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Abstract. This paper deals with lattice congruences of the weak order on the symmetric group,
and initiates the investigation of the cover graphs of the corresponding lattice quotients. These
graphs also arise as the skeleta of the so-called quotientopes, a family of polytopes recently
introduced by Pilaud and Santos [Bull. Lond. Math. Soc., 51:406–420, 2019], which generalize
permutahedra, associahedra, hypercubes and several other polytopes. We prove that all of these
graphs have a Hamilton path, which can be computed by a simple greedy algorithm. This is an
application of our framework for exhaustively generating various classes of combinatorial objects
by encoding them as permutations. We also characterize which of these graphs are vertex-
transitive or regular via their arc diagrams, give corresponding precise and asymptotic counting
results, and we determine their minimum and maximum degrees. Moreover, we investigate the
relation between lattice congruences of the weak order and pattern-avoiding permutations.

1. Introduction

We let Sn denote the set of all permutations on the set {1, . . . , n}. The inversion set of a
permutation π ∈ Sn is the set of all decreasing pairs of values of π = a1 . . . an, formally

inv(π) :=
{
(ai, aj) | 1 ≤ i < j ≤ n and ai > aj

}
.

We consider the classical weak order on Sn, the poset obtained by ordering all permutations
from Sn by containment of their inversion sets, i.e., π < ρ in the weak order if and only
if inv(π) ⊆ inv(ρ); see the left hand side of Figure 1. Equivalently, the weak order on Sn can
be obtained as the poset of regions of the braid arrangement of hyperplanes. Also, its Hasse
diagram is the graph of the permutahedron.

It is well-known that the weak order forms a lattice, i.e., joins π ∨ ρ and meets π ∧ ρ are well-
defined. A lattice congruence is an equivalence relation ≡ on Sn that is compatible with taking
joins and meets. Formally, if π ≡ π′ and ρ ≡ ρ′ then we also have π∨ρ ≡ π′∨ρ′ and π∧ρ ≡ π′∧ρ′.
The lattice quotient Sn/ ≡ is obtained by taking the equivalence classes as elements, and ordering
them by X < Y if and only if there is a π ∈ X and a ρ ∈ Y such that π < ρ in the weak order;
see the right hand side of Figure 1. The study of lattice congruences of the weak order has
been developed considerably in recent years, in particular thanks to Nathan Reading’s works,
summarized in [Rea12a, Rea16a, Rea16b]. All of these results have beautiful ramifications into
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Figure 1. Hasse diagrams of the weak order on S4 (left) with a lattice congru-
ence ≡ (bold edges), and of the resulting lattice quotient S4/ ≡ (right), which is
the well-known Tamari lattice (with corresponding binary trees).

posets, polytopes, geometry, and combinatorics. In fact, many of these results even hold in
the more general setting of arbitrary Coxeter groups and for the poset of regions of general
hyperplane arrangements.

It is not hard to see that there are double-exponentially (in n) many distinct lattice congruences
of the weak order on Sn, and many important lattices arise as quotients of suitable lattice
congruences: the Boolean lattice, the Tamari lattice [Tam62] (shown in Figure 1), type A
Cambrian lattices [Rea06, CP17], permutree lattices [PP18], the increasing flip lattice on acyclic
twists [Pil18], and the rotation lattice on diagonal rectangulations [LR12, Gir12, CSS18].

In a recent paper, Pilaud and Santos [PS19] showed how to realize the cover graph of any
lattice quotient Sn/ ≡ as the graph of an (n− 1)-dimensional polytope, and they called these
polytopes quotientopes. Their results generalize many earlier constructions of polytopes for
the aforementioned special lattices [Lod04, HL07, LP18, PP18, PS12, LR12]. In particular,
quotientopes generalize permutahedra, associahedra, and hypercubes. Interestingly, quotientopes
are defined by a set of gliding hyperplanes that is consistent with refining the corresponding
lattice congruences, i.e., moving the hyperplanes outwards corresponds to refining the equivalence
classes. In particular, the permutahedron contains all other quotientopes, and the hypercube is
contained in all quotientopes. Figure 7 shows all quotientopes for n = 4 ordered by refinement of
the corresponding congruences, with permutahedron, associahedron, and hypercube highlighted.

There are several long-standing open problems revolving around Hamilton paths and cycles in
graphs of polytopes and other highly symmetric graphs, most prominently Barnette’s conjecture
and Lovász’ conjecture. Barnette’s conjecture [Bar69] asserts that the graph of every simple three-
dimensional polytope with an even number of edges on each face has a Hamilton cycle. Another
variant of the conjecture states that the graphs of all simple three-dimensional polytopes with
face sizes at most 6, in particular all fullerenes, have a Hamilton cycle [ABHM00]. Barnette also
conjectured that the graph of every simple 4-dimensional polytope has a Hamilton cycle [Grü70,
p. 1145]. Note that the simplicity of these polytopes means that their graphs are 3-regular or
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4-regular, respectively. Lovász’ conjecture [Lov70] asserts that every vertex-transitive graph
has a Hamilton path. A stronger form of his conjecture asserts that such graphs even have a
Hamilton cycle, with five well-understood exceptions, among them the Petersen graph and the
Coxeter graph.

1.1. Our results. In this paper we initiate the investigation of the cover graphs of lattice
quotients of the weak order on the symmetric group Sn, or equivalently, of the graphs of
the quotientopes introduced by Pilaud and Santos. Our first main result is that for every
lattice congruence ≡ of the weak order on Sn, the cover graph of the lattice quotient Sn/ ≡
has a Hamilton path (Theorem 13). As a consequence, the graph of every quotientope has a
Hamilton path (Corollary 14); see Figure 7 on page 14. These Hamilton paths are computed
by a simple greedy algorithm, which we devised in [HHMW19, HHMW20] within a general
framework for exhaustively generating various classes of combinatorial objects by encoding
them as permutations. For the permutahedron, associahedron, and hypercube, algorithmic
constructions of such Hamilton paths were already known by the Steinhaus-Johnson-Trotter
algorithm [Tro62, Joh63], by the Lucas-van Baronaigien-Ruskey tree rotation algorithm [LvBR93]
(see also [HN99]), and by the binary reflected Gray code [Gra53], respectively. Our results thus
unify and generalize all these classical algorithms. Motivated by our Hamiltonicity results and
by Barnette’s and Lovász’ conjectures, we also characterize which lattice congruences of the
weak order on Sn yield regular or vertex-transitive quotientopes. This characterization uses
arc diagrams introduced by Reading [Rea15], and allows us to derive corresponding precise
and asymptotic counting results. We also determine the minimum and maximum degrees of
quotientopes. All of these results are summarized in Table 1 on page 17 (theorems are referenced
in the table). In those results, Catalan numbers, integer compositions and partitions, and the
Erdős-Szekeres theorem make their appearance. As a last result, we formulate conditions under
which a set of pattern-avoiding permutations can be realized as a lattice congruence of the weak
order on Sn (Theorem 38 on page 39).

1.2. Outline of this paper. This is part II in our paper series on exhaustively generating
various classes of combinatorial objects by encoding them as permutations. In part I [HHMW19],
we developed the fundamentals of this framework, including a simple greedy algorithm for
exhaustive generation, and we applied the framework to generate many different classes of
pattern-avoiding permutations. In Section 2 of the present paper, we briefly recap the necessary
background from this first paper. In Section 3, we apply our framework to generating lattice
congruences of the weak order on Sn, proving that all quotientopes have a Hamilton path.
In Section 4, we characterize and count regular and vertex-transitive quotientopes, and we
determine their minimum and maximum degree. Lastly, in Section 5, we briefly discuss the
relation between pattern-avoiding permutations and lattice congruences of the weak order.

2. Recap: Zigzag languages and Algorithm J

2.1. Preliminaries. For any two integers a and b with a ≤ b we define [a, b] := {a, a+ 1, . . . , b}
and ]a, b[ := [a, b]\{a, b}, and we introduce the abbreviation [n] := [1, n]. We use idn = 12 . . . n to
denote the identity permutation, and ε ∈ S0 to denote the empty permutation. For any π ∈ Sn−1
and any 1 ≤ i ≤ n, we write ci(π) ∈ Sn for the permutation obtained from π by inserting the
new largest value n at position i of π, i.e., if π = a1 . . . an−1 then ci(π) = a1 . . . ai−1 nai . . . an−1.
Moreover, for π ∈ Sn, we write p(π) ∈ Sn−1 for the permutation obtained from π by removing
the largest entry n.
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Given a permutation π = a1 . . . an with a substring ai . . . aj with ai > ai+1, . . . , aj , a right
jump of ai by j − i steps is a cyclic left rotation of this substring by one position to ai+1 . . . ajai.
Similarly, given a substring ai . . . aj with aj > ai, . . . , aj−1, a left jump of aj by j − i steps is a
cyclic right rotation of this substring to ajai . . . aj−1.

2.2. The basic algorithm. The following simple greedy algorithm was proposed in [HHMW19]
to generate a set of permutations Ln ⊆ Sn. We say that a jump is minimal (w.r.t. Ln), if a
jump of the same value in the same direction by fewer steps creates a permutation that is not
in Ln. Note that each entry of the permutation admits at most one minimal left jump and at
most one minimal right jump.

Algorithm J (Greedy minimal jumps). This algorithm attempts to greedily generate a set
of permutations Ln ⊆ Sn using minimal jumps starting from an initial permutation π0 ∈ Ln.
J1. [Initialize] Visit the initial permutation π0.
J2. [Jump] Generate an unvisited permutation from Ln by performing a minimal jump of the

largest possible value in the most recently visited permutation. If no such jump exists,
or the jump direction is ambiguous, then terminate. Otherwise visit this permutation
and repeat J2.

Put differently, in step J2 we consider the entries n, n− 1, . . . , 2 of the current permutation in
decreasing order, and for each of them we check whether it allows a minimal left or right jump
that creates a previously unvisited permutation, and we perform the first such jump we find,
unless the same entry also allows a jump in the opposite direction, in which case we terminate. If
no minimal jump creates an unvisited permutation, we also terminate the algorithm prematurely.
For example, consider L4 = {1243, 1423, 4123, 4213, 2134}. Starting with π0 = 1243, the
algorithm generates π1 = 1423 (obtained from π0 by a left jump of 4 by 1 step), then π2 = 4123,
then π3 = 4213 (in π2, 4 cannot jump, as π0 and π1 have been visited before; 3 cannot jump
either to create any permutation from L4, so 2 jumps left by 1 step), then π4 = 2134, successfully
generating L4. If instead we initialize with π0 = 4213, then the algorithm generates π1 = 2134,
and then stops, as no further jump is possible. If we choose π0 = 1423, then we may jump 4 to
the left or right (by 1 step), but as the direction is ambiguous, the algorithm stops immediately.
As mentioned before, the algorithm may stop prematurely only either because no minimal jump
leading to a new permutation from Ln is possible, or because the direction of jump is ambiguous
in some step. By the definition of step J2, the algorithm will never visit any permutation twice.

The following theorem, proved in [HHMW19], provides a sufficient condition on the set Ln to
guarantee that Algorithm J is successful. This condition is captured by the following closure
property of the set Ln. A set of permutations Ln ⊆ Sn is called a zigzag language, if either n = 0
and L0 = {ε}, or if n ≥ 1 and Ln−1 := {p(π) | π ∈ Ln} is a zigzag language satisfying either one
of the following conditions:
(z1) For every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln.
(z2) We have Ln = {cn(π) | π ∈ Ln−1}.

The definition of zigzag language given in [HHMW19] did not include condition (z2), but
only condition (z1). However, all results from our earlier paper carry over straightforwardly.
Essentially, condition (z2) is a technicality we include here to be able to handle lattice congruences
in full generality. Condition (z2) expresses that Ln is obtained from Ln−1 simply by inserting
the new largest value n at the rightmost position of all permutations, i.e., the value n only ever
appears to the right of 1, . . . , n− 1. In this case we will have in particular |Ln| = |Ln−1|.
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Theorem 1 ([HHMW19]). Given any zigzag language of permutations Ln and initial permutation
π0 = idn, Algorithm J visits every permutation from Ln exactly once.

For proving Theorem 1, we showed that the permutations in Ln are generated by Algorithm J
exactly in the order of a particular sequence J(Ln), and we now recapitulate the definition of
this sequence. For any π ∈ Ln−1 we let #„c (π) be the sequence of all ci(π) ∈ Ln for i = 1, 2, . . . , n,
starting with c1(π) and ending with cn(π), and we let #„c (π) denote the reverse sequence, i.e.,
it starts with cn(π) and ends with c1(π). In words, those sequences are obtained by inserting
into π the new largest value n in all possible positions from left to right, or from right to left,
respectively. The sequence J(Ln) is defined recursively as follows: If n = 0 then J(L0) := ε, and
if n ≥ 1 then we consider the sequence J(Ln−1) =: π1, π2, . . . and define

J(Ln) = #„c (π1), #„c (π2), #„c (π3), #„c (π4), . . . (1a)

if condition (z1) holds, and we define

J(Ln) = cn(π1), cn(π2), cn(π3), cn(π4), . . . (1b)

if condition (z2) holds.

3. Generating lattice congruences of the weak order

In this section we show how Algorithm J can be used to generate any lattice congruence of
the weak order on Sn. The main results of this section are summarized in Theorem 13 and
Corollary 14 below.

3.1. Preliminaries. We begin to recall a few basic definitions for a poset (P,<). An antichain
in P is a set of pairwise incomparable elements. A subset U ⊆ P is an upset if x ∈ U and x < y

implies that y ∈ U . Similarly, D ⊆ P is a downset if x ∈ D and y < x implies that y ∈ D.
Clearly, the complement of an upset is a downset and vice versa. Moreover, the minimal
elements of an upset and the maximal elements of a downset form an antichain. The upset of an
element x ∈ P is the upset containing exactly all y with x < y. Similarly, the downset of x is the
the downset containing exactly all y with y < x. An interval X = [x, y] in P is the intersection
of the upset of x with the downset of y, and we write x = min(X) and y = max(X).

A cover relation is a pair x, y ∈ P with x < y for which there is no z ∈ P with x < z < y. In
this case we say that y covers x and we write xl y. We also refer to x as a down-neighbor of y,
and to y as an up-neighbor of x. Clearly, the cover relations form an acyclic directed graph with
vertex set P , and this graph is referred to as the cover graph of P , and its edges as cover edges. A
drawing of the cover graph with all cover edges xl y leading upwards is called a Hasse diagram.
A poset (P,<) is called a lattice, if for any two x, y ∈ P there is a unique smallest element z,
called the join x ∨ y of x and y, such that z > x and z > y, and if there is a unique largest
element z, called the meet x ∧ y of x and y, satisfying z < x and z < y. A lattice congruence
is an equivalence relation ≡ on P such that x ≡ x′ and y ≡ y′ implies that x ∨ y ≡ x′ ∨ y′ and
x ∧ y ≡ x′ ∧ y′. Given any lattice congruence ≡, we obtain the lattice quotient P/ ≡ (which is
itself a lattice) by taking the equivalence classes as elements, and ordering them by X < Y if
and only if there is an x ∈ X and a y ∈ Y such that x < y in P . Observe that the cover graph
of P/ ≡ is obtained from the cover graph of P by contracting all cover edges xl y with x ≡ y.
For any x ∈ P , we let XP (x) = X(x) denote the equivalence class in P/ ≡ containing x.

