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ABSTRACT. A direct saddle-point analysis (without relying on any modular forms, identities or
functional equations) is developed to establish the asymptotics of Fishburn matrices and a large
number of other variants with a similar sum-of-finite-product form for their (formal) general func-
tions. In addition to solving some conjectures, the application of our saddle-point approach to the
distributional aspects of statistics on Fishburn matrices is also examined with many new limit theo-
rems characterized, representing the first of their kind for such structures.
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1. MOTIVATIONS AND BACKGROUND

Fishburn matrices, introduced in the 1970s in the context of interval orders (in order theory)
and directed graphs (see [1, 18, 23, 41]), are nonnegative, upper-triangular ones without zero
row or column. They have later found to be bijectively equivalent to several other combinatorial
structures such as (2 + 2)-free posets, ascent sequences, pattern-avoiding permutations, pattern-
avoiding inversion sequences, Stoimenow matchings, and regular chord diagrams; see, for in-
stance, [6, 14, 21, 30, 35] and Section 2 for more information. In addition to their rich combinato-
rial connections, the corresponding asymptotic enumeration and the finer distributional properties
are equally enriching and challenging, as we will explore in this paper. In particular, while the
asymptotics of some classes of Fishburn matrices were known (see, for example, [8, 44]), the
stochastic aspects of the major characteristic statistics have remained open up to now.

Zagier, in his influential paper [44] on Vassiliev invariants and quantum modular forms, derived
the asymptotic approximation to the number of Fishburn matrices whose entries sum to n

[zn]
∑
k>0

∏
16j6k

(
1− (1− z)j

)
= cρn nn+1

(
1 +

c1

n
+O

(
n−2
))
,(1.1)

(see OEIS [29] sequence A022493, the Fishburn numbers), where (c, ρ) =
(

12
√

6
π2 e

π2

12 , 6
eπ2

)
and

c1 = 11
24
− 17π2

144
+ π4

432
. Here [zn]f(z) denotes the coefficient of zn in the (formal) Taylor expansion

of f . For conciseness of notation and readability, all constant pairs (c, ρ) throughout this paper
are generic and may not be the same at each occurrence; their values will be locally specified.

That the asymptotic approximation (1.1) is remarkable can be viewed in various perspectives.
First, the Taylor coefficients of the inner product on the left-hand side of (1.1) alternating in sign,
it is unclear if the coefficient of zn in the sum-of-product expression is positive for all positive
n, much less its factorial growth order shown on the right-hand side. Second, since 6

π2 < 1, the
right-hand side of (1.1) is exponentially smaller than n!, which equals [zn]

∏
16j6n

(
1− (1− z)j

)
.

More precisely, we will prove that (see Lemma 12 and 14)

max
16k6n

∣∣∣[zn]
∏

16j6k

(
1− (1− z)j

)∣∣∣ = max
16k6n

[zn]
∏

16j6k

(
(1 + z)j − 1

)
= Θ

(
nn+ 1

2 ρ̂n
)
,

where ρ̂ = 12
eπ2 = 2ρ, so there is indeed a heavy exponential cancellation involved in the sum on

the left-hand side. Third, in addition to the connection to linearly independent Vassiliev invariants,
the Fishburn numbers have now been known to enumerate many different combinatorial objects;
see Section 2, OEIS sequence A022493 and [4, 6, 8, 9, 14, 13, 16, 18, 30, 31, 33, 35, 43, 44] for
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more information. Finally, Zagier’s proof of (1.1) relies crucially on the unusual pair of identities

(1.2)


e−

z
24

∑
k>0

∏
16j6k

(
1− e−jz

)
=
∑
n>0

Tn
n!

( z
24

)n
,

∑
n>0

Tn
(2n+ 1)!

z2n+1 =
sin 2z

2 cos 3z
,

where the Tn’s are known as Glaisher’s T -numbers (see A002439). The asymptotics of Tn is then
readily computed by, say using the singularity analysis (see [20]) on the right-hand side of the
second identity, which, unlike the formal nature of the first, is analytic in |z| < π

6
. These identities

are a consequence of partial summation, Euler’s pentagonal number theorem, functional equations,
Dirichlet series and Mellin transform techniques; see [44, 45]. What appears to be more important
in subsequent developments is that Tn is essentially the value defined by the analytic continuation
of some Dirichlet series at −2n− 1, and the study of the identities (1.2) is thus closely connected
to algebraic and analytic number theory, in addition to their hypergeometric q-series nature and
resurgence aspect [11].

Many similar pairs of relations such as (1.2) are now known; see also [5, 37]. For example, the
tangent numbers (A000182) satisfy the pair of generating functions

(1.3)


∑
k>0

∏
16j6k

tanh(2jz) =
∑
n>0

an
n!
zn,

∑
n>0

an
(2n+ 1)!

z2n+1 = tan z,

which is a special case of general theorems in [5]. It follows that

[zn]
∑
k>0

∏
16j6k

tanh(2jz) ' cρnnn+1, with (c, ρ) =
(

16
√

2
π2 , 16

eπ2

)
,

which has the same asymptotic pattern as (1.1)—a universal aspect we will exhibit through several
analytic schemes and many examples in this paper. Here and throughout this paper, the asymptotic
relation

an = bn
(
1 +O

(
n−1
))

is abbreviated as an ' bn.(1.4)

Many other pairs similar in spirit to (1.2) and (1.3) can be found in [5, 25, 37].
Along another direction, Bringmann et al. [8] extended Zagier’s proof strategy and derived the

asymptotic approximation to the number of primitive row-Fishburn matrices with entries summing
to n

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
' cρn nn+ 1

2 , with (c, ρ) =
(

12
π3/2 e

−π
2

24 , 12
eπ2

)
.(1.5)

[A primitive row-Fishburn matrix is a binary upper-triangular one without zero rows.] Their ap-
proach to deriving (1.5) relies on various properties of the function (σ(q) in [8])

(1.6) R(q) :=
∑
k>0

q
1
2
k(k+1)

(1 + q) · · · (1 + qk)
= 1 +

∑
k>0

(−1)kqk+1
∏

16j6k

(
1− qj

)
,
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first appeared in Ramanujan’s lost notebook, with many unusual properties discovered since An-
drews’s paper [2]; see [3, 10] and A003406 for more information. Very roughly, since

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
=

(−1)n

2
[zn]R(1− z),

and e−z = 1 − z + O(|z|2) for small |z|, the approach begins by working out the asymptotics of
[zn]R

(
e−z
)
. The bridge between [zn]R(1 − z) and R

(
e−z
)

can then be linked through a direct
change of variables and straightforward arguments because z is very close to zero (the arguments
used in [44] and [8] relying instead on the asymptotics of the Stirling numbers of the first kind);
see Section 4.2 for more details.

The asymptotics of [zn]R
(
e−z
)

is derived by first defining the Dirichlet series

D(s) :=
∑
n>1

n−s[qn−1]R
(
q24
)
,

which can be meromorphically continued into the whole plane. Since, by standard Mellin trans-
form techniques (see, e.g., [19]),

[zn]e−zR
(
e−24z

)
=

(−1)n

n!
D(−n),

the crucial asymptotics of D(−n) needed is then derived by the functional equation satisfied by
certain function defined on D(s) (similar to that satisfied by Riemann’s zeta function); see [8, 10]
and Section 4 for more details.

Our aim in this paper is to develop a direct, self-contained approach to deriving (1.1) and (1.5)
in a systematic way without relying on any functional equations (satisfied by Dirichlet series) or
identities such as (1.2) and (1.3), which are not available in more general contexts with a similar
sum-of-finite-product form for the generating functions. Our approach is based instead on a fine,
double saddle-point analysis and, although less deep in nature, has the additional advantages of
being applicable to a large number of problems whose (formal) generating functions assume a
similar form. In particular, we can derive the asymptotics of generalized Fishburn matrices whose
entries are restricted to lie in any multiset of nonnegative integers containing particularly 0. The
approach is also applied to more than two dozens of OEIS sequences and to confirm a conjecture
of Jelı́nek in [30] concerning self-dual Fishburn matrices. Furthermore, we will also address the
corresponding distributional aspect by extending the same saddle-point approach and derive the
limit laws of some typical statistics in wide generality, which answers particularly an open problem
raised by Bringmann et al. [8] and Jelı́nek [30].

Our approach is best illustrated through the prototypical (rational) sequence

an := [zn]
∑
k>0

∏
16j6k

(
ejz − 1

)
=

(−1)n

2
[zn]R

(
e−z
)
,(1.7)

where R is defined in (1.6), for which we will show inter alia that

an = cρnnn+ 1
2

(
1 +

ν1

n
+
ν2

n2
+O

(
n−3
))
, with (c, ρ) =

(
12
π3/2 ,

12
eπ2

)
,(1.8)

where ν1 = 24−π2

288
and ν2 = 1

2
ν2

1 ; see (4.1) for an asymptotic expansion. Here the integer sequence
{ann!} corresponds to A158690 in the OEIS. Throughout this paper, we do not distinguish between
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ordinary and exponential generating functions, and focus only on the large-n asymptotics of the
coefficients, so whether the sequence is integer or not is immaterial for our purposes.

Once the asymptotics (1.8) is available, we extend our approach to the sequences of the form

[zn]
∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
,(1.9)

for α ∈ Z+ and ω0, ω ∈ C. Here the generating functions d(z) and e(z) satisfy d(0) > 0, e(0) = 1
and e′(0) 6= 0.

Our result (Theorem 21) for the general form (1.9) will not only be applied to derive the large-n
asymptotics of many sequences in the literature and the OEIS (see Section 6), but also be sufficient
to re-derive (1.1) because of the identity (in the sense of formal power series) due to Andrews and
Jelı́nek [4] ∑

k>0

∏
16j6k

(
1− (1− z)j

)
=
∑
k>0

(1− z)−k−1
∏

16j6k

(
(1− z)−j − 1

)2
.

This and other examples of similar types are collected in Section 6.
In addition to its usefulness in univariate asymptotics, our formulation (1.9) is also effective

in dealing with (bivariate asymptotics) the limiting distributions of various statistics on random
Fishburn matrices with or without restriction on their entries. More precisely, we consider upper-
triangular matrices whose entries belong to Λ, a multiset of nonnegative integers with the gener-
ating function Λ(z) = 1 + λ1z + λ2z

2 + · · · . We then define two classes of matrices: (i) Λ-row-
Fishburn ones without zero row, and (ii) Λ-Fishburn ones without zero row or zero column. The
statistics examined and their limit laws are summarized in Table 1, where we assume a uniform
distribution on the set of all possible such matrices with the same entry-sum.

λ1 > 0 Random Λ-row-Fishburn matrices Random Λ-Fishburn matrices

First row sum Zero-Tuncated-Poisson(log 2) Normal(log n, log n)

Diagonal sum Normal(log n, log n) Normal(2 log n, 2 log n)

1
2

(
n− #(1s)

) {
Poisson

(
λ2π2

12λ21

)
, if λ2 > 0

degenerate, if λ2 = 0

{
Poisson

(
λ2π2

6λ21

)
, if λ2 > 0

degenerate, if λ2 = 0

Table 1. The various asymptotic distributions of the three statistics in large random
Λ-row-Fishburn and Λ-Fishburn matrices with entries belonging to a given multiset
of nonnegative integers Λ (containing 0 exactly once and 1 at least once). Here n
is the sum of all entries in the matrix.

In particular, when Λ is the set of nonnegative integers, the first row-size in random Fishburn
matrices also arises in many different contexts under different guises; see Section 2.3 for more
information. Our limit results thus have many different interpretations and implications.

The proof of these limit laws requires the full power of our setting (1.9) where some parameters
or coefficients are themselves complex variables, as well as the Quasi-Powers Framework (see
[20, 26, 27]), which is a simple synthetic scheme for deriving asymptotic normality and some of
its quantitative refinements.
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From Table 1 we see that in a typical random Fishburn matrix (when all matrices of the same
entry-sum are equally likely), entries equal to 1 are almost everywhere, those to 2 appear like a
Poisson distribution, and the rest is asymptotically negligible. In other words, a random Λ-Fishburn
matrix is asymptotically close to a random primitive Λ-Fishburn matrix in which only 0 and 1 are
allowed as entries. This is also intuitively connected to the asymptotic logarithmicality of the first
row sum and the diagonal sum in random Fishburn matrices.

If we regard a Fishburn matrix of size n as an integer partition of n arranged on upper-triangular
square matrices without zero row or column, then it is of interest to compare the number of 1s in
both models (assuming a uniform distribution in both cases). While the number of 1s in a random
integer partition of n follows asymptotically an exponential distribution with mean of order

√
n,

the number of 1s in a random Fishburn matrix of size n is asymptotically n minus a Poisson
distribution, which means much less random and more deterministic (variance being bounded),
making such a random model probably less useful for general stochastic modeling purposes.

What is less expected is that if the smallest nonzero entry is 2 (namely, 1 6∈ Λ), then its occur-
rence in the resulting random matrices becomes more interesting: not only is there a change of
limit law according as λ3 > 0 or λ3 = 0 from normal to Poisson, but more variability is gained
when λ3 > 0; see Table 2 for a summary of results.

More precisely, we extend further our study in Section 8 to the situation when λ1 = 0 but λ2 > 0
in Λ-Fishburn matrices, which turns out to have a very similar analytic context to the self-dual (or
persymmetric) Fishburn matrices when λ1 > 0, which was considered in [30] in the cases when
Λ = {0, 1} and Λ = Z>0. We adopt the same framework (1.9) and address the asymptotics
when λ1 = 0 and λ2 > 0. Such a formulation is, as in the case of λ1 > 0, not only useful for
the asymptotic enumeration of matrices of large size, but also effective in characterizing the finer
stochastic behaviors of the random matrices, whether they are Fishburn with λ1 = 0 and λ2 > 0 or
self-dual Fishburn with λ1 > 0.

While the logarithmic behaviors in the first row sum and the diagonal sum are similar as in
Table 1, the limit laws of the occurrences of the smallest nonzero entries seem less predicted, no-
tably in the case when 2 is the smallest nonzero entry. Roughly, the periodicity resulted from the
omnipresent factor 2 in the class of Λ-Fishburn matrices without using 1 as entries does change
drastically the behavior from being bounded Poisson to normal with mean and variance both as-
ymptotic to τ

√
n (or indeed a Poisson distribution with unbounded mean τ

√
n; see Section 8.2).

Our formulation and results include as a special case the following asymptotic approximation to
self-dual Fishburn numbers

[zn]
∑
k>0

(1− z)−k−1
∏

16j6k

(
(1− z2)−j − 1

)
= ceβ

√
nρ

1
2
nn

1
2

(n+1)
(
1 +O

(
n−

1
2

))
,(1.10)

confirming Jelı́nek’s conjecture in [30], where

(c, ρ) =
( 6

π3/2
e
π2

24
− 1

4
+ 3

2π2
(log 2)2 ,

6

eπ2

)
and β =

√
6 log 2
π

. The constant c ≈ 1.36195 1039 is given in [30] only in approximate numerical
form. Note specially the change of the dominant exponential part ρ

1
2
nn

1
2

(n+1), and the presence of
the extra factor eβ

√
n when compared to (1.1) and (1.5). It will become clear through our general

frameworks in Sections 5 and 8 why the asymptotic patterns are different although the generating
functions look similar.
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Random Λ-Fishburn matrices
with λ1 = · · · = λ2m−1 = 0

and λ2, λ2m+1 > 0

Random self-dual Λ-Fishburn
matrices with 1s (λ1 > 0)

First row sum Normal(log n, log n) Normal(log n, log n)

Diagonal sum Normal(2 log n, 2 log n) 2 · Normal(log n, log n)

# smallest
nonzero entries



1
2
n− 3

2
· Normal(τ

√
n, τ
√
n),

if m = 1
1
2
n− 2 · Poisson(λ4π

2

6λ22
),

if m > 2, λ4 > 0, n even
1
2
(n− 2m− 1)− 2 · Poisson(λ4π

2

6λ22
),

if m > 2, λ4 > 0, n odd
degenerate, if λ3 = λ4 = 0


n− 2 · Poisson

(
λ2
λ1

log 2
)

∗ 4 · Poisson
(
λ2π2

12λ21

)
,

if λ2 > 0

degenerate, if λ2 = 0

Table 2. The asymptotic distributions of the three statistics in large random Λ-
Fishburn and self-dual Λ-Fishburn matrices with entries belonging to a given mul-
tiset of nonnegative integers Λ (containing 0 exactly once and with or without 1s).
Here n is the sum of all entries in the matrix, and τ := λ3π

2
√

3λ
3/2
2

.

