111, 1111, 1134, 1143]

(Bas) x3a ≈ xa, xy ≈ yx

(Max) x3 ≈ x; x3 ≈ x2; x2 ≈ y2

(Dec) var{N2} ∨ var{S`2} ∨ var{Z2}

(Sub) 8

Variety 31 (Zhang and Luo [92, Variety L1 ∨N in Figure 5]; Figures 19
or 20).

(Gen) [1111, 1111, 1134, 4444]

(Bas) x2a ≈ xa, ax2 ≈ ax, xyx ≈ xy

(Max) x2 ≈ x; axy ≈ ayx

(Dec) var{N2} ∨ var{LZ1
2}

(Sub) 10

Variety 32 (Zhang and Luo [92, Variety D ∨ L in Figure 4]; Figure 19).

(Gen) [1111, 1111, 1231, 4444]

(Bas) x2a ≈ xa, axy2 ≈ ayx2

(Max) ax2 ≈ ax; xy2 ≈ yx2

(Dec) var{LZ2} ∨ var{J}

(Sub) 10

Variety 33 (Dual of Variety 41; Figure 20).

(Gen) [1111, 1111, 1234, 1234]

(Bas) x2a ≈ xa, xya ≈ yxa
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(Max) ax2 ≈ ax; xy2 ≈ yx2

(Dec) var{RZ2} ∨ var{J}

(Sub) 10

Variety 34 (Subsection B.9).

(Gen) [1111, 1111, 1234, 1243]

(Bas) x3a ≈ xa, x2y2 ≈ y2x2, xya ≈ yxa

(Max) x3 ≈ x2; xy ≈ yx

(Dec) var{Z2} ∨ var{J}

(Sub) 10

Variety 35 (Edmunds [11, Semigroup S(4, 11) on page 70]; Figure 19).

(Gen) [1111, 1111, 1234, 4444]

(Bas) x2a ≈ xa, xyx ≈ xy2

(Max) ax2 ≈ ax; axy2 ≈ ayx2

(Dec) var{J} ∨ var{LZ1
2}

(Sub) 13

Variety 36 (Subsection C.2).

(Gen) [1111, 1112, 1113, 1134]

(Bas) x3 ≈ x2, x2y2 ≈ y2x2, axy ≈ ayx

(Max) x2y ≈ yx2; x2y ≈ y2x

(Dec) var{
←−
J } ∨ var{N1

2 }

(Sub) Countably infinite

Variety 37 (Subsection C.1).

(Gen) [1111, 1112, 1123, 1234] = N1
3

(Bas) x4 ≈ x3, xy ≈ yx
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(Max) x3y2 ≈ x2y3

(Dec) None

(Sub) Countably infinite

Variety 38 (Subsection C.5).

(Gen) [1111, 1112, 1231, 1114] = B0

(Bas) x3 ≈ x2, x2yx2 ≈ yxy, x2y2 ≈ y2x2

(Max) a2x2b2 ≈ a2xb2

(Dec) None

(Sub) Countably infinite

Variety 39 (Subsection C.5).

(Gen) [1111, 1112, 1232, 1114] = A0

(Bas) x3 ≈ x2, x2yx2 ≈ yxy

(Max) x2y2 ≈ y2x2

(Dec) None

(Sub) Countably infinite

Variety 40 (Subsection C.6).

(Gen) [1111, 1112, 1233, 1234] = J1

(Bas) x3 ≈ x2, x2y2 ≈ y2x2, xyx ≈ yx2

(Max) x2ya2 ≈ yx2a2

(Dec) None

(Sub) Countably infinite

Variety 41 (Zhang and Luo [92, Variety E ∨ L in Figure 4]; Figure 20).

(Gen) [1111, 1112, 3333, 1114]

(Bas) ax2 ≈ ax, axy ≈ ayx

(Max) x2a ≈ xa; x2y ≈ y2x
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(Dec) var{LZ2} ∨ var{
←−
J }

(Sub) 10

Variety 42 (Edmunds [11, Semigroup S(4, 25) on page 70]; Figure 20).

(Gen) [1111, 1112, 3333, 1134]

(Bas) ax2 ≈ ax, xyx ≈ x2y

(Max) x2a ≈ xa; a2xy ≈ a2yx

(Dec) var{
←−
J } ∨ var{LZ1

2}

(Sub) 14

Variety 43 (Subsection C.3).

(Gen) [1111, 1112, 3333, 1214]

(Bas) x3 ≈ x2, axy ≈ ayx

(Max) x2y2 ≈ y2x2; a2x2 ≈ a2x

(Dec) var{LZ2} ∨ var{N1
2 }

(Sub) Countably infinite

Variety 44 (Subsection C.4).

(Gen) [1111, 1112, 3333, 1234]

(Bas) x3 ≈ x2, xyx ≈ x2y

(Max) a2x2 ≈ a2x; a2x2y2 ≈ a2y2x2

(Dec) var{N1
2 } ∨ var{LZ1

2}

(Sub) Countably infinite

Variety 45 (Tishchenko [78, Variety L2,2 on page 438]; Figure 22).

(Gen) [1111, 1113, 3333, 4444] = P2

(Bas) abx ≈ ab

(Max) x2 ≈ xy
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(Dec) None

(Sub) 5

Variety 46 (Dual of Variety 40).

(Gen) [1111, 1122, 1133, 1234] =
←−
J1

(Bas) x3 ≈ x2, x2y2 ≈ y2x2, xyx ≈ x2y

(Max) a2x2y ≈ a2yx2

(Dec) None

(Sub) Countably infinite

Variety 47 (Dual of Variety 32; Figure 19).

(Gen) [1111, 1122, 1134, 1134]

(Bas) ax2 ≈ ax, x2ya ≈ y2xa

(Max) x2a ≈ xa; x2y ≈ y2x

(Dec) var{RZ2} ∨ var{
←−
J }

(Sub) 10

Variety 48 (Dual of Variety 34).

(Gen) [1111, 1122, 1134, 1143]

(Bas) ax3 ≈ ax, x2y2 ≈ y2x2, axy ≈ ayx

(Max) x3 ≈ x2; xy ≈ yx

(Dec) var{Z2} ∨ var{
←−
J }

(Sub) 10

Variety 49 (Subsection C.3).

(Gen) [1111, 1122, 1234, 1234]

(Bas) x3 ≈ x2, xya ≈ yxa

(Max) x2y2 ≈ y2x2; x2a2 ≈ xa2
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(Dec) var{RZ2} ∨ var{N1
2 }

(Sub) Countably infinite

Variety 50 (Subsection C.1).

(Gen) [1111, 1122, 1234, 1243]

(Bas) x4 ≈ x2, xy ≈ yx

(Max) x3 ≈ x2; x3y ≈ xy3

(Dec) var{Z2} ∨ var{N1
2 }

(Sub) Countably infinite

Variety 51 (Gerhard and Petrich [16, Variety NB in Section 2]; Figure 18).

(Gen) [1111, 1214, 3333, 1214]

(Bas) x2 ≈ x, axya ≈ ayxa

(Max) xyx ≈ x; xyx ≈ xy; xyx ≈ yx

(Dec) var{S`2} ∨ var{LZ2} ∨ var{RZ2}

(Sub) 8

Variety 52 (Petrich [60, Lemma 7.3(vii)]; Figure 21).

(Gen) [1111, 1214, 3333, 1412]

(Bas) x3 ≈ x, axy ≈ ayx

(Max) x2 ≈ x; xy ≈ yx; ax2 ≈ a

(Dec) var{S`2} ∨ var{LZ2} ∨ var{Z2}

(Sub) 8

Variety 53 (Gerhard and Petrich [16, Variety LQNB in Section 2]; Figure 18).

(Gen) [1111, 1234, 1234, 4444]

(Bas) x2 ≈ x, xyxa ≈ xya
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(Max) xyx ≈ xy; axya ≈ ayxa

(Dec) var{RZ2} ∨ var{LZ1
2}

(Sub) 10

Variety 54 (Tishchenko [77, Variety V2 on page 111]; Figure 21).

(Gen) [1111, 1234, 1324, 4444]

(Bas) x3 ≈ x, xyx ≈ x2y

(Max) x2 ≈ x; axy ≈ ayx

(Dec) var{Z2} ∨ var{LZ1
2}

(Sub) 10

Variety 55 (Subsection B.9).

(Gen) [1111, 1234, 1342, 1423]

(Bas) x4 ≈ x, xy ≈ yx

(Max) x2 ≈ x; x3a ≈ a

(Dec) var{S`2} ∨ var{Z3}

(Sub) 4

Variety 56 (Tishchenko [77, Proposition 2.25]; Figure 21).