We will need the following two lemmas.

Lemma 2. For any lattice congruence of a finite lattice, every equivalence class is an interval.
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Lemma 3. Given a finite lattice (P,<) and any lattice congruence ≡, the lattice quotient
P/ ≡ is isomorphic to the induced subposet of P whose elements are either the minima of the
equivalence classes or the maxima.

Lemma 2 follows immediately from the definition of lattice congruence. Lemma 3 has appeared
in many previous papers, see e.g. [Kol87, Dor95, CS98, Rea02]. It can be proved by showing
that given two equivalence classes X and Y of ≡ and two elements x ∈ X, y ∈ Y with xl y,
then we have min(X) < min(Y ) and max(X) < max(Y ).

Recall the definition of the weak order on Sn given in the introduction. Note that the cover
relations in this poset are exactly adjacent transpositions. Observe also that the inversion set of
the join π∨ρ of two permutations π and ρ is given by the transitive closure of inv(π)∪ inv(ρ), and
the inversion set of the meet can be computed similarly by considering the reverse permutations
(which have the complementary inversion set). In the weak order on Sn, if two permutations π
and ρ differ by transposing a and b, then we refer to the corresponding cover edge as an (a, b)-
edge, and if π ≡ ρ then we refer to it as an (a, b)-bar. Bars are drawn with bold edges in all
our figures. The cover edges involving a fixed permutation π = a1 . . . an can be described more
precisely by considering all ascents of π, i.e., all pairs (ai, ai+1) with ai < ai+1 and all descents
of π, i.e., all pairs (ai, ai+1) with ai > ai+1. Specifically, for fixed π, all cover edges πlρ are given
by transposing the ascents of π, and all cover edges π m ρ are given by transposing the descents
of π. We let asc(π) and desc(π) denote the number of ascents and descents of π, respectively.

3.2. Combinatorics of lattice congruences of the weak order. In the following discussion
of lattice congruences of the weak order, we borrow some of the terminology and notation
introduced by Reading [Rea03, Rea15]; see also his surveys [Rea12a, Rea16a, Rea16b].

It is clear from the definition of lattice congruence, that if certain permutations are equivalent,
this also forces other permutations to be equivalent. These relations on the cover edges are
expressed by forcing constraints. The two forcing constraints that are relevant for us are shown
in Figure 2. We refer to them as type i and type ii constraints, shown on the left and right
of the figure, respectively. A type i constraint involves four permutations π, ρ, π′, ρ′ satisfying
πlρlρ′ and πlπ′lρ′ that differ in adjacent transpositions of two values a, b or two values c, d
with a < b and c < d, as shown in the figure. This constraint expresses that π ≡ ρ if and only
if π′ ≡ ρ′, i.e., either both (a, b)-edges (π, ρ) and (π′, ρ′) are bars or both are non-bars. A type ii
constraint involves six permutations π, ρ, π′, ρ′, σ, τ satisfying π l ρl τ l ρ′ and π l σ l π′ l ρ′

that differ in three adjacent values a, b, c with a < b < c, as shown in the figure. This constraint
expresses that π ≡ ρ if and only if π′ ≡ ρ′, and moreover these conditions imply σ ≡ π′ and τ ≡ ρ
(but not the converse), i.e., the first two (a, b)-edges are both either bars or non-bars, and in the
first case they also force the latter two (a, c)-edges to be bars. Note that both constraints follow
immediately from the definition of lattice congruence, and that they are meant to capture also
the symmetric situation obtained by reversing all permutations involved in Figure 2.

We now consider maximal sets of cover edges that are either all bars or all non-bars in any
lattice congruence. Given an (a, b)-bar, then type i constraints allow us to reorder the values to
the left or right of a and b in the corresponding permutations arbitrarily. Moreover, given an
(a, b)-bar, then type ii constraints allow us to move any value that is larger or smaller than a
and b to the left or right of them. Consequently, a maximal set of mutually forcing bars is
characterized by the pair (a, b), and by the values that are strictly between a and b and to the
left of them. This motivates the following definition: Given a triple (a, b, L) with 1 ≤ a < b ≤ n
and L ⊆ ]a, b[, the fence f(a, b, L) is the set of all (a, b)-edges, where the values in L are to the
left of a and b in the corresponding permutations, the values in ]a, b[ \ L are to the right of a
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π = ab cd

π′ = ab dc

ρ′ = ba dc

ρ = ba cd

π = abc

σ = acb

τ = bca

ρ = bac

π′ = cab

ρ′ = cba

a < b and c < d a < b < c

type i type ii

Figure 2. Forcing constraints in a lattice congruence of the weak order. Bold
edges indicate bars, i.e., pairs of permutations that differ in an adjacent transpo-
sition and that belong to the same equivalence class.

and b, and the position of the remaining values [n] \ [a, b] is arbitrary. Note that the edges of
any fence form a matching in the cover graph. (In the dual setting of hyperplane arrangements
considered in [Rea03, PS19], the dual of a fence is called a shard.) For instance, for n = 4 the
fence f(2, 4, {3}) contains the (2, 4)-edges (3241, 3421), (1324, 1342), and (3124, 3142) that are
mutually forcing bars; see Figure 3. In the figure, we visualize fences by an arc diagram, which
consists of a vertical sequence of n points labeled 1, . . . , n from bottom to top, and for every
fence f(a, b, L) there is an arc joining the ath and bth point, with the points in L left of the arc,
and the points in ]a, b[ \ L right of the arc. We let

Fn :=
{
f(a, b, L) | 1 ≤ a < b ≤ n and L ⊆ ]a, b[

}
denote the set of all fences.

The (non-mutual) forcing constraints between fences induced by type ii constraints yield a
partial order on Fn, called the forcing order. Specifically, two fences f(a, b, L) and f(c, d,M)
satisfy f(a, b, L) ≺ f(c, d,M) in the forcing order, if a ≤ c < d ≤ b, (a, b) 6= (c, d), and
M = L∩ ]c, d[. Note that two such fences form a cover relation in the forcing order if and only if
(c, d) = (a+1, b) or (c, d) = (a, b−1). Consequently, every non-maximal fence f(a, b, L) is covered
by two other fences, and every non-minimal fence f(a, b, L) covers two fences if either a = 0
or b = n, and four fences if 0 < a < b < n. The interpretation is that if f(a, b, L) ≺ f(c, d,M),
then the bars of the fence f(c, d,M) force the bars of the fence f(a, b, L), i.e., forcing goes
downward in the forcing order. For example, we have f(1, 4, {2, 3}) ≺ f(2, 4, {3}), i.e., the three
bars (3241, 3421), (1324, 1342), and (3124, 3142) from before force the two bars (2314, 2341)
and (3214, 3241).

Theorem 4 ([Rea16a, Section 10-5]). For every lattice congruence ≡ of the weak order on Sn,
there is a subset of fences F≡ ⊆ Fn such that in each equivalence class of ≡, all cover edges are
a bar from a fence in F≡, and all other cover edges are not in any fence from F≡. Moreover,
F≡ is a downset of the forcing order ≺ and the map ≡ 7→ F≡ is a bijection between the lattice
congruences of the weak order on Sn and the downsets of the forcing order ≺.

From now on we use F≡ as the set of fences corresponding to a lattice congruence ≡ given by
Theorem 4. The downset F≡ describes exactly all the cover edges that are contracted to obtain
the lattice quotient Sn/ ≡. Equivalently, the upset Fn \ F≡ describes all cover edges that are
not contracted in the quotient.

We may order all downsets of the forcing order by inclusion, yielding another lattice; see
Figure 4. By Theorem 4, this corresponds to ordering all lattice congruences of the weak order
on Sn by refinement. The finest lattice congruence ≡ does not use any fences F≡ = ∅, and
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321

231

132213

123

f(1, 2, ∅) f(2, 3, ∅)

f(1, 3, {2}) f(1, 3, ∅)

f(1, 2, ∅) f(2, 3, ∅) f(3, 4, ∅)

f(1, 3, {2}) f(1, 3, ∅) f(2, 4, ∅)

f(1, 4, {2, 3}) f(1, 4, {2}) f(1, 4, ∅)

f(2, 4, {3})

f(1, 4, {3})

Figure 3. Illustration of fences and the forcing order for n = 3 (left) and n = 4
(right). Cover edges of the same fence are drawn in the same color. The highlighted
region shows a downset in the forcing order, corresponding to the lattice quotient
in Figure 1.

corresponds to the set of all permutations Sn, and the coarsest lattice congruence ≡ uses all
fences F≡ = Fn, and corresponds to contracting all permutations into a single equivalence class.

3.3. Restrictions, rails, ladders, and projections. Given a lattice congruence ≡ of the
weak order on Sn, the restriction of ≡, denoted ≡∗, is the relation on Sn−1 induced by all
permutations that have the largest value n at the last position, i.e., it is the set of all pairs (π, ρ)
with π, ρ ∈ Sn−1 for which cn(π) ≡ cn(ρ).

Lemma 5. For every lattice congruence ≡ of the weak order on Sn, the restriction ≡∗ is a
lattice congruence on Sn−1.

Proof. Clearly, for any two permutations π, ρ ∈ Sn−1 we have

cn(π) ∨ cn(ρ) = cn(π ∨ ρ) and cn(π) ∧ cn(ρ) = cn(π ∧ ρ). (2)

Now consider four permutations π, π′, ρ, ρ′ ∈ Sn−1 satisfying π ≡∗ π′ and ρ ≡∗ ρ′. From the
definition of restriction, we have cn(π) ≡ cn(π′) and cn(ρ) ≡ cn(ρ′). Applying the definition
of lattice congruence to ≡, we obtain that cn(π) ∨ cn(ρ) ≡ cn(π′) ∨ cn(ρ′) and cn(π) ∧ cn(ρ) ≡
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Figure 4. Lattice of congruences of the weak order on Sn for n = 4, represented
by downsets of the forcing order. Each downset of fences is represented by an arc
diagram containing all the corresponding arcs, where the arcs corresponding to
maximal fences of the downset are highlighted. The figure shows only downsets
not containing any non-essential fences f(a, a+ 1, ∅), a ∈ [n− 1], as otherwise
the congruence is equivalent to a lower-dimensional one (see Lemma 17 below).



10 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES. II. LATTICE CONGRUENCES

34125

31425

13425 31245

13245

34152

31452

13452 31254

13254

34512

31542

13542 31524

13524

35412

35142

15342 35124

15324

53412

53142

51342 53124

51324

34125 = c5(3412)

31425

13425 31245

13245

34152

31452

13452 31254

13254

34512

31542

13542 31524

13524

35412

35142

15342 35124

15324

53412 = c1(3412)

53142

51342 53124

51324

rail r(3412)
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I2 = [13254, 35412]

I3 = [13245, 34512]

I1 = [15324, 53412]

Figure 5. Illustration of rails, ladders, and projections. The figure shows only a
subset of permutations from S5. The equivalence classes on the right are shown
as intervals.

cn(π′) ∧ cn(ρ′). Applying (2) to these relations yields cn(π ∨ ρ) ≡ cn(π′ ∨ ρ′) and cn(π ∧ ρ) ≡
cn(π′ ∧ ρ′), from which we obtain π ∨ ρ ≡∗ π′ ∨ ρ′ and π ∧ ρ ≡∗ π′ ∧ ρ′ with the definition of
restriction. This proves the lemma. �

The following definitions are illustrated in Figure 5. Recall that for any permutation π ∈
Sn−1 and for any 1 ≤ i ≤ n, the permutation ci(n) is obtained from π by inserting the
largest value n at position i. Given any permutation π ∈ Sn−1, we refer to the cover edges
cn(π) l cn−1(π) l · · · l c1(π) in Sn as the rail r(π). Given two permutations π, ρ ∈ Sn−1
with πlρ, we refer to the cover edges of the weak order induced by the permutations on the rails
of π and ρ as the ladder `(π, ρ). Let k and k + 1 be the positions in which π and ρ differ. Note
that the ladder `(π, ρ) has exactly all cover edges of the rails, plus the cover edges ci(π) l ci(ρ)
for all 1 ≤ i ≤ n except for i = k + 1, which are referred to as the stairs of the ladder. We see
that the cover graph of the weak order on Sn has the following recursive structure: It is the
union of all ladders `(π, ρ) obtained from all cover edges π l ρ with π, ρ ∈ Sn−1.

Lemma 6. For every lattice congruence ≡ of the weak order on Sn, the following three statements
are equivalent:
(i) idn ≡ cn−1(idn−1), i.e., the identity permutation and the one obtained from it by transposing

the last two entries form a bar.
(ii) There is a permutation π ∈ Sn−1 such that for all 1 ≤ i < n we have ci(π) ≡ ci+1(π), i.e.,

the rail r(π) consists entirely of bars.
(iii) For all permutations π ∈ Sn−1 and all 1 ≤ i < n we have ci(π) ≡ ci+1(π), i.e., all rails r(π)

consist entirely of bars.

Proof. Clearly, (iii) implies (ii) and (iii) implies (i), so it suffices to prove that (ii) implies (iii) and
that (i) implies (iii). We prove this by showing that if there is an (n− 1, n)-bar in Sn, then (iii)
follows. If there is an (n−1, n)-bar, this means that the fence f(n−1, n, ∅) is in F≡. However, as



COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES. II. LATTICE CONGRUENCES 11

F≡ is a downset in the forcing order (recall Theorem 4), it follows that all fences f(a, n, L) with
1 ≤ a ≤ n− 1 and an arbitrary subset L ⊆ ]a, n[ are also in F≡. For any π = a1 . . . an−1 ∈ Sn−1,
the ith edge along the rail r(π) = cn(π) l cn−1(π) l · · ·l c1(π) is an (an−i, n)-edge, so it is a
bar regardless of the values of a1 . . . an−i. �

Combining Lemmas 2 and 6 yields the following lemma.

Lemma 7. Let ≡ be an equivalence relation of the weak order on Sn with idn 6≡ cn−1(idn−1).
Then for every rail r(π), π ∈ Sn−1, and every equivalence class X ∈ Sn/ ≡ we have that X ∩ r(π)
is an interval of r(π). Moreover, there are two distinct equivalence classes X and Y containing
the first and last permutation of the rail, i.e., cn(π) ∈ X and c1(π) ∈ Y .

Recall that for π ∈ Sn, the permutation p(π) ∈ Sn−1 is obtained by removing the largest
value n from π. Given a set of permutations X ⊆ Sn, we refer to p(X) := {p(π) | π ∈ X} as the
projection of X. This definition and the following crucial lemma are illustrated in Figure 5.

Lemma 8. For every lattice congruence ≡ of the weak order on Sn and every equivalence class X
of ≡, we have that the projection p(X) is an equivalence class of the restriction ≡∗. In particular,
any two equivalence classes X,Y of Sn/ ≡ either have the same projection p(X) = p(Y ) or
disjoint projections p(X) ∩ p(Y ) = ∅.