Similarly, for primitive self-dual Fishburn numbers, we also have

[zn]
∑
k>0

(1 + z)k+1
∏

16j6k

(
(1 + z2)j − 1

)
= ceβ

√
nρ

1
2
nn

1
2

(n+1)
(
1 +O

(
n−

1
2

))
,(1.11)

where (c, ρ) =
(

3
π3/2 e

−π
2

24
− 1

4
+ 3

2π2
(log 2)2 , 6

eπ2

)
and β =

√
6 log 2
π

. We see that the two asymptotic

approximations (1.10) and (1.11) differ by a factor of 2e
π2

12 ≈ 4.55, or, about 21.9% of self-dual
Fishburn matrices are primitive; see Figure 1.1. Of course, by comparing these estimates with
(1.1), we see that the proportion of self-dual Fishburn matrices is asymptotically negligible (indeed
factorially small).

This paper is structured as follows. In the next section, we outline the background on the Fish-
burn matrices, and then derive the generating functions that will be analyzed in later sections. Then
we describe the saddle-point method in detail in Section 3 which will then be used and modified
throughout this paper, with the finer asymptotic expansions briefly discussed in Section 4. Then
we consider the general framework (1.9) in Section 5 by extending the saddle-point analysis of
Section 3. Asymptotics of generalized Fishburn matrices as well as other univariate examples are
collected and discussed in Section 6. The asymptotic distributions of the statistics on random Fish-
burn matrices as those given in Table 1 are then derived in Section 7. The extension of (1.9) to
the case when e1 = 0 and e2 > 0 is examined in Section 8, together with univariate and bivariate
applications.

Notations. As mentioned at the beginning of this section, (c, ρ) is used generically and will
always be locally defined. Other generic and mostly local symbols include c0, c(·), ε, f , and an;
their values will be specified whenever ambiguities may occur.
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LHS of (1.10)

eβ
√
nρ

1
2nn

1
2 (n+1)

(
1− 0.2√

n

)
LHS of (1.11)

eβ
√
nρ

1
2nn

1
2 (n+1)

(
1− 1.5√

n

)

6
π3/2 e

π2

24
− 1

4
+ 3

2π2
(log 2)2 ≈ 1.362 3

π3/2 e
−π

2

24
− 1

4
+ 3

2π2
(log 2)2 ≈ 0.299

Figure 1.1. Numerical convergence of the two ratios LHS of (1.10)

eβ
√
nρ

1
2nn

1
2 (n+1)

and
LHS of (1.11)

eβ
√
nρ

1
2nn

1
2 (n+1)

(with proper corrections for the O-terms) to their respective limit
c.

2. FISHBURN MATRICES AND RELATED COMBINATORIAL OBJECTS

Throughout this paper, the size of a matrix is defined to be the sum of all its entries. Similarly,
we write the size of a row or a column or the diagonal to represent their respective sum.

Definition 1 (Fishburn matrix). A Fishburn matrix is an upper-triangular square one with nonneg-
ative integer entries such that no row or no column consists solely of zeros.

As a succinct representation tool for interval orders (see [23, 18]), Fishburn matrices (called IO-
matrices in [23], characteristic matrices in [17, 18], and composition matrices in [12], and named
so in [9]) offer not only algorithmic but also combinatorial advantages, and over the years their
study was largely enriched by the corresponding developments in combinatorial enumeration and
bijections, following notably Bousquet-Mélou et al.’s paper [6]. In particular, the useful database
OEIS [29] played a key role in linking the various structures in different areas some of which will
be briefly described later.

Closer to our interest here, the enumeration of Fishburn matrices of a given dimension was
already investigated in the early papers [1, 23], and recursive algorithms were later proposed for
computing matrices of a given size (see e.g.,[24, 39]), culminating in the definitive work of Zagier
[44], where, through the proper use of generating functions, effective asymptotic approximations
(1.1) for Fishburn matrices of large size are derived.

We describe Fishburn matrices in this section, together with some of their variants and general-
izations. We also derive the bivariate generating functions for some statistics that will be examined
in more detail in later sections.

2.1. Fishburn matrices and their variants. Recall that the Fishburn numbers (A022493) enu-
merate Fishburn matrices of a given size and can be computed by the generating function∑

k>0

∏
16j6k

(
1− (1− z)j

)
= 1 + z + 2z2 + 5z3 + 15z4 + 53z5 + 217z6 + · · · .

For example, all 15 Fishburn matrices of size 4 are depicted in Figure 2.1.

8

https://oeis.org/A022493


(4)
(

1 2
0 1

)(
2 1
0 1

)(
1 1
0 2

)(
2 0
0 2

)(
3 0
0 1

)(
1 0
0 3

)
(

1 1 0
0 1 0
0 0 1

)(
1 0 1
0 1 0
0 0 1

)(
1 0 0
0 1 1
0 0 1

)(
2 0 0
0 1 0
0 0 1

)(
1 0 0
0 2 0
0 0 1

)(
1 0 0
0 1 0
0 0 2

)(
1 1 0
0 0 1
0 0 1

)1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Figure 2.1. All 15 Fishburn matrices of size 4. The occurrence of 1 is seen to be
predominant.

From a combinatorial viewpoint, the Fishburn numbers also enumerate several seemingly unre-
lated structures some of which are listed as follows; see [6, 9, 14, 13, 16, 18, 21, 30, 33, 35, 43] for
the bijective and algebraic proofs of these equinumerosity.

• Ascent sequences of length n, which are sequences of nonnegative integers (x1, x2, . . . , xn)
such that for each i, 0 6 xi 6 1 + |{j : 1 6 j 6 i− 2 and xj < xj+1}|.
• (2− 1)-avoiding inversion sequences of length n: these are sequences x = (x1, x2, . . . , xn)

such that 0 6 xi < i and there exists no i < j such that xi = xj + 1.
• (2|31̄)-avoiding permutations of n elements, which are permutations π without subse-

quence πiπi+1πj such that πi − 1 = πj and πi < πi+1.
• (2 + 2)-free posets of n elements: these are posets (P,≺) with interval representations,

namely, for each x ∈ P , a real closed interval [`x, rx] is associated to x such that x ≺ y in
P exactly when rx < `y.
• Stoimenow matchings of length 2n: A matching of the set [2n] = {1, 2, . . . , 2n} is a par-

tition of [2n] into subsets (called arcs) of size exactly two. A Stoimenow matching is one
without nested pair of arcs such that either the openers or the closers are next to each other.
• Regular linearized chord diagrams of length 2n: A regular linear chord diagram is a fixed-

point free involution τ on the set [2n] such that if [i, i + 1] ⊂ [τ(i + 1), τ(i)] whenever
τ(i+ 1) < τ(i).

Two variants of Fishburn matrices, row-Fishburn matrices and self-dual Fishburn matrices were
introduced by Jelı́nek [30] during his study on refined enumeration of self-dual interval orders.
Row-Fishburn matrices are upper-triangular ones with non-negative integer entries such that no
row is composed solely of zeros. The corresponding generating function satisfies∑

k>0

∏
16j6k

(
(1− z)−j − 1

)
= 1 + z + 3z2 + 12z3 + 61z4 + 380z5 + 2815z6 + · · · ,(2.1)

where the coefficient of zn equals the number of row-Fishburn matrices of size n.
Furthermore, a matrix is primitive if all entries are either 0 or 1. Substituting z by z

1+z
leads to

the generating function for the primitive row-Fishburn number (A179525)∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
= 1 + z + 2 z2 + 7 z3 + 33 z4 + 197 z5 + 1419 z6 + · · · .(2.2)

Reversely, (2.1) can be obtained from (2.2) by substituting z with z
1−z .

On the other hand, a Fishburn matrix is self-dual if it is persymmetric, or symmetric with respect
to the northeast-southwest diagonal. The number of self-dual Fishburn matrices of size n satisfies
(1.10), and the number of primitive self-dual Fishburn number of size n is given in (1.11). In
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particular, for the number of self-dual Fishburn matrices of a give size, we have∑
k>0

(1− z)−k−1
∏

16j6k

(
(1− z2)−j − 1

)
= 1 + z + 2 z2 + 3 z3 + 7 z4 + 13 z5 + 33 z6 + · · · ,

so that 7 among the 15 Fishburn matrices of size 4 are self-dual, as can be readily checked with
Figure 2.1.

2.2. Generalized Fishburn matrices. We now extend the matrices by allowing more flexible
entries. Let Λ be a multiset of nonnegative integers with the generating function

Λ(z) := 1 +
∑
λ∈Λ

zλ = 1 + λ1z + λ2z
2 + · · · .(2.3)

Assume throughout this paper except in Sections 8.1, 8.3 and 8.4 that λ1 > 0, so that {0, 1} ∈ Λ.

Definition 2 (Λ-Fishburn matrix). An upper-triangular matrix is called Λ-Fishburn if every row
and column has non-zero size, and all entries lie in the set Λ.

Definition 3 (Λ-row-Fishburn matrix). An upper-triangular matrix is called Λ-row-Fishburn if all
entries lie in the set Λ without zero row.

Proposition 1. The number of Λ-row-Fishburn matrices of size n is given by

[zn]
∑
k>0

∏
16j6k

(
Λ(z)j − 1

)
,(2.4)

and that of Λ-Fishburn matrices by

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
= [zn]

∑
k>0

Λ(z)k+1
∏

16j6k

(
Λ(z)j − 1

)2
.(2.5)

Proof. The first generating function (2.4) follows from the definition of Λ-row-Fishburn matrices.
For a Λ-row-Fishburn matrix of dimension k, and for any j, 1 6 j 6 k, the generating function
of the (k − j + 1)-st row counted by the size (variable z) is Λ(z)j − 1. As a result, the generating
function for Λ-row-Fishburn matrices of dimension k is given by

∏
16j6k(Λ(z)j − 1). Summing

over all k leads to (2.4).
On the other hand, the generating function for primitive Fishburn matrices is given by (including

the constant 1 for the empty matrix; see [30])∑
k>0

∏
16j6k

(
1− (1 + z)−j

)
.

Substituting 1 + z by Λ(z) yields the generating function for Λ-Fishburn matrices in the general
case.

The right-hand side of the identity (2.5) follows from the following q-identity due to Andrews
and Jelı́nek [4]∑

k>0

uk
∏

16j6k

(
1− 1

(1− s)(1− t)j−1

)
=
∑
k>0

(1− s)(1− t)k
∏

16j6k

((
1− (1− s)(1− t)j−1)

)(
1− u(1− t)j

))
,

(2.6)

by substituting u = 1 and s = t = 1− Λ(z) on both sides. �
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2.3. Statistics on Fishburn matrices. The study of statistics on the Fishburn structures traces
back to the work by Andresen and Kjeldsen [1] in the context of transitively directed graphs (see
also [30]), where they studied the numbers of primitive Fishburn matrices counted by the dimen-
sion and by the size of the first row (with the notation ξ(n, k) in [1]).

Stoimenow [39] found a recursive formula for the numbers of regular linearized chord diagram
with a given length of the leftmost chord. Subsequently, it was discovered [6, 21, 30, 34, 35, 43]
that these numbers are equivalent to the following ones:

• the sum of entries in the first row (or the last column) of Fishburn matrices of size n;
• the number of minimal (or maximal) elements in (2 + 2)-free posets of size n;
• the maximal entries (or right-to-left minimal entries, or the number of zeros) in ascent

sequences of length n;
• the maximal entries in (2− 1)-avoiding inversion sequences of length n;
• the length of the initial run of openers in Stoimenow matchings of length [2n];
• the length of the initial decreasing run in (2|31̄)-avoiding permutations of length n;
• the number of left-to-right minima (or left-to-right maxima; or right-to-left maxima) in

(2|31̄)-avoiding permutations of length n.

These statistics are classified as Stirling statistics (or roughly statistics with logarithmic mean
and variance); see [21]. On the other hand, the diagonal size that we address in this paper represents
another Stirling statistic, which may also have interpretations in terms of other structures.

Parallel to the Stirling statistics, the Eulerian statistics (or roughly statistics with linear mean
and variance) have also been intensively studied but the corresponding (asymptotic) distributional
aspect has remained open and will be addressed elsewhere.

2.4. Bivariate generating functions for generalized Fishburn matrices. We study the asymp-
totic distributions of the following three random variables on random Λ-Fishburn and Λ-row-
Fishburn matrices, assuming a uniform distribution on the set of all size-n matrices: the size of the
first row, the size of the diagonal, and the number of occurrences of 1.

The approach we use to characterize the corresponding limit laws relies heavily on the cor-
responding bivariate generating functions and our double saddle-point analysis. We derive the
required generating functions in this subsection. We use the convention that f(z, v) is the bivari-
ate generating function for the quantity X if [znvm]f(z, v) denotes the number of Λ-row-Fishburn
matrices of size n with X = m.

Proposition 2 (Statistics on Λ-row-Fishburn matrices). We have the following bivariate generating
functions with z marking the matrix size.

(i) The size of the first row

(2.7) 1 +
∑
k>0

(
Λ(vz)k+1 − 1

) ∏
16j6k

(
Λ(z)j − 1

)
,

(ii) the size of the diagonal

(2.8)
∑
k>0

∏
16j6k

(
Λ(vz)Λ(z)j−1 − 1

)
,

and
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(iii) the number of 1s

(2.9)
∑
k>0

∏
16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)
.

Proof. Given a Λ-row-Fishburn matrix of dimension k+1, the generating function for the first row
size (marked by vz) is Λ(vz)k+1− 1, the remaining k rows contributing

∏
16j6k

(
Λ(z)j − 1

)
, as in

the proof of (2.4). The proofs for the other two parameters are similar and thus omitted. �

For Λ-Fishburn matrices, the proof is less straightforward and we need a fine-tuned version of
Jelı́nek’s Theorem 2.1 in [30] in order to enumerate both the first row and the diagonal sizes.

Let P denote the set of primitive (binary) Λ-Fishburn matrices. Define first

Gk(t, u, v, w, x, y)

:=
∑

(Mi,j)k×k∈P

tMk,ku
∑

26j<kMj,kv
∑

26j<kMj,jw
∑

1<i<j<kMi,jxM1,ky
∑

16j<kM1,j ,

so that t marks the lower-right corner (which is always 1), u the size of the last column except
the two ends, v the size of the diagonal except the two ends, w the size of all interior cells, x the
upper-right corner, and y the size of the first row except the upper-right corner.

Lemma 3. The generating function F (s, t, u, v, w, x, y) :=
∑

k>2Gk(t, u, v, w, x, y)sk satisfies

F (s, t, u, v, w, x, y)

= t
∑
k>0

sk+2y(1 + x)(1 + y)k

(1 + u)(1 + v)(1 + w)k − 1

∏
06j6k

(1 + u)(1 + v)(1 + w)j − 1

1 + s
(
(1 + u)(1 + w)j − 1

) .(2.10)

Proof. (Sketch) By definition, it is clear thatG1 = x andGk(t, u, v, w, x, y) = tGk(1, u, v, w, x, y)
for k > 2. By the recursive construction used in [30, Lemma 2.8], we derive the recurrence relation

Gk+1(1, u, v, w, x, y)

= Gk(u+ v + uv, u, v + w + vw,w, x+ y + xy, y)− vGk(1, u, v, w, x, y)

= (u+ v + uv)Gk(1, u, v + w + vw,w, x+ y + xy, y)− vGk(1, u, v, w, x, y),

for k > 2. Then from this and the iterative arguments used in [30], we deduce (2.10); see [30] for
details. �

Proposition 4 (Statistics on Λ-Fishburn matrices). We have the following bivariate generating
functions with z marking the matrix size.

(i) The size of the first row∑
k>0

∏
16j6k

(
1− Λ(vz)−1Λ(z)1−j)

= Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(vz)Λ(z)j−1 − 1

)(
Λ(z)j − 1

))
,

(2.11)
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(ii) the size of the diagonal

1 + Λ(vz) + (Λ(vz)− 1)2
∑
k>0

∏
16j6k

(
Λ(vz)− Λ(z)−j

)
= Λ(vz)

∑
k>0

Λ(z)k
∏

16j6k

(
Λ(vz)Λ(z)j−1 − 1

)2
,

(2.12)

and
(iii) the number of 1s∑

k>0

∏
16j6k

(
1− (Λ(z) + λ1(v − 1)z)−j

)
=
∑
k>0

(Λ(z) + λ1(v − 1)z)k+1
∏

16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)2
.