(Gen) [1111, 1234, 3333, 3412] = O2

(Bas) x3 ≈ x, xyxy ≈ xy2x

(Max) xyx ≈ x2y

(Dec) None

(Sub) 11

Variety 57 (Dual of Variety 27; Figure 22).

(Gen) [1114, 1114, 1124, 1114]

(Bas) x3 ≈ yzx

(Max) x3 ≈ x2; x3 ≈ y3
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(Dec) var{RZ2} ∨ var{N3}

(Sub) 10

Variety 58 (Subsection B.8).

(Gen) [1114, 1114, 1124, 4441]

(Bas) x2abc ≈ abc, xy ≈ yx

(Max) x4 ≈ x2; x4 ≈ x3

(Dec) var{Z2} ∨ var{N3}

(Sub) 8

Variety 59 (Dual of Variety 31; Figures 19 or 20).

(Gen) [1114, 1114, 1134, 1144]

(Bas) x2a ≈ xa, ax2 ≈ ax, xyx ≈ yx

(Max) x2 ≈ x; xya ≈ yxa

(Dec) var{N2} ∨ var{RZ1
2}

(Sub) 10

Variety 60 (Dual of Variety 42; Figure 20).

(Gen) [1114, 1114, 1234, 1144]

(Bas) x2a ≈ xa, xyx ≈ yx2

(Max) ax2 ≈ ax; xya2 ≈ yxa2

(Dec) var{J} ∨ var{RZ1
2}

(Sub) 14

Variety 61 (Dual of Variety 35; Figure 19).

(Gen) [1114, 1124, 1134, 1144]

(Bas) ax2 ≈ ax, xyx ≈ y2x

(Max) x2a ≈ xa; x2ya ≈ y2xa
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(Dec) var{
←−
J } ∨ var{RZ1

2}

(Sub) 13

Variety 62 (Subsection C.4).

(Gen) [1114, 1124, 1234, 1144]

(Bas) x3 ≈ x2, xyx ≈ yx2

(Max) x2a2 ≈ xa2; x2y2a2 ≈ y2x2a2

(Dec) var{N1
2 } ∨ var{RZ1

2}

(Sub) Countably infinite

Variety 63 (Gerhard and Petrich [16, Variety RQNB in Section 2]; Figure 18).

(Gen) [1114, 1224, 1334, 1444]

(Bas) x2 ≈ x, axyx ≈ ayx

(Max) xyx ≈ yx; axya ≈ ayxa

(Dec) var{LZ2} ∨ var{RZ1
2}

(Sub) 10

Variety 64 (Dual to Variety 52; Figure 21).

(Gen) [1114, 1234, 1234, 4441]

(Bas) x3 ≈ x, xya ≈ yxa

(Max) x2 ≈ x; x2a ≈ a; xy ≈ yx

(Dec) var{S`2} ∨ var{RZ2} ∨ var{Z2}

(Sub) 8

Variety 65 (Dual of Variety 54; Figure 21).

(Gen) [1114, 1234, 1324, 1444]

(Bas) x3 ≈ x, xyx ≈ yx2

(Max) x2 ≈ x; xya ≈ yxa
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(Dec) var{Z2} ∨ var{RZ1
2}

(Sub) 10

Variety 66 (Dual of Variety 56; Figure 21).

(Gen) [1133, 1234, 1331, 1432] =
←−
O2

(Bas) x3 ≈ x, xyxy ≈ yx2y

(Max) xyx ≈ yx2

(Dec) None

(Sub) 11

Variety 67 (Gerhard and Petrich [16, Variety Rec B in Section 2]; Fig-
ure 18).

(Gen) [1133, 2244, 1133, 2244]

(Bas) xyx ≈ x

(Max) xy ≈ x; xy ≈ y

(Dec) var{LZ2} ∨ var{RZ2}

(Sub) 4

Variety 68 (Tishchenko [77, Variety A2 ∨ L1 on page 108]; Figure 21).

(Gen) [1133, 2244, 3311, 4422]

(Bas) ax2 ≈ a, axy ≈ ayx

(Max) x2 ≈ x; x2 ≈ y2

(Dec) var{LZ2} ∨ var{Z2}

(Sub) 4

Variety 69 (Dual of Variety 45; Figure 22).

(Gen) [1134, 1134, 1134, 1334] =
←−
P2

(Bas) xab ≈ ab

(Max) x2 ≈ yx
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(Dec) None

(Sub) 5

Variety 70 (Subsection B.9).

(Gen) [1134, 1134, 3341, 4413]

(Bas) x3ab ≈ ab, xy ≈ yx

(Max) x4 ≈ x; x3 ≈ x2

(Dec) var{N2} ∨ var{Z3}

(Sub) 4

Variety 71 (Dual of Variety 68; Figure 21).

(Gen) [1234, 1234, 3412, 3412]

(Bas) x2a ≈ a, xya ≈ yxa

(Max) x2 ≈ x; x2 ≈ y2

(Dec) var{RZ2} ∨ var{Z2}

(Sub) 4

Variety 72 (Lee et al . [45, Proposition 5.4]; Figure 26).

(Gen) [1234, 2143, 3421, 4312] = Z4

(Bas) x4a ≈ a, xy ≈ yx

(Max) x3 ≈ x

(Dec) None

(Sub) 3
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6.4 Some varieties with primitive generator of order greater
than 4

Variety 73 (Zhang and Luo [92, Variety F ∨ S in Figure 2]; Figure 17).

(Gen) [11111, 11111, 11111, 11141, 11211]

(Bas) x3 ≈ x2, x2ab ≈ xab, xya ≈ yxa, axy ≈ ayx

(Max) x2y ≈ x2; xy ≈ yx

(Dec) var{S`2} ∨ var{F4}

(Sub) 8

Variety 74 (Tishchenko [78, Variety V1,3 on page 439]; Figure 22).

(Gen) [11111, 11111, 11111, 11211, 55555]

(Bas) x2 ≈ xyz

(Max) x2 ≈ xy; x2 ≈ y2

(Dec) var{LZ2} ∨ var{G4}

(Sub) 7

Variety 75 (Dual of Variety 78; Figure 20).

(Gen) [11111, 11111, 11111, 11345, 13345]

(Bas) x2a ≈ xa, xyx ≈ yx2, xya2 ≈ yxa2

(Max) xya ≈ yxa

(Dec) None

(Sub) 11

Variety 76 (Zhang and Luo [92, Variety G ∨ S in Figure 2]; Figures 17
or 23).

(Gen) [11111, 11111, 11112, 11141, 11211]

(Bas) x3 ≈ x2, x2ab ≈ xab, xy ≈ yx

(Max) x2a ≈ xa; x2 ≈ y2
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(Dec) var{S`2} ∨ var{G4}

(Sub) 6

Variety 77 (Tishchenko [78, Variety L2,3 in Proposition 3.1]; Figure 22).

(Gen) [11111, 11111, 11214, 44444, 55555]

(Bas) xyx ≈ xyz

(Max) x3 ≈ x2; x3 ≈ xyx

(Dec) var{N3} ∨ var{P2}

(Sub) 13

Variety 78 (Zhang and Luo [92, Variety C in Figure 4]; Figure 20).

(Gen) [11111, 11113, 11133, 11144, 11155]

(Bas) ax2 ≈ ax, xyx ≈ x2y, a2xy ≈ a2yx

(Max) axy ≈ ayx

(Dec) None

(Sub) 11

Variety 79 (Gerhard and Petrich [16, Variety RB in Section 2]; Figure 18).

(Gen) [11111, 12125, 33333, 12345, 12155]

(Bas) x2 ≈ x, xyxzx ≈ xyzx

(Max) axyx ≈ ayx; xyxa ≈ xya

(Dec) var{LZ1
2} ∨ var{RZ1

2}

(Sub) 13

Variety 80 (Dual of Variety 74; Figure 22).

(Gen) [11115, 11115, 11115, 11215, 11115]

(Bas) x2 ≈ yzx

(Max) x2 ≈ yx; x2 ≈ y2
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(Dec) var{RZ2} ∨ var{G4}

(Sub) 7

Variety 81 (Dual of Variety 77; Figure 22).

(Gen) [11145, 11145, 11245, 11145, 11445]

(Bas) xyx ≈ zyx

(Max) x3 ≈ x2; x3 ≈ xyx

(Dec) var{N3} ∨ var{
←−
P2}

(Sub) 13

Variety 82 (Zhang and Luo [92, Variety D ∨ F in Figure 2]; Figure 17).