The proof of this lemma essentially proceeds by repeatedly applying the forcing constraints
shown in Figure 2 along ladders. However, we do not apply these constraints directly, but using
the fences captured by Theorem 4.

Proof. For any n ≥ 1 and any permutation π ∈ Sn, we let N(π) denote the set of all permutations
that differ from π in an adjacent transposition, i.e., all neighbors in the cover graph of Sn.
Now consider a fixed lattice congruence ≡ on Sn, fix an equivalence class X of ≡ and some
permutation π ∈ X, and consider its projection π′ := p(π) ∈ Sn−1. The lemma is a consequence
of the following two statements:
(i) For every ρ ∈ N(π) ⊆ Sn with π ≡ ρ we have that p(π) ≡∗ p(ρ).
(ii) For every ρ′ ∈ N(π′) ⊆ Sn−1 with π′ ≡∗ ρ′ there is a ρ ∈ N(π) with π ≡ ρ and p(ρ) = ρ′, or

there is a σ ∈ N(π) and a ρ ∈ N(σ) with π ≡ σ ≡ ρ and p(π) = p(σ) = π′ and p(ρ) = ρ′.
In words, (i) asserts that the projection of any bar incident to π is a bar incident to π′ in the
restriction, and (ii) asserts that for any bar incident to π′ in the restriction, there are one or two
consecutive bars starting at π whose projection is this bar.

We begin proving (i). Let ρ ∈ N(π) ⊆ Sn with π ≡ ρ. If π and ρ are endpoints of an
(a, n)-bar for some a < n (i.e., this bar is part of the rail r(π′)), then we have p(π) = p(ρ), so
trivially p(π) ≡∗ p(ρ). Otherwise π and ρ are endpoints of some (a, b)-bar for a < b < n (i.e.,
this bar is a stair of some ladder), so the fence f(a, b, L) is in F≡, where L is the set of all values
from ]a, b[ left of a and b in π and ρ. By the definition of a fence, it follows that cn(p(π)) ≡ cn(p(ρ)),
i.e., the permutations obtained from π and ρ by moving the largest value n to the rightmost
position are equivalent. By the definition of restriction, we obtain that p(π) ≡∗ p(ρ), as claimed.

We now prove (ii). Let ρ′ ∈ N(π′) ⊆ Sn−1 with π′ ≡∗ ρ′. Clearly, π′ and ρ′ are endpoints
of some (a, b)-bar in ≡∗ for a < b ≤ n − 1. By the definition of restriction, it follows that
cn(π′) ≡ cn(ρ′), so f(a, b, L) is a fence in F≡, where L is the set of all values from ]a, b[ left of a
and b in π′ and ρ′. In the following we assume that π′lρ′, i.e., π′ contains the ascent (a, b), and ρ′
contains the descent (b, a). Let i be such that π = ci(π′), and let k be the position of b in π′. We
now distinguish two cases. If i 6= k, then π = ci(π′) l ci(ρ′) is a cover edge in Sn (it is a stair of
the ladder `(π′, ρ′)), and since it is contained in the fence f(a, b, L), we have π = ci(π′) ≡ ci(ρ′),
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i.e., this cover edge is indeed a bar. This means we can take ρ := ci(ρ′) ∈ N(π), which
satisfies p(ρ) = ρ′ by definition. On the other hand, if i = k, then ci(π′) and ci(ρ′) are not
endpoints of a cover edge (this is the missing stair in the ladder `(π′, ρ′)). However, we may
take σ := ci−1(π′) ∈ N(π) and ρ := ci−1(ρ′) ∈ N(σ) (note that i = k ≥ 2), and then π l σ

is an (a, n)-edge, and σ l ρ is an (a, b)-edge. As f(a, b, L) is a fence in F≡, the forcing order
implies that f(a, n, L′) is also a fence, where L′ is defined as the set of all values from ]a, n[
left of a and n in π and σ. Consequently, we have π ≡ σ ≡ ρ, and moreover p(π) = p(σ) = π′

and p(ρ) = ρ′ by the definition of σ and ρ, i.e., these two cover edges are indeed bars. In
the remaining subcase π′ m ρ′ we can take ρ := ci(ρ′) ∈ N(π) if i 6= k, and σ := ci+1(π′) and
ρ := ci+1(ρ′) if i = k, and argue similarly to before.

This proves the lemma. �

We state the following two lemmas for further reference. The first lemma is an immediate
consequence of Lemma 8. For any lattice congruence ≡ of the weak order on Sn and any
fence f(a, b, L) in F≡ with b < n, we let f∗(a, b, L) denote the fence formed by the union of
all (a, b)-edges in the weak order on Sn−1 obtained by removing the largest value n from all
permutations of f(a, b, L).

Lemma 9. For every lattice congruence ≡ of the weak order on Sn, its restriction ≡∗ satisfies
F≡∗ = {f∗(a, b, L) | f(a, b, L) ∈ F≡ and b < n}.

Rephrased in terms of arc diagrams, Lemma 9 asserts that the arc diagram of the restriction ≡∗
is obtained from the arc diagram of ≡ simply by removing the highest point labeled n, and by
deleting all arcs incident to it.

Lemma 10. For every lattice congruence ≡ of the weak order on Sn and any equivalence
class X ∈ Sn/ ≡, consider its minimum π := min(X) and maximum ρ := max(X). Then their
projections p(π) and p(ρ) are the minimum and maximum of the equivalence class p(X) of the
restriction ≡∗.

Proof. Suppose for the sake of contradiction that the maximum of p(X) is not p(ρ), but another
permutation σ ∈ Sn−1. As σ ∈ p(X), we obtain from Lemma 8 that ci(σ) ∈ X for some
1 ≤ i ≤ n. As σ is the unique maximum of p(X) (recall Lemma 2), there exist two entries a, b
with a < b that are inverted in σ, i.e., b appears before a in σ, but not in p(ρ). As inserting n
into a permutation does not change the relative order of a and b, the entries a, b are also inverted
in ci(σ), but not in ρ. However, by the definition of the weak order on Sn, this means that
ci(σ) 6< ρ, contradicting the fact that ρ is the maximum of X. A similar argument shows that
p(π) is the minimum of p(X). �

3.4. Jumping through lattice congruences. For any lattice congruence ≡ of the weak order
on Sn, a set of representatives for the equivalence classes Sn/ ≡ is a subset Rn ⊆ Sn such that for
every equivalence class X ∈ Sn/ ≡, exactly one permutation is contained in Rn, i.e., |X∩Rn| = 1.
Recall that X(π), π ∈ Sn, denotes the equivalence class from Sn/ ≡ containing π. A meaningful
definition of ‘generating the lattice congruence’ is to generate a set of representatives for its
equivalence classes. We also require that any two successive representatives form a cover relation
in the lattice quotient Sn/ ≡. This is what we achieve with the help of Algorithm J.

We recursively define such a set of representatives Rn as follows; see Figure 6: If n = 0 then
R0 := {ε}, and if n ≥ 1 then we first compute the representatives Rn−1 for the restriction ≡∗
to Sn−1, and we then distinguish two cases: If idn 6≡ cn−1(idn−1), then we consider every
representative π ∈ Rn−1, the corresponding rail r(π) in Sn, and from every equivalence class X ∈
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Figure 6. Illustration of the representatives and the jumping order for the
lattice congruence shown in Figure 1. The filled dots are the permutations in
the sets Rn, and the small numbers next to the dots indicate the ordering in the
sequences J(Rn) defined in (1).

Sn/ ≡ with X ∩ r(π) 6= ∅ we pick exactly one permutation from X ∩ r(π). In particular, we
always pick c1(π) and cn(π), which is possible by Lemma 7, yielding a set Rπ. We then take the
union of those permutations,

Rn :=
⋃

π∈Rn−1

Rπ. (3a)

On the other hand, if idn ≡ cn−1(idn−1) we define

Rn := {cn(π) | π ∈ Rn−1}. (3b)

Lemma 11. For every lattice congruence ≡ of the weak order on Sn, the set Rn ⊆ Sn defined
in (3) is indeed a set of representatives for Sn/ ≡. Moreover, Rn is a zigzag language satisfying
condition (z1) if (3a) holds, and condition (z2) if (3b) holds.

Proof. We argue by induction on n. The statement clearly holds for n = 0. For the induction
step, suppose that Rn−1 is a set of representatives for the equivalence classes of Sn−1/ ≡∗, and
that Rn−1 is a zigzag language. If idn 6≡ cn−1(idn−1), we obtain from Lemma 8 that for every
equivalence class X of Sn/ ≡, the projection p(X) is an equivalence class of the restriction ≡∗.
Therefore, we know by induction that Rn−1 contains a unique representative π ∈ Sn−1 for p(X),
so by our choice of Rπ we indeed have |X ∩ Rπ| = 1, and moreover Rn as defined in (3a)
satisfies |X ∩Rn| = 1. Furthermore, as we chose Rπ to contain c1(π) and cn(π) for all π ∈ Sn−1,
we obtain that Rn is a zigzag language satisfying condition (z1) in the definition. On the other
hand, if idn ≡ cn−1(idn−1), then we obtain from Lemma 6 and Lemma 8 that every equivalence
class X of Sn/ ≡ satisfies X = {c1(π), . . . , cn(π) | π ∈ p(X)}, showing that Rn as defined in (3b)
is indeed a set of representatives for Sn/ ≡. Moreover, in this case Rn is a zigzag language
satisfying condition (z2) in the definition. This completes the proof. �
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Figure 7. Lattice congruences of the weak order on S4, ordered by refinement
and realized as polytopes, where only the full-dimensional polytopes are shown.
The polytopes are arranged in the same way as in Figure 4. The figure shows the
Hamilton path on each quotientope computed by Algorithm J, with the start and
end vertex indicated by a triangle and diamond, respectively. Permutahedron
(top), associahedron (one of four isomorphic variants; middle right) and hypercube
(bottom) are highlighted. The graphs marked with * are regular, and those
marked with ** are vertex-transitive.
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Lemma 12. Running Algorithm J with input Ln := Rn, where Rn is the set of representatives
of a lattice congruence ≡ defined in (3), then for any two permutations π, ρ ∈ Rn that are visited
consecutively, X(π) and X(ρ) form a cover relation in the quotient Sn/ ≡.

Proof. Let Rn be a set of representatives of a lattice congruence ≡ defined in (3), and consider
the set Ln := Rn, which is a zigzag language by Lemma 11. If (3a) holds, then by Lemma 11
the set Rn satisfies condition (z1), so the permutations of Ln = Rn are generated in the
sequence J(Ln) defined in (1a). Observe that all permutations in #„c (πk) or #„c (πk), πk ∈ Rn−1 ⊆
Sn−1, lie on the rail r(πk). If π, ρ ∈ Rn are visited consecutively and lie on the same rail, i.e.,
π = ci(πk) and ρ = cj(πk) with 1 ≤ i < j ≤ n, then there is an integer s with i ≤ s < j such that

π = ci(πk) ≡ ci+1(πk) ≡ · · · cs(πk) 6≡ cs+1(πk) ≡ cs+2(πk) ≡ · · · ≡ cj(πk) = ρ,

soX(π) andX(ρ) form a cover relation in the quotient Sn/ ≡. Moreover, when transitioning from
the last permutation of #„c (πk) to the first permutation of #„c (πk+1), or from the last permutation
of #„c (πk+1) to the first permutation of #„c (πk+2), then we move from cn(πk) to cn(πk+1), or
from c1(πk+1) to c1(πk+2), respectively. Consequently, as πk and πk+1, and also πk+1 and πk+2
form a cover relation in the weak order on Sn−1 by induction, we obtain that any two consecutive
permutations π, ρ in J(Ln) form a cover relation in the weak order on Sn.

On the other hand, if (3b) holds, then by Lemma 11 the set Rn satisfies condition (z2), so
the permutations of Ln = Rn are generated in the sequence J(Ln) defined in (1b). In this case,
the claim follows immediately by induction. �

Combining Lemmas 11 and 12 yields the following theorem.

Theorem 13. For every lattice congruence ≡ of the weak order on Sn, let Rn ⊆ Sn be the set
of representatives defined in (3). Then Algorithm J generates a sequence J(Rn) = π1, π2, . . . of
all permutations from Rn such that X(π1), X(π2), . . . is a Hamilton path in the cover graph of
the lattice quotient Sn/ ≡.

For every lattice congruence ≡, Pilaud and Santos [PS19, Corollary 10] defined a polytope,
called the quotientope for ≡, whose graph is exactly the cover graph of the lattice quotient Sn/ ≡.
These polytopes generalize many known polytopes, such as hypercubes, associahedra, permuta-
hedra etc. The following result is an immediate corollary of Theorem 13, and it is illustrated in
Figure 7.

Corollary 14. For every lattice congruence ≡ of the weak order on Sn, Algorithm J generates
a Hamilton path on the graph of the corresponding quotientope.

Remark 15. Observe that in the definition (3a), whenever we encounter an equivalence class X ∈
Sn/ ≡ with |X ∩r(π)| ≥ 2 and c1(p(π)), cn(p(π)) /∈ X, then we have freedom to pick an arbitrary
permutation from X ∩ r(π) for the set of representatives Rπ. By imposing a total order on Sn
(e.g., lexicographic order), we can make these choices unique, and this will make the resulting
sets of representatives consistent across the entire lattice of congruences ordered by refinement.
Specifically, given two equivalence relations ≡ and ≡′ where ≡ is a refinement of ≡′, computing
the representatives Rn and R′n according to this rule will result in Rn ⊇ R′n. However, the
resulting jump ordering J(Rn) may not be a subsequence of J(R′n), as argued in [HHMW19,
Remark 3]. This consistent choice of representative permutations is illustrated in Figure 8.

Remark 16. In [HHMW19, Lemma 4] we showed that the ordering of permutations J(Rn) defined
by Algorithm J is cyclic if and only if each of the zigzag languages Rk, 2 ≤ k ≤ n− 1, has even
cardinality. Consequently, if for a given lattice congruence, the number of equivalence classes of
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Figure 8. Four quotientopes from Figure 7 ordered as a diamond. These are
the permutahedron (top), the associahedron (right), the hypercube (bottom),
and some other polytope (left). The figure illustrates the consistent choice of
representative permutations for the congruence classes, i.e., permutations for
lower quotientopes are subsets of permutations for the higher ones.

each restriction to Sk, 2 ≤ k ≤ n− 1, is even, then Algorithm J generates a Hamilton cycle on
the graph of the corresponding quotientope. This happens for instance for the permutahedron
and for the hypercube, but not for the associahedron.

4. Regular and vertex-transitive lattice quotients

In this section we characterize regular and vertex-transitive quotientopes combinatorially via
their arc diagrams, which in particular allows us to count them. We may either consider these
objects in terms of the equivalence classes of the lattice congruence, or in terms of the cover
graph of the resulting lattice quotient. As several congruences may give the same cover graph,
the latter distinction is coarser, yielding fewer distinct objects. Overall, we obtain six different
classes of objects, and Table 1 summarizes our results for each of them. The table provides the
exact counts for small values of n, various exact and asymptotic counting formulas, as well as
references to the theorems where they are established. In the table, we encounter various familiar
counting sequences, namely the squared Catalan numbers, and weighted integer compositions
and partitions. We also establish the precise minimum and maximum degrees for those graph
classes, and in the latter result the famous Erdős-Szekeres theorem makes its appearance.