(2.13)

Proof. (i) For the size of the first row, we have, by (2.10), that the generating function for prim-
itive Fishburn matrices with size marked by z and the first row size by v is given by

F (1, z, z, z, z, vz, vz) =
∑
k>0

vz2(1 + vz)k+1(1 + z)k+1

(1 + z)k+2 − 1

∏
06j6k

(
1− (1 + z)−j−2

)
,

= vz
∑
k>1

(1 + vz)k
∏

16j6k

(
1− (1 + z)−j

)
.

Then, by the Andrew-Jelı́nek identity (2.6) and the identity [4, Eq. (1)], we obtain

1 + vz + F (1, z, z, z, z, vz, vz)

= (1 + vz)
∑
k>0

(1 + z)k
∏

16j6k

(
(1 + vz)(1 + z)j−1 − 1

)(
(1 + z)j − 1

)
.

Substituting 1 + vz by Λ(vz) and 1 + z by Λ(z) proves (2.11).
Alternatively, it is known that the generating function for the size of the first row (marked

by v) is given by (see [21, 33])∑
k>0

∏
16j6k

(1− (1 + vz)−1(1 + z)1−j).

Substituting 1 + vz by Λ(vz) and 1 + z by Λ(z) gives the alternative generating function for
the first row size ∑

k>0

∏
16j6k

(
1− Λ(vz)−1Λ(z)1−j),

which, equals, by substituting u = 1, s = 1 − Λ(vz) and t = 1 − Λ(z) in (2.6), the same
generating function on the right-hand side of (2.11).

(ii) For the size of the diagonal, we have, again, by (2.10), the generating function

1 + vz + F (1, v2z, z, vz, z, z, z) = 1 + vz + (vz)2
∑
k>0

∏
16j6k

(
1 + vz − (1 + z)−j

)
.
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The same substitutions 1 + vz 7→ Λ(vz) and 1 + z 7→ Λ(z) give the left-hand side of (2.12).
Applying now (2.6) with u = 1 + vz, s = 1 − (1 + vz)(1 + z) and t = −z, and then using
the same substitutions, we obtain the right-hand side of (2.12).

(iii) The generating functions (2.13) for the number of 1s follow from substituting Λ(z) by Λ(z)+
λ1(v − 1)z in (2.5).

�

3. ASYMPTOTICS OF THE PROTOTYPE SEQUENCE A158690

Consider the sequence an := [zn]A(z), where

A(z) :=
∑
k>0

Ak(z), with Ak(z) :=
∏

16j6k

(
ejz − 1

)
,(3.1)

which is used as the running and prototypical example of our analytic approach. The sequence
{n!an}n>0 equals A158690 and can be generated, in addition to (1.7), by many different forms
(see [8, 2]), showing partly the diversity and structural richness of the sequence

A(z) =
∑
k>0

∏
16j6k

(
1− e−(2j−1)z

)
=
∑
k>0

e−(k+1)z
∏

16j6k

(
1− e−2jz

)
=
∑
k>0

e(2k+1)z
∏

16j62k

(
ejz − 1

)
=

1

2

(
1 +

∑
k>0

e(k+1)z
∏

16j6k

(
ejz − 1

))
.

Among these series forms, we work on (3.1) because it is simpler and the terms in the summation
contain only positive Taylor coefficients.

Theorem 5. As n tends to infinity, the sequence A158690 satisfies

an := [zn]A(z) ' cρnnn+ 1
2 , with (c, ρ) =

(
12
π3/2 ,

12
eπ2

)
.(3.2)

Remark 1. Alternatively, (3.2) can be written as

an ' cρnn!, with (c, ρ) =
(

6
√

2
π2 ,

12
π2

)
.

Since 12
eπ2 < 1 < 12

π2 , we see that n!� an � nn. Indeed, with

an,k := [zn]Ak(z),

we have an,n = n!, and it can be proved that

an,k ∼


nn−k

(n− k)!4n−k
n!, if 0 6 n− k = o(

√
n),

1

n!

(k(k + 1)

2

)n
, if 1 6 k = o(

√
n),

so that the major contribution to an does not come from the ranges when k is either very small
compared to n or very close to n.

14

https://oeis.org/A158690
https://oeis.org/A158690
https://oeis.org/A158690


Our approach consists simply in computing the asymptotics of an,k by the saddle-point method
(see [20]) for each 1 6 k < n, and then summing an,k over all k (in turn involving another appli-
cation of saddle-point method); indeed, due to high concentration near the maximum, only a small
neighborhood of k near µn, µ := 12

π2 log 2 ≈ 0.84, will contribute to the dominant asymptotics
(3.2). Thus we are in the context of a double saddle-point method.

More precisely, we begin with the expression

an =
∑

16k6n

an,k =
∑

16k6n

r−n

2πi

∫ π

−π
e−inθAk(re

iθ) dθ,

and follow the procedures outlined below.

• Find the positive solution pair (k, r) of the equations (∂kr
−nAk(r), ∂rr

−nAk(r)) = (0, 0),
so as to identify the terms an,k reaching the maximum modulus for each fixed n; see
Lemma 11.
• Once the range of k ∼ µn is identified, show, by simple saddle-point bound for Taylor co-

efficients, that the contribution to an of an,k from the range |k−µn| > n
5
8 is asymptotically

negligible; see Proposition 15.
• In the central range |k−µn| 6 n

5
8 , the integral

∫
n−

3
86|θ|6π

is asymptotically negligible; see
Proposition 17.
• Then inside the ranges |k−µn| 6 n

5
8 and

∫
|θ|6n−

3
8
, compute the asymptotic approximation

(3.2) by local expansions and term-by-term integration; see Section 3.5.
• These procedures can be refined to get finer expansions if desired.

For all these purposes, it turns out that a precise asymptotic approximation to logAk(r) will
largely simply the analysis. Since we will also need asymptotics of the derivatives of logAk(r),
we propose a complex-variable version so as to avoid repeated use of the Euler-Maclaurin formula.

3.1. Euler-Maclaurin formula and asymptotic expansions. We apply the Euler-Maclaurin for-
mula to approximate the various sums encountered in this paper, which for completeness is in-
cluded as follows.

Lemma 6 (Euler-Maclaurin formula). Assume that ϕ is m-times continuously differentiable over
the interval [a, b], m > 1. Then

b∑
j=a+1

ϕ(j) =

∫ b

a

ϕ(t) dt+
ϕ(b)− ϕ(a)

2
+

bm/2c∑
`=1

B2`

(2`)!

(
ϕ(2`−1)(b)− ϕ(2`−1)(a)

)
+

(−1)m+1

m!

∫ b

a

ϕ(m)(t)Bm({t})dt,

(3.3)

where {x} denotes the fractional part of x, the B`’s and the Bn(t)’s are Bernoulli numbers and
polynomials, respectively.

When ϕ is infinitely differentiable (which is the case for all functions considered in this paper),
we can push the expansion to any m > 0 depending on the required error, making the error term
under control.
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The following expansion is crucial in our saddle-point analysis. Let

Lk(z) := logAk(z) =
∑

16j6k

log
(
ejz − 1

)
.

Proposition 7. For k →∞, we have

Lk(z) = k log
(
ekz − 1

)
− I(kz)

z
+

1

2
log

2π
(
ekz − 1

)
z

+
z
(
ekz + 1

)
24
(
ekz − 1

) +
∑

26j<m

B2j

(2j)!
·
z2j−1e−kzE2j−2

(
e−kz

)(
1− e−kz

)2j−1

+O
(
k1−2m + z2m−1

)
,

(3.4)

uniformly for k|z| 6 2π − ε when | arg z| 6 π − ε, where

I(z) :=

∫ z

0

t

1− e−t
dt,

and En(x) =
∑

06j<n

〈
n
j

〉
xj denote the polynomials of Eulerian numbers.

Proof. For simplicity and for later use, we compute only the first few terms by working outm = 2,
the general form following from the relation

∂mz log
(
exz − 1

)
= (−1)m−1x

me−xzEm−1

(
e−xz

)(
1− e−xz

)m (m > 2);

see [40] for similar analysis.
Since log

(
ejz − 1

)
is undefined at j = 0, we split the sum into two parts:

Lk(z) = log k!−
∑

16j6k

log
j

ejz − 1
.

By the Euler-Maclaurin formula (3.3), we find that∑
16j6k

log
j

ejz − 1
=

∫ k

0

log
x

exz − 1
dx+

1

2
log

kz

ekz − 1

+
1

12

(
1

k
+
z

2
− z

1− e−kz

)
+O

(
k−2 + |z|2

)
.

By an integration by parts, we see that∫ k

0

log
x

exz − 1
dx = k log

k

ekz − 1
− k +

I(kz)

z
.

The first few terms of (3.4) then follow from this and Stirling’s formula for log k!.
For the error term, we have, by (3.6) with m = 2 and B2(x) = x2 − x+ 1

6
,

R2 :=

∫ k

0

(
z2exz(
exz − 1

)2 −
1

x2

)(
{x}2 − {x}+ 1

6

)
dx.
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Since k|z| 6 1, we see that

R2 = O

(∫ 1/|z|

0

|z|2 dx

)
= O(|z|).

On the other hand, if 1 6 k|z| 6 2π − ε, then

R2 = O

(
|z|+

∫ k

1/|z|

(
|z|2e<(xz)

|exz − 1|2
+

1

x2

)
dx

)
= O

(
|z|+ k−1

)
,

as required, where <(z) denotes the real part of z. This proves (3.4). �

Note that

I(z) =

∫ z

0

t

1− e−t
dt =

z2

2
+ dilog

(
e−z
)
,

where dilog(1− z) =
∑

k>1
zk

k2
denotes the dilogarithm function. Also

dilog
(
e−z
)

=
∑
j>1

Bj−1

j!
zj, (|z| < 2π),

where the Bj’s denote the Bernoulli numbers.
The main reason of stating this complex-variable version for Lk(z) is that termwise differenti-

ation with respect to z is allowed by analyticity in compact domain (or Cauchy’s integral formula
for derivatives), leading to an asymptotic expansion for all higher derivatives of Lk(z); see, e.g.,
[36, 42]. In this way, we obtain, for example, the following approximations, which will be needed
below.

Corollary 8. Uniformly as k →∞ and k|z| 6 2π − ε when | arg(z)| 6 π − ε,

zL′k(z) =
∑

16j6k

jz

1− e−jz
=
I(kz)

z
+
kz − 1 + e−kz

2
(
1− e−kz

) +O
(
k−1 + |z|

)
.(3.5)

Corollary 9. Let m > 2. Then

zmL
(m)
k (z) = (−1)m−1zm

∑
16j6k

jme−jzEm−1

(
e−jz

)(
1− e−jz

)m
= zm∂m−1

z

(
I(kz)

z2
+
kz − 1 + e−kz

2z
(
1− e−kz

) )+O
(
k−1 + |z|

)
,

(3.6)

uniformly as k →∞, k|z| 6 2π − ε when | arg z| 6 π − ε.

In particular, we see that each rmL(m)
k (r) is asymptotically of linear order when kr = O(1).

3.2. Saddle-point method. I: Identifying the central range. A very simple uniform estimate
for an,k is readily obtained by the saddle-point bound for positive Taylor coefficients (see [20,
Sec. VIII.2]).
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Lemma 10. For 1 6 k < n

an,k 6 r−nAk(r),(3.7)

where r > 0 is chosen to be the saddle-point, namely, the unique positive solution of the equation

rL′k(r) =
rA′k(r)

Ak(r)
=
∑

16j6k

jr

1− e−jr
= n.(3.8)

Such an r obviously exists for n > 1 and 1 6 k < n because x/(1− e−x) > 1 is monotonically
increasing with x > 0. Also r →∞ when k = o(n) and r → 0 when k → n. In particular, r = 0
when k = n. See Corollary 13 for a more precise description.

The simple bound (3.7) is sufficient to give not only the right factorial term nn in (3.2) but also
the right exponential one

(
12
eπ2

)n; see Lemma 12.

Lemma 11. For 1 6 k = qn < n

an,k = O
(
nn+ 1

2 eφ(q,%)n
)
,(3.9)

where

φ(q, %) = − log %+ q log(eq% − 1)− 1,(3.10)

and % = nr > 0 solves the equation

I(q%) = %.(3.11)

Proof. We begin with the first-order approximation to rL′k(r) already derived in (3.5) with the
saddle-point |z| = r = %

n
and k = qn

%

n
L′k

(%
n

)
∼ n

%
I(q%),

which leads to the approximate saddle-point equation (3.11).
On the other hand, we have, by (3.4),

log
(
r−nAk(r)

)
= n log n+ nφ(q, %) + 1

2
log n+O(1),

where φ is given by

φ(q, %) = − log %+ q log(eq% − 1)− I(q%)

%
.

By (3.11), we then obtain (3.10). �

Lemma 12. The maximum of φ(q, %) for q ∈ [0, 1] subject to the condition I(q%) = % is reached
by the pair

(q, %) = (µ, ξ) :=
(12

π2
log 2,

π2

12

)
,(3.12)

with the maximum value φ(µ, ξ) = − log π2

12
− 1.
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Proof. We solve the system of equations (∂qφ, ∂%φ) = (0, 0) with positive solution, or, equiva-
lently, {

log
(
eq% − 1

)
= 0,

I(q%) = %.

From the first equation, we have q% = log 2. Then by the relation

I(log 2) =

∫ log 2

0

t

1− e−t
dt =

π2

12
,

we obtain the solution pair (3.12). This is one of the sources of the ubiquitous factor π2

6
in this

paper. Now, by viewing w = w(q) as a function of q, we see that, when (q, w) satisfies the
condition I(qw) = w,

∂2
qφ(q, w) =

w

1− q2w − e−qw
.

We now prove that ∂2
qφ(q, w) < 0 for all pairs (q, w) such that I(qw) = w. First, the function

t 7→ t
1−e−t is motononically increasing for t > 0; then, with w 6= 0,

w =

∫ qw

0

t

1− e−t
dt <

qw

1− e−qw
· qw =

q2w2

1− e−qw
,

implying that

w

(
1− q2w

1− e−qw

)
=
w
(
1− q2w − e−qw

)
1− e−qw

< 0.

Thus the function q 7→ ∂2
qφ(q, w) is always negative for all pairs (q, w) such that I(qw) = w,

showing that q 7→ φ(q, w) is concave downward when w satisfies I(qw) = w; see Figure 3.1. This
proves the lemma.

�

Figure 3.1. The concavity of the function φ(q, %) when % = %(q) satisfies (3.11) for
q ∈ [0.2, 1] (left) and q ∈ [0.7, 0.95] (right).

From the equation (3.11), we have the uniform estimate for the saddle-point r in (3.8). The
notation an � bn means that the ratio of the two sequences remain bounded and nonzero.

Corollary 13. The saddle-point r satisfies r � n−k
k2

for 1 6 k < n.
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Proof. We have

I(x) =

{
x+ 1

4
x2 +O(x3), as x→ 0,

1
2
x2 + π2

6
− xe−x +O

(
e−x
)
, as x→∞.

If k = o(n), then q% = kr → ∞ and the left-hand side of (3.11) is asymptotic to 1
2
(kr)2, and we

then have r ∼ 2n
k2

. On the other hand, if n− k = o(n) or kr → 0, then the left-hand side of (3.11)
is asymptotic to kr + 1

4
(kr)2, so we get r ∼ 4(n−k)

k2
. In either case, we have r � n−k

k2
. Note that

r → 0 iff k√
n
→∞. �

3.3. Saddle-point method. II: Negligibility of summands outside the central range. Define

σ := π−2
√

6
(
24(log 2)2 − π2

)
≈ 0.31988.(3.13)

Lemma 14. Write k = µn+ xσ
√
n. Then uniformly for x = o

(
n

1
6

)
,

an,k = O
(
ρnnn+ 1

2 e−
1
2
x2
)
, with ρ = 12

eπ2 .(3.14)

Proof. Assume first

q = µ+
σx√
n
,(3.15)

where µ is already determined in Lemma 12 but the value of σ given in (3.13) has remained
unknown (and will be specified by the following procedure). Substituting this q into the saddle-
point equation (3.8), as approximated by (3.5), and solving asymptotically for %, we then obtain

% = ξ +
ξ1x√
n

+
ξ2 + ξ3x

2

n
+O

( |x|+ |x|3
n

3
2

)
,(3.16)

where, with τ = 2(log 2)2 − π2

12

ξ1 = −π4 log 2
72 τ

, ξ2 = −π4(2 log 2−1)
288 τ

and ξ3 = π6(288τ2+(log 2)π4+24π2τ−π4)
248832 τ3

.(3.17)

Then we substitute the expansions (3.15) and (3.16) into (3.10), giving

φ(q, %) = − log
π2

12
− 1 +

1

n

(
1

2
− log 2− π4σ2x2

144τ

)
+O

( |x|+ |x|3
n

3
2

)
.