(Gen) [111111, 111111, 111111, 111111, 111211, 113116]

(Bas) x3 ≈ x2, xy2 ≈ yx2, ax2b ≈ axb

(Max) x2a ≈ xa; x2y ≈ xy2

(Dec) var{J} ∨ var{G4}

(Sub) 10

Variety 83 (Zhang and Luo [92, Variety E ∨ F in Figure 2]; Figure 17).

(Gen) [111111, 111111, 111111, 111114, 112111, 111116]

(Bas) x3 ≈ x2, x2y ≈ y2x, ax2b ≈ axb

(Max) ax2 ≈ ax; x2y ≈ xy2

(Dec) var{
←−
J } ∨ var{G4}

(Sub) 10

Variety 84 (Tishchenko [78, Variety V2,3 on page 439]; Figure 22).

(Gen) [111111, 111111, 111111, 112115, 555555, 666666]

(Bas) x3 ≈ x2, xyx ≈ xyz

(Max) xyx ≈ x2; xyx ≈ xy
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(Dec) var{G4} ∨ var{P2}

(Sub) 9

Variety 85 (Dual of Variety 84; Figure 22).

(Gen) [111156, 111156, 111156, 112156, 111156, 111556]

(Bas) x3 ≈ x2, xyx ≈ zyx

(Max) xyx ≈ x2; xyx ≈ yx

(Dec) var{G4} ∨ var{
←−
P2}

(Sub) 9

Variety 86 (Mel’nik [54, Variety B24 in Figure 3]; Figure 27).

(Gen) [1111111, 1111111, 1111112, 1111121, 1111122, 1112235, 1121254]

(Bas) x3 ≈ xyzt, x2y ≈ xy2, xy ≈ yx

(Max) x2y ≈ x3

(Dec) None

(Sub) 7

Variety 87 (Mel’nik [54, Variety B26 in Figure 3]; Figure 27).

(Gen) [1111 1111, 1111 1111, 1111 1112, 1111 1121, 1111 1211, 1111 2134,
1112 1315, 1121 1451]

(Bas) x2 ≈ xyzt, xy ≈ yx

(Max) x2 ≈ xyz

(Dec) None

(Sub) 4

Variety 88 (Mel’nik [54, Variety B25 in Figure 3]; Figure 27).

(Gen) [1111 1111, 1111 1111, 1111 1112, 1111 1121, 1111 1211, 1111 2134,
1112 1315, 1121 1452]

(Bas) x2y ≈ xyzt, xy ≈ yx

(Max) x3 ≈ xyz; x3 ≈ x2

(Dec) var{N3} ∨V87

(Sub) 6

75



7 Problems

In this section we propose a number of problems that are naturally prompted
by the results in this paper.

Problem 7.1. Identify all varieties generated by a semigroup of order 6.

Regarding groups we propose the following problems.

Problem 7.2. Given a finite group G, find good bounds for the following:

(a) the number of critical groups in var{G};

(b) the order of the largest critical group in var{G};

(c) the number of subvarieties of var{G};

(d) the number of varieties covered by var{G}.

Solve the same problems for the class C(e,m, c) introduced in Subsection 3.6.
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A Basic results on identities of some semigroups

The present section establishes some background equational results that are
required in Sections B and C. For more information on universal algebra,
refer to the monograph of Burris and Sankappanavar [7].

Words are formed over some countably infinite set X of variables. An
identity is an expression u ≈ v where u,v ∈ X +. An identity u ≈ v
is nontrivial if u 6= v. A semigroup S satisfies an identity u ≈ v if for
any substitution ϕ : X → S, the elements ϕ(u) and ϕ(v) of S are equal;
otherwise, S violates u ≈ v. An identity u ≈ v is deducible from some
identity u′ ≈ v′ if there exist some substitution ϕ : X → X + and some
words p,q ∈X ∗ such that u = p

(
ϕ(u′)

)
q and v = p

(
ϕ(v′)

)
q. An identity

u ≈ v is deducible from some set Σ of identities if there exists some sequence

u = w0,w1, . . . ,wm = v

of words where each identity wi ≈ wi+1 is deducible from some identity
in Σ.

For any word w,

• the head of w, denoted by h(w), is the first variable occurring in w;

• the tail of w, denoted by t(w), is the last variable occurring in w;

• the initial part of w, denoted by ini(w), is the word obtained by re-
taining the first occurrence of each variable in w;

• the content of w, denoted by con(w), is the set of variables occurring
in w;

• the number of occurrences of a variable x in w is denoted by occ(x,w).

Lemma A.1. Let u ≈ v be any identity. Then

(i) LZ2 satisfies u ≈ v if and only if h(u) = h(v);

(ii) LZ1
2 satisfies u ≈ v if and only if ini(u) = ini(v);

(iii) N3 satisfies u ≈ v if and only if either

|u|, |v| ≥ 3 or occ(x,u) = occ(x,v) for all x ∈X ;

(iv) N1
n satisfies u ≈ v if and only if for all x ∈X , either

occ(x,u) = occ(x,v) < n or occ(x,u), occ(x,v) ≥ n;
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(v) Zn satisfies u ≈ v if and only if occ(x,u) ≡ occ(x,v) (mod n) for all
x ∈X .

Proof. These results are well-known and easily verified. For instance, see
Petrich and Reilly [62, Theorem V.1.9] for parts (i) and (ii) and Almeida [1,
Lemma 6.1.4] for parts (iv) and (v).

Lemma A.2. Let W be any variety that satisfies the identity

xn+k ≈ xn (A.1)

for some n ≥ 2 and k ≥ 1. Suppose that N1
n /∈ W. Then W satisfies the

identity
(xny)n−1+kxn ≈ (xny)n−1xn. (A.2)

Proof. By assumption, the variety W satisfies some identity α : u ≈ v that
is violated by the semigroup N1

n. In view of Lemma A.1(iv), generality
is not lost by assuming the existence of some variable y ∈ X such that
occ(y,u) = r < n and occ(y,v) = s > r. Then

u = u0yu1yu2 · · · yur and v = v0yv1yv2 · · · yvs

for some ui,vj ∈X ∗ such that y /∈ con(uivj). Let ϕ denote the substitution
that maps y to xny and every other variable to xk. Then since

(xny)rxn
(A.1)
≈
(
ϕ(u)

)
xn

α
≈
(
ϕ(v)

)
xn

(A.1)
≈ (xny)sxn,

the variety W satisfies the identity (xny)rxn ≈ (xny)sxn. It follows that W
satisfies the identity β : (xny)n−1xn ≈ (xny)n−1+txn for some t ≥ 1. Since

(xny)n−1xn
β
≈ (xny)n−1+txn

β
≈ (xny)n−1+2txn

β
≈ · · ·

β
≈ (xny)n−1+ktxn

(A.1)
≈ (xny)n−1+kxn,

the variety W also satisfies the identity (A.2).

Lemma A.3 ( [18, Lemma 7]). The semigroup J satisfies an identity u ≈ v
if and only if con(u) = con(v) and either of the following conditions holds:

(i) occ
(
t(u),u

)
= occ

(
t(v),v

)
= 1 with t(u) = t(v);

(ii) occ
(
t(u),u

)
, occ

(
t(v),v

)
≥ 2.
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Lemma A.4. Let W be any variety that satisfies the identity

x2n ≈ xn (A.3)

for some n ≥ 2. Suppose that J /∈W. Then W satisfies one of the identities

(xny)n+1 ≈ xny, (A.4)

xnyxn ≈ xny. (A.5)

Proof. By assumption, the variety W satisfies an identity α : u ≈ v that
is violated by the semigroup J . It is well known and easily shown that if
con(u) 6= con(v), then the identity (xny)nxn ≈ xn is deducible from the
identities {(A.3),u ≈ v} and so is satisfied by the variety W, whence W
also satisfies the identity (A.4). Therefore assume that con(u) = con(v). By
Lemma A.3, there are two cases.
Case 1: t(u) = t(v) = y with occ(y,u) = 1 and occ(y,v) = m ≥ 2. Then

u = w0y and v = w1yw2y · · ·wmy

for some wi ∈ X ∗ such that y /∈ con(wi). Let ϕ denote the substitution
that maps y to xny and every other variable to xn. Then

xny
(A.3)
≈ xn

(
ϕ(u)

) α
≈ xn

(
ϕ(v)

) (A.3)
≈ (xny)m,

so that W satisfies the identity β : xny ≈ (xny)`+1 with ` = m− 1. Since

xny
β
≈ (xny)`+1 β

≈ (xny)2`+1 β
≈ · · ·

β
≈ (xny)n`+1 (A.3)

≈ (xny)n+1,

the variety W also satisfies the identity (A.4).
Case 2: t(u) = y 6= z = t(v) with occ(y,u) = 1 and occ(z,v) ≥ 1. The
assumption con(u) = con(v) implies that occ(y,v) = m ≥ 1. Then

u = w0y and v = w1yw2y · · ·wmywm+1z

for some wi ∈ X such that y /∈ con(wi). Let ϕ denote the substitution in
Case 1. Then

xny
(A.3)
≈ xn

(
ϕ(u)

) α
≈ xn

(
ϕ(v)

) (A.3)
≈ (xny)mxn,

so that W satisfies the identity γ : xny ≈ (xny)mxn. Since

xn(yxn)
γ
≈
(
xn(yxn)

)m
xn

(A.3)
≈ (xny)mxn

γ
≈ xny,

the variety W also satisfies the identity (A.5).
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Lemma A.5. A variety that contains only finitely based subvarieties, con-
tains at most countably many subvarieties.