4.1. Preliminaries. We let Cn denote the set of all lattice congruences of the weak order
on Sn. Throughout this section, we will denote lattice congruences by capital Latin letters such
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Table 1. Number of different classes of quotient graphs and their minimum
and maximum degrees. In this table, Cn denotes the n-th Catalan number, cn,k
denotes the number of integer compositions of n with exactly k many 2s, and tn
denotes the number of 2s in all integer partitions of n. The last column contains
references to the corresponding sequence numbers in the OEIS [oei19].

n = 2 3 4 5 6 7 General formulas/bounds Ref. OEIS
quotient graphs |Qn| 1 4 47 3.322 11.396.000 ? [22n−2

, 22n−2n] Thm. 18
regular |Rn| 1 4 25 196 1.764 17.424 = C2

n−1 = 16n(1+o(1)) Cor. 27 A001246
vertex-transitive |Vn| 1 4 8 22 52 132 =

∑
k≥0

3kcn−1,k = 2.48...n(1+o(1)) Cor. 34 A052528

non-iso. |Q′n| 1 3 19 748 2.027.309 ? ≥ 2n − 2n+ 1 Thm. 19
non-iso. regular |R′n| 1 3 10 51 335 2.909 ?
non-iso. vertex-tr. |V ′n| 1 3 4 8 11 19 = tn+1 = eπ

√
2n/3(1+o(1)) Cor. 36 A024786

minimum degree 1 2 3 4 5 6 = n− 1 Thm. 25
maximum degree 1 2 4 5 7 8 = 2n− d2

√
ne Thm. 28 A123663

as R ∈ Sn, and whenever we consider two permutations π, ρ in the same equivalence class of
Sn/R, we write π ≡R ρ or simply π ≡ ρ, if R is clear from the context. Recall from Theorem 4
that every lattice congruence R ∈ Cn corresponds to a downset FR ⊆ Fn of fences in the forcing
order, and that such a downset can be represented by its arc diagram, which contains exactly
one arc for each fence from FR. The reduced arc diagram contains only the arcs that correspond
to maximal elements in the downset FR, i.e., to fences that are pairwise incomparable in the
forcing order. Every fence not of the form f(a, a+ 1, ∅), a ∈ [n− 1], is referred to as essential,
and we let F ∗n ⊆ Fn denote the set of all essential fences. We refer to any lattice congruence R
with FR ⊆ F ∗n as essential, and we let C∗n ⊆ Cn denote the set of all essential lattice congruences.
Note that by this definition, the arc diagrams of essential lattice congruences do not contain any
arcs that connect consecutive points a and a+ 1, a ∈ [n− 1].

We refer to the underlying undirected graph of the cover graph of any lattice quotient Sn/R,
R ∈ Cn, as a quotient graph QR, and we define Qn := {QR | R ∈ C∗n}.

All 47 essential lattice congruences C∗n for n = 4 are shown in Figure 4, ordered by refinement of
the congruences and represented by their arc diagrams, where the arcs of the reduced diagrams are
highlighted. Recall from the previous section that for every essential lattice congruence R ∈ C∗n,
Pilaud and Santos [PS19, Corollary 10] defined an (n − 1)-dimensional polytope, called the
quotientope of R, whose graph is exactly the quotient graph QR. These polytopes are shown
in Figure 7, and those with regular and vertex-transitive graphs are marked with * and **,
respectively.

The following lemma justifies that in our definition of C∗n, we exclude fences that are not
essential. The reason is that including them results in a dimension collapse, i.e., the resulting
lattice quotient is isomorphic to some quotient of smaller dimension; see Figure 9.

Given two posets (P,<P ) and (Q,<Q), the Cartesian product is the poset (P ×Q,<) with
(p, q) < (p′, q′) if and only if p <P p′ and q <Q q′. For any set of fences F ⊆ Fn and any
interval [s, t], 1 ≤ s ≤ t ≤ n, we define F |[s,t] := {f(a, b, L) ∈ F | s ≤ a < b ≤ t}, i.e., we
select all fences from F that lie entirely in this interval. Moreover, for any integer s we define
F + s := {f(a+ s, b+ s, L+ s) | f(a, b, L) ∈ F} with L+ s := {x+ s | x ∈ L}, i.e., we shift all
fences by s.
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Figure 9. Illustration of Lemma 17. The left hand side shows the lattice
congruence from C4 given by the downset of the non-essential fence f(2, 3, ∅). The
right hand side shows the lattice congruence from C∗3 given by the downset of the
essential fences {f(1, 3, ∅), f(1, 3, {2})}. Both lattice quotients are isomorphic to
the Cartesian product of S2 and S2, whose cover graph is a 4-cycle.

Lemma 17. Let R ∈ Cn+1 be a lattice congruence with an essential fence f(s, s+1, ∅) ∈ FR, and
define lattice congruences A ∈ Cs and B ∈ Cn+1−s by FA = FR|[1,s] and FB = FR|[s+1,n+1] − s.
Moreover, let R′ ∈ Cn be the lattice congruence given by

FR′ = FA ∪
(
FB + (s− 1)

)
∪D, (4)

where D is the downset of the fences f(s − 1, s + 1, ∅) and f(s − 1, s + 1, {s}) in the forcing
order for Sn. Then Sn+1/R and Sn/R′ are both isomorphic to the Cartesian product of Ss/A
and Sn+1−s/B. In particular, the lattice quotients Sn+1/R and Sn/R′ are isomorphic.

Proof. Consider two equivalence classes X and Y of R, and two permutations π ∈ X and ρ ∈ Y
that differ in an adjacent transposition of two entries a and b. As FR contains the fence f(s, s+
1, ∅), the definition of forcing order implies that FR also contains all fences f(c, d, L) for all
c ∈ [1, s], d ∈ [s+1, n+1] and L ⊆ ]c, d[. This means there are permutations π0 ∈ X and ρ0 ∈ Y ,
such that in π0 and ρ0 all entries from [1, s] appear before all entries from [s+ 1, n+ 1], and π0
and ρ0 differ in an adjacent transposition of a and b, and either a, b ∈ [1, s] or a, b ∈ [s+ 1, n+ 1].
We can reach π0 and ρ0 from π and ρ, respectively, by moving down within the equivalence
classes X or Y towards permutations with fewer inversions, repeatedly swapping any entry
from [1, s] that is to the right of any entry from [s+ 1, n+ 1]. It follows that every cover relation
of Sn+1/R has a corresponding cover relation in the Cartesian product of Ss/A and Sn+1−s/B.

Consider two equivalence classes X and Y of R′, and two permutations π ∈ X and ρ ∈ Y that
differ in an adjacent transposition of two entries a and b. By the definition (4), the set FR′ contain
the fences f(s− 1, s+ 1, ∅), f(s− 1, s+ 1, {s}), and all fences in their downset of the forcing
order for Sn, so the definition of forcing order yields that FR′ also contains all fences f(c, d, L)
for all c ∈ [1, s− 1], d ∈ [s+ 1, n] and L ⊆ ]c, d[. It follows that either a, b ∈ [1, s] or a, b ∈ [s, n].
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Figure 10. Three pairs of lattice congruences from C∗4 (left), C∗5 (middle), and C∗8
(right), with distinct arc diagrams but isomorphic quotient graphs.

In the first case, there are permutations π0 ∈ X and ρ0 ∈ Y , such that in π0 and ρ0 all entries
from [1, s] appear at consecutive positions, surrounded by all entries from [s+1, n], and π0 and ρ0
differ in an adjacent transposition of a and b. In the second case, there are permutations π0 ∈ X
and ρ0 ∈ Y , such that in π0 and ρ0 all entries from [s, n] appear at consecutive positions,
surrounded by all entries from [1, s− 1], and π0 and ρ0 differ in an adjacent transposition of a
and b. Morever, as π, π0, π

0 ∈ X and ρ, ρ0, ρ
0 ∈ Y , we obtain that every cover relation of Sn/R′

has a corresponding cover relation in the Cartesian product of Ss/A and Sn+1−s/B.
This completes the proof. �

Given any lattice congruence R ∈ Cn for which FR contains non-essential fences, we may
repeatedly apply Lemma 17 to eliminate them, until we arrive at a lattice congruence R′ ∈ C∗m,
m < n, with an isomorphic quotient graph QR′ ' QR.

4.2. Exact counts for small dimensions. With computer help, we determined the number of
essential lattice congruences, or equivalently, the number of quotient graphs, for 2 ≤ n ≤ 6. The
results are shown in Table 1. We also computed the sets Rn ⊆ Qn and Vn ⊆ Qn of all regular
and vertex-transitive quotient graphs, respectively, for 2 ≤ n ≤ 7, with the help of Theorem 26.

Many of the quotient graphs from Qn are isomorphic; cf. [PS19, Figure 8]. This happens for
instance if the corresponding arc diagrams differ only by rotation of reflection, but not only
in this case; see Figure 10. To this end, we let Q′n denote all non-isomorphic quotient graphs
from Qn, and we let R′n and V ′n be the non-isomorphic regular and vertex-transitive ones. The
corresponding counts for small n are also shown in Table 1. We clearly have Vn ⊆ Rn ⊆ Qn and
V ′n ⊆ R′n ⊆ Q′n.

4.3. Counting quotient graphs. The following theorem shows that there are double-exponentially
many quotient graphs.

Theorem 18. For all n ≥ 3, we have 22n−2 ≤ |Qn| ≤ 22n−2n.

Proof. The number of fences f(a, b, L) ∈ Fn with b − a = k ∈ {1, . . . , n − 1} is exactly fk :=
(n− k)2k−1, as for fixed k, there are (n− k) different choices for a and b, and for fixed a and b,
there are 2k−1 many choices for L ⊆ ]a, b[. As all fences with k = n− 1 are essential for n ≥ 3
and also incomparable in the forcing order, we obtain at least 2fn−1 distinct downsets. The total
number of essential fences is

∑n−1
k=2 fk = 2n − 2n =: s, so 2s is an upper bound for the number of

distinct downsets. �

To estimate the cardinality of Q′n, we have to factor out symmetries of the arc diagrams, i.e.,
horizontal and vertical reflections, which account for a factor of at most 4. However, isomorphic
graphs also arise from arc diagrams that do not only differ by those symmetries; see Figure 10.
In particular, we have |Qn|/|Q′n| > 4 for n = 5 and n = 6; see Table 1.

This difference in the growth rates can partially be explained by arc diagrams that induce
a graph product structure. I.e., if we have an arc diagram with two arcs corresponding to the
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fences f(s − 1, s + 1, ∅) and f(s − 1, s + 1, {s}), then by Lemma 17 the two parts of the arc
diagram separated by these two fences can be mirrored independently, or modified as described
by Figure 10, yielding the same resulting quotient graph. Such operations clearly yield many
more than 4 symmetries. Even though we cannot fully explain this, we can provide the following
lower bound.

Theorem 19. For all n ≥ 3, we have |Q′n| ≥ 2n − 2n+ 1.

Proof. We argued before that the total number of essential fences in the forcing order is 2n−2n =:
s. This implies that the lattice of congruences ordered by refinement (see Figure 4) contains a
chain R0, . . . , Rs ∈ C∗n of size s + 1, where R0 is the maximal element and Rs is the minimal
element, and along this chain we have |FRi | = i for i = 0, . . . , s. Consequently, the number of
vertices of the quotient graphs QRi , i = 0, . . . , s, forms a strictly decreasing sequence, starting
with n! and ending with 2n−1. This is because whenever an additional fence is added, the
equivalence classes grow, and so the quotient graph shrinks. In particular, all those quotient
graphs are non-isomorphic, proving that |Q′n| ≥ s+ 1. �

4.4. Regular quotient graphs. It turns out that the regular quotient graphs Rn can be
characterized and counted precisely via their arc diagrams. Specifically, we say that an arc is
simple if it does not connect two consecutive points and if it does not cross the vertical line.
Also, we say that a reduced arc diagram is simple if it contains only simple arcs. Note that the
fence f(a, b, L) corresponding to a simple arc either satisfies L = ∅ or L = ]a, b[. For example, in
Figure 10, the leftmost two reduced arc diagrams are simple, whereas the others are not. In
Theorem 26 below, we establish that a quotient graph is regular if and only if the corresponding
reduced arc diagram is simple. This yields a closed counting formula involving the squared
Catalan numbers; see Corollary 27.

The first lemma allows us to compute degrees of the quotient graph by considering only the
minima and maxima of equivalence classes.

Lemma 20. Let X be an equivalence class of a lattice congruence R ∈ Cn. Consider all
descents in π := min(X) and all permutations π′1, . . . , π′d obtained from π by transposing one
of them. Also, consider all ascents in ρ := max(X) and all permutations ρ′1, . . . , ρ′a obtained
from ρ by transposing one of them. Then the down-neighbors of X in the quotient graph QR are
X(π′1), . . . , X(π′d), and they are all distinct, and the up-neighbors of X in the quotient graph are
X(ρ′1), . . . , X(ρ′a), and they are all distinct. In particular, the degree of X in the quotient graph
is the number of descents of min(X) plus the number of ascents of max(X).

Proof. From Lemma 2 it follows that for any lattice congruence, the down-neighbors of the
minimum of an equivalence class X all belong to distinct equivalence classes, and the up-
neighbors of the maximum of X all belong to distinct equivalence classes. Recall that in the
weak order on Sn, the down-neighbors of a vertex are reached by adjacent transpositions of
descents, and the up-neighbors are reached by adjacent transpositions of ascents. From this the
statement follows with the help of Lemma 3. �

The next lemma helps us to compute the maximum of an equivalence class quickly. It is an
immediate consequence of the definition of forcing order.

Lemma 21. Consider a lattice congruence R ∈ Cn and a permutation π with an ascent (a, b).
Let A be a substring ending with a of entries of π of size at most a, and B a substring starting
with b of entries that are of size at least b, i.e., we have π = LABR for some substrings L,R.
If the permutation ρ obtained by transposing the pair (a, b) is in the same equivalence class as π,
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i.e., π ≡ ρ, then they are also in the same equivalence class as the permutation obtained by
swapping the entire substrings A and B, i.e., π ≡ ρ ≡ LBAR.

There is a corresponding version of Lemma 21 for swapping substrings around a descent (b, a),
to quickly compute the minimum of an equivalence class, but we omit stating this symmetric
variant explicitly here.

We first rule out non-simple arc diagrams as candidates for giving a regular quotient graph.

Lemma 22. If an essential lattice congruence R ∈ C∗n has a non-simple arc in its reduced arc
diagram, then the quotient graph QR is not regular.

Proof. As R is essential, FR does not contain any fence of the form f(s, s + 1, ∅), s ∈ [n − 1].
Consequently, the equivalence class containing the identity permutation idn does not contain any
other permutations and so has degree n− 1 in QR by Lemma 20. In the following we identify
an equivalence class X whose degree in QR is n, which proves that QR is not a regular graph.
This part of the proof is illustrated in Figure 11.