So if we take σ2 = 72π−4τ (which is identical to the expression given in (3.13)), then we see that

enφ(q,%) =

√
e

2

( 12

eπ2

)n
e−

1
2
x2
(

1 +O
( |x|+ |x|3√

n

))
,

uniformly for x = o
(
n

1
6

)
. This, together with (3.9) and Lemma 12, proves (3.14). �

Proposition 15. Let

k± := µn±
√

2σn
5
8 ,(3.18)

where µ and σ are given in (3.12) and (3.13), respectively. Then, with ρ = 12
eπ2 , ∑

16k<k−

+
∑

k+<k6n

 an,k = O
(
ρnnn+ 3

2 e−n
1
4

)
.(3.19)
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Proof. By monotonicity of φ(q, w) (see Lemma 12), ∑
16k<k−

+
∑

k+<k6n

 an,k = O(nan,k− + nan,k+).

Then (3.19) follows from (3.14) with x =
√

2n
1
8 . �

3.4. Saddle-point method. III: Negligibility of integrals away from zero. We now show that
in the remaining sum (k± defined in (3.18))∑

k−6k6k+

r−n

2π

∫ π

−π
e−inθAk(re

iθ) dθ,

the integral over the range θ0 6 |θ| 6 π, θ0 := 6n−
3
8 is asymptotically negligible. Such a θ0 is

always chosen so that nθ2
0 → ∞ and nθ3

0 → 0; see [20]. We begin with a uniform bound for
|Ak(z)|.

Lemma 16. Let θ := arg(z). Then, uniformly for |z| > 0 and |θ| 6 π,

|Ak(z)| 6 Ak(|z|) exp

(
−k(k + 1)|z| θ2

2π2

)
, (k = 1, 2, . . . ).(3.20)

Proof. The uniform bound (3.20) is a direct consequence of the inequality (see [38, Appendix])∣∣ez − 1
∣∣ 6 (e|z| − 1

)
e−|z|θ

2/π2

, (|θ| 6 π).(3.21)

This is proved as follows. First ∣∣ez − 1
∣∣ =

∣∣e 1
2
z
∣∣∣∣e 1

2
z − e−

1
2
z
∣∣

6 e
1
2
|z| cos θ

(
e

1
2
|z| − e−

1
2
|z|)

=
(
e|z| − 1

)
e−

1
2
|z|(1−cos θ),

where the inequality results from the fact that [tn]
(
et − e−t

)
> 0 for all n > 0. Then (3.21) follows

from the elementary inequality 1− cos θ > 2
π2 θ

2 for |θ| 6 π. �

Proposition 17. Define k± as in (3.18) and θ0 := 6n−
3
8 . Then, with ρ = 12

eπ2 ,∑
k−6k6k+

r−n

2π

∫
θ06|θ|6π

e−inθAk(re
iθ) dθ = O

(
ρnnn−

1
8 e−n

1
4
)
.(3.22)

Proof. By (3.20) with z = reiθ,

∑
k−6k6k+

r−n

2π

∫
θ06|θ|6π

e−inθAk(re
iθ) dθ = O

 ∑
k−6k6k+

r−nAk(r)

∫ ∞
θ0

e−
k2rθ2

2π2 dθ

 .
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Now, with k ∼ µn (k− 6 k 6 k+) and rn ∼ ξ (see (3.12)), we then have

∫ ∞
θ0

e−
k2rθ2

2π2 dθ = O

(
n

3
8

k2r
e
− k2r

2π2n3/4

)

= O

(
n−

5
8 e−

216(log 2)2

π4
(1+o(1))n

1
4

)
.

Note that 216(log 2)2

π4 ≈ 1.065 · · · > 1. Then (3.22) follows from (3.14). �

3.5. Saddle-point method. IV: Proof of Theorem 5. From the two estimates (3.19) and (3.22),
we have, with ρ = 12

eπ2 ,

an =
∑

k−6k6k+

r−nAk(r)JI +O
(
ρnnn+ 3

2 e−n
1
4

)
(3.23)

where (θ0 = 6n−
3
8 )

JI :=
1

2π

∫ θ0

−θ0
e−inθ

Ak(re
iθ)

Ak(r)
dθ.

We begin by evaluating asymptotically the integral JI .

Lemma 18. If k = µn+ xσ
√
n, where µ and σ are given in (3.12) and (3.13), respectively, then

JI '
√

3

π3/2σ
n−

1
2 ,(3.24)

uniformly for x = o
(
n

1
6

)
.

Proof. Expand Lk(reiθ) in θ:

log
Ak
(
reiθ
)

Ak(r)
= Lk

(
reiθ
)
− Lk(r) :=

∑
j>1

υj(r)

j!
(iθ)j.

First of all, υ1(r) =
rA′k(r)

Ak(r)
= rL′k(r) = n by our choice of r. Then by (3.6) with q = k

n
and % = nr

satisfying (3.15) and (3.16), we obtain

υ2(r) = r2L′′k(r) + rL′k(r) =
(24

π2
(log 2)2 − 1

)
n+O(1) =

π2

6
σ2n+O(1).
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Furthermore, each υj(r) � n by (3.6) when k− 6 k 6 k+. Thus υj(r)θ
j
0 → 0 for j = 3, 4, . . . ,

and we then obtain

JI =
1

2π

∫ θ0

−θ0
e−

1
2
υ2(r)θ2− 1

6
υ3(r)iθ3+O(nθ4) dθ

=
1

2π

∫ θ0

−θ0
e−

1
2
υ2(r)θ2

(
1− 1

6
υ3(r)iθ3 +O(nθ4 + nθ6)

)
dθ

=
1

2π

∫ ∞
−∞

e−
1
2
υ2(r)θ2

(
1− 1

6
υ3(r)iθ3 +O(nθ4 + nθ6)

)
dθ

+O
(
υ−1

2 n
3
8 e−18υ2(r)n−

3
4
)

=
1√

2πυ2(r)

(
1 +O

(
n−1
))

+O
(
n−

5
8 e−3π2σ2n

1
4
)

'
√

3

π3/2σ
n−

1
2 .

This proves (3.24). �

Proof of Theorem 5. With (3.23) and (3.24) available, we can now complete the proof of Theorem5
by deriving the finer expansion

r−nAk(r) = c0ρ
nnn+ 1

2 e−
1
2
x2
(

1 +
g1(x)√
n

+O
(
n−1(1 + x6)

))
,

where (c0, ρ) =
(√

24
π
, 12
eπ2

)
and g1(x) is an odd polynomial in x of degree three (whose expression

being immaterial here). It follows that

an,k = [zn]Ak(z) =

√
3

π3/2σ
n−

1
2 r−nAk(r)

(
1 +O

(
n−1
))

=
c1

σ
ρnnne−

1
2
x2
(

1 +
g1(x)√
n

+O
(
n−1(1 + x6)

))
,

(3.25)

uniformly for k− 6 k 6 k+, where (c1, ρ) =
(√

72
π2 ,

12
eπ2

)
, where σ is given in (3.13).

From this and the two estimates (3.19) and (3.22), we obtain

an =
12

π3/2
ρnnn

∑
k−6k6k+

e−
1
2
x2

√
2π σ

(
1 +

g1(x)√
n

+O
(
n−1(1 + x6)

))
+O

(
ρnnn+ 3

2 e−n
1
4
)
,

from which we deduce (3.2) by approximating the sum by integral. �

Remark 2. We have proved more than the asymptotic estimate (3.2); indeed, if we define the
random variable Xn by

P(Xn = k) =
[zn]Ak(z)

[zn]A(z)
(1 6 k 6 n),
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then our asymptotic expansions (3.25) and (4.1) imply obviously the local limit theorem (in the
form of moderate deviations):

P(Xn = µn+ xσ
√
n) =

e−
1
2
x2

√
2πσ2n

(
1 +O

( |x|+ |x|3√
n

))
,

uniformly for x = o
(
n

1
6

)
.

4. ASYMPTOTIC EXPANSIONS AND CHANGE OF VARIABLES

We examine briefly in this section two different ways to obtain asymptotics expansions for
an = [zn]A(z) as defined in (3.2), and then show how an argument based on change of variables
leads to expansions for the coefficients under different parametrization of the underlying function.

The first approach to deriving an expansion of the form

[zn]A(z) = cρnnn+ 1
2

(
1 +

∑
16j<m

νjn
−j +O

(
n−m

))
,(4.1)

for some computable coefficients νj , is now straightforward following the same analysis detailed
in the previous section. It consists in first computing an asymptotic expansion for an,k, which is of
the form

an,k =
c1

σ
ρnnne−

1
2
x2

(
1 +

∑
16j<m

gj(x)

n
1
2
j

+O
(
n−

1
2
m
))

, with (c, ρ) =
(

12
π3/2 ,

12
eπ2

)
uniformly for k = µn+xσ

√
n, x = o(n

1
6 ), where gj(x) is a computable polynomial in x of degree

3j and contains only powers of x with the same parity as j. From this we can then deduce (4.1)
by approximating the sum by an integral and extending the integration range to ±∞. We omit the
messy details as they are more or less standard and all procedures can be readily coded in symbolic
computation softwares.

4.1. An asymptotic expansion via Dirichlet series. For more methodological interest, we sketch
here another approach, based on that used in [8], to obtaining asymptotic expansions for an when
more information is available.

Proposition 19. The sequence an in (3.2) satisfies the asymptotic expansion

an = cρn n!

(
1 +

∑
16j<m

cj
n · · · (n− j + 1)

+O
(
n−m

))
,(4.2)

for m > 2, where (c, ρ) =
(

6
√

2
π2 ,

12
π2

)
and cj = 1

j!

(
− π2

288

)j for j > 1.

In particular,

an = cρnn!

(
1− π2

288n
+

π4

165888n(n− 1)
−+ · · ·

)
.

The very simple form of the coefficients cj naturally suggests the following approximation:

an = cρnn!e−
π2

288n

(
1 +O

(
n−3
))
,

which has obvious numerical advantages; see Figure 4.1 for a few graphical renderings of the
numerical goodness of (4.2).
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Proof. We begin with (1.7). As in [8], we define the Dirichlet series

D(s) :=
∑
n>1

n−s[qn−1]R
(
q24
)
,

which converges absolutely in <(s) > 1 and can be analytically continued into the whole s-plane.
Together with Mellin transform techniques, we now have the two relations [8]

an =
(−1)n

2
[zn]R

(
e−z
)
,

bn := [zn]e−
1
24
zR
(
e−z
)

=
(−1)nD(−n)

n!24n
.

Then, by the functional equation derived in [10], one has

D(−n) = c0ρ
n
0n!2

(
1 +O

(
23−n

))
, with (c0, ρ0) =

(
12
√

2
π2 , 288

π2

)
,

for large n. This implies that

bn = c0(−1)nρnn!
(
1 +O

(
23−n

))
, with (c0, ρ) =

(
12
√

2
π2 , 12

π2

)
.

From this, we have

bn−j
bn

=
(−ρ)−j

n · · · (n− j + 1)

(
1 +O

(
23−n

))
(j = 0, 1, . . . ),(4.3)

implying that the partial sum

an =
(−1)n

2
bn
∑

06j6n

bn−j
j!24jbn

is itself an asymptotic expansion. In this way, we obtain (4.2). �

π2

288
≈ 0.03427 1

2

(
π2

288

)2
≈ 0.00059 1

6

(
π2

288

)3
≈ 0.0000067

Figure 4.1. The approximation of c` by using (4.2) for n 6 200, namely, n · · · (n−
`+1)

(
an
cρnn!

−
∑

06j<`
cj

n···(n−j+1)

)
for ` = 1, 2, 3 (the first three plots); the last plot

corresponds to the difference an
cρnn!

e
π2

288n − 1. Here c = 6
√

2
π2 and ρ = 12

π2 .
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4.2. From [zn]R(ez) to [zn]R(1 + z) by a change of variables. We sketch here a different tech-
nique to derive the asymptotic expansion (1.5) for [zn]

∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
from that (4.2)

for an. The original approach by Zagier in [44] and then adapted in [8] relies on the asymtotics
of the Stirling numbers of the first kind. We give a direct approach via change of variables, which
has the advantages of being easily codable and widely applicable in more general contexts; see
Sections 5 and 8.

Define R as in (1.6). Since

R(q) = 2
∑
k>0

∏
16j6k

(
qj − 1

)
is true to infinite order at every root of unity which includes the case q = 1 (see [10]), by the
change of variables 1 + z = ey, we have,

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
=

1

2
[zn]R(1 + z) = [yn]g(y)

(
e

1
24
yR
(
ey
))
,

where

g(y) :=
1

2

(
y

ey − 1

)n+1

e
23
24
y =

1

2
exp

(
−n

2
y +

11

24
y − (n+ 1)

∑
j>1

B2j

2j · (2j)!
y2j

)
,

for small y. Since bn (see (4.3)) grows factorially with n, and the Taylor coefficients of g(y) is
small when compared to bn, we expand g at y = η, where η is small and to be determined soon,
and then carry out term by term extraction of the coefficients, yielding

[yn]g(y)
(
e

1
24
yR
(
ey
))

=
∑
j>0

g(j)(η)

j!
[yn](y − η)je

1
24
yR
(
ey
)

= g(η)b̄n + g′(η)
(
b̄n−1 − ηb̄n

)
+ · · · ,

where b̄n := (−1)nbn = [yn]e
1
24
yR
(
ey
)
. so if we take (see (4.3))

η =
b̄n−1

b̄n
=

π2

12n

(
1 +O

(
23−n

))
,

then the terms involving g′(η) become zero, and we have

[yn]
(
e

1
24
yR
(
ey
))
g(y) = g(η)b̄n

(
1 +

g′′(η)

2g(η)

(
b̄n−2

b̄n
−
b̄2
n−1

b̄2
n

)
+ · · ·

)
.

In general, by estimating the Taylor remainders, we deduce the expansion

[yn]
(
e

1
24
yR
(
ey
))
g(y) = g(η)b̄n

(
1 +

∑
26j62m

g(j)(η)

j!g(η)
Hj(n) +O

(
n−m−1

))
,

for m > 1, where the general terms are of order nd
1
2
je because g(j)(η) = O(nj) and

Hj(n) :=
∑

06`6j

(
j

`

)(
− π2

12n

)j−`
b̄n−`
b̄n

=

(
π2

12

)j ∑
06`6j

(
j

`

)
(−1)j−`(n− `)!

nj−`n!

(
1 +O

(
23−n

))
,
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which decays in the order n−j−d
1
2
je. In this way, we obtain

[zn]
∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
= cρn n!

(
1 +

∑
16j<m

cj
nj

+O
(
n−m

))
,(4.4)

where (c, ρ) =
(

6
√

2
π2 e−

π2

24 , 12
π2

)
and

c1 =
π2(π2 + 66)

1728
≈ 0.43333

c2 =
π4(π4 − 12π2 − 3420)

5971968
≈ −0.05612

c3 = −π
4(95π8 + 9360π6 − 232416π4 − 27051840π2 + 709171200)

1238347284480
≈ −0.03378.

c1 ≈ 0.43333 c2 ≈ −0.05612 c3 ≈ −0.03378

Figure 4.2. The approximation of c` by using (4.4) for n 6 200 and for ` = 1, 2, 3.

5. A FRAMEWORK FOR MATRICES WITH 1S

We consider in this section generating functions of the form∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
,(5.1)

for α ∈ Z+ and ω0, ω ∈ C, where d(z) and e(z) are formal power series satisfying d(0) > 0,
e(0) = 1 and e′(0) 6= 0. Then we discuss applications to generalized Fishburn matrices and some
OEIS sequences.

Our approach consists in examining first the asymptotics of the simpler pattern

[zn]
∑
k>0

∏
16j6k

(
e(j+ω)z − 1

)α
,

for α ∈ Z+ and ω ∈ C, and follow closely the detailed analysis given in Section 3 for the sequence
A158690. Then the extension to (5.1) will rely on the change of variables argument of Section 4.2.

Proposition 20. For any α ∈ Z+ and ω ∈ C,

[zn]
∑
k>0

∏
16j6k

(
e(j+ω)z − 1

)α ' cρnnn+αω+ 1
2
α,(5.2)
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uniformly in ω, where the notation “'” is defined in (1.4) and

(c, ρ) =

(√
6

απ

(
2
√

6√
απ Γ(1 + ω)

( 12

απ2

)ω)α
,

12

eαπ2

)
.