Proof. Up to renaming of variables, there can only be countably many finite
sets of identities.

B Some finite lattices of varieties

B.1 Subvarieties of V24 = var{J,
←−
J }

Proposition B.1 (Zhang and Luo [92, Figure 2]).

(i) The proper nontrivial subvarieties of V24 = var{J,
←−
J } are

V1 = var{N2}, V2 = var{S`2}, V7 = var{N2, S`2},

V8 = var{J}, V10 = var{
←−
J }, V20 = var{F4},

V22 = var{G4}, V73 = var{S`2, F4}, V76 = var{S`2, G4},

V82 = var{J,G4}, V83 = var{
←−
J ,G4}.

(ii) The lattice L (V24) is given in Figure 17.
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Figure 17: The lattice L (V24)
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B.2 Subvarieties of V79 = var{LZ1
2 , RZ1

2}

Proposition B.2 (Gerhard and Petrich [16, Section 2]).

(i) The proper nontrivial subvarieties of V79 = var{LZ1
2 , RZ

1
2} are

V2 = var{S`2}, V3 = var{LZ2}, V4 = var{RZ2},
V12 = var{S`2, LZ2}, V13 = var{S`2, RZ2}, V15 = var{LZ1

2},
V18 = var{RZ1

2}, V51 = var{S`2, LZ2, RZ2}, V53 = var{RZ2, LZ
1
2},

V63 = var{LZ2, RZ
1
2}, V67 = var{LZ2, RZ2}.

(ii) The lattice L (V79) is given in Figure 18.
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Figure 18: The lattice L (V79)

B.3 Subvarieties of V35 = var{J, LZ1
2} and V61 = var{

←−
J ,RZ1

2}

Proposition B.3 (Zhang and Luo [92, Subvarieties of A in Figure 5]).

(i) The proper nontrivial subvarieties of V35 = var{J, LZ1
2} are

V1 = var{N2}, V2 = var{S`2}, V3 = var{LZ2},
V7 = var{N2, S`2}, V8 = var{J}, V9 = var{N2, LZ2},

V12 = var{S`2, LZ2}, V15 = var{LZ1
2}, V28 = var{N2, S`2, LZ2},

V31 = var{N2, LZ
1
2}, V32 = var{LZ2, J}.
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(ii) The proper nontrivial subvarieties of V61 = var{
←−
J ,RZ1

2} are

V1 = var{N2}, V2 = var{S`2}, V4 = var{RZ2},

V7 = var{N2, S`2}, V10 = var{
←−
J }, V13 = var{S`2, RZ2},

V16 = var{N2, RZ2}, V18 = var{RZ1
2}, V29 = var{N2, S`2, RZ2},

V47 = var{RZ2,
←−
J }, V59 = var{N2, RZ

1
2}.

(iii) The lattices L (V35) and L (V61) are given in Figure 19.
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Figure 19: The lattices L (V35) and L (V61)

B.4 Subvarieties of V42 = var{
←−
J , LZ1

2} and V60 = var{J,RZ1
2}

Proposition B.4 (Zhang and Luo [92, Subvarieties of B in Figure 5]).

(i) The proper nontrivial subvarieties of V42 = var{
←−
J , LZ1

2} are

V1 = var{N2}, V2 = var{S`2}, V3 = var{LZ2},

V7 = var{N2, S`2}, V9 = var{N2, LZ2}, V10 = var{
←−
J },

V12 = var{S`2, LZ2}, V15 = var{LZ1
2}, V28 = var{N2, S`2, LZ2},

V31 = var{N2, LZ
1
2}, V41 = var{LZ2,

←−
J },

V78 = var{[11111, 11113, 11133, 11144, 11155]}.

(ii) The proper nontrivial subvarieties of V60 = var{J,RZ1
2} are

V1 = var{N2}, V2 = var{S`2}, V4 = var{RZ2},
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V7 = var{N2, S`2}, V8 = var{J}, V13 = var{S`2, RZ2},
V16 = var{N2, RZ2}, V18 = var{RZ1

2}, V29 = var{N2, S`2, RZ2},
V33 = var{RZ2, J}, V59 = var{N2, RZ

1
2},

V75 = var{[11111, 11111, 11111, 11345, 13345]}.

(iii) The lattices L (V42) and L (V60) are given in Figure 20.
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Figure 20: The lattices L (V42) and L (V60)

B.5 Subvarieties of V56 = var{O2} and V66 = var{
←−
O2}

Proposition B.5 ( [77, Figure 7]).

(i) The proper nontrivial subvarieties of V56 = var{O2} are

V2 = var{S`2}, V3 = var{LZ2}, V5 = var{Z2},
V12 = var{S`2, LZ2}, V14 = var{S`2,Z2}, V15 = var{LZ1

2},
V52 = var{S`2, LZ2,Z2}, V54 = var{Z2, LZ

1
2}, V68 = var{LZ2,Z2}.

(ii) The proper nontrivial subvarieties of V66 = var{
←−
O2} are

V2 = var{S`2}, V4 = var{RZ2}, V5 = var{Z2},
V13 = var{S`2, RZ2}, V14 = var{S`2,Z2}, V18 = var{RZ1

2},
V64 = var{S`2, RZ2,Z2}, V65 = var{Z2, RZ

1
2}, V71 = var{RZ2,Z2}.

(iii) The lattices L (V56) and L (V66) are given in Figure 21.
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Figure 21: The lattices L (V56) and L (V66)

B.6 Subvarieties of V77 = var{N3, P2} and V81 = var{N3,
←−
P2}

Proposition B.6 (Tishchenko [78, Figure 1]).

(i) The proper nontrivial subvarieties of V77 = var{N3, P2} are

V1 = var{N2}, V3 = var{LZ2}, V6 = var{N3},
V9 = var{N2, LZ2}, V20 = var{F4}, V21 = var{N3, F4},

V22 = var{G4}, V27 = var{LZ2, N3}, V45 = var{P2},
V74 = var{LZ2, G4}, V84 = var{G4, P2}.

(ii) The proper nontrivial subvarieties of V81 = var{N3,
←−
P2} are

V1 = var{N2}, V4 = var{RZ2}, V6 = var{N3},
V16 = var{N2, RZ2}, V20 = var{F4}, V21 = var{N3, F4},

V22 = var{G4}, V57 = var{RZ2, N3}, V69 = var{
←−
P2},

V80 = var{RZ2, G4}, V85 = var{G4,
←−
P2}.

(iii) The lattices L (V77) and L (V81) are given in Figure 22.

B.7 Subvarieties of V26 = var{S`2, N3}

Lemma B.7 ( [85, Lemma 1.3]). Let V be any variety such that S`2 /∈ V.

(i) The lattice L (V) is isomorphic to the interval

I = [var{S`2}, var{S`2} ∨V].
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Figure 22: The lattices L (V77) and L (V81)

(ii) The lattice L (var{S`2} ∨V) is isomorphic to the direct product

L (var{S`2})×L (V).

Consequently, L (var{S`2}∨V) is the disjoint union of L (V) and I .

Proposition B.8. The lattice V26 = var{S`2, N3} is given in Figure 23.

Proof. By Proposition B.6, the subvarieties of V6 = var{N3} constitute the
chain 0 ⊂ V1 ⊂ V22 ⊂ V6. Since V26 = var{S`2} ∨ var{N3}, the result
follows from Lemma B.7.
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V26 = var{S`2, N3}

V6 = var{N3} V76 = var{S`2, G4}

V22 = var{G4} V7 = var{N2, S`2}

V1 = var{N2} V2 = var{S`2}

0

Figure 23: The lattice L (V26)

B.8 Subvarieties of var{N3,Zn}

Lemma B.9. Let n ≥ 1 be any integer.