Consider a non-simple arc in the reduced arc diagram of R, and consider the corresponding
fence f(a, b, L) ∈ FR, a < b. We define L := L \ ]a, b[. The assumption that the arc is not simple
means that L and L are both non-empty. We define c := min(L), c′ := max(L), d := min(L),
and d′ := max(L), and we write C and D for the increasing sequences of numbers in the sets L
and L, respectively. We also define the sequences A := (1, . . . , a− 1) and B := (b+ 1, . . . , n).
Now consider the equivalence class X ∈ Sn/R which contains the permutations π := AC a bDB

and ρ := AC b aDB.
Clearly, π and ρ differ in an adjacent transposition of the entries a and b, and we have π ≡ ρ

due to the fence f(a, b, L) ∈ FR. We first prove that π = min(X). By Lemma 20, we need to
check the descents of π, and there are exactly two of them, namely (c′, a) and (b, d). None of
them can be transposed to reach a permutation in X, as neither the fence f(a, c′, ]a, c′[ ∩ L),
nor the fence f(d, b, ]d, b[ ∩ L) is in FR, as both are above f(a, b, L) in the forcing order, and if
one of them was in FR, then the arc corresponding to f(a, b, L) would not be in the reduced arc
diagram. This proves that π is the minimum of X.

Now consider the permutation ρ. It has only one descent (b, a), and so n− 1 ascents. The
ascents (c′, b) and (a, d) in ρ cannot be transposed to reach a permutation in X, as neither the
fence f(c′, b, ]c′, b[ ∩ L) nor the fence f(a, d, ]a, d[ ∩ L) is in FR, as both are above f(a, b, L) in
the forcing order. Similarly, the ascents that lie entirely within C or D cannot be transposed,
as for any such ascent (r, s), the corresponding fence f(r, s, ]r, s[ ∩ L) is above f(a, b, L) in the
forcing order. Moreover, none of the ascents (s, s+ 1) that lie entirely within A or B can be
transposed, as FR is essential by assumption and so contains none of the fences f(s, s+ 1, ∅),
s ∈ [n− 1]. It remains to consider the ascents (a− 1, c) and (d′, b+ 1). They can possibly be
transposed to reach a permutation in X, but only if the fence g := f(a − 1, c, ∅) or the fence
h := f(d′, b+ 1, ]d′, b+ 1[) is in FR, which may or may not be the case. If g /∈ FR and h /∈ FR,
then we have ρ = max(X), and so desc(max(X)) = 1. If g ∈ FR and h /∈ FR, then Lemma 21
shows that ρ′ := C bAaDB = max(X), and again we get desc(max(X)) = 1, as the only descent
in ρ′ is (b, 1). If g /∈ FR and h ∈ FR, then Lemma 21 shows that ρ′′ := AC bB aD = max(X),
and again we get desc(max(X)) = 1, as the only descent in ρ′′ is (n, a). If g ∈ FR and h ∈ FR,
then Lemma 21 shows that ρ′′′ := C bB AaD = max(X), and again we get desc(max(X)) = 1,
as the only descent in ρ′′′ is (n, 1).

We have shown that desc(min(X)) = 2 and desc(max(X)) = 1, and so asc(max(X)) = n− 2.
Therefore, by Lemma 20, the degree of X in QR is desc(min(X))+asc(max(X)) = 2+(n−2) = n,
which shows that QR is not regular. This completes the proof. �
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Figure 11. Illustration of the proof of Lemma 22. Descents in the permutations
are marked by square brackets.

We now aim to prove that a simple reduced arc diagram implies an (n− 1)-regular quotient
graph. For this we need two auxiliary lemmas.

Lemma 23. Consider a lattice congruence R ∈ Cn and an equivalence class X such that min(X)
has n at the rightmost position, and max(X) = . . . c n d . . ., where c, d ∈ [n− 1]. Then (c, d) is a
descent in p(max(X)) ∈ Sn−1. Similarly, suppose that max(X) has n at the leftmost position,
and min(X) = . . . a n b . . ., where a, b ∈ [n− 1]. Then (a, b) is an ascent in p(min(X)) ∈ Sn−1.

Proof. Consider an equivalence class X such that π := min(X) has n at the rightmost position,
and ρ := max(X) = . . . c n d . . ., where c, d ∈ [n−1]. Let π′ := p(π) ∈ Sn−1 and ρ′ := p(ρ) ∈ Sn−1.
By Lemma 10, π′ and ρ′ are the minimum and maximum of the equivalence class p(X) of the
restriction R∗, and as π = cn(π′) = π′ n, we also have that σ := cn(ρ′) = ρ′ n ∈ X. Note that ρ
is obtained from σ by moving n to the left until the entry c is directly left of it. In particular,
the down-neighbor τ of ρ obtained by transposing n and d satisfies τ ≡ ρ (recall Lemma 2). By
Lemma 21, it follows that (c, d) must be a descent in τ , as otherwise, the up-neighbor τ ′ of ρ
obtained by transposing c and n would also satisfy τ ′ ≡ ρ, contradicting the fact that ρ is the
maximum of X. Consequently (c, d) is also a descent in σ = ρ′ n and in ρ′ = p(max(X)). The
proof of the second part of the lemma is analogous. �

For any permutation π ∈ Sn and any integers a, b ∈ [n] with a < b, we let L(π, a, b) denote
the set of all entries of π that are to the left of a, and whose values are in the interval ]a, b[. For
example, for π = 817632459 we have L(π, 1, 3) = ∅, L(π, 2, 5) = {3}, and L(π, 3, 7) = {6}.

Lemma 24. Consider a lattice congruence R ∈ Cn and an equivalence class X such that
π := min(X) = . . . a n b . . . and ρ := max(X) = . . . c n d . . ., where a, b, c, d ∈ [n − 1]. Let π′
be the last permutation in X obtained from π by moving n to the left, and let ρ′ be the last
permutation in X obtained from ρ by moving n to the right. Then we have the following:
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Figure 12. Illustration of Lemma 24.

(i) the entry left of n in π′ is c;
(ii) the entry right of n in ρ′ is b;
(iii) if c 6= a, then c is to the left of a in π, and we have c, b > x for all x between c and n in π,

in particular a < b;
(iv) if b 6= d, then b is to the right of d in ρ, and we have c, b > x for all x between n and b in ρ,

in particular c > d;
(v) for any entry x between c and n in π, the fence f(x, n, L(π, x, n)) is in FR;
(vi) for any entry x between n and b in ρ, the fence f(x, n, L(ρ, x, n)) is in FR;
(vii) the fences f(b, n, L(π, b, n)) and f(x, c, L(π, x, c)), where x is the entry right of c in π, are

not in FR;
(viii) the fences f(c, n, L(ρ, c, n)) and f(x, b, L(ρ, x, b)), where x is the entry left of b in ρ, are

not in FR.

Proof. We only need to prove (i), (iii), (v) and (vii), as the other four statements are symmetric.
We first prove (i). Suppose for the sake of contradiction that this is not the case and that

there is another entry e 6= c left of n in π′. Note that e must be to the right of c in π′ and
π, as otherwise (n, c) would be an inversion in π′, but not in ρ, contradicting the fact that ρ
is the maximum of X. We let π′′ /∈ X be the permutation obtained from π′ by transposing e
and n, i.e., inv(π′′) = inv(π′) ∪ {(n, e)}. It follows that (n, e) /∈ inv(ρ), as otherwise π′′ would
be contained in the interval [π, ρ] = X. This means that e is left of n and left of c in ρ. This
implies that c < e, as otherwise (c, e) would be an inversion in π′, but not in ρ.

We now move up in the weak order from π′ to ρ, creating a sequence of permutations that
all contain the ascent (e, n), as follows: Starting from π′, we repeatedly choose an arbitrary
ascent that we can transpose to stay inside X. First note that (n, x), x ∈ [n− 1], is never an
ascent, so n never moves to the right. Also (e, n) can never be transposed, as (n, e) /∈ inv(ρ).
Whenever we encounter a transposition that involves the entry e, then it must be a transposition
of the form (e′, e)→ (e, e′) with e′ < e (otherwise the inversion set would shrink), and we then
immediately also perform the transposition (e′, n)→ (n, e′), keeping e and n next to each other,
and reaching a permutation in X by Lemma 21. As (c, e) /∈ inv(π′) and (c, e) ∈ inv(ρ), we must
encounter a step in which c and e are transposed. However, by the same reasoning, we can then
also transpose c and n to reach another permutation in X, a contradiction to (n, c) /∈ inv(ρ).
This completes the proof of (i).

We now prove (iii). The fact that c is left of a in π is an immediate consequence of (i). Note
that π′ is obtained from π by moving n to the left until n is directly right of c, and n cannot
move further as (n, c) /∈ inv(ρ). Conversely, π is obtained from π′ by moving n to the right until
n is directly left of b, and n cannot move further as π is the minimum of X. In particular, the
entry n can be moved across the largest entry e between c and n in π. Lemma 21 therefore
shows that b, c > e, as otherwise n could move to the left of c in π′ or to the right of b in π.

We now prove (v). This follows immediately by considering all permutations encountered
in X between π to π′, by moving n to the left.
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It remains to prove (vii). It is clear that f(b, n, L(π, b, n)) is not in FR, as we could otherwise
transpose b and n in π, reaching a down-neighbor of π in X. It is also clear that f(x, c, L(π, x, c))
is not in FR, as we know that c > x from (iii), and so we could transpose c and x, reaching
another down-neighbor of π in X.

This completes the proof. �

With these lemmas in hand, we are now ready to establish a tight lower bound for the
minimum degree of quotient graphs Qn.

Theorem 25. For every essential lattice congruence R ∈ C∗n, the minimum degree of the quotient
graph QR is n− 1.

Pilaud and Santos proved in [PS19] that for every essential lattice congruence, QR is the
graph of an (n− 1)-dimensional polytope. This in particular implies Theorem 25. Nevertheless,
in this paper we provide a purely combinatorial proof of the theorem, with the goal of later
improving the estimates in the proof when proving Theorem 26.

Proof. We prove the theorem by induction on n. For n = 1 there is only the trivial lattice
congruence for the weak order on Sn = {1}, and the corresponding quotient graph is an isolated
vertex which indeed has minimum degree n− 1 = 0. This settles the base case for the induction.

Let n ≥ 2 and consider an essential lattice congruence R ∈ C∗n. The equivalence class X that
contains the identity permutation idn, contains no other permutations by the assumption that R
is essential, and so the degree of X = {idn} in QR is exactly n− 1 by Lemma 20. By Lemma 20,
it therefore suffices to show that for every equivalence class X of R and its minimum π := min(X)
and maximum ρ := max(X), we have that desc(π) + asc(ρ) ≥ n− 1.

For this consider the position of the entry n in both π and ρ. By the assumption that R is
essential, we know that f(n−1, n, ∅) /∈ FR, which implies idn 6≡ cn−1(idn−1). Applying Lemma 7
shows that n cannot be simultaneously at the rightmost position of π and at the leftmost position
of ρ. Consequently, we are in one of five possible cases:
(a) both π and ρ have n at the rightmost position.
(b) both π and ρ have n at the leftmost position.
(c) π has n at the rightmost position, and ρ = . . . c n d . . ., where c, d ∈ [n− 1].
(d) ρ has n at the leftmost position, and π = . . . a n b . . ., where a, b ∈ [n− 1].
(e) π = . . . a n b . . . and ρ = . . . c n d . . ., where a, b, c, d ∈ [n− 1].
Cases (c) and (d) are exactly the ones discussed in Lemma 23, and case (e) is exactly the one
discussed in Lemma 24. We only prove (a), (c) and (e), as the proof of (b) is analogous to (a),
and the proof of (d) is analogous to (c).

By Lemma 10, Lemma 20, and by induction we know that

desc(p(π)) + asc(p(ρ)) ≥ n− 2. (5)

First consider case (a) above. As n is at the rightmost position in π and ρ, we have

desc(π) + asc(ρ) = desc(p(π)) + asc(p(ρ)) + 1, (6)

where the +1 comes from the ascent involving n in ρ. Combining (5) and (6) yields

desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1, (7)

with equality if and only if (5) holds with equality.
Now consider case (c) above. As n is at the rightmost position in π and n is between c and d

in ρ, we have
desc(π) + asc(ρ) = desc(p(π)) + asc(p(ρ)) + 1− asc(c d), (8)
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where the +1 comes from the ascent (c, n) in ρ. By Lemma 23, (c, d) is a descent, so asc(c d) = 0,
and hence combining (5) and (8) yields

desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1, (9)

with equality if and only if (5) holds with equality.
Now consider case (e) above. In this case we have

desc(π) + asc(ρ) = desc(p(π)) + 1− desc(a b) + asc(p(ρ)) + 1− asc(c d), (10)

where the +1s come from the descent (n, b) in π and the ascent (c, n) in ρ, respectively. We first
consider the subcase that c = a and b = d. In this case (a, b) = (c, d) is either a descent or an
ascent, so in any case desc(a b) + asc(c d) = 1, and hence combining (5) and (10) yields

desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1, (11)

with equality if and only if (5) holds with equality.
We now consider the subcase that c = a and b 6= d. From Lemma 24 (iv) we obtain that c > d,

i.e., asc(c d) = 0, and hence combining (5) and (10) yields

desc(π) + asc(ρ) ≥ (n− 2) + 2− desc(a b) ≥ n− 1, (12)

with equality if and only if (5) holds with equality and desc(a b) = 1.
The subcase c 6= a and b = d is similar, and yields

desc(π) + asc(ρ) ≥ (n− 2) + 2− asc(c d) ≥ n− 1, (13)

with equality if and only if (5) holds with equality and asc(c d) = 1.
It remains to consider the subcase c 6= a and b 6= d. From Lemma 24 (iii) and (iv) we know

that a < b and c > d, i.e., desc(a b) = 0 and asc(c d) = 0, and hence combining (5) and (10) yields

desc(π) + asc(ρ) ≥ (n− 2) + 2 = n > n− 1. (14)

This completes the proof of the theorem. �

We are now in position to prove the main result of this section, a characterization of regular
quotient graphs via their arc diagram.

Theorem 26. The regular quotient graphs Rn are obtained from exactly those lattice congru-
ences C∗n that have a simple reduced arc diagram.

Proof. By Lemma 22, if the reduced arc diagram of a lattice congruence R ∈ C∗n is not simple,
then the quotient graph QR is not regular. In the following we will prove the converse, that
if the reduced arc diagram of R is simple, then the quotient graph QR is (n− 1)-regular. We
argue by induction on n, using that by Lemma 9, the arc diagram of the restriction of a lattice
congruence is obtained by removing the highest point labeled n and all arcs incident with it. In
particular, removing the highest point of a simple reduced arc diagram produces another simple
reduced arc diagram.