When ω ∈ Z−, the leading constant c is interpreted as zero because of Γ(1 + ω) in the denomi-
nator, and the right-hand side of (5.2) becomes then a big-O estimate.

Proof. We sketch the major steps for obtaining the dominant term, the error term following from
the same procedure with more refined calculations.

• By the Euler-Maclaurin formula (3.3)∑
16j6k

log
(
e(j+ω)z − 1

)
= k log

(
ekz − 1

)
− I(kz)

z
+
(
ω +

1

2

)
log

ekz − 1

z

− log Γ(1 + ω) +
log 2π

2
+O

(
|ω|2

(
k−1 + |z|

))
,

(5.3)

(compare (3.4)) which holds uniformly k →∞ and k|z| 6 2π − ε in the sector | arg z| 6
π − ε. Here (5.3) holds when ω 6= R−. But the asymptotic approximation, by taking the
exponential on both sides of (5.3),∏

16j6k

(
e(j+ω)z − 1

)
=

√
2π

Γ(1 + ω)

(ekz − 1

z

)ω+ 1
2 (
ekz − 1

)k
e−I(kz)/z

(
1 +O

(
|ω|2

(
k−1 + |z|

)))
does hold for bounded ω, provided we interpreted the factor 1

Γ(1+ω)
as zero when ω ∈ Z−.

• The saddle-point equation satisfies asymptotically, by the same differentiation argument
used for deriving (3.5),

α

r
I(kr) +

α

2
(2ω + 1)

( kr

1− e−kr
− 1
)

+O
(
k−1 + r

)
= n.

Since the dominant term is independent of ω, we deduce that k = qn with q ∼ µ
α

and
rn ∼ αξ, where (µ, ξ) =

(
12
π2 log 2, π

2

12

)
is the same as in (3.12).

• Observe that for large k 6 n∏
16j6k

∣∣e(j+ω)z − 1
∣∣ = O

(
k<(ω)

) ∏
16j6k

∣∣ejz − 1
∣∣,

when |z| � n−1 and ω = O(1). Then the smallness of the sum∑
|k− µ

α
n|>
√

2σn
5
8

[zn]
∏

16j6k

(
e(j+ω)z − 1

)α
,

as well as the corresponding sum of integrals
∑
|k− µ

α
n|6
√

2σn
5
8

∫
6n−

3
86|θ|6π

follows from the
same bounding techniques used in the proofs of Propositions 15 and 17.
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• Inside the central range 1
α
k− 6 k 6 1

k+
α, where k± is defined in (3.18), write, as before,

q = 1
α

(
µ+ σ x√

n

)
, and solve the saddle-point equation for r, giving

rn = αξ +
αξ1x√
n

+
α2ξ2(1 + 2ω) + αξ3x

2

n
+O

( |x|+ |x|3
n3/2

)
,(5.4)

where ξi are defined in (3.17).
• We then obtain

r−n
∏

16j6k

(
e(j+ω)r − 1

)α ∼ c0ρ
nnn+α( 1

2
+ω),

where

(c0, ρ) =

((
2
√

6√
απ Γ(1 + ω)

( 12

απ2

)ω)α
,

12

eαπ2

)
.

• The remaining saddle-point analysis is similar to that of Theorem 5.
�

The uniformity in ω will be needed in Section 7.
We now consider the framework (5.1).

Theorem 21. Assume α ∈ Z+ and ω0, ω ∈ C. For any two formal power series d(z) and e(z)
satisfying d(0) = e(0) = 1 and e′(0) 6= 0, we have

[zn]
∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α ' cρnnn+α( 1
2

+ω),(5.5)

uniformly for bounded ω0 and ω, where dj := [zj]d(z), ej := [zj]e(z), and

(c, ρ) =

(√
6

απ

(
2
√

6√
απ Γ(1 + ω)

( 12

απ2

)ω)α
2
d1
e1 e

απ2

12

(
e2
e21
− 1

2

)
,

12e1

eαπ2

)
.(5.6)

The situation when d(0) 6= 1 is readily modified. Also the error term can be further refined if
needed.

We see that the exponential term depends on α and e1, the polynomial term on α and ω, and
the leading constant c on α, ω, d1, e1 and e2. Furthermore, as far as the dominant asymptotics of
the coefficients is concerned, the difference in (5.5) and (5.2) is reflected via the first three terms
d1, e1, e2 in the Taylor expansions of d(z) and e(z), but not on ω0.

Proof. By Cauchy’s integral formula

an :=
1

2πi

∮
|z|=r0

z−n−1
∑

16k6n
α

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
dz,

where r0 > 0. Without loss of generality, we assume that both d(z) and e(z) are analytic at zero;
otherwise, we truncate both formal power series after the nth terms, resulting in two polynomials
and thus analytic functions at the origin. Since e(z) = 1 + e1z + · · · with e1 6= 0, the function is
locally invertible and we can make the change of variables e(z) = ey, giving

an =
1

2πi

∮
|y|=r

ψ′(y)ψ(y)−n−1
∑

16k6n
α

d(ψ(y))k+ω0Ak(y) dy,
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where Ak(y) :=
∏

16j6k

(
e(j+ω)y − 1

)α and ψ(y) satisfies ψ(0) = 0 and e(ψ(y)) = ey. In particu-
lar,

ψ1 = [y]ψ(y) = 1
e1

and ψ2 = [y2]ψ(y) = 1
e1

(
1
2
− e2

e21

)
.(5.7)

Observe first that for small |y|

d(ψ(y))k+ω0 =
(
1 + d1ψ1y +

(
d1ψ2 + d2ψ

2
1

)
y2 + · · ·

)k
;

on the other hand, from our saddle-point analysis above, the integration path |y| = r is very close
to zero with r � n−1, and most contribution to an comes from terms with k of linear order, so we
see that d(ψ(y))k is bounded and close to ed1ψ1ky for large n. Similarly, by (5.7),

ψ′(y)ψ(y)−n−1 =
(
ψ1 + 2ψ2y +O

(
|y|2
)) (

ψ1y + ψ2y
2 +O

(
|y|3
))−n−1

= en1y
−n−1e

−ψ2
ψ1
ny (

1 +O
(
|y|+ n|y|2

))
.

Thus the same proof of Theorem 5 extends mutatis mutandis to this case, and we then obtain the
asymptotic approximation

an =
∑

k−
α
6k6

k+
α

1

2πi

∮
|y|=r

y−n−1Ak(y)e
−ψ2
ψ1
ny+d1ψ1ky

(
1 +O

(
|y|+ n|y|2

))
dy

+O
(
ρnnn+α(<(ω)+ 1

2
)e−n

1
4
)
,

where k± is given in (3.18) and r satisfies (5.4). Since q = k
n

satisfies q = 1
α

(
µ+ σ x√

n

)
, we then

deduce (5.5) by noting that

e
−ψ2
ψ1
nr+d1ψ1kr = e

−ψ2
ψ1
αξ+d1ψ1µξ

(
1 +

g̃1(x)√
n

+
g̃2(x)

n
+ · · ·

)
,

for some polynomials g̃1(x) and g̃1(x), where (µ, ξ) is given in (3.12). Finer asymptotic expansions
for an can be derived by refining the same calculations, albeit with more messy details. �

Remark 3. Let ϕ(z) = ϕ1z + ϕ2z
2 + · · · be a formal power series with ϕ1 6= 0. Then

[zn]
∑
k>0

d(ϕ(z))k+ω0

∏
16j6k

(
e(ϕ(z))j+ω − 1

)α ' c′ρnnn+α( 1
2

+ω),

where c′ = e
αϕ2π

2

12e1ϕ
2
1 c, c being given in (5.6), and ρ = 12e1ϕ1

eαπ2 . In particular, when ϕ(z) = z
1−z , ρ

remains unchanged and only the leading constant is different: c′ = e
απ2

12e1 c.

6. APPLICATIONS I. UNIVARIATE ASYMPTOTICS

We group in this section various examples (mostly from the OEIS) according to the pair (α, ω).

6.1. Λ-row-Fishburn matrices and examples with (α, ω) = (1, 0). We derive a general asymp-
totic approximation to the number of Λ-row-Fishburn matrices and discuss some other examples.
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6.1.1. Λ-row-Fishburn matrices. From Theorem 21, it is clear that no matter how widely we
choose the nonnegative integers as entries, the number of the resulting row-Fishburn matrices
of size n depends only on the numbers of 1s and 2s as far as the leading order asymptotics is
concerned, provided that the generating function satisfies (6.1).

Corollary 22. Let Λ be a multiset of nonnegative integers with the generating function

Λ(z) = 1 +
∑
λ∈Λ

zλ = 1 + λ1z + λ2z
2 + · · · .(6.1)

If Λ′(0) = λ1 > 0, then the number of Λ-row-Fishburn matrices of size n satisfies

[zn]
∑
k>0

∏
16j6k

(
Λ(z)j − 1

)
' cρnnn+ 1

2 with (c, ρ) =
(

12
π3/2 e

π2

12

(
λ2
λ21
− 1

2

)
, 12λ1
eπ2

)
.(6.2)

Proof. By Theorem 21 with (d(z), e(z)) = (1,Λ(z)). �

In particular, this corollary applies to the following OEIS sequences.

OEIS Λ Λ(z) (λ1, λ2) c ρ

A179525 {0, 1} 1 + z (1, 0) 12
π3/2 e

−π
2

24
12
eπ2

A289316 {0} ∪ {2k − 1 : k ∈ Z+} 1+z−z2
1−z2 (1, 0) 12

π3/2 e
−π

2

24
12
eπ2

A207433 {0, 1, 2} 1−z3
1−z (1, 1) 12

π3/2 e
π2

24
12
eπ2

A158691 Z>0
1

1−z (1, 1) 12
π3/2 e

π2

24
12
eπ2

A289313 {0, 1, 1, 2, 2, . . . } 1+z
1−z (2, 2) 12

π3/2
24
eπ2

Table 3. The large-n asymptotics (6.2) of some OEIS sequences that correspond
to the enumeration of Λ-row-Fishburn matrices with different Λ. Here we split the
pair (c, ρ) for clarity and group the sequences with the same pair (λ1, λ2).

The sequence A289313 can also be interpreted as the number of upper triangular matrices with
integer entries (positive and negative) whose sum of absolute entries is n, and no row sums (in
absolute entries) to zero.

As another example, let Λ be the set of prime numbers including 1. Then since Λ(z) = 1 + z +
z2 + · · · , we see immediately from Corollary 22 that the number of row-Fishburn matrices with
prime numbers and 1 as entries satisfies

[zn]
∑
k>0

∏
16j6k

((
1 + z +

∑
p prime

zp
)j
− 1

)
' cρnnn+ 1

2 with (c, ρ) =
(

12
π3/2 e

π2

24 , 12
eπ2

)
,

which has the same leading asymptotics as A207433 and A158691.
Even in the case when each i appears i! times for i = 1, . . . , n, we still have

[zn]
∑
k>0

∏
16j6k

((∑
i>0

i!zi
)j
− 1

)
' cρnnn+ 1

2 with (c, ρ) =
(

12
π3/2 e

π2

8 , 12
eπ2

)
.
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6.1.2. Some OEIS sequences. Some other OEIS examples with (α, ω) = (1, 0) are compiled in
the following table, where they all satisfy the asymptotic pattern

[zn]
∑
k>0

d(z)k
∏

16j6k

(
e(z)j − 1

)
' cρnnn+ 1

2 .(6.3)

OEIS d(z) e(z) (d1, e1, e2) (c, ρ)

A158690 1 ez (0, 1, 1
2
)

(
12
π3/2 ,

12
eπ2

)
A196194 z

ez−1
ez

(
−1

2
, 1, 1

2

) (
6
√

2
π3/2 ,

12
eπ2

)
A207214 ez ez (1, 1, 1

2
)

(
24
π3/2 ,

12
eπ2

)
A207386 1 1+z

1+z3
(0, 1, 0)

(
12
π3/2 e

−π
2

24 , 12
eπ2

)
A207397 1 1+z

1+z2
(0, 1,−1)

(
12
π3/2 e

−π
2

8 , 12
eπ2

)
A207556 1 + z 1 + z (1, 1, 0)

(
24
π3/2 e

−π
2

24 , 12
eπ2

)
Table 4. Some OEIS examples with (α, ω) = (1, 0); they all satisfy the asymptotic
pattern (6.3) with (c, ρ) given in the last column. All ρ’s are the same because
e′(0) = 1.

Note that the Taylor expansions of e(z) in the two cases A207386 and A207397 both contain
negative coefficients. As an extreme example, we consider d(z) = 1− z

1−z and e(z) = 1− z
1−z , so

that all coefficients of d(z) and e(z) are negative except the constant terms. Then we still have

[zn]
∑
k>0

(1− 2z

1− z

)k ∏
16j6k

((1− 2z

1− z

)j
− 1

)
' cρnnn+ 1

2 , with (c, ρ) =
(

24
π3/2 e

−π
2

8 ,− 12
eπ2

)
,

with a negative ρ or an alternating sequence.

6.1.3. Minor variants. Consider A207652 whose generating function does not have the same pat-
tern (5.1); yet this sequence has the same leading order asymptotics as A179525 (see Table 3):

[zn]
∑
k>0

∏
16j6k

(1 + z)j − 1

1− zj
' cρnnn+ 1

2 , with (c, ρ) =
(

12
π3/2 e

−π
2

24 , 12
eπ2

)
.

This is because the extra product

(6.4)
∏

16j6k

1

1− zj
= 1 + z +O(|z|2)

is asymptotically negligible when z � n−1.
Similarly, the sequence A207653 satisfies

[zn]
∑
k>0

∏
16j6k

1− (1− z)2j−1

1− z2j−1
' cρnnn+ 1

2 , with (c, ρ) =
(

12
π3/2 e

π2

24 , 12
eπ2

)
.(6.5)
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which has the same leading-order asymptotics as A158691 because of∏
16j6k

1− (1− z)2j−1

1− z2j−1
=
∏

16j6k

(
1− (1− z)2j−1

)
×
(
1 +O

(
|z|
))
,

when z � n−1, and the identity∑
k>0

∏
16j6k

(
1− (1− z)2j−1

)
=
∑
k>0

∏
16j6k

(
(1− z)−j − 1

)
.

Another example is A207434, which is defined by

bn := n[zn] log

(∑
k>0

∏
16j6k

(
(1 + z)j − 1

))
.

This is not of our format (5.1) but the leading asymptotics can be quickly linked to that of A179525,
the number of primitive row-Fishburn matrices; see (1.5). Let an := [zn]

∑
k>0

∏
16j6k

(
(1 + z)j − 1

)
.

By the relation
bn = nan −

∑
16j<n

bjan−j (n > 1),

and the factorial growth of the coefficients (1.5), we then deduce that

bn ' nan ' cρnnn+ 3
2 , with (c, ρ) =

(
12
π3/2 e

−π
2

24 , 12
eπ2

)
.

6.1.4. Recursive variants. Consider first the sequence A186737 whose generating function is de-
fined recursively by

f(z) =
∑
k>0

∏
16j6k

(
(1 + zf(z))j − 1

)
= 1 + z + 3z2 + 14z3 + 82z4 + 563z5 + · · · .

This is close to the framework (5.1) but Theorem 21 fails because f is not only recursive. However,
if we apply naively Theorem 21, then we obtain the correct asymptotic approximation

[zn]
∑
k>0

∏
16j6k

((1 + zf(z))j − 1) ' cρnnn+ 1
2 , with (c, ρ) =

(
12
π3/2 e

π2

24 , 12
eπ2

)
,

consistent with the expression derived by Kotěšovec on the OEIS page.
While Theorem 21 does not apply, the proof there does. More precisely, we truncate first all

terms in the Taylor expansion of f with powers k > n, so that the resulting series becomes a
polynomial, and then perform the change of variables ey = f(z). Then the local expansion of the
solution is given by

z = y − 5
2
y2 − 7

6
y3 − 65

24
y4 + · · · ,

and the remaining analysis follows the same procedure as the proof of Theorem 21.
Similarly, the sequence A224885 is defined by the generating function

f(z) = 1 + z +
∑
k>2

∏
16j6k

(
f(z)j − 1

)
.