(i) The lattice L (var{N3,Zn}) is isomorphic to the direct product

L (var{N3})×L (var{Zn}).
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Consequently, L (var{N3,Zn}) is the disjoint union of the intervals

Id = [var{Zd}, var{N3,Zd}],

where d ranges over all divisors of n.

(ii) The interval Id coincides with the chain

var{Zd} ⊂ var{N2,Zd} ⊂ var{G4,Zd} ⊂ var{N3,Zd}.

Proof. (i) This follows from Vernikov [84, Proposition 2].
(ii) This follows from part (i) since by Figure 23, the lattice L (var{N3})

coincides with the chain 0 ⊂ var{N2} ⊂ var{G4} ⊂ var{N3}.

Proposition B.10. For any prime p ≥ 2, the lattice L (var{N3,Zp}) is
given in Figure 24.

Proof. This follows from Lemma B.9.
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V6 = var{N3} var{G4,Zp}

V22 = var{G4} var{N2,Zp}

V1 = var{N2} var{Zp}

0

Figure 24: The lattice L (var{N3,Zp}) with prime p ≥ 2

Proposition B.11. Let n ≥ 2 be any integer. Then the identities

xnabc ≈ abc, (B.1a)

xy ≈ yx (B.1b)

constitute an identity basis for the variety var{N3,Zn}.

Proof. It is routinely checked that the identities (B.1) are satisfied by the
variety var{N3,Zn}. Therefore it remains to show that any nontrivial iden-
tity u ≈ v satisfied by var{N3,Zn} is deducible from (B.1). By Lemma A.1
parts (iii) and (v), the following properties hold:
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(a) either |u|, |v| ≥ 3 or occ(x,u) = occ(x,v) for all x ∈X ;

(b) occ(x,u) ≡ occ(x,v) (mod n) for all variables x.

If occ(x,u) = occ(x,v) for all x ∈X , then it is clear that the identity u ≈ v
is deducible from (B.1b). Therefore suppose that |u|, |v| ≥ 3. Generality is
not lost by assuming that con(u) = {x1, x2, . . . , xk} and con(v)\con(u) =
{y1, y2, . . . , ym} for some k ≥ 1 and m ≥ 0. Let ei = occ(xi,u), so that∑k

i=1 ei = |u| ≥ 3. By (b), there exist ri, sj ≥ 1 such that occ(xi,v) =
ei + rin ≥ 0 and occ(yj ,v) = sjn ≥ 0. Let r′i ≥ 1 be any integer such that
ri + r′i ≥ 1. Then

v
(B.1a)
≈

( k∏
i=1

x
r′in
i

)
v since |v| ≥ 3

(B.1b)
≈

( k∏
i=1

x
ri+r

′
i

i

m∏
i=1

ysii

)n k∏
i=1

xeii

(B.1a)
≈

k∏
i=1

xeii since
k∑
i=1

ei ≥ 3

(B.1b)
≈ u.

Proposition B.12. Let n ≥ 2 be any integer. Then the identities

xnabc ≈ abc, xy ≈ yx, xn+2 ≈ x2 (B.2)

constitute an identity basis for the variety var{G4,Zn}.

Proof. Let W denote the variety defined by the identities (B.2). Then it
is routinely checked that the inclusions var{G4,Zn} ⊆ W ⊆ var{N3,Zn}
hold. But the semigroup N3 violates the last identity in (B.2), so that
W 6= var{N3,Zn}. Therefore W = var{G4,Zn} by Lemma B.9(ii).

B.9 Subvarieties of var{J,Zp} and var{S`2,Zp2}

Lemma B.13 ( [65, Part (b) of the main theorem]). Let G be any periodic
variety generated by a group. Then each subvariety of var{J}∨G is the join
of some subvariety of G with some of the following varieties:

0, V1 = var{N2}, V2 = var{S`2}, V8 = var{J}.

Proposition B.14. Let p ≥ 2 be any prime.
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(i) The lattice L (var{J,Zp}) is given in Figure 25.

(ii) The lattice L (var{S`2,Zp2}) is given in Figure 26.

Proof. This follows from Lemma B.13.
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V7 = var{N2, S`2}

V1 = var{N2}
V2 = var{S`2}

0

var{J,Zp}

var{N2, S`2,Zp}

var{N2,Zp} var{S`2,Zp}

var{Zp}

Figure 25: The lattice L (var{J,Zp}) with prime p ≥ 2
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var{S`2,Zp2}

var{Zp2} var{S`2,Zp}

var{Zp} var{S`2}

0

Figure 26: The lattice L (var{S`2,Zp2}) with prime p ≥ 2

Proposition B.15. Let n ≥ 2 be any integer.

(i) The identities

xn+1a ≈ xa, (B.3a)

xm1ym2 ≈ ym2xm1 , m1,m2 ≥ 2, (B.3b)
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xya ≈ yxa. (B.3c)

constitute an identity basis for the variety var{J,Zn}.

(ii) The identities

xn+1a ≈ xa, x2y2 ≈ y2x2, xya ≈ yxa

also constitute an identity basis for the variety var{J,Zn}.

Proof. (i) It is routinely checked that the identities (B.3) are satisfied by the
variety var{J,Zn}. Therefore it remains to show that any identity u ≈ v
satisfied by var{J,Zn} is deducible from (B.3). By Lemma A.3, generality
is not lost by assuming that con(u) = con(v) = {x1, x2, . . . , xm}, so that
ei = occ(xi,u) ≥ 1 and fi = occ(xi,v) ≥ 1. Then ei ≡ fi (mod n) by
Lemma A.1(v). By Lemma A.3, there are two cases.
Case 1: t(u) = t(v) = xk with either ek = fk = 1 or ek, fk ≥ 2. Then

u
(B.3c)
≈

(∏
i 6=k

xeii

)
xekk

(B.3a)
≈

(∏
i 6=k

xfii

)
xfkk since ei ≡ fi (modn)

(B.3c)
≈ v.

Case 2: t(u) = xk and t(v) = x` with k < ` and ek, f` ≥ 2. Choose any
integer gi > max{ei, fi} such that gi ≡ ei ≡ fi (mod n). Then

u
(B.3c)
≈

( ∏
i 6=k,`

xeii

)
xe`` x

ek
k

(B.3a)
≈

( ∏
i 6=k,`

xgii

)
xg`` x

gk
k since gi ≡ ei (mod n) and ek ≥ 2

(B.3b)
≈

( ∏
i 6=k,`

xgii

)
xgkk x

g`
`

(B.3a)
≈

( ∏
i 6=k,`

xfii

)
xfkk x

f`
` since gi ≡ fi (mod n) and f` ≥ 2

(B.3c)
≈ v.
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(ii) It suffices to show that the identities (B.3b) are deducible from the
identities α : x2y2 ≈ y2x2 and β : xya ≈ yxa. Write mi = 2pi + ri where
pi ≥ 1 and ri ∈ {0, 1}. Then

xm1ym2
β
≈ yr2xr1x2p1y2p2

α
≈ yr2xr1y2p2x2p1

β
≈ ym2xm1 .

Proposition B.16 ( [60, Lemma 7.3 and Diagram 8]). Let n ≥ 2 be any
integer.

(i) The identities
xn+1a ≈ xa, xy ≈ yx

constitute an identity basis for the variety var{N2, S`2,Zn}.

(ii) The identities
xnab ≈ ab, xy ≈ yx

constitute an identity basis for the variety var{N2,Zn}.

(iii) The identities
xn+1 ≈ x, xy ≈ yx

constitute an identity basis for the variety var{S`2,Zn}.

B.10 Subvarieties of V23 = var{N4}

Proposition B.17 (Mel’nik [54, Subvarieties of B23 in Figure 3]).

(i) The proper nontrivial subvarieties of V23 = var{N4} are

V1 = var{N2}, V6 = var{N3}, V22 = var{G4},

V86 = var

{
[1111111, 1111111, 1111112, 1111121, 1111122, 1112235,
1121254]

}
,

V87 = var

{
[1111 1111, 1111 1111, 1111 1112, 1111 1121, 1111 1211,
1111 2134, 1112 1315, 1121 1451]

}
,

V88 = var

{
[1111 1111, 1111 1111, 1111 1112, 1111 1121, 1111 1211,
1111 2134, 1112 1315, 1121 1452]

}
.

(ii) The lattice L (V23) is given in Figure 27.
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Figure 27: The lattice L (V23)

C Some varieties with infinitely many subvarieties

C.1 The variety var{Zp, N1
n}

Proposition C.1. Let p ≥ 1 and n ≥ 2 be any integers.