For the induction proof we closely follow the proof of Theorem 25 given before, and show that
all inequalities in that proof are actually tight if we add the assumption of a simple reduced
arc diagram. So consider a lattice congruence R ∈ C∗n with a simple reduced arc diagram, an
arbitrary equivalence class X of R, and let π := min(X) and ρ := max(X). We aim to prove
that desc(π) + asc(ρ) = n− 1, assuming by induction that (5) holds with equality, i.e., we have

desc(p(π)) + asc(p(ρ)) = n− 2. (15)

We now consider the same cases (a)–(e) as in the proof of Theorem 25. The cases (a) and (b)
are easy, as (7) holds with equality by (15). Similarly, the cases (c) and (d) are easy, as (9) holds
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Lg = L(ρ, e, n)

Lh = L(ρ, c, n)

Lh′ = L(ρ, x, b)

Figure 13. Illustration of the proof of Theorem 26.

with equality by (15). It remains to consider the case (e). The subcase c = a and b = d is again
easy, as (11) holds with equality because by (15). We consider the remaining three subcases
of (e) and show the following:

(e1) If c = a and b 6= d we have that desc(a b) = 1. From this it follows that (12) holds with
equality by (15).

(e2) If c 6= a and b = d we have that asc(c d) = 1. From this it follows that (13) holds with
equality by (15).

(e3) The subcase c 6= a and b 6= d cannot occur (recall the strict inequality (14)).

In proving (e1)–(e3), we will use the assumption that the reduced arc diagram is simple. Note
that claims (e1)–(e3) follow immediately from the next two claims:

(e1’) If b 6= d and the arc diagram is simple, then b < c.
(e2’) If c 6= a and the arc diagram is simple, then c < b.

Indeed, if c = a and b 6= d, then (e1’) gives b < c = a, showing that desc(a b) = 1, proving (e1).
Similarly, if c 6= a and b = d, then (e2’) gives c < b = d, showing that asc(c d) = 1, proving (e2).
Lastly, if c 6= a and b 6= d, then (e1’) and (e2’) together give b < c and c < b, a contradiction, so
this case cannot occur.

We begin proving (e1’); see Figure 13. By Lemma 24 (iv), b is to the right of d in ρ. Let e
be the maximum entry between n and b in ρ, and let x be the entry directly left of b. It may
happen that e = d, or e = x or both, but this is irrelevant. In fact, the entry d will not play any
role in our further arguments. We clearly have e ≥ x. Applying Lemma 24 (iv), we obtain that
c, b > e. Suppose for the sake of contradiction that b > c. Combining the previous inequalities,
we get x ≤ e < c < b < n, i.e., we have the situation shown in Figure 13. From Lemma 24 (vi),
we obtain that the fence g := f(e, n, Lg) with Lg := L(ρ, e, n) is in FR. We let C denote the set
of values that are strictly larger than e and not to the right of c in ρ. Similarly, we let B denote
the set of values that are strictly larger than e and not to the left of b in ρ. By these definitions
and the maximal choice of e, we get Lg = C and Lg := ]e, n[ \ Lg = B.
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As c ∈ Lg and b ∈ Lg, the arc corresponding to the fence g that connects e with n has c
on its left and b on its right, i.e., this arc is not simple. It follows that this arc cannot be in
the reduced arc diagram of R. This means there must be another fence g′ = f(u, v, ]u, v[ ∩ Lg),
e ≤ u < v ≤ n, represented by a simple arc, that forces g in the forcing order. Clearly, as this
arc is simple, we have that

]u, v[ ∩ Lg = ∅ or ]u, v[ ∩ Lg = ]u, v[ , (16)

i.e., ]u, v[ is an interval of consecutive numbers from B or C, respectively.
From Lemma 24 (viii), we also know that the fences h := f(c, n, Lh) with Lh := L(ρ, c, n)

and h′ := f(x, b, Lh′) with Lh′ := L(ρ, x, b) are not in FR. Observe that Lh = ]c, n[ ∩ Lg and
Lh′ ∩ ]e, b[ = Lg ∩ ]e, b[, i.e., the arcs corresponding to the fences h and h′ pass to the left and
right of the points in the intervals ]c, n[ or ]e, b[, respectively, exactly in the same way as the arc
corresponding to the fence g; see Figure 13. It follows that the interval [u, v] cannot be contained
in the interval [e, b], as otherwise g′ would force h′ in the forcing order, and we know that h′ /∈ FR.
Similarly, it follows that the interval [u, v] cannot be contained in the interval [c, n], as otherwise
g′ would force h in the forcing order, and we know that h /∈ FR. We conclude that u < c and v > b.
This however, would mean that c is contained in the interval ]u, v[ ∩Lg, but b is not (as b /∈ Lg),
so none of the two conditions in (16) can hold, which means that the fence g′ cannot exist.
(In other words, the arc corresponding to g′ would also have to be non-simple so that g′ could
force g.) We arrive at a contradiction to the assumption b > c. This completes the proof of (e1’).

The proof of (e2’) is analogous to the proof of (e1’), and uses Lemma 24 (iii) instead of (iv),
(v) instead of (vi), and (vii) instead of (viii). We omit the details. �

From Theorem 26, we obtain the following corollary.

Corollary 27. The number of regular quotient graphs Rn is |Rn| = C2
n−1, where Cn is the n-th

Catalan number Cn := 1
n+1

(2n
n

)
.

Proof. By Theorem 26, we need to count simple reduced arc diagrams on n points. Note that
the arcs passing to the left of the points are completely independent from the arcs passing to the
right of the points, so we can count one type of diagram, with all arcs passing to the left, say,
and square the result. It remains to show that simple reduced arc diagrams on n points with all
arcs passing to the left of all points (as the arcs are all simple, no arc connects two consecutive
points), are counted by the Catalan numbers Cn−1. Note that the circular arcs in such a diagram
are non-nesting, by the assumption that the diagram is reduced, as nested arcs correspond to
fences that are comparable in the forcing order. A bijection between such non-nesting circular
arc diagrams on n points and Dyck paths with 2(n− 1) steps is illustrated in Figure 14.

�

4.5. Maximum degree. The next theorem establishes an exact formula for the maximum
degrees of quotient graphs.

Theorem 28. For every lattice congruence R ∈ Cn, the maximum degree of the quotient graph QR
is at most 2n− d2

√
ne. Moreover, there is a lattice congruence with a vertex of this degree.

For proving Theorem 28, we will need the following variant of the famous Erdős-Szekeres
theorem.

Lemma 29. Consider a sequence of distinct integers of length n, and let r and s be the length
of the longest monotonically increasing and decreasing subsequences, respectively. Then we have
r + s ≥ d2

√
ne.
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n

1 0

2(n− 1)

Figure 14. Bijection between non-nesting arc diagrams on n points and Dyck
paths with 2(n− 1) steps.

The Erdős-Szekeres theorem is usually stated in the slightly weaker form that one of r or
s is at least d

√
ne. The proof of our lemma essentially follows Seidenberg’s proof [Sei59] (see

also [Ste95]).

Proof. Let x1, . . . , xn be the sequence we consider. For i = 1, . . . , n, let ai and bi be the lengths
of the longest increasing or decreasing subsequences ending with xi. Note that for 1 ≤ i < j ≤ n
we either have xi < xj , and then we know that ai < aj , or we have xi > xj , and then we know
that bi < bj . Consequently, all pairs (ai, bi) must be distinct, and we have 1 ≤ ai ≤ r and
1 ≤ bi ≤ s, implying that n ≤ rs. From the arithmetic/geometric mean inequality we obtain
r + s = 2(r + s)/2 ≥ 2

√
rs ≥ 2

√
n. As r and s must be integers, this implies the lower bound

r + s ≥ d2
√
ne. �

Proof of Theorem 28. Consider any permutation ρ in the weak order on Sn, and consider another
permutation π < ρ in its downset. Consider the longest monotonically decreasing subsequence
of ρ, and let r denote its length. Note that ρ has at most n − 1 − (r − 1) = n − r ascents,
regardless of the values between the elements of the subsequence. Similarly, consider the longest
monotonically increasing subsequence of ρ, and let s denote its length. Observe that the elements
of this subsequence appear in the same relative order in π, so π has at most n−1−(s−1) = n−s
descents, regardless of the values between the elements of the subsequence. Overall, we have
desc(π) + asc(ρ) ≤ 2n− (r + s). Applying Lemma 20 and Lemma 29 completes the proof of the
upper bound in the theorem.

It remains to construct a lattice congruence R ∈ Cn that has an equivalence class X with
desc(min(X)) + asc(max(X)) = 2n− d2

√
ne. This construction is illustrated in Figure 15. Fill

the numbers 1, 2, . . . , n into a table with s := d
√
ne columns, row by row from bottom to top,

and from left to right in each row. The topmost row may not be filled completely. It can be
checked that the number of rows r of the table is r = d2

√
ne−s. Now consider the permutation π

obtained by reading the columns of the table from left to right, and from top to bottom in
each column. It satisfies desc(π) = (n− 1)− (s− 1) = n− s. Also consider the permutation ρ
obtained by reading the rows of the table from top to bottom, and from left to right in each row.
It satisfies asc(ρ) = (n− 1)− (r− 1) = n− r. We now construct a lattice congruence R that has
an equivalence class X with min(X) = π and max(X) = ρ. From Lemma 20, we then obtain
that the degree of X in the quotient graph QR is desc(π) + asc(ρ) = 2n− (r + s) = 2n− d2

√
ne.
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√
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√
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Figure 15. Illustration of the proof of Theorem 28. The right part of the figure
shows the reduced arc diagram of the lattice congruence R.

We construct R by specifying a set of fences in the forcing order, and then take the downset
of all those fences as FR. The fences are constructed as follows: For each pair of numbers a
and b in our table where b is one row above and one column to the right of a, we let L be the
set of all numbers left of b in the same row as b, and we add the fence f(a, b, L). Now FR is
obtained by taking the downset of all those fences in the forcing order. Observe that as our
initial fences f(a, b, L) all satisfy b− a = s+ 1, all fences f(a, b, L) in FR satisfy b− a ≥ s+ 1.
Using the definition of fences and Theorem 4, it can be verified directly that ρ and π belong to
the same equivalence class. To see that π is the minimal element of its equivalence class, note
the all descents of π have difference s, so none of these fences is in R, meaning that none of the
edges leading to a down-neighbor of π is a bar. Similarly, to see that ρ is the maximal element
of its equivalence class, note that all ascents of ρ have difference 1, so none of these fences is
in R, meaning that none of the edges leading to an up-neighbor of ρ is a bar. This completes
the proof. �

4.6. Vertex-transitive quotient graphs. It turns out that all vertex-transitive quotient
graphs Vn and V ′n can be characterized and counted precisely via weighted integer compositions
and partitions, respectively; see Theorems 33 and 35 and Corollaries 34 and 36 below. As
Vn ⊆ Rn, by Theorem 26 we only need to consider simple reduced arc diagrams as candidates
for vertex-transitive quotient graphs. However, as we shall see, we will have to impose further
restrictions on the diagram. Specifically, we refer to an arc corresponding to a fence f(a, b, L)
with L = ∅ as a left arc, and with L = ]a, b[ as a right arc. Also, we say that an arc connecting
two points s − 1 and s + 1, s ∈ [2, n − 1], is short. Moreover, we say that the reduced arc
diagram is empty, if it contains no arcs. We will see that all reduced arc diagrams that yield
vertex-transitive graphs are suitable concatenations of smaller diagrams that are either empty or
contain only short left or right arcs.

The Cartesian product of two graphs G = (V,E) and H = (W,F ), denoted G�H, is the graph
with vertex set V ×W and edges connecting (v, w) with (v′, w′) whenever v = v′ and (w,w′) is
an edge in F , or w = w′ and (v, v′) is an edge in E. We write G ' H if G and H are isomorphic
graphs. We say that a graph is prime if it is not a Cartesian product of two graphs with fewer
vertices each. The following lemma captures a few simple observations that we will need later.

Lemma 30 ([IK00, page 29+Corollary 4.16+Theorem 4.19]). The following statements hold
for arbitrary connected graphs G,G′, H,H ′:
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(i) We have G�H ' H �G.
(ii) If G�H ' G′ �H ′ and both H and H ′ are prime, then we have G ' G′ and H ' H ′, or

G ' H ′ and H ' G′.
(iii) G and H are vertex-transitive, if and only if G�H is vertex-transitive.

Consider a lattice congruence R ∈ C∗n such that FR contains two fences f(s − 1, s + 1, ∅)
and f(s−1, s+ 1, {s}) for some s ∈ [2, n−1]. Note that any essential fence of the form f(a, b, L),
with a ∈ [1, s], b ∈ [s, n] and L ⊆ ]a, b[ is in the downset of one of the these two fences in the
forcing order. In other words, the reduced arc diagram of R contains no arc from a point in [1, s]
to a point in [s, n], except the short left arc and short right arc that connect the points s− 1
and s+ 1. Moreover, by Lemma 17, the quotient graph QR is obtained as the Cartesian product
of the quotient graphs of the two lattice congruences A ∈ Cs and B ∈ Cn+1−s whose reduced arc
diagrams contain exactly the arcs of the reduced arc diagram of R restricted to the intervals [1, s]
and [s, n], respectively. We say that in the reduced arc diagram of R, the short left arc and
right arc that connect the points s− 1 and s+ 1 form a loop centered at s, and we say that the
reduced arc diagram of R is the product of the reduced arc diagrams of A and B. In this way,
the product of two reduced arc diagrams is obtained by gluing together their endpoints, and
placing a loop centered at the gluing point.

With slight abuse of notation, we use Sn to also denote the cover graph of the weak order
on Sn. The 5-cycle C5 is obtained as the quotient graph for the lattice congruence R ∈ C∗3
given either by FR = {f(1, 3, ∅)}, or by FR = {f(1, 3, {2})}. Clearly, both Sn and C5 are vertex-
transitive, and the reduced arc diagram of the former has n points and is empty, and the reduced
arc diagram of the latter has 3 points and either one short left arc or one short right arc that
connects the first with the third point. In the following we argue that all vertex-transitive
quotient graphs Vn have arc diagrams that are products of these two basic diagrams. We first
rule out any other arc diagrams as candidates for giving a vertex-transitive quotient graph.

Recall that the quotient graph QR has as vertices all equivalence classes of R, and an edge
between any two classes X and Y that contain a pair of permutations differing in an adjacent
transposition.

Lemma 31. Let n ≥ 4, and let R ∈ C∗n be a lattice congruence whose reduced arc diagram is
simple and has no loops. If the reduced arc diagram is not empty, then QR is not vertex-transitive.