Then f(z) = 1 + z + 2z2 + 15z3 + 143z4 + 1552z5 + · · · , and we deduce that

[zn]f(z) ' cρnnn+ 1
2 , with (c, ρ) =

(
12
π3/2 e

π2

8 , 12
eπ2

)
.
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6.2. Λ-Fishburn matrices and examples with (α, ω) = (2, 0). We now consider the case when
(α, ω) = (2, 0), beginning with the asymptotics of Λ-Fishburn matrices.

6.2.1. Λ-Fishburn matrices.

Corollary 23. Let Λ be a multiset of nonnegative integers with the generating function Λ(z) defined
as in (6.1). If λ1 > 0, then the number of Fishburn matrices of size n satisfies

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
' cρnnn+1 with (c, ρ) =

(
12
√

6
π2 e

π2

6

(
λ2
λ21
− 1

2

)
, 6λ1
eπ2

)
.

Proof. By (2.5) and then Theorem 21 with d(z) = e(z) = Λ(z) and α = 2. �

A few OEIS examples to which this corollary applies are collected in Table 5.

OEIS Λ Λ(z) (λ1, λ2) (c, ρ)

A022493 Z>0
1

1−z (1, 1)
(

12
√

6
π2 e

π2

12 , 6
eπ2

)
A138265 {0, 1} 1 + z (1, 0)

(
12
√

6
π2 e−

π2

12 , 6
eπ2

)
A289317 {0} ∪ {2k − 1 : k ∈ Z+} 1+z−z2

1−z2 (1, 0)
(

12
√

6
π2 e−

π2

12 , 6
eπ2

)
A289312 {0} ∪ 2Z+ 1+z

1−z (2, 2)
(

12
√

6
π2 , 12

eπ2

)
Table 5. The large-n asymptotics (of the form cρnnn+1) of some OEIS sequences
that correspond to the enumeration of Λ-Fishburn matrices with different Λ.

In particular, we see from Table 5 that Zagier’s result (1.1) for the asymptotics of Fishburn
numbers corresponds to A022493. Also the result for A138265 improves the crude bound given in
[32]; see also [7].

Written differently, Corollary 23 also implies the asymptotic relation

[zn]
∑
k>0

∏
16j6k

(
1−

(
1 + z +

∑
p : prime

zp
)−j)

' [zn]
∑
k>0

∏
16j6k

(
1− (1− z)j

)
.

Similarly, the same asymptotic approximation holds in the case when Λ = {0, 1, . . . ,m − 1}
(studied in [13]) with the generating function Λ(z) = 1 + z + · · ·+ zm−1, m > 3.

On the other hand, we also have for the so-called r-Fishburn numbers [22] with Λ(z) = (1−z)−r

[zn]
∑
k>0

∏
16j6k

(
1− (1− z)rj

)
' cρnnn+1 with (c, ρ) =

(
12
√

6
π2 e

π2

12r , 6r
eπ2

)
.

This asymptotic estimate holds for any r > 0 (not necessarily integers). Furthermore,

[zn]
∑
k>0

∏
16j6k

(
1−

(∑
i>0

i!zi
)−j)

' cρnnn+1 with (c, ρ) =
(

12
√

6
π2 e

π2

4 , 6
eπ2

)
.
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6.2.2. Other OEIS examples. We discuss three other OEIS sequences with (α, ω) = (2, 0). Con-
sider first A079144, which enumerates labelled interval orders on n points [7] with d(z) = e(z) =
ez, and we obtain

[zn]
∑
k>0

∏
16j6k

(
1− e−jz

)
= [zn]

∑
k>0

e(k+1)z
∏

16j6k

(
ejz − 1

)2

' cρnnn+1, with (c, ρ) =
(

12
√

6
π2 , 6

eπ2

)
.

Alternatively, (1.2) provides an alternative proof for this asymptotic estimate and a finer expansion;
see [44].

Consider now A207651, the generating function of this sequence is different from A022493, the
Fishburn numbers, but they satisfy the same asymptotic relation (see (1.1))

[zn]
∑
k>0

∏
16j6k

1− (1− z)j

1− zj
' cρnnn+1, with (c, ρ) =

(
12
√

6
π2 e

π2

12 , 6
eπ2

)
,

since the additional product is again asymptotically negligible; see (6.4).
The last sequence is A035378:

[zn]
∑
k>1

∏
16j6k

(
1− (z − 1)j

)
= [zn]

∑
k>0

(z − 1)−k−1
∏

16j6k

(
1− (z − 1)−j

)2
.

Theorem 21 does not apply directly but our approach does by rewriting the GF as (by grouping the
terms in pairs)

∑
k>0

1

(1− z)2k+1

(
1

1− z

(
1 +

1

(1− z)2k+1

)2

− 1

) ∏
16j62k

(
1

(1− z)j
− 1

)2

;

we then derive the approximation

[zn]
∑
k>1

∏
16j6k

(
1− (z − 1)j

)
' cρnnn+1, with (c, ρ) =

(
48
√

3
π2 e

π2

48 , 24
eπ2

)
,

consistent with that provided on the OEIS webpage of A035378 by Kotěšovec; see also [44, Sec. 5].

6.3. Examples with ω 6= 0. We gather some examples in the following table, where we use the
form

an := [zn]
∑
k>0

dk(z)
∏

16j6k

(
ej(z)− 1

)
,

with (dk(z), ej(z)) given in the second column.
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OEIS (dk(z), ej(z)) ann
−n ' (c, ρ)

A215066 (1, e(2j−1)z) cρnnn
(

2
√

3
π
, 24
eπ2

)
A209832 (e(k+1)z, e(2j−1)z) cρnnn

(
2
√

6
π
, 24
eπ2

)
A214687

(
e2kz, e(2j−1)z

)
cρnnn

(
4
√

3
π
, 24
eπ2

)
A207569

(
1, (1 + z)2j−1

)
cρnnn

(
2
√

3
π
e−

π2

48 , 24
eπ2

)
A207570

(
1, (1 + z)3j−2

)
cρnnn−

1
6

(
Γ( 2

3
)35/6

21/3π7/6 e
−π

2

72 , 36
eπ2

)
A207571

(
1, (1 + z)3j−1

)
cρnnn+ 1

6

(
122/3

π5/6Γ( 2
3

)
e−

π2

72 , 36
eπ2

)
In general,

[zn]
∑
k>0

∏
16j6k

(
(1 + z)pj−s − 1

)
' cρnnn+ 1

2
− s
p ,

for 0 < s < p (not necessarily integers), where

(c, ρ) =

( √
π

Γ
(
1− s

p

) (π2

12

) s
p
−1

e−
π2

24p ,
12p

eπ2

)
.

A minor variant of A207569 is the sequence A207654 for which we have the same asymptotic
approximation

[zn]
∑
k>0

∏
16j6k

(1 + z)2j−1 − 1

1− z2j−1
' cρnnn, with (c, ρ) =

(
2
√

3
π
e−

π2

48 , 24
eπ2

)
,

because the extra product is asymptotically negligible; see also (6.5).
The last example is A207557:

f(z) :=
∑
k>0

(1 + z)−k(k−1)
∏

16j6k

(
(1 + z)2j−1 − 1

)
,

which can be transformed, by the Rogers-Fine identity1 [15], into

f(z) = 1 + z−1
∑
k>1

(1 + z)2k+1
∏

16j6k

(
(1 + z)2j−1 − 1

)2
.

We can then apply Theorem 21, and obtain

[zn]f(z) = [zn+1]
∑
k>1

(1 + z)2k+1
∏

16j6k

(
(1 + z)2j−1 − 1

)2

' c0ρ
n+1(n+ 1)n+1 ' c0eρρ

nnn+1, with (c0, ρ) =
(

2
√

6
π
e−

π2

24 , 12
eπ2

)
.

Thus c0eρ = 24
√

6
π3 e−

π2

24 , consistent with the expression derived by Kotěšovec on the OEIS page of
A207557.

1For |t|, |q| < 1 and y not a negative power of x,∑
k>0

tk
∏

16j6k

1− xqj

1− yqj
=
∑
k>0

(
1− xtq2k+1

)
tkqk

2

1− t

∏
16j6k

(
1− xqj

)(
y − xtqj

)(
1− yqj

)(
1− tqj

) .(6.6)
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7. APPLICATIONS II. BIVARIATE ASYMPTOTICS (ASYMPTOTIC DISTRIBUTIONS)

We derive in this section the various limit laws arising from the sizes of the first row and the
diagonal, as well as the number of 1s in random Fishburn and row-Fishburn matrices, assuming
that all matrices of the same size are equally likely to be selected. We begin with row-Fishburn
matrices because they are technically simpler.

7.1. Statistics on Λ-row-Fishburn matrices. By Proposition 1, the number of Λ-row-Fishburn
matrices of size n is given by (see (2.4))

an := [zn]
∑
k>0

∏
16j6k

(
Λ(z)j − 1

)
,

where Λ(z) is the generating function of the multiset Λ; see (2.3). The asymptotics of an is already
examined in Corollary 22.

Recall that the probability generating function of a Poisson distribution with mean τ > 0 is
given by eτ(v−1), while that of a zero-truncated Poisson (ZTP) distribution with parameter τ by

eτv − 1

eτ − 1

whose mean and variance equal
τeτ

eτ − 1
and

τeτ (eτ − 1− τ)

(eτ − 1)2
,

respectively. When τ = log 2, these become 2 log 2 and 2(log 2)(1 − log 2), respectively. Also
N (0, 1) denotes the standard normal distribution. The notation Xn

d→ X means convergence in
distribution.

7.1.1. Limit theorems.

Theorem 24. Assume λ1 > 0 and that all Λ-row-Fishburn matrices of size n are equally likely to
be selected. Then in a random matrix,

(i) the size Xn of the first row is distributed asymptotically as zero-truncated Poisson with pa-
rameter log 2:

Xn
d→ ZTP(log 2),

(ii) the size Yn of the diagonal is asymptotically normally distributed with mean and variance
both asymptotic to log n,

(7.1)
Yn − log n√

log n

d→ N (0, 1),

and
(iii) for the number of 1s Zn, if λ2 > 0, then

n− Zn
2

d→ Poisson(τ) with τ = λ2π2

12λ21
,(7.2)

and P(Zn = n)→ 1 if λ2 = 0.

For the diagonal size, we can also express the asymptotic distribution as Yn ∼ Poisson(log n),
which implies (7.1). Finer approximations are given in (7.4) and (7.5).
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Proof. (i) For the first row size Xn, we begin with the generating function (see (2.7))

fX(z, v) :=
∑
k>0

(
Λ(vz)k+1 − 1

) ∏
16j6k

(
Λ(z)j − 1

)
.

By applying (5.5) to (d(z), e(z)) = (Λ(vz),Λ(z)) and to (d(z), e(z)) = (1,Λ(z)), we deduce
that

E
(
vXn
)

=
[zn]fX(z, v)

an
' 2v − 1,

for v = O(1). This asymptotic estimate holds a priori pointwise for each finite v, but the same
proof there gives indeed the uniformity of the error term in v when v = O(1). This implies
the convergence in distribution to the zero-truncated Poisson (ZTP) law with parameter log 2.

(ii) Consider now the generating polynomial for the diagonal size Yn

[zn]fY (z, v) := [zn]
∑
k>1

∏
16j6k

(
Λ(vz)Λ(z)j−1 − 1

)
.

The generating function is not of the form (5.1), but observe that

Λ(vz) = Λ(z)v
(
1 +O(|z|2)

)
,

when |z| is small. Then, when k � n and |z| � n−1 (taking logarithm and estimating the
sum of errors), we have∏

16j6k

(
Λ(vz)Λ(z)j−1 − 1

)
=

( ∏
16j6k

(
Λ(z)j+v−1 − 1

))(
1 +O

(
|z| log k

))
,(7.3)

and we are in a position to apply Theorem 21, giving

[zn]fY (z, v) = c(v)ρnnn+v− 1
2

(
1 +O

(
n−1 log n

))
,

where

(c(v), ρ) =

( √
π

Γ(v)

(12λ1

π2

)v
e
π2

12

(
λ2
λ21
− 1

2

)
,
12λ1

eπ2

)
,

uniformly for v = O(1). Accordingly, the probability generating function of Yn satisfies

E
(
vYn
)

=
[zn]f(z, v)

an
=

1

Γ(v)

(
12

π2

)v−1

e(v−1) logn
(
1 +O

(
n−1 log n

))
,

uniformly for v = O(1). This is of the form of Quasi-Powers (see [20, 26]), and we then
deduce the asymptotic normality of Yn with optimal convergence rate:

sup
x∈R

∣∣∣∣P(Yn − log n√
log n

6 x
)
− Φ(x)

∣∣∣∣ = O
(
(log n)−

1
2

)
,(7.4)

together with the asymptotic approximations to the mean and the variance:

E(Yn) = log n+ γ + log 12
π2 +O

(
n−1 log n

)
,

V(Yn) = log n+ γ − π2

6
+ log 12

π2 +O
(
n−1(log n)2

)
,

(7.5)

where γ denotes the Euler-Mascheroni constant and Φ(x) denotes the distribution function of
the standard normal distribution. For other types of Poisson approximation, see [28].
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(iii) Applying the same proof of Theorem 21 to the generating function (2.9) for the number of 1s
gives

[zn]
∑
k>1

∏
16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)
' c(v)vnρnnn+ 1

2 ,

uniformly for bounded v, where (c(v), ρ) =
(

12
π3/2 e

π2

12

(
λ2
λ21v

2−
1
2

)
, 12λ1v
eπ2

)
. This implies that if

λ2 > 0, then

(7.6) E
(
v

1
2

(n−Zn)
)
' eτ(v−1), with τ = π2λ2

12λ21
,

and we then obtain the limit Poisson distribution with parameter τ . If λ2 = 0, then E
(
vn−Zn

)
→

1, a Dirac distribution. Furthermore, by the uniformity of (7.6) and Cauchy’s integral repre-
sentation, we also have (see [26])

P(n− Zn = 2k)→ τ k

k!
e−τ (k = 0, 1, . . . ).

Similarly, for the number Z [2]
n of 2s, we use the generating function∑

k>1

∏
16j6k

((
Λ(z) + λ2(v − 1)z2

)j − 1
)
,

and deduce that E
(
vZ

[2]
n
)
' eτ(v−1), with the same τ as in (7.2).

�

Stronger results such as local limit theorems can also be derived; see [26] for more information.

7.1.2. Applications. Consider first the case of primitive row-Fishburn matrices with Λ = {0, 1}.
Then by Theorem 24, we see that in a random primitive Fishburn matrix the first row size is
asymptotically ZTP(log 2) distributed, the diagonal is asymptotically normal, while the number of
1 is obviously the same as the size of the matrix. In particular, the distribution of the diagonal
corresponds to sequence A182319.

On the other hand, when Λ(z) = 1
1−z , we have very similar behaviors for the sizes of the first

row and the diagonal, but the number Zn of 1s is asymptotically Poisson:

P(n− Zn = 2k)→ τ k

k!
e−τ , with τ =

π2

12
,

for k = 0, 1, . . . .

7.2. Statistics on Fishburn matrices. We consider random Λ-Fishburn matrices in this subsec-
tion. By Proposition 1, the number of Λ-Fishburn matrices of size n is given by (see (2.5))

an := [zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
,

and an asymptotic approximation is already derived in Corollary 23.
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Figure 7.1. The histograms of Xn, Yn and Zn in the case of row-Fishburn matrices
(Λ(z) = 1

1−z ) for n = 6, . . . , 50: P(Xn = k) (left), P(Yn = btµnc) (middle), and
P(n − Zn = 2k) (right), where µn = E(Yn). Then tendence to ZTP, normal and
Poisson is visible in each case, as well as the corresponding convergence rate.

7.2.1. Limit theorems.

Theorem 25. Assume λ1 > 0 and that all Λ-Fishburn matrices of size n are equally likely to be
selected. Then in a random matrix, the size Xn of the first row and the diagonal size Yn are both
asymptotically normally distributed with logarithmic mean and variance in the following sense

(7.7)
Xn − log n√

log n

d→ N (0, 1), and
Yn − 2 log n√

2 log n

d→ N (0, 1),

and if λ2 > 0, then the number Zn of 1s is asymptotically Poisson distributed

n− Zn
2

d→ Poisson(τ) with τ = λ2π2

12λ21
,(7.8)

otherwise, λ2 = 0 implies that P(Zn = n)→ 1.

Proof. (i) We begin with the generating function (see (2.11)) for the first row size

fX(z, v) := Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(vz)Λ(z)j−1 − 1

)(
Λ(z)j − 1

))
.