(i) The identities

xn+p ≈ xn, (C.1a)

xy ≈ yx (C.1b)

constitute an identity basis for the variety var{Zp, N1
n}.

(ii) The variety var{Zp, N1
n} contains countably infinitely many subvari-

eties.

Proof. (i) It is routinely checked that the identities (C.1) are satisfied by
the variety var{Zp, N1

n}. Hence it remains to show that any identity u ≈ v
satisfied by var{Zp, N1

n} is deducible from (C.1). Generality is not lost
by assuming that u,v ∈ {x1, x2, . . . , xm}∗ with ei = occ(xi,u) and fi =
occ(xi,v). Then it follows from Lemma A.1 parts (iv) and (v) that for
each i,

(a) either ei = fi < n or ei, fi ≥ n;

(b) ei ≡ fi (mod p).
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If ei 6= fi for some i, then ei, fi ∈ {n + rp | r ≥ 0} by (a) and (b), whence
the identity xei ≈ xfi is deducible from (C.1a). It follows that

u
(C.1b)
≈

m∏
i=1

xeii
(C.1a)
≈

m∏
i=1

xfii
(C.1b)
≈ v

(ii) Any variety of commutative semigroups is finitely based [59]. Hence
by Lemma A.5, the variety var{Zp, N1

n} contains countably many subvari-
eties. The result then holds since the subvariety var{N1

2 } of var{Zp, N1
n}

contains infinitely many subvarieties [13, Figure 5(b)].

Corollary C.2. Let n ≥ 2 be any integer.

(i) The identities

xn+1 ≈ xn, (C.2a)

xy ≈ yx (C.2b)

constitute an identity basis for the variety var{N1
n}.

(ii) The variety var{N1
n} contains countably infinitely many subvarieties.

Lemma C.3 (Lee et al . [45, Proposition 5.10]). Each proper subvariety of
var{N1

n} satisfies the identity

xnyn−1 ≈ xn−1yn. (C.3)

Proposition C.4. Let n ≥ 2 be any integer.

(i) The variety var{(C.2), (C.3)} is the only maximal subvariety of var{N1
n}.

(ii) The variety var{(C.2), (C.3)} is not finitely generated.

Proof. (i) This follows from Corollary C.2(i) and Lemma C.3.
(ii) It is easily seen that the variety var{(C.2), (C.3)} violates the identity

x1x2 · · ·xmyn ≈ x1x2 · · ·xmyn−1 (C.4)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S in the
variety var{(C.2), (C.3)} satisfies the identity (C.4) for all m ≥ n|S|. Choose
any elements a1, a2, . . . , am, b ∈ S. Then the list a1, a2, . . . , am contains
some element a ∈ S at least n times, due to the magnitude of m. Therefore

a1a2 · · · am
(C.2b)

= san for some s ∈ S, whence

a1a2 · · · ambn
(C.2b)

= sanbn
(C.3)
= san+1bn−1

(C.2a)
= sanbn−1

(C.2b)
= a1a2 · · · ambn−1.
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Lemma C.5. Let p ≥ 2 be any prime and n ≥ 2 be any integer. Then each
proper subvariety of var{Zp, N1

n} satisfies one of the following identities:

xn−1+pyn−1 ≈ xn−1yn−1+p, (C.5)

xn+1 ≈ xn. (C.6)

Proof. Let W be any proper subvariety of var{Zp, N1
n}. Then either Zp /∈W

or N1
n /∈W. First suppose that N1

n /∈W. Then it follows from Lemma A.2
that the variety W satisfies the identity α : (xny)n−1+pxn ≈ (xny)n−1xn.
Let r ≥ 1 be such that n2 + r ≡ n (mod p). Then since

xn−1+pyn
(C.1a)
≈ xn−1+pyn

2+r = xn−1+p(yn)nyr

(C.1a)
≈ xn−1+p(yn)n+pyr

(C.1b)
≈ (ynx)n−1+pynyr

α
≈ (ynx)n−1ynyr

(C.1b)
≈ xn−1yn

2+r (C.1a)
≈ xn−1yn,

it follows that W satisfies the identity β : xn−1+pyn−1+p ≈ xn−1yn−1+p.
But since

xn−1yn−1+p
β
≈ xn−1+pyn−1+p

(C.1b)
≈ yn−1+pxn−1+p

β
≈ yn−1xn−1+p

(C.1b)
≈ xn−1+pyn−1,

the variety W also satisfies the identity (C.5).
It remains to assume that Zp /∈ W. Then by Lemma A.1(v), the vari-

ety W satisfies an identity γ : u ≈ v with occ(x,u) 6≡ occ(x,v) (mod p)
for some variable x ∈ X . Generality is not lost with the assumption that
e ≡ occ(x,u) (mod p) and f ≡ occ(x,v) (mod p) with 0 ≤ e < f ≤ p − 1.
Let ϕ denote the substitution that fixes x and maps every other variable
to xp. Then

xn+e
(C.1b)
≈

(
ϕ(u)

)
xn

γ
≈
(
ϕ(v)

)
xn

(C.1b)
≈ xn+f ,

so that the variety W satisfies the identity δ : xn+e ≈ xn+f . Since

xn
(C.1a)
≈ xn+exp−e

δ
≈ xn+fxp−e

(C.1a)
≈ xn+f−e,

the variety W satisfies the identity ε : xn ≈ xn+` for some ` ≥ 1. Since p is
prime, there exists some m ≥ 1 such that m` ≡ 1 (mod p). Therefore

xn
ε
≈ xn+`

ε
≈ xn+2` ε

≈ · · ·
ε
≈ xn+m`

(C.1a)
≈ xn+1,

so that the variety W satisfies the identity (C.6).
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Proposition C.6. For any prime p ≥ 2 and integer n ≥ 2, let

U = var{(C.1), (C.5)} and V = var{(C.1), (C.6)}.

Then

(i) U and V are precisely all maximal subvarieties of var{Zp, N1
n};

(ii) U is not finitely generated ;

(iii) V = var{N1
n}.

Proof. (i) Since Zp satisfies {(C.1), (C.5)} and violates (C.6), while N1
n sat-

isfies {(C.1), (C.6)} and violates (C.5), the varieties U and V are incompa-
rable. The result then follows from Lemma C.5.

(ii) It is easily seen that the variety U violates the identity

xn−1+py1y2 · · · ym ≈ xn−1y1y2 · · · ym (C.7)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S
in U satisfies the identity (C.7) for all m ≥ (n+p)|S|. Choose any elements
a, b1, b2, . . . , bm ∈ S. Then the list b1, b2, . . . , bm contains some element b ∈ S
at least n+ p times, due to the magnitude of m. Therefore b1b2 · · · bm

(C.1b)
=

bn+ps for some s ∈ S, whence

an−1b1b2 · · · bm
(C.1b)

= an−1bn+ps
(C.5)
= an−1+pbns

(C.1a)
= an−1+pbn+ps

(C.1b)
= an−1+pb1b2 · · · bm.

(iii) This follows from Corollary C.2(i).

C.2 The varieties var{J,N1
n} and var{

←−
J ,N1

n}

Proposition C.7. Let n ≥ 2 be any integer.

(i) The identities

xn+1 ≈ xn, (C.8a)

xm1ym2 ≈ ym2xm2 , m1,m2 ∈ {2, 3, 4, . . .}, (C.8b)

xya ≈ yxa (C.8c)

constitute an identity basis for the variety var{J,N1
n}.
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(ii) The identities

xn+1 ≈ xn, x2y2 ≈ y2x2, xya ≈ yxa

also constitute an identity basis for the variety var{J,N1
n}.

(iii) The variety var{J,N1
n} contains countably infinitely many subvarieties.

Proof. (i) It is routinely checked that the identities (C.8) are satisfied by
the variety var{J,N1

n}. Hence it remains to show that any identity u ≈ v
satisfied by var{J,N1

n} is deducible from (C.8). By Lemma A.3, generality
is not lost by assuming that con(u) = con(v) = {x1, x2, . . . , xm}, so that
ei = occ(xi,u) ≥ 1 and fi = occ(xi,v) ≥ 1. Further, it follows from
Lemma A.1(iv) that

(a) for each i, either ei = fi < n or ei, fi ≥ n.

There are two cases.
Case 1: t(u) = t(v) = xk. Then

u
(C.8c)
≈

(∏
i 6=k

xeii

)
xekk

(C.8a)
≈

(∏
i 6=k

xfii

)
xfkk by (a)

(C.8c)
≈ v.

Case 2: t(u) = xk and t(v) = x` with k < `. Then by (a) and Lemma A.3,

(b) ek, fk, e`, f` ≥ 2.