Proof. Given a permutation π ∈ Sn and four distinct entries a, b, c, d ∈ [n] with a < b and
c < d such that π is incident with an (a, b)-edge and a (c, d)-edge in the cover graph of the
weak order on Sn, then π forms a 4-cycle in this graph, given by all four permutations obtained
from π by transposing a with b, and c with d in all possible ways. We denote this 4-cycle
by C(π, (a, b), (c, d)). Similarly, given π and three distinct entries a, b, c ∈ [n] with a < b < c

such that π is incident with an (x, y)-edge and an (x, z)-edge, where {x, y, z} = {a, b, c}, then π
forms a 6-cycle in the cover graph, given by all six permutations obtained from π by permutating
a, b, c in all possible ways. We denote this 6-cycle by C(π, (a, b, c)). Let L denote the set of all
entries to the left of all of a, b, c in π. The 6-cycle C(π, (a, b, c)) has two edges belonging to the
fence f(a, b, L ∩ ]a, b[) and two edges belonging to the fence f(b, c, L ∩ ]b, c[), and we abbreviate
these edge sets by E12 and E23, respectively. It also has exactly one edge belonging to the fence
f(a, c, L ∩ ]a, c[) and one edge belonging to the fence f(a, c, L ∩ ]a, c[ ∪ {b}), and we abbreviate
these edge sets by E13∅ and E132, respectively. These edge sets of the 4-cycles and 6-cycles
mentioned before capture how the type i and type ii forcing constraints (recall Figure 2) act
on those cycles. In the following arguments, we have to distinguish carefully between cycles
in the weak order on Sn, and cycles in the quotient graph QR. In particular, a 6-cycle in the
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weak order may result in a 6-, 5-, or 4-cycle in QR, or collapse to a single edge or vertex in QR,
depending on which of the four aforementioned edges are bars.

By Theorem 26, all vertices in the quotient graph QR have degree n − 1. The strategy of
our proof is to consider two particular vertices in the graph, and each of the

(n−1
2
)
pairs of

edges incident with each of those vertices. Every such pair of edges defines a 4-, 5-, or 6-cycle
in QR containing these two edges. In the corresponding quotientope, these cycles bound the
2-dimensional faces incident to that vertex. We will show that the number of 4-cycles and {5, 6}-
cycles incident to the two vertices is different, implying that the graph is not vertex-transitive.
One of the two vertices we consider is the equivalence class that contains only the identity
permutation idn. The n− 1 edges incident with it are (i, i+ 1)-edges for i = 1, . . . , n− 1 (recall
Lemma 20 and that R is assumed to be essential). There are n− 2 pairs of an (i, i+ 1)-edge
and an (i + 1, i + 2)-edge, and every such pair of edges defines either a 5-cycle or a 6-cycle
in QR: Indeed, the edges in E12 and E23 of the 6-cycle C(idn, (i, i+ 1, i+ 2)) are not bars, as
R is essential. Moreover, by the assumption that the diagram of R contains no loops, at most
one of the fences f(i, i+ 2, ∅) or f(i, i+ 2, {i+ 1}) is in FR, so at most one of the edges in E13∅
or E132 of the 6-cycle is a bar. It follows that the corresponding cycle in QR is a 5-cycle or a
6-cycle. The remaining

(n−1
2
)
− (n− 2) =

(n−2
2
)
pairs of an (i, i+ 1)-edge and a (j, j + 1)-edge,

j > i+ 1, incident with idn all form a 4-cycle in QR: Indeed, none of the edges of the 4-cycle
C(idn, (i, i+ 1), (j, j + 1)) are bars, as R is essential.

In the remainder of this proof we identify any arc in the diagram of R with the fence in the
downset FR of the forcing order that it represents. An arc being in the diagram means that the
corresponding fence is contracted, i.e., its edges are bars, meaning that the permutations that
are the endpoints of such a bar are in the same equivalence class. Conversely, an arc not being
in the diagram means that the corresponding fence is not contracted, i.e., its edges are not bars.

As the reduced arc diagram of R is not empty, we consider the arc f(a, b, L) incident to the
highest point. As all arcs are simple, we may assume by symmetry that it is a left arc, i.e.,
L = ∅, and if there is also a right arc incident to this point, then we may assume that the left
arc is at least as long as the right arc.

(i) The left arc f(a, b, ∅) is in the diagram.
(ii) The endpoints of all arcs are below or at point b.
(iii) If there is a right arc ending at point b, then its starting point a′ satisfies a′ ≥ a.
(iv) No two arcs in the diagram are nested, by the assumption that the diagram is reduced, as

nested arcs correspond to fences that are comparable in the forcing order. In particular, no
left arc f(a′, b, ∅), a′ > a, is in the diagram.

(v) All arcs are simple, in particular, no arc connects two consecutive points, as R is assumed
to be essential.

We define the sequences A := (1, . . . , a− 1), B := (a+ 2, . . . , b− 1), and C := (b+ 1, . . . , n).
The various cases considered in the following proof are illustrated in Figure 16.

Case 1: b − a ≥ 3 and the short right arc f(a, a + 2, {a + 1}) is not in the diagram of R.
Consider the equivalence class X1 containing the permutation π1 := Aa b (a + 1)BC. It has
exactly one descent, namely (b, a + 1), and as the left arc f(a + 1, b, ∅) is not in the diagram
by (iv), we obtain that π1 is the minimum of X1 (recall Lemma 20). Consider the permutation
ρ1 := bAa (a+ 1)BC, obtained from π1 by transposing the substring Aa with b, and so by (i)
and Lemma 21, ρ1 is also contained in X1. Moreover, all n− 2 ascents in ρ1 are (i, i+ 1), for
i ∈ [n− 1] \ {b− 1, b}, and (b− 1, b+ 1) (if b < n), and so by (ii) and (v), ρ1 is the maximum
of X1 (recall Lemma 20).
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Figure 16. Case distinctions in the proof of Lemma 31. Arcs in the diagram
are drawn with solid lines, arcs that are not in the diagram are indicated by
dashed lines.

Table 2. Summary of arguments in case 1 in the proof of Lemma 31. Edges
that are not bars are marked with (i)–(v), referencing the argument for why that
arc is not in the diagram of R. The edge marked with (*) is not a bar, and
the argument is given after the table. Edges marked with ? are irrelevant for
our arguments. The 6-cycles marked with [1] are only valid if b < n, and those
marked with [2] are only valid if b < n− 1.

ρ1 = max(X1) = bAa (a+ 1)BC
π1 = min(X1) = Aa b (a+ 1)BC
edges inc. only with idn edges inc. only with X1
(b− 1, b) (a+ 1, b)
(b, b+ 1) [1] (b− 1, b+ 1) [1]
6-cycles inc. only with idn 6-cycles inc. only with X1 E12 E23 E13∅ E132
C(idn, (b− 2, b− 1, b)) C(π1, (a, a+ 1, b)) (v) (iv) ? (*)
C(idn, (b− 1, b, b+ 1)) [1] C(π1, (a+ 1, a+ 2, b)) (v) (iv) (iv) ?
C(idn, (b, b+ 1, b+ 2)) [2] C(π1, (b− 2, b− 1, b+ 1)) [1] (v) (ii) ? (ii)

C(π1, (b− 1, b+ 1, b+ 2)) [2] (ii) (v) ? (ii)

For the moment we assume that b < n− 1. As Table 2 shows, there are two edges incident
with idn that are labelled with a transposition that does not appear at any edge incident with X1.
Conversely, there are two edges incident with X1 that are labelled with a transposition that does
not appear at any edge incident with idn. Together with the other edges incident with X1, we
obtain three pairs of edges incident only with idn that define a 6-cycle in the weak order on Sn,
and four pairs of edges incident only with X1 that define a 6-cycle. All the latter 6-cycles are
{5, 6}-cycles in the quotient graph QR, showing that the number of {5, 6}-cycles incident with a
vertex of QR is by one higher for X1 than for idn. The argument that at most one edge from
each 6-cycle is a bar, is given at the bottom right of the table, separately for each of the various
sets of edges on each cycle. E.g., for the 6-cycle C(π1, (a, a+ 1, b)), the two edges in E12 belong
to the fence f(a, a+ 1, ∅), and the corresponding arc is not in the diagram by (v). It remains
to argue about case (*) in the table, i.e., the arc f(a, b, {a+ 1}). This arc is non-simple, and
so it is not in the reduced diagram. Moreover, in the forcing order it can only be forced by a
simple arc f(a′, b, ∅) with a′ ≥ a+ 1, which is impossible by (iv), or by the simple short right arc
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f(a, a+ 2, {a+ 1}), which is impossible by the extra assumption we imposed at the beginning of
case 1. It follows that the arc f(a, b, {a+ 1}) is not in the diagram of R.

In the cases b = n− 1 and b = n one or two of the 6-cycles in the first two columns of Table 2
are invalid, but the remaining 6-cycles still result in a surplus of {5, 6}-cycles incident with X1.

Case 2: b−a ≥ 3 and the short right arc f(a, a+ 2, {a+ 1}) is in the diagram of R. Consider
the equivalence class X2 containing the permutation π2 := A (a+ 1) a bB C. This permutation
has two descents, (a+ 1, a) and (b, a+ 2), and it can be checked that π2 = min(X2).

Subcase 2a: We now additionally assume that if a > 1, then the short left arc f(a− 1, a+ 1, ∅)
is not in the diagram of R. Using this assumption, it can be checked that ρ2 := max(X2) =
A (a+ 1) bB C a. As before, we now consider all transpositions that appear as edge labels at
only either idn or X2, and we consider the resulting pairs of transpositions that define a 6-cycle
in the weak order on Sn, yielding the 6-cycles shown in Table 3, where some of them exist only
under the extra conditions on a and b stated in the table.

Table 3. Summary of arguments in case 2a. Some 6-cycles are only valid under
the following extra conditions: [1] b < n, [2] b < n− 1, [3] b > a+ 3, [4] a > 1,
[5] a > 2.

ρ2 = max(X2) = A (a+ 1) bB C a
π2 = min(X2) = A (a+ 1) a bB C
edges inc. only with idn edges inc. only with X
(a− 1, a) [4] (a− 1, a+ 1) [4]
(a+ 1, a+ 2) (a+ 1, b)
(b− 1, b) [3] (a+ 2, b) [3]
(b, b+ 1) [1] (b− 1, b+ 1) [1]
6-cycles inc. only with idn 6-cycles inc. only with X
C(idn, (a− 2, a− 1, a)) [5] C(π2, (a− 2, a− 1, a+ 1)) [5]
C(idn, (a, a+ 1, a+ 2)) C(ρ2, (a− 1, a+ 1, b)) [4] (*)
C(idn, (a+ 1, a+ 2, a+ 3)) [3] C(π2, (a, a+ 1, b)) (**)
C(idn, (b− 2, b− 1, b)) [3] C(ρ2, (a+ 1, a+ 2, b)) [3]
C(idn, (b− 1, b, b+ 1)) [1]+[3] C(π2, (a+ 2, a+ 3, b)) [3]
C(idn, (b, b+ 1, b+ 2)) [2] C(π2, (b− 2, b− 1, b+ 1)) [1]+[3]

C(π2, (b− 1, b+ 1, b+ 2)) [2]

Unlike in case 1, where we argued that there are more {5, 6}-cycles incident with X1 than
with idn, in case 2 we argue that there are fewer {5, 6}-cycles incident with X2 than with idn.
For this we consider the two 6-cycles marked with (*) and (**) in the table, and argue that
each of them is contracted to a 4-cycle in the quotient graph QR. Indeed, for the 6-cycle
C(ρ2, (a− 1, a+ 1, b)), the edges in E12 are not bars by the assumption that the short left arc
f(a − 1, a + 1, ∅) is not in the diagram of R, the edges in E23 are not bars by (iv), the edge
in E13∅ is a bar, as the left arc f(a − 1, b, ∅) is forced by the left arc f(a, b, ∅) in the forcing
order, and the edge in E132 is a bar, as the arc f(a− 1, b, {a+ 1}) is forced by the short right
arc f(a, a+ 2, {a+ 1}). For the 6-cycle C(π2, (a, a+ 1, b)), the edges in E12 are not bars by (v),
the edges in E23 are not bars by (iv), the edge in E13∅ is a bar by (i), and the edge in E132 is a
bar, as the arc f(a, b, {a+ 1}) is forced by the short right arc f(a, a+ 2, {a+ 1}).

As one can check from the table, the deficiency of {5, 6}-cycles incident with X2 compared
to idn continues to hold even when some of the 6-cycles in Table 3 are invalid as a consequence of
some or all of the conditions [1]–[5] being violated, as the cycle marked with (**) is always valid.
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Subcase 2b: We now assume that a > 1 and that the short left arc f(a− 1, a+ 1, ∅) is in the
diagram of R. Using this assumption, it can be checked that ρ′2 := min(X2) = (a+ 1) bB C Aa.
Proceeding similarly to before, we obtain a table that differs from Table 3 exactly by omitting
all lines marked [4] or [5], i.e., we obtain the same conclusion that there is a deficiency of {5, 6}-
cycles incident with X2 compared to idn.

Case 3: a < n− 2 and b = a+ 2. In this case we reconsider the equivalence class X1 defined
in case 1, yielding the following simplified Table 4.

Table 4. Summary of arguments in case 3. The 6-cycle marked with [1] is only
valid if a < n− 3.

ρ1 = max(X1) = (a+ 2)Aa (a+ 1)C
π1 = min(X1) = Aa (a+ 2) (a+ 1)C
edges inc. only with idn edges inc. only with X1
(a+ 2, a+ 3) (a+ 1, a+ 3)
6-cycles inc. only with idn 6-cycles inc. only with X1
C(idn, (a+ 2, a+ 3, a+ 4)) C(ρ1, (a, a+ 1, a+ 3) (*)

C(π1, (a+ 1, a+ 3, a+ 4)) [1]

The cycle C(idn, (a+2, a+3, a+4)) is also a 6-cycle incident with idn in the quotient graph QR
by (ii) and (v). We now show that the 6-cycle C(ρ1, (a, a+ 1, a+ 3)) marked with (*) is a 5-cycle
incident with X1 in QR, which proves that X1 is incident with one more 5-cycle than idn. Indeed,
the edges in E12 of the marked cycle are not bars by (v), the edges in E23 are not bars by (ii),
the edge in E132 is not a bar, as the right arc f(a, a+ 3, {a+ 1, a+ 2}) is not in the diagram
of R by (ii), and none of the short right arcs f(a, a+ 2, {a+ 1}) or f(a+ 1, a+ 3, {a+ 2}) that
might force it is in the diagram by the assumption that the diagram has no loops, or by (ii),
respectively. Furthermore, the edge in E13∅ is a bar, as the arc f(a, a+ 3, {a+ 2}) is forced by
the short left arc f(a, a+ 2, ∅), which is in the diagram by (i).

Case 4: a = n− 2 and b = a+ 2 = n. In this case the short right arc f(n− 2, n, {n− 1}) is
not in the diagram of R, by the assumption that the diagram contains no loops.

Subcase 4a: We now additionally assume that the short left arc f(n − 3, n − 1, ∅) is not
in the diagram of R. In this subcase, we consider two equivalence classes X4 and Y4 that
are distinct from idn. The first equivalence class X4 is the one containing the permutation
π4 := An (n − 1) (n − 2), and one can check that π4 = min(X4) and that ρ4 := max(X4) =
nA (n− 1) (n− 2). The second equivalence class Y4 contains only a single permutation σ4 =
min(Y4) = max(Y4) = A (n − 1)n (n − 2). There is only a single 6-cycle incident with only
either X4 or Y4, namely C(ρ4, (n− 3, n− 2, n− 1)), and one can argue that it is a {5, 6}-cycle
in the quotient graph QR, implying that there are more {5, 6}-cycles incident with X4 than
with Y4 in QR; see Table 5.