By (7.3) and the expansion Λ(vz) = 1 +O(|z|) for small |z|, we have

fX(z, v) =

(∑
k>0

Λ(z)k
∏

16j6k

((
Λ(z)j+v−1 − 1

)(
Λ(z)j − 1

)))(
1 +O(|z| log n)

)
,

when |z| � n−1.
Similar to Theorem 21, we first derive, by the same methods of proof of Proposition 20,

that

[zn]
∑
k>0

ekz
∏

16j6k

(
e(j+ω)z − 1

)(
ejz − 1

)
' c0(ω)ρnnn+ω+1,(7.9)

where

(c0(ω), ρ) =

(
2
√

6

Γ(1 + ω)

( 6

π2

)1+ω

,
6

eπ2

)
.

[Briefly, α is almost 2 in the proof of Proposition 20, and the largest terms occur when k ∼ µn
and n|z| ∼ ξ with (µ, ξ) as in (3.12), so that ekz contributes an extra factor 2.]
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We now make the change of variables Λ(z) = ey, and follow the same proof procedure of
Theorem 21, yielding

[zn]
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(z)j+v−1 − 1

)(
Λ(z)j − 1

))
' c(v)ρnnn+v,

where

(c(v), ρ) =

(
2
√

6

Γ(v)

( 6

π2

)v
e
π2

12

(
λ2
λ21
− 1

2

)
,
6λ1

eπ2

)
.

We then deduce that

E
(
vXn
)

=
1

Γ(v)

( 6

π2

)v−1

nv−1
(
1 +O

(
n−1 log n

))
,

uniformly for v = O(1), and the asymptotic normality of Xn then follows again from the
Quasi-Powers theorem [20, 26] or a standard characteristic function argument. Finer results
such as (7.4) and (7.5) can also be derived.

(ii) For the size of the diagonal Yn, we now have the generating function (see (2.12))

fY (z, v) := Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

(
Λ(vz)Λ(z)j−1 − 1

)2
.

By (7.3), the same arguments used in (i) for Xn and Theorem 21, we deduce that

[zn]fY (z, v) = c(v)ρnnn+2v−1
(
1 +O

(
n−1 log n

))
,

where

(c(v), ρ) =

(
2
√

6

Γ(v)2

( 6

π2

)2v−1

e
π2

12

(
λ2
λ21
− 1

2

)
,
6λ1

eπ2

)
.

It follows that

E
(
vYn
)

=
1

Γ(v)2

( 6

π2

)2(v−1)

n2(v−1)
(
1 +O

(
n−1 log n

))
,

uniformly for v = O(1). The asymptotic normality then follows from Quasi-Powers Theo-
rem.

(iii) Since λ1 > 0, we can apply Theorem 21 to the generating function (2.13) for the number Zn
of 1s, which is

fZ(z, v) :=
∑
k>0

(Λ(z) + λ1(v − 1)z)k+1
∏

16j6k

(
(Λ(z) + λ1(v − 1)z)j − 1

)2
,

and we deduce that

E
(
v

1
2

(n−Zn)
)
' eτ(v−1), with τ = πλ2

6λ21
,

which leads to a degenerate limit law when λ2 = 0 and a Poisson limit law otherwise. The
number of 2s follows the same law.

�

The most widely studied parameter is the sizeXn of the first row when Λ(z) = 1
1−z , the Fishburn

matrices. It appeared in Stoimenow’s study [39] on chord diagrams, and later examined by Zagier
in [44]. Then the limiting distribution of Xn was raised as an open question in [8, 30]. The
generating function fX(z, v) for the first row size has been derived in several papers; see, for
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example, [4, 6, 21, 30, 43], A175579 and Section 2 for several other quantities with the same
distribution as Xn. See also Table 6 and Figure 7.2 for the distribution of small n and graphical
renderings.

n\k 1 2 3 4 5 6 7
1 1
2 1 1
3 2 2 1
4 5 6 3 1
5 15 21 12 4 1
6 53 84 54 20 5 1
7 217 380 270 110 30 6 1

n\k 1 2 3 4 5 6 7
1 1
2 0 2
3 0 1 4
4 0 2 5 8
5 0 5 14 18 16
6 0 15 47 67 56 32
7 0 53 183 287 267 160 64

Table 6. The number of Fishburn matrices of size n with first row size equal to
k (left) and the diagonal size to k (right) for n = 1, . . . , 7. The table on the left
corresponds to A175579.

The mean and the variance of Xn satisfy

E(Xn) = log n+ γ − log π2

6
+O

(
n−1 log n

)
,

V(Xn) = log n+ γ − π2

6
− log π2

6
+O

(
n−1(log n)2

)
.

Figure 7.2. The histograms of Xn and Yn (Fishburn matrices) for n = 6, . . . , 100:
σn(X)P(Xn = btµn(X)c) (first), P(Xn = btµn(X)c) (second), σn(Y )P(Yn =
btµn(Y )c) (third), P(Yn = btµn(Y )c) (fourth), where µn(W ) and σ2

n(W ) denote
the corresponding mean and variance of Wn, respectively.

8. A FRAMEWORK FOR MATRICES WITHOUT 1S AND SELF-DUAL MATRICES

We discuss in this section the extension to the situation when e1 = 0 and e2 6= 00 of the general
framework (5.1) we examined in Section 5. The general asymptotic expressions (5.5) and (5.6)
certainly fail in such a case as the leading constant involves e1 in the denominator.

In addition to providing a better understanding of Fishburn matrices in more general situations,
our consideration of (5.1) with e1 = 0 and e2 > 0 was also motivated by asymptotic enumera-
tion of the self-dual Fishburn matrices, another conjecture raised in Jelı́nek [30]. In particular, the
two asymptotic approximations (1.10) and (1.11) will follow readily from our general result Theo-
rem 26 or Corollary 29. Furthermore, as in Sections 6 and 7, our framework will be equally useful
in characterizing the asymptotic distributions of diverse statistics in random Fishburn matrices,
which we briefly explore in this section.
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8.1. Asymptotics of (5.1) with e1 = 0 and e2 > 0.

Theorem 26. Assume α ∈ Z+ and ω0, ω ∈ C. Given any two formal power series e(z) =
1 +

∑
j>1 ejz

j and d(z) = 1 +
∑

j>1 djz
j satisfying e1 = 0, e2 > 0, and

αe3π
2 + 12d1e2 log 2 > 0,(8.1)

we have

(8.2) [zn]
∑
k>0

d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
= ceβ

√
nρ

1
2
nn

1
2

(n+α)+αω
(
1 +O

(
n−

1
2

))
,

the O-term holding uniformly for bounded ω0 and ω, where β :=
√

6d1 log 2√
e2απ

+
√
α e3π

2
√

6 e
3/2
2

, ρ := 6e2
eπ2α

,

and

c :=
√

3√
2απ

(
1

Γ(1+ω)

√
12
απ

(
6
απ2

)ω)α
2
− d21

2e2
− 3d1e3

4e22
+
d2
e2 e
− d21

4αe2
−απ

2

12

(
7e23
8e32
− e4
e22

+ 1
2

)
+

3d21
2e2απ

2 (log 2)2

.

Note that β > 0 is equivalent to the condition (8.1). When β = 0 (and e2 > 0), asymptotic
periodicities emerge (depending on the parity of n) and complicate the corresponding expressions.
Instead of formulating a general heavy result, we will be content with ourselves with the consider-
ation of Fishburn matrices with λ1 = λ3 = · · · = λ2m−1 = 0 but λ2, λ2m+1 > 0 in Section 8.4.

Following the same principle we used above, we consider first the corresponding exponential
version, and then prove the theorem by a change of variables argument; see Sections 4.2 and 5.

Proposition 27. For large n, α ∈ Z+, and ω ∈ C,

[zn]
∑
k>0

ekz
∏

16j6k

(
e(j+ω)z2 − 1

)α
= ceβ

√
nρ

1
2
nn

1
2

(n+α)+αω
(
1 +O

(
n−

1
2

))
,(8.3)

the O-term holding uniformly for bounded ω, where β =
√

6 log 2√
απ

, and

(c, ρ) =
( √

3√
2απ

(
1

Γ(1+ω)

√
12
απ

(
6
απ2

)ω)α
e−

1
4α

+ 3
2απ2

(log 2)2 , 6
eπ2α

)
.

Proof. Let an,k := [zn]ekzAk
(
z2
)α with Ak(z) :=

∏
16j6k

(
ejz − 1

)
. Since the proof follows

closely that of Theorem 5 and of Proposition 20, we sketch the major differences.
First of all, we use the simple upper bounds

an,k 6 r−n0 ekr0Ak
(
r2

0

)α
= r−

1
2
nek
√
rAk(r)

α,

with r choosing to be the saddle-point of r−
1
2
nAk(r)

α and r = r2
0, so then all estimates, bounds

and arguments used in Section 3 for Ak(r) can be directly applied with n there replaced by n
2
.

Thus the sum of an,k over 1 6 k 6 1
2α
k− and k > 1

2α
k+ is asymptotically negligible, where

k± = µn±
√

2σn
5
8 being the same as in (3.18) with µ = 12

π2 log 2 and σ the same as in (3.13).
Then, in the range 1

2α
k− 6 k 6 1

2α
k+, most contribution to the corresponding Cauchy integral

comes from a small neighborhood of |θ| 6 θ0 when z = reiθ and θ0 := 6n−
3
8 as in (3.22), because

an,k =
1

2πi

∫
|z|=r0
|θ|6θ0

+

∫
|z|=r0

θ0<|θ|6π

 z−n−1ekzAk
(
z2
)α

dz
(
r0 � n−

1
2

)
,
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where, by (3.20), the second integral is bounded from above by

O

(
r−n0 ekr0Ak

(
r2

0

)α ∫ 1
2
π

θ0

e−
α

2π2
k2r20θ

2

dθ + r−n0 Ak
(
r2

0

)α ∫ π

1
2
π

ekr0 cos θ dθ

)
= O

(
r−n0 ekr0Ak

(
r2

0

)α
e−c

′q2n
1
5 + r−n0 Ak

(
r2

0

)α)
,

which is negligible when compared with n−Kr−n0 ek
√
r0Ak

(
r2

0

)α for any K > 0.
Now when 1

2α
k− 6 k 6 1

2α
k+ and |θ| 6 θ0, we first carry out the change of variables z2 7→ w,

giving

J :=
1

2πi

∫
|z|=r0
|θ|6θ0

z−n−1ekzAk
(
z2
)α

dz =
1

4πi

∫
|z|=r
|θ|6 1

2
θ0

w−
1
2
n−1ek

√
wAk(w)α dw.

Since the integral is, up to the factor 1
2
ek
√
w and the difference 1

2
n, of the same form as that studied

in Section 3.5, a simple strategy is to compute first the asymptotics of the integral

J1 :=
1

4πi

∫
|z|=r
|θ|6 1

2
θ0

w−n−1ek
√
wAk(w)α dw,

with 1
α
k− 6 k 6 1

α
k+, and then substitute n 7→ 1

2
n. Then with the expansions

k =
1

α

(12

π2
log 2 +

σx√
n

)
, and r =

α

n

(π2

12
+
∑
j>1

ξ̃j(x)

nj/2

)
,

where the expressions of the ξ̃j(x)’s are too messy to be listed here (but straightforward with the
aid of symbolic computation softwares), we then obtain

J1 = c1(2ρ)nnn+ 1
2
α− 1

2
+αωeβ

√
2n exp

(
−x

2

2
+

√
3
(
π2σ2 − 6

)
12
√
απσ

x

)(
1 +O

(
n−

1
2

))
,

where β and ρ are the same as in the Proposition 27 and

c1 :=

√
3

π3/2σ

(
1

Γ(1 + ω)

√
24

απ

)α( 12

απ2

)αω
.

Summing over k in the range 1
α
k− 6 k 6 1

α
k+ and using the integral∫ ∞

−∞
e−

1
2
x2+tx dx =

√
2π e

1
2
t2 (t ∈ R),

we then deduce (8.3). �

We now sketch the proof of Theorem 26. By the change of variables e(z) = ey
2 , which is locally

invertible, we obtain

z 7→ ζ(y) =
y
√
e2

− e3

2e2
2

y2 +
2e3

2 − 4e2e4 + 5e2
3

8e
7/2
2

y3 + · · · ,
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for small |y|. Then

[zn]d(z)k+ω0

∏
16j6k

(
e(z)j+ω − 1

)α
=

1

2πi

∮
|y|=r

y−n−1hn,k(y)eky
∏

16j6k

(
e(j+ω)y2 − 1

)α
dy,

where

hn,k(y) :=
(ζ(y)

y

)−n−1(
e−yd(ζ(y))

)k
ζ ′(y)d(ζ(y))ω0 ,

with the last term satisfying d(ζ(y))ω0 = 1 + O(|y|). Since y is of order n−
1
2 , we use the local

expansion

hn,k(y) = e
1
2
n

2 exp

(
e3

2e
3/2
2

ny − e3
2 − 2e2e4 + e2

3

4e3
2

ny2

+
d1 − 1
√
e2

ky − d2e3 − 2d2e2 + d2
1e2 − e3

2e2
2

ky2 +O
(
n|y|3

))
.

Then Proposition 27 can be applied as long as β > 0, namely, (8.1) holds. The remaining analysis
being similar to that of Theorem 21, we omit the details. �

Note that the proof can be extended to the situation when λj = 0 for 1 6 j < m and λm > 0,
m > 2.

8.2. Self-dual Λ-Fishburn matrices with λ1 > 0. We now consider general self-dual Λ-Fishburn
matrices with λ1 > 0.

Lemma 28. The generating function for self-dual Λ-Fishburn matrices is given by (z marking the
matrix size) ∑

k>0

Λ(z)k+1
∏

16j6k

(
Λ
(
z2
)j − 1

)
.

We omit the proof, which follows directly from that for the case when Λ = Z>0 given in [30].

Corollary 29. If λ1 > 0, then the number of self-dual Λ-Fishburn matrices of size n satisfies

[zn]
∑
k>0

Λ(z)k+1
∏

16j6k

(
Λ(z2)j − 1

)
= c0e

β
√
nρ

1
2
nn

1
2

(n+1)
(
1 +O

(
n−

1
2

))
,

where β =
√

6λ1
π

log 2, and (c, ρ) =
(

3
√

2
π3/2 2

λ2
λ1
−λ1

2 e
−λ1

4
−π

2

24
+
π2λ2
12λ21

+
3λ1
2π2

(log 2)2

, 6λ1
eπ2

)
.

Proof. Condition (8.1) holds because d1 > 0 and e3 = 0. Apply Theorem 26 with ω0 = α = 1,
ω = 0, d1 = e2 = λ1, d2 = e4 = λ2. �

The asymptotic approximation of the corollary implies that if λ1 is fixed, then no matter how
many copies other positive integers are used as entries, the resulting asymptotic count of self-dual
matrices of large size differs only in the leading constant.

In particular, we obtain (1.10) by substituting λ1 = λ2 = 1 in Corollary 29, and (1.11) by λ1 = 1
and λ2 = 0, respectively, on the asymptotics of non-primitive and primitive self-dual Fishburn
matrices, respectively. The situation of prime number entries when Λ(z) = 1 + z +

∑
p prime z

p

leads to the same dominant asymptotics as in (1.10).
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We now examine the three statistics (first row-size, diagonal sum, and the number of 1s) on ran-
dom self-dual Λ-Fishburn matrices, beginning with the corresponding bivariate generating func-
tions. For convenience, we include the empty matrix with size 0.

Proposition 30 (Statistics on self-dual Λ-Fishburn matrices). For self-dual Λ-Fishburn matrices,
we have the following bivariate generating functions with z marking the matrix size and v the
respective statistics.

(i) The size of the first row

Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

(
Λ
(
vz2
)
Λ
(
z2
)j−1 − 1

)
,(8.4)

(ii) the size of the diagonal

Λ(vz)
∑
k>0

Λ(z)k
∏

06j<k

(
Λ
(
v2z2

)
Λ
(
z2
)j − 1

)
,(8.5)

and
(iii) the number of 1s∑

k>0

(Λ(z) + λ1(v − 1)z)k+1
∏

16j6k

((
Λ(z2) + λ1(v2 − 1)z2

)j − 1
)
.(8.6)

The proof is omitted since it is very similar to that for Λ-Fishburn matrices (see Proposition 4),
using the same ideas in [30] for enumerating self-dual matrices.