Hence

u
(C.8c)
≈

( ∏
i 6=k,`

xeii

)
xe`xek

(C.8b)
≈

( ∏
i 6=k,`

xeii

)
xekxe` by (b)

(C.8a)
≈

( ∏
i 6=k,`

xfii

)
xfkxf` by (a)

(C.8c)
≈ v.
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(ii) As shown in the proof of Proposition B.15(ii), the identities (C.8b)
are deducible from x2y2 ≈ y2x2 and xya ≈ yxa. The result thus follows
from part (i).

(iii) Any finitely generated variety that satisfies the identity (C.8c) is
finitely based [59]. Hence by Lemma A.5, the variety var{J,N1

n} con-
tains countably many subvarieties. The result then holds since the subva-
riety var{N1

2 } of var{J,N1
n} contains infinitely many subvarieties [13, Fig-

ure 5(b)].

Lemma C.8. Let n ≥ 2 be any integer. Then each proper subvariety of
var{J,N1

n} satisfies one of the following identities:

xn−1yn ≈ yn−1xn, (C.9)

xny ≈ yxn. (C.10)

Proof. Let W be any proper subvariety of var{J,N1
n}. Then either J /∈W

or N1
n /∈ W. First suppose that N1

n /∈ W. Then by Lemma A.2, the
variety W satisfies the identity (A.2) with k = 1. Since

xn−1yn
(C.8)
≈ (ynx)n−1yn

(A.2)
≈ (ynx)nyn

(C.8)
≈ xnyn,

the variety W satisfies the identity α : xn−1yn ≈ xnyn; since

xn−1yn
α
≈ xnyn

(C.8b)
≈ ynxn

α
≈ yn−1xn,

it also satisfies the identity (C.9).
It remains to assume that J /∈W, so that by Lemma A.4, the variety W

satisfies one of the identities (A.4) and (A.5). Since

xny
(A.4)
≈ (xny)n+1 (C.8)

≈ (xny)n+1xn
(A.4)
≈ xnyxn

(C.8)
≈ yxn

and xny
(A.5)
≈ xnyxn

(C.8)
≈ yxn,

the variety W also satisfies the identity (C.10).

Proposition C.9. For any integer n ≥ 2, let

U = var{(C.8), (C.9)} and V = var{(C.8), (C.10)}.

Then

(i) U and V are precisely all maximal subvarieties of var{J,N1
n};
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(ii) U is not finitely generated ;

(iii) V is not finitely generated.

Proof. (i) Since the semigroup J satisfies {(C.8), (C.9)} and violates (C.10),
while the semigroup N1

n satisfies {(C.8), (C.10)} and violates (C.9), the vari-
eties U and V are incomparable. The result then follows from Lemma C.8.

(ii) It is easily seen that the variety U violates the identity

xny1y2 · · · ym ≈ xn−1y1y2 · · · ym (C.11)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S
in U satisfies the identity (C.11) for all m ≥ (n + 1)|S|. Choose any
a, b1, b2, . . . , bm ∈ S. Then the list b1, b2, . . . , bm contains some element b ∈ S
at least n+ 1 times, due to the magnitude of m. Therefore b1b2 · · · bm

(C.8c)
=

bnsbt for some s, t ∈ S1, whence

an−1b1b2 · · · bm
(C.8c)

= an−1bnsbt
(C.8a)

= an−1bnbsbt
(C.9)
= bn−1anbsbt

(C.8c)
= anbnsbt

(C.8c)
= anb1b2 · · · bm.

(iii) It is easily seen that the variety V violates the identity

x1x2 · · ·xmyz ≈ x1x2 · · ·xmzy (C.12)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S
in V satisfies the identity (C.12) for all m ≥ n|S|. Choose any elements
a1, a2, . . . , am, b, c ∈ S. Then the list a1, a2, . . . , am contains some element

a ∈ S at least n times, due to the magnitude of m. Thus a1a2 · · · amb
(C.8c)

=

sanb and a1a2 · · · amc
(C.8c)

= sanc for some s ∈ S, whence

a1a2 · · · ambc
(C.8c)

= sanbc
(C.10)

= sbcan
(C.8c)

= scban

(C.10)
= sancb

(C.8c)
= a1a2 · · · amcb.

Corollary C.10. Let n ≥ 2 be any integer. Then

(i) the identities

xn+1 ≈ xn, x2y2 ≈ y2x2, axy ≈ ayx

constitute an identity basis for the variety var{
←−
J ,N1

n};

(ii) var{
←−
J ,N1

n} contains countably infinitely many subvarieties;

(iii) var{
←−
J ,N1

n} contains precisely two maximal subvarieties.
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C.3 The varieties var{LZ2, N
1
n} and var{RZ2, N

1
n}

Proposition C.11. Let n ≥ 2 be any integer.

(i) The identities

xn+1 ≈ xn, (C.13a)

axy ≈ ayx. (C.13b)

constitute an identity basis for the variety var{LZ2, N
1
n}.

(ii) The variety var{LZ2, N
1
n} contains countably infinitely many subvari-

eties.

Proof. (i) It is routinely checked that the identities (C.13) are satisfied by the
variety var{LZ2, N

1
n}. Therefore it remains to show that any identity u ≈ v

satisfied by var{LZ2, N
1
n} is deducible from the identities (C.13). Generality

is not lost by assuming that u,v ∈ {x1, x2, . . . , xm}∗ with ei = occ(xi,u)
and fi = occ(xi,v). By Lemma A.1 parts (i) and (iv),

(a) h(u) = h(v) = xk for some k;

(b) for each i, either ei = fi < n or ei, fi ≥ n.

Hence

u
(C.13b)
≈ xekk

∏
i 6=k

xeii

(C.13a)
≈ xfkk

∏
i 6=k

xfii by (b)

(C.13b)
≈ v.

(ii) See the proof of Proposition C.7(iii).

Lemma C.12. Let n ≥ 2 be any integer. Then each proper subvariety of
the variety var{LZ2, N

1
n} satisfies one of the following identities:

xnyn ≈ ynxn, (C.14)

anxn ≈ anxn−1. (C.15)
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Proof. Let W be any proper subvariety of var{LZ2, N
1
n}. Then either LZ2 /∈

W or N1
n /∈W. First suppose that LZ2 /∈W. Then the variety W satisfies

the identity α : xn(yxn)n ≈ (yxn)n [45, Theorem 5.15]. Since

xnyn
(C.13)
≈ xn(yxn)n

α
≈ (yxn)n

(C.13)
≈ ynxn,

the variety W satisfies the identity (C.14).
It remains to assume that N1

n /∈W. Then by Lemma A.2, the variety W
satisfies the identity (A.2) with k = 1. Since

anxn
(C.13)
≈ (anx)nan

(A.2)
≈ (anx)n−1an

(C.13)
≈ anxn−1,

the variety W satisfies the identity (C.15).

Proposition C.13. For any integer n ≥ 2, let

U = var{(C.13), (C.14)} and V = var{(C.13), (C.15)}.

Then

(i) U and V are the only maximal subvarieties of var{LZ2, N
1
n};

(ii) U = var{
←−
J ,N1

2 } if n = 2;

(iii) V is not finitely generated.

Proof. (i) Since the semigroup LZ2 satisfies {(C.13), (C.15)} and violates (C.14),
while the semigroup N1

n satisfies {(C.13), (C.14)} and violates (C.15), the va-
rieties U and V are incomparable. The result then follows from Lemma C.12.

(ii) This follows from the dual of Proposition C.7(ii).
(iii) It is easily seen that the variety V violates the identity

x1x2 · · ·xmyn ≈ x1x2 · · ·xmyn−1 (C.16)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S
in V satisfies the identity (C.16) for all m ≥ (n + 1)|S|. Choose any
a1, a2, . . . , am, b ∈ S. Then the list a1, a2, . . . , am contains some element a ∈
S at least n+1 times, due to the magnitude ofm. Therefore a1a2 · · · am

(C.13b)
=

satan for some s, t ∈ S1, whence

a1a2 · · · ambn
(C.13b)

= satanbn
(C.15)

= satanbn−1
(C.13b)

= a1a2 · · · ambn−1.

Corollary C.14. Let n ≥ 2 be any integer. Then
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(i) the identities
xn+1 ≈ xn, xya ≈ yxa

constitute an identity basis for the variety var{RZ2, N
1
n};

(ii) var{RZ2, N
1
n} contains countably infinitely many subvarieties;

(iii) var{RZ2, N
1
n} contains precisely two maximal subvarieties.

C.4 The varieties var{LZ1
2 , N

1
n} and var{RZ1

2 , N
1
n}

Proposition C.15. Let n ≥ 2 be any integer.