Table 5. Summary of arguments in case 4a.

ρ4 = max(X4) = nA (n− 1) (n− 2)
π4 = min(X4) = An (n− 1) (n− 2) σ4 = min(Y4) = max(Y4) = A (n− 1)n (n− 2)
edges inc. only with X4 edges inc. only with Y4
(n− 2, n− 1) (n− 2, n)
6-cycles inc. only with X4 6-cycles inc. only with Y4
C(ρ4, (n− 3, n− 2, n− 1))
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Subcase 4b: We now assume that the short left arc f(n− 3, n− 1, ∅) is in the diagram of R.
We consider the equivalence class X ′4 that contains the permutation π′4 := A (n− 1) (n− 2)n.
One can check that π′4 = min(X ′4) and that ρ′4 := max(X ′4) = (n − 1)A (n − 2)n. There is
only a single 6-cycle incident with only either idn or X ′4, namely C(ρ′4, (n − 3, n − 2, n)); see
Table 6. We now argue that this is a 5-cycle in the quotient graph QR, implying that there
are more 5-cycles incident with X ′4 than with idn in QR. Indeed, the edges in E12 are not bars
by (v), the edges in E23 are not bars, as the short right arc f(n − 2, n, {n − 1}) is not in the
diagram by the assumption that it has no loops. Morever, the edge in E13∅ is a bar, as the arc
f(n− 3, n, {n− 1}) is forced by the short left arc f(n− 3, n− 1, ∅). Finally, the edge in E132 is
not a bar, as the right arc f(n− 3, n, {n− 2, n− 1}) is not in the reduced diagram by (iii), and
the two short right arcs f(n− 3, n− 1, {n− 2}) and f(n− 2, n, {n− 1}) that may force it in the
forcing order are not in the diagram by the assumption of loop-freeness.

Table 6. Summary of arguments in case 4b.

ρ′4 = max(X ′4) = (n− 1)A (n− 2)n
π′4 = min(X ′4) = A (n− 1) (n− 2)n
edges inc. only with idn edges inc. only with X ′4
(n− 1, n) (n− 2, n)
6-cycles inc. only with idn 6-cycles inc. only with X ′4

C(ρ′4, (n− 3, n− 2, n))

This completes the proof of the lemma. �

With Lemma 31 in hand, we are now ready to characterize vertex-transitive quotient graphs
via their arc diagram.

Lemma 32. For n ≥ 2, every vertex-transitive quotient graph from Vn is a Cartesian product
with factors from the set of graphs

P := {S2, S3, S4, . . .} ∪ {C5}. (17)

The corresponding reduced arc diagrams are products of empty diagrams on at least 2 points, and
of diagrams on 3 points that have either a short left arc or a short right arc.

Proof. Consider the reduced arc diagram of a lattice congruence R ∈ Vn. By Lemma 17, for any
loop in the diagram centered at some point s ∈ [2, n− 1], we may split the diagram into two
diagrams on the intervals [1, s] and [s, n], and QR is the Cartesian product of the quotient graphs
of the two lattice congruences defined by the reduced arc diagrams on the two intervals. We
repeat this elimination of loops exhaustively, yielding a factorization of QR ' QA1 � · · ·�QAp

such that the reduced arc diagram of every lattice congruence Ai ∈ C∗ni
, ni ≥ 2, has no loops.

As QR is vertex-transitive, Lemma 30 (iii) yields that all factors QAi must be vertex-transitive.
Therefore, by Lemma 31, for any factor with ni ≥ 4, we know that the arc diagram of Ai
must be empty, i.e., we have QAi = Sni . For any factor with ni = 3, there are exactly three
essential lattice congruences yielding a vertex-transitive quotient graph, given by an arc diagram
on 3 points that is either empty, or that has a short left arc or a short right arc, and the
corresponding graphs are QAi = S3 in the first case, and QAi = C5 in the latter two cases. For
any factor with ni = 2, there is exactly one essential lattice congruence, represented by an empty
arc diagram on 2 points, i.e., we have QAi = S2. This proves the lemma. �
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Figure 17. Reduced arc diagrams of all 22 vertex-transitive quotient graphs V5
(bottom), plus reduced arc diagrams of corresponding isomorphic quotient graphs
in Qn, n ≥ 5, with the maximal number of non-essential fences (top), plus the
corresponding integer compositions of 4. The dashed short arcs correspond to
copies of the 5-cycle C5 in the Cartesian products. The 8 non-isomorphic quotient
graphs V ′5 are highlighted, and they correspond to integer partitions.

Given an integer n, a composition of n is a way to write n as a sum of positive integers
a1, . . . , ap, i.e., n = a1 + · · ·+ ap. A partition of n is a composition of n where the summands
are sorted decreasingly, i.e., a1 ≥ · · · ≥ ap.

Theorem 33. For every n ≥ 2 and every integer composition a1 + · · ·+ ap of n− 1 with exactly
k many 2s, there are 3k vertex-transitive quotient graphs in Vn, and these graphs are isomorphic
to the Cartesian products G1 � · · ·�Gp, where Gi = Sai+1 if ai 6= 2 and Gi ∈ {S3, C5} if ai = 2
for all i = 1, . . . , p. The corresponding reduced arc diagrams are products of empty diagrams on
ai + 1 points if ai 6= 2, and of diagrams on 3 points that are either empty, or have one short left
arc, or one short right arc that connects the first and third point if ai = 2. All of these graphs
are distinct, and every graph in Vn arises in this way.

Proof. The proof is illustrated in Figure 17. We consider an integer composition a1 + · · ·+ ap
of n− 1 with exactly k many 2s. For each summand ai 6= 2, we consider the empty arc diagram
on ai + 1 points, and for each summand ai = 2, we consider an arc diagram on 3 points that
is either empty, or has one short left arc, or one short right arc. As the latter case happens
k times, we have 3k choices. Consider the lattice congruences A1, . . . , Ap defined by these arc
diagrams, and consider the lattice congruence R ∈ C∗n whose reduced diagram is the product
of these diagrams. By Lemma 17, we have that QR ' QA1 � · · · � QAp . Moreover, if ai 6= 2,
then we have QAi = Sai+1, and if ai = 2, then we have QAi ∈ {S3, C5}, i.e., all factors in this
product are vertex-transitive. Applying Lemma 30 (iii), we see that QR is vertex-transitive as
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well. Clearly, all arc diagrams constructed in this way from integer compositions are distinct,
yielding distinct graphs in Vn. The fact that every graph in Vn arises from such a composition
follows from Lemma 32. �

The following corollary is an immediate consequence of Theorem 33.

Corollary 34. Let cn,k denote the number of integer compositions of n with exactly k many 2s.
For n ≥ 2, we have |Vn| =

∑
k≥0 3kcn−1,k.

Define an :=
∑
k≥0 3kcn−1,k for n ≥ 2 and bn := an+1 for n ≥ 1. The sequence bn is OEIS

sequence A052528, and the first few terms are 1, 4, 8, 22, 52, 132, 324, 808, 2000. This sequence
also has a linear recurrence, namely b0 = b1 = 1 and bn = 2bn−2 +

∑
0≤i≤n−1 bi for n ≥ 2. The

generating function is (1− x)/(2x3 − 2x2 − 2x+ 1), so the asymptotic growth of bn and an is
(1/x0)n, where x0 is the smallest positive root of 2x3 − 2x2 − 2x+ 1, numerically x0 ≈ 0.403032
and 1/x0 ≈ 2.481194.

Theorem 35. For every n ≥ 2 and every integer partition a1 + · · ·+ ap of n− 1 with exactly
k many 2s, there are k + 1 vertex-transitive quotient graphs in V ′n, and these graphs are the
Cartesian products G1 � · · ·�Gp, where Gi = Sai+1 if ai 6= 2 and Gi ∈ {S3, C5} if ai = 2 for all
i = 1, . . . , p. The corresponding reduced arc diagrams are products of empty diagrams on ai + 1
points if ai 6= 2, and of k diagrams on 3 points, exactly j ∈ {0, . . . , k} of which are empty and
k − j of which have one short left arc that connects the first and third point, if ai = 2. All of
these graphs are non-isomorphic, and every graph in V ′n arises in this way.

The highlighted graphs in Figure 17 are exactly the 8 non-isomorphic vertex-transitive graphs
for n = 5.

Proof. By Theorem 33, our task is to consider all integer compositions a1 + · · ·+ ap of n− 1,
and among the corresponding Cartesian products G1 � · · · � Gp, select those which are non-
isomorphic graphs. By Lemma 30 (i), any two Cartesian products that differ only in reordering
of their factors yield isomorphic graphs, and as all graphs in the set P defined in (17) are prime,
Lemma 30 (ii) shows that these reordering operations are the only ones yielding isomorphic graphs.
Consequently, the non-isomorphic quotient graphs can be identified with integer partitions,
obtained by sorting the summands of a composition decreasingly, and for a partition with k
many 2s, we may choose j ∈ {0, . . . , k} factors that are 6-cycles S3, and the remaining k − j
factors as 5-cycles C5. �

Corollary 36. Let tn denote the number of 2s in all integer partitions of n. For n ≥ 2, we have
|V ′n| = tn+1.

By Corollary 36, the number of vertex-transitive quotient graphs for n = 2, . . . , 10 is tn =
1, 3, 4, 8, 11, 19, 26, 41, 56, respectively, which is OEIS sequence A024786. It can be shown that
tn = eπ

√
2n/3(1+o(1)).

Proof. By Theorem 35, there are exactly
∑
k≥0(k + 1)pn−1,k non-isomorphic vertex-transitive

quotient graphs V ′n, where pn,k denotes the number of integer partitions of n with exactly k
many 2s. It remains to show that this sum equals tn+1. This argument is illustrated in Figure 18.
Given any integer partition of n− 1 with exactly k many 2s, there are (k + 1) ways to insert
another marked 2 into this partition, yielding a partition of n + 1 with a marked 2. As all
partitions of n+ 1 with a marked 2 arise in this way, this corresponds exactly to counting the
number of 2s in all integer partitions of n+ 1. �
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Figure 18. Illustration of the proof of Corollary 36 for n = 5.

5. Pattern-avoiding permutations and lattice congruences

In the first paper of this series [HHMW19], we investigated how Algorithm J can be used to
generate different classes of pattern-avoiding permutations. In this section, we briefly comment
on the relation between pattern-avoiding permutations and lattice congruences.

5.1. Preliminaries. Given two permutations π ∈ Sn and τ ∈ Sk, we say that π contains the
pattern τ , if and only if π = a1 . . . an contains a subpermutation ai1 . . . aik , i1 < · · · < ik, whose
elements are in the same relative order as in τ . If π does not contain the pattern τ , then we say
that π avoids τ . For example, π = 635412 contains the pattern τ = 231, as witnessed by the
highlighted subpermutation. On the other hand, π = 654123 avoids τ = 231. The patterns we
discussed so far are often called classical patterns. In the following we will also need another type
of pattern, called a vincular pattern. In a vincular pattern τ , there is exactly one underlined pair
of consecutive entries, with the interpretation that in a match of the pattern τ in a permutation π,
the underlined entries must be matched to adjacent positions in π. For instance, the permutation
π = 3142 contains the pattern τ = 231, but it avoids the vincular pattern τ = 231.

We say that a classical pattern τ ∈ Sk is tame, if it does not have the largest value k at the
leftmost or rightmost position. For instance, τ = 132 is tame, but τ = 123 is not tame. We say
that a vincular pattern τ ∈ Sk is tame, if it does not have the largest value k at the leftmost or
rightmost position, and the largest value k is part of the vincular pair. For instance, τ = 3412 is
tame, but τ = 1243 or τ = 4123 are not tame.

For any sequence τ1, . . . , τ` of classical or vincular patterns, we let Sn(τ1, . . . , τ`) denote the
set of all permutations of [n] that avoid each of the patterns τ1, . . . , τ`.

5.2. Pattern-avoidance and lattice congruences. In [HHMW19] we proved the following.

Theorem 37 ([HHMW19]). If τ1, . . . , τ` are all tame, then for any n ≥ 1, Algorithm J generates
Sn(τ1, . . . , τ`) when initialized with the identity permutation.

Given Theorems 37 and 13, it is natural to ask: What is the relation between pattern-avoiding
permutations and lattice congruences? Can every lattice congruence of the weak order on Sn be
realized by an avoidance set of tame patterns? Conversely, does every tame permutation pattern
give rise to a lattice congruence? As we discuss next, the answer to the latter two questions is
‘no’ in general, so pattern-avoiding permutations and lattice congruences are essentially different
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concepts, except in a few special cases, captured by Theorem 38 below, and demonstrated by
some relevant examples listed after the theorem.

Firstly, it is clear that every lattice congruence of the weak order on Sn can be described
by an avoidance set of patterns of length n, by avoiding all except one permutation from
each equivalence class. Note that in general we will not be able to improve on this approach
considerably, as the number of lattice congruences grows double-exponentially with n (recall
Theorem 18), so exponentially many avoidance patterns are needed to describe most lattice
congruences. Moreover, the avoidance patterns resulting from this method will in general not
be tame. For instance, consider the lattice congruence shown in Figure 1, and consider the
equivalence class {2134, 2314, 2341}. It contains two patterns that are not tame, so at least one
of them has to be avoided following this approach (even though we know that this particular
congruence could be described more compactly by avoiding the tame pattern 231).

Conversely, consider the tame pattern τ = 2413, and suppose we want to realize all pattern-
avoiding permutations in S5 as a lattice congruence. Now consider the permutation π = 25314,
which contains the pattern τ . This means π must be in the same equivalence class with at least
one of the four permutations (π1, π2, π3, π4) = (52314, 23514, 25134, 25341) that are obtained
from π by adjacent transpositions (recall Lemma 2). This means we have to use at least one of
the fences f(2, 5, ∅), f(3, 5, ∅), f(1, 3, {2}), or f(1, 4, {2, 3}), respectively, in the forcing order.
However, this forces the pairs of permutations (25341, 52341), (23541, 25341), (52134, 52314), or
(52314, 52341), respectively, to also be in the same equivalence class (separately for each pair).
As none of those permutations contains the pattern τ , we get a contradiction.

We say that a set of vincular patterns P is well-behaved, if each pattern τ ∈ P of length k can
be written as τ = Ak1B for some non-empty permutations A and B (in particular, τ is tame),
and moreover any vincular pattern obtained by permuting the entries within A and within B
is also in P . Here are some examples of well-behaved sets of vincular patterns (cf. [HHMW19,
Table 1]): P1 = {231}, P2 = {2413}, P ′2 = {3412}, P3 = {35124, 35142}, P ′3 = {24513, 42513}.
Clearly, this property is preserved under taking unions, so P2 ∪ P ′2, P3 ∪ P ′3, or P1 ∪ P3 are also
well-behaved sets of patterns.

Theorem 38. Let P be a well-behaved set of vincular patterns. For every τ = a1 . . . ak ∈ P ,
consider the position i of the largest value k in τ , i.e., ai ai+1 = k1, and consider the rewriting rule

_x1_ . . ._xi−1_xixi+1_xi+2_ . . ._xk_ ≡