Theorem 31. Assume λ1 > 0 and that all self-dual Λ-Fishburn matrices of size n are equally likely
to be selected. Then in a random matrix, the size Xn of the first row and the half of the diagonal
size 1

2
Yn both satisfy a central limit theorem with logarithmic mean and variance:

Xn − log n√
log n

d−→ N (0, 1), and
1
2
Yn − log n
√

log n

d−→ N (0, 1),

and for the number of 1s Zn, if λ2 > 0, then n− Zn is the convolution of two Poisson variates:

n− Zn
d−→ 2Poisson

(
λ2
λ1

log 2
)
∗ 4Poisson

(
λ2π2

12λ1

)
,

while if λ2 = 0, then P(Zn = n)→ 1.

Proof. We rely on Theorem 26, following the same ideas used in the proof of Theorem 25.
(i) The first row size: by the approximation (7.3), we apply first Theorem 26 to (8.4) with ω0 = v,

ω = v − 1, d1 = e2 = λ1, d2 = e4 = λ2, e3 = 0, and α = 1, giving rise to an asymptotic
approximation to anE

(
vXn
)
. Then normalizing the resulting expression by an (or by the same

expression with v = 1), we obtain

E
(
vXn
)

=
1

Γ(v)

( 6

π2

)v−1

nv−1
(
1 +O

(
n−

1
2

))
,

uniformly for bounded v. The asymptotic normality (or Poisson(log n)) then follows from
Quasi-Powers theorem.
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(ii) The diagonal size. Similarly, by (8.5), (7.3), and then Theorem 26, we obtain

E
(
vYn
)

=
1

Γ(v2)

( 6

π2

)v2−1

nv
2−1
(
1 +O

(
n−

1
2

))
,

uniformly for bounded v.
(iii) The number of 1s. In this case, Theorem 26 does not apply to (8.6) because e2 = λ1v

2 is a
complex number in general and e2 > 0 may not hold. However, the proof there does apply by
considering e(z/

√
e2), similar to Theorem 21. The result is the same as if we apply formally

Theorem 21 with ω0 = α = 1, ω = 0, d1 = λ1v, d2 = λ2, e2 = λ1v
2, e3 = 0, e4 = λ2,

E
(
vn−Zn

)
= 2

λ2
λ1

(v2−1)
e
λ2π

2

12λ21
(v4−1)(

1 +O
(
n−

1
2

))
,

where the first term on the right-hand side is the probability generating function of two Pois-
son distributions if λ2 > 0. The right-side becomes 1 when λ2 = 0.

�

8.3. Asymptotics of Λ-Fishburn matrices whose smallest nonzero entry is 2. We consider
Fishburn matrices whose smallest nonzero entry is 2. We assume that there is at least an odd
number in Λ, namely,

(8.7) λ1 = · · · = λ2m−1 = 0, and λ2, λ2m+1 > 0,

for m > 1. Otherwise, if Λ contains only even numbers, then, by dividing all entries by 2, the
corresponding asymptotics and distributional properties can be dealt with by the same framework
of Section 5. It turns out that m = 1 (λ1 = 0 but λ3 > 0) and m > 2 have different asymptotic be-
haviors, and in the latter case the dependence on the parity of n is more pronounced, one technical
reason being that the condition (8.1) fails when m > 2, and the odd case needs special treatment.

Lemma 32. Given a formal power series B(z) =
∑

n>0 bnz
n with bn ' c0ρ

n
0n

n+t, ρ0 6= 0, we
have, for even n,

[z
1
2
n]eβnzB(z) ' cρ

1
2
nn

1
2
n+t, with (c, ρ) =

(
c02−te

2β
eρ0 , 1

2
ρ0

)
.

Proof. Expand enβz at z = 2
eρ0n

, the asymptotic saddle-point of z−
1
2
nB(z), and estimate the error

as in Section 4.2. �

Theorem 33 (Λ-Fishburn matrices with 2 as the smallest entries). Assume that Λ is a multiset of
nonnegative integers satisfying (8.7) with Λ(0) = 1. If m = 1, then the number of Λ-Fishburn
matrices of size n satisfies

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
= ceβ

√
nρ

1
2
nn

1
2
n+1
(
1 +O

(
n−

1
2

))
,

where β = λ3π

2
√

3λ
3/2
2

, and (c, ρ) =
(

3
√

6
π2 e

π2

6

(
λ4
λ22
− 1

2
− 7λ23

8λ32

)
, 3λ2
eπ2

)
; and if m > 2, then

[zn]
∑
k>0

∏
16j6k

(
1− Λ(z)−j

)
=

{
c′eβ

√
nρ

1
2
nn

1
2
n+1
(
1 +O

(
n−

1
2

))
, if n is even;

cme
β
√
nρ

1
2
nn

1
2
n−m+ 5

2

(
1 +O

(
n−

1
2

))
, if n is odd,

(8.8)

where ρ and β remain the same, c′ = 6
√

6
π2 e

π2

6

(
λ4
λ22
− 1

2

)
, and cm =

√
2π2m−3

3m−2 · λ2m+1

λ
m+1/2
2

e
π2

6

(
λ4
λ22
− 1

2

)
.
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Note that c and c′ differ by a factor of 2.

Proof. In either case, we rely on the generating function on the right-hand side of (2.5). When
m = 1, we easily check condition (8.1) since d1 = 0 and e3 > 0, and we can apply Theorem 26
with ω0 = 1, α = 2, ω = d1 = 0, and ej = λj for j = 2, 3, 4.

Then we consider the case when m = 2. Following the proof of Theorem 26, we begin with
the change of variables Λ(z) = ey

2 (since λ1 = 0), which in the current setting leads to the local
expansion for the inverse function ζ(y) satisfying Λ(ζ(y)) = ey

2:

ζ(y) =
y

λ
1/2
2

+
λ2

2 − 2λ4

4λ
5/2
2

y3 − λ5

2λ3
2

y4 +
5λ4

2 − 36λ2
2λ4 − 48λ2λ6 + 84λ2

4

96λ
9/2
2

y5 + · · · ,

when |y| ∼ 0. Then, we have

an =
λ

1
2
n

2

2πi

∮
|y|=r

y−n−1hn(y)
∑

06k6b 1
4
nc

e(k+1)y2
∏

16j6k

(
ejy

2 − 1
)2

dy,

where

hn(y) :=
√
λ2

(
ζ(y)

y/
√
λ2

)−n−1

ζ ′(y) = exp
(
−λ

2
2 − 2λ4

4λ2
2

ny2 +
λ5

2λ
5/2
2

ny3 +O
(
|y|2 + n|y|4

))
.

(8.9)

Let β := 1
2

(
λ4
λ22
− 1

2

)
. Now if n is even, we have

an = λ
1
2
n

2 [yn]eβny
2(

1 +O
(
|y|2 + n|y|3

)) ∑
06k6b 1

4
nc

eky
2
∏

16j6k

(
ejy

2 − 1
)2

= λ
1
2
n

2

(
1 +O

(
n−

1
2

))
[y

1
2
n]eβny

∑
k>0

eky
∏

16j6k

(
ejy − 1

)2
,

which, together with Theorem 21 and Lemma 32, leads to the even case of (8.8).
On the other hand, when n is odd, then since y is of order n−

1
2 , we can rewrite hn(y) in (8.9) as

hn(y) = eβny
2
(

1 +
λ5

2λ
5/2
2

ny3 +O
(
|y|2 + n|y|4

))
;

from this we identify the lowest odd power of y, and obtain

an =
λ5

2λ
5/2
2

nλ
1
2
n

2

(
1 +O

(
n−

1
2

))
[yn−3]eβny

2
∑

06k6n

eky
2
∏

16j6k

(
ejy

2 − 1
)2
,

whose asymptotic approximation then follows from (8.8) in the even case since n− 3 is even.
In general, whenm > 3, by splitting Λ(z) into odd and even parts, using for example Lagrange’s

inversion formula in the form

[yk]ζ(y) =
1

k
[tk−1]

( t

log Λ(t)

)k
(k = 1, 2, . . . ),
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we deduce that the smallest odd power of y in the Taylor expansion of hn(y)e−βny
2 is given by

λ2m+1

2λ
m+1/2
2

(n− 2m+ 1)y2m−1.

The expression of cm then follows from that in the even case. �

In particular, the number of Fishburn matrices without using 1 as entries (Λ = Z>0\{1}) satisfies

[zn]
∑
k>0

∏
16j6k

(
1−

( 1− z
1− z + z2

)j)
= ceβ

√
nρ

1
2
nn

1
2
n+1
(
1 +O

(
n−

1
2

))
,

where β = π
2
√

3
, and (c, ρ) =

(
3
√

6
π2 e−

π2

16 , 3
eπ2

)
, which marks a significant difference with that

containing 1 as entries, as given in (1.1).
On the other hand, asymptotics of Λ-row-Fishburn matrices can be similarly treated, and exhibits

a very similar behavior.

8.4. Statistics on Λ-Fishburn matrices whose smallest nonzero entry is 2. Based on the gen-
erating functions of Proposition 4, we now consider the behavior of a general random Λ-Fishburn
matrix with 2 being the smallest nonzero entry.

Theorem 34. Assume that Λ satisfies (8.7). If all Λ-Fishburn matrices of size n are equally likely
to be selected, then, in a random matrix under this distribution, the size Xn of the first row and the
diagonal size Yn are both asymptotically normally distributed in the following sense:

Xn − log n√
log n

d−→ N (0, 1), and
Yn − 2 log n√

2 log n

d−→ N (0, 1),

while the limiting distribution of the number Zn of occurrences of 2 depends on m: if m = 1, then
1
3
(n− 2Zn)− τ

√
n√

τ
√
n

d−→ N (0, 1),
(
τ := λ3π

2
√

3λ
3/2
2

)
,(8.10)

and if m > 2, then

Z∗n
d−→ Poisson

(
λ4π2

6λ2

)
,

where

Z∗n :=

{
1
2

(
1
2
n− Zn

)
, if n is even;

1
2

(
1
2
(n− 2m− 1)− Zn

)
, if n is odd.

Proof. When m = 1, we rely on Theorem 26, following the same ideas used in the proof of
Theorem 25, and when m > 2, the proof is similar to that of Theorem 33.

(i) Assume m = 1. For the first row sum, we have, by the generating function (2.11), the
approximation (7.3) and a modification of the proof of Theorem 26,

[zn]Λ(vz)
∑
k>0

Λ(z)k
∏

16j6k

((
Λ(vz)Λ(z)j−1 − 1

)(
Λ(z)j − 1

))
= c(v)ρ

1
2
nn

1
2
n+v
(
1 +O

(
n−

1
2

))
,
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where (c(v), ρ) =
( √

6
Γ(v)

(
3
π2

)v
e
π2

6

(
λ4
λ22
− 7λ23

8λ32
− 1

2

)
, 3λ2
eπ2

)
. Thus

E
(
vXn
)

=
1

Γ(v)

( 3

π2

)v−1

nv−1
(
1 +O

(
n−

1
2

))
,(8.11)

uniformly for bounded v. Then the asymptotic normality (or Poisson(log n)) follows from
Quasi-Powers theorem. When m = 2, we follow the same procedure as in the proof of
Theorem 33 and obtain

[zn]
∑
k>0

∏
16j6k

(
1− Λ(vz)−1Λ(z)1−j)

= λ
1
2
n

2

(
1 +

(
n−

1
2

))
[y

1
2
n]eβny

∑
k>0

eky
∏

16j6k

(
ejy − 1

)(
e(j+v−1)y − 1

)
,

when n is even. By (7.9) and Lamma 32, we then deduce the same asymptotic approximation
(8.11) when n is even. When n is odd, the corresponding asymptotic approximation differs
by a factor of n−m as in Theorem 33 but the resulting normalizing expression is still (8.11).

(ii) Very similarly, for the diagonal size, we apply first Theorem 26 to the generating function
(2.12) when m = 1 with α = 2, ω0 = v, ω = v − 1, d1 = 0, d2 = e2 = λ2, e3 = λ3 and
e4 = λ4 and obtain an asymptotic approximation to the nth coefficient. Then normalizing the
resulting expression gives

E
(
vYn
)

=
1

Γ(v)2

( 3

π2

)2(v−1)

n2(v−1)
(
1 +O

(
n−

1
2

))
,

uniformly for bounded v. The same expression remains true when m > 2 although the proof
proceeds along the lines of that of Theorem 33.

(iii) The number of 2s is more involved. Consider first m = 1. Similar to (2.13) for the number
of 1s, we now have the generating function∑

k>0

∏
16j6k

(
1−

(
Λ(z) + λ2(v − 1)z2

)−j)
=
∑
k>0

(
Λ(z) + λ2(v − 1)z2

)k+1
∏

16j6k

((
Λ(z) + λ2(v − 1)z2

)j − 1
)2
.

(8.12)

Then if λ3 > 0, we get, by a similar modification of the proof of Theorem 26 (see Theo-
rem 31), the Quasi-Powers approximations,

E
(
v

1
2
n−Zn

)
= c(v)eτ

√
n(v

3
2−1)

(
1 +O

(
n−

1
2

))
,

where τ is given in (8.10) and

c(v) := e
− 7λ23π

2

48λ32
(v3−1)+

λ4π
2

6λ22
(v2−1)

.

The asymptotic normality then results from the Quasi-Powers theorems; see [20, 27]. Indeed,
Z∗n is asymptotically Poisson distributed with parameter τ

√
n.
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When m > 2, we obtain, by (8.12), the change of variables Λ(z) + (λ2− 1)vz2 = ey
2 , and

modifying the proof of (8.8) (see also the proof of Theorem 31),

E
(
v

1
2
n−Zn

)
=

e
λ4π

2

6λ22
(v2−1)

, if n is even;

vm+ 1
2 e

λ4π
2

6λ22
(v2−1)

, if n is odd.

This proves the Poisson limit law.

�

Λ(z) = 1 + z2 + z3 Λ(z) = 1 + z2 + z4 + z5

N
(
π
√
n

2
√

3
, π
√
n

2
√

3

)
Poisson

(
π2

6

)
Figure 8.1. Histograms of the number of 2s in two different compositions of ran-
dom Λ-Fishburn matrices. Left: the distributions P

(
1
3

(
n
2
− Zn

)
= bxµnc

)
with µn

denoting the exact mean, which is asymptotic to π
√
n

2
√

3
; right: P

(
Z∗n = k

)
, where

Z∗n := 1
2

(
n
2
− Zn

)
when n is even, and Z∗n := 1

2

(
n
2
− 2− Zn

)
when n is odd, where

the red line represents the corresponding Poisson distribution.

For random Λ-row-Fishburn matrices, one can derive very similar types of results: zero-truncated
Poisson with parameter λ1

λ2
log 2 for the first row size, N (log n, log n) for the diagonal size, and

N
(
τ
√
n, τ
√
n
)

with τ := λ3π

2
√

6λ
3/2
2

or Poisson(λ4π
2

12λ22
) limit law when m = 1 or m > 2, respectively,

for the number of 2s.

9. CONCLUSIONS

Motivated by the asymptotic enumeration of and statistics on Fishburn matrices and their vari-
ants, we developed in this paper a saddle-point approach to computing the asymptotics of the
coefficients of generating functions with a sum-of-product form, and applied it to several dozens
of examples. The approach is not only useful for the usual large-n asymptotics but also effective
in understanding the stochastic behaviors of random Fishburn matrices, with or without further
constraints on the entries or on the structure of the matrices. In particular, we identified a simple
yet general framework and showed its versatile usefulness in this paper. Many new asymptotic dis-
tributions of statistics on random matrices are derived in a systematic and unified manner, which
in turn demand further structural interpretations; for example, since the normal approximations we
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derived in this paper can indeed all be approximated by Poisson distributions with parameters de-
pending on n (equal to the asymptotic mean), a natural question is why Poisson laws with bounded
or unbounded parameters is ubiquitous in the random Λ-Fishburn matrices.

Other frameworks will be examined in a follow-up paper. In addition to different sum-of-product
patterns, we will also work out cases for which our approach in this paper does not directly apply.
For example, we have not found transformations for the series (1.3) such that our saddle-point
method works.

Finally, the rank (or dimension) of a random Λ-Fishburn matrices represents another important
statistic on random matrices, which is expected to follow a central limit theorem with linear mean
and variance. Indeed, if we replace ez in Remark 2 by 1/(1 − z), then the local limit theorem
given there still holds, which can be interpreted as the distribution of the dimension in a random
row-Fishburn matrix of size n. The situation for random Fishburn matrices is however less clear as
we do not have a simple decomposition as in row-Fishburn ones. This and related quantities will
be investigated and clarified elsewhere.
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