(i) The identities

xn+1 ≈ xn, (C.17a)

xyx ≈ x2y. (C.17b)

constitute an identity basis for the variety var{LZ1
2 , N

1
n}.

(ii) The variety var{LZ1
2 , N

1
n} contains countably infinitely many subvari-

eties.

Proof. (i) It is routinely checked that the identities (C.17) are satisfied by
the variety var{LZ1

2 , N
1
n}. Therefore it remains to show that any identity

u ≈ v satisfied by var{LZ1
2 , N

1
n} is deducible from the identities (C.17). In

view of Lemma A.1(ii), generality is not lost by assuming that

(a) ini(u) = ini(v) =
∏m
i=1 xi,

so that ei = occ(xi,u) ≥ 1 and fi = occ(xi,v) ≥ 1. By Lemma A.1(iv),

(b) for each i, either ei = fi < n or ei, fi ≥ n.

Hence

u
(C.17b)
≈

m∏
i=1

xeii by (a)

(C.17a)
≈

m∏
i=1

xfii by (b)

(C.17b)
≈ v by (a).

(ii) Any variety that satisfies the identity (C.17b) is finitely based [61].
Hence by Lemma A.5, the variety var{LZ1

2 , N
1
n} contains countably many

subvarieties. The result then holds since the subvariety var{N1
2 } of var{LZ1

2 , N
1
n}

contains infinitely many subvarieties [13, Figure 5(b)].
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Lemma C.16. Let n ≥ 2 be any integer. Then each proper subvariety of
the variety var{LZ1

2 , N
1
n} satisfies one of the following identities:

anxnyn ≈ anynxn, (C.18)

anxn ≈ anxn−1. (C.19)

Proof. Let W be any proper subvariety of var{LZ1
2 , N

1
n}. Then either

LZ1
2 /∈W or N1

n /∈W. First suppose that LZ1
2 /∈W. Then the variety W

satisfies the identity α : an(xan)n
(
yan(xan)n

)n ≈ an(yan(xan)n
)n

[45, The-
orem 5.17]. Since

anxnyn
(C.17)
≈ an(xan)n

(
yan(xan)n

)n α
≈ an

(
yan(xan)n

)n (C.17)
≈ anynxn,

the variety W satisfies the identity (C.18).
It remains to assume that N1

n /∈W. Then by Lemma A.2, the variety W
satisfies the identity (A.2) with k = 1. Since

anxn
(C.17)
≈ (anx)nan

(A.2)
≈ (anx)n−1an

(C.17)
≈ anxn−1,

the variety W satisfies the identity (C.19).

Proposition C.17. For any integer n ≥ 2, let

U = var{(C.17), (C.18)} and V = var{(C.17), (C.19)}.

Then

(i) U and V are the only maximal subvarieties of var{LZ1
2 , N

1
n};

(ii) U is not finitely generated ;

(iii) V is not finitely generated.

Proof. (i) Since the semigroup LZ1
2 satisfies {(C.17), (C.19)} and violates (C.18),

while the semigroup N1
n satisfies {(C.17), (C.18)} and violates (C.19), the va-

rieties U and V are incomparable. The result then follows from Lemma C.16.
(ii) It is easily seen that the variety U violates the identity

x1x2 · · ·xmynzn ≈ x1x2 · · ·xmznyn (C.20)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S in
the variety U satisfies the identity (C.20) for all m ≥ n|S|. Choose any
elements a1, a2, . . . , am, b, c ∈ S. Then the list a1, a2, . . . , am contains some
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element a ∈ S at least n times, due to the magnitude of m. Therefore

a1a2 · · · am
(C.17b)

= sant for some s, t ∈ S1, whence

a1a2 · · · ambncn
(C.17b)

= santbncn
(C.17)

= santanbncn
(C.18)

= santancnbn

(C.17)
= santcnbn

(C.17b)
= a1a2 · · · amcnbn.

(iii) It is easily seen that the variety V violates the identity

x1x2 · · ·xmyn ≈ x1x2 · · ·xmyn−1 (C.21)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S in
the variety V satisfies the identity (C.21) for all m ≥ n|S|. Choose any
elements a1, a2, . . . , am, b ∈ S. Then the list a1, a2, . . . , am contains some
element a ∈ S at least n times, due to the magnitude of m. Therefore

a1a2 · · · am
(C.17b)

= sant for some s, t ∈ S1, whence

a1a2 · · · ambn
(C.17b)

= santbn
(C.17)

= santanbn
(C.19)

= santanbn−1

(C.17)
= santbn−1

(C.17b)
= a1a2 · · · ambn−1.

Corollary C.18. Let n ≥ 2 be any integer. Then

(i) the identities
xn+1 ≈ xn, xyx ≈ yx2

constitute an identity basis for the variety var{RZ1
2 , N

1
n};

(ii) var{RZ1
2 , N

1
n} contains countably infinitely many subvarieties;

(iii) var{RZ1
2 , N

1
n} contains precisely two maximal subvarieties.

C.5 The varieties V38 = var{B0} and V39 = var{A0}

Proposition C.19 (Edmunds [11, Semigroups S(4, 21) and S(4, 22) on
page 70]; Lee [30]).

(i) The identities

x3 ≈ x2, x2yx2 ≈ yxy, x2y2 ≈ y2x2

constitute an identity basis for the variety V38 = var{B0}.
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(ii) The identities
x3 ≈ x2, x2yx2 ≈ yxy

constitute an identity basis for the variety V39 = var{A0}.

(iii) The varieties var{B0} and var{A0} each contains countably infinitely
many subvarieties.

Proposition C.20 (Lee [30,31]).

(i) The variety var{B0} is the unique maximal subvariety of var{A0}.

(ii) The identities

x3 ≈ x2, x2yx2 ≈ yxy, x2y2 ≈ y2x2, a2x2b2 ≈ a2xb2. (C.22)

constitute an identity basis for the unique maximal subvariety of var{B0}.

(iii) The unique maximal subvariety of var{B0} is not finitely generated.

C.6 The varieties V40 = var{J1} and V46 = var{
←−
J1}

Proposition C.21.

(i) The identities

x3 ≈ x2, (C.23a)

x2y2 ≈ y2x2, (C.23b)

xyx ≈ yx2. (C.23c)

constitute an identity basis for the variety var{J1}.

(ii) The variety var{J1} contains countably infinitely many subvarieties.

Proof. (i) See Edmunds [11, Semigroup S(4, 23) on page 70].
(ii) Any variety that satisfies the identity (C.23c) is finitely based [61].

Hence by Lemma A.5, the variety var{J1} contains countably many sub-
varieties. The result then holds since the subvariety var{N1

2 } of var{J1}
contains infinitely many subvarieties [13, Figure 5(b)].

Lemma C.22. Each proper subvariety of var{J1} satisfies the identity

x2ya2 ≈ yx2a2. (C.24)
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Proof. Let W be any proper subvariety of var{J1}, so that J1 /∈W. Then
it follows from Almeida [1, Proposition 11.7.9] that W satisfies either (C.24)
or α : x2y2 ≈ xy2. Since

x2ya2
α
≈ x2y2a2

(C.23b)
≈ y2x2a2

α
≈ yx2a2,

the variety W always satisfies the identity (C.24).

Proposition C.23. Let U = var{(C.23), (C.24)}. Then

(i) U is the unique maximal subvariety of V40 = var{J1};

(ii) U is not finitely generated.

Proof. (i) This follows from Proposition C.21(i) and Lemma C.22.
(ii) It is easily seen that the variety U violates the identity

x2yz1z2 · · · zm ≈ yx2z1z2 · · · zm (C.25)

for any m ≥ 1. Hence it suffices to show that each finite semigroup S
in U satisfies the identity (C.25) for all m > |S|. Choose any elements
a, b, c1, c2, . . . , cm ∈ S. The list c1, c2, . . . , cm contains some element c ∈ S
twice, due to the magnitude of m. Therefore c1c2 · · · cm = s1cs2cs3 for some
si ∈ S1, whence

a2bc1c2 · · · cm = a2bs1cs2cs3
(C.23)

= a2bc2s1cs2cs3
(C.24)

= ba2c2s1cs2cs3
(C.23)

= ba2s1cs2cs3 = ba2c1c2 · · · cm.

Corollary C.24.

(i) The identities

x3 ≈ x2, x2y2 ≈ y2x2, xyx ≈ x2y.

constitute an identity basis for the variety V46 = var{
←−
J1}.

(ii) The variety var{
←−
J1} contains countably infinitely many subvarieties.

(iii) The variety var{
←−
J1} contains a unique maximal subvariety.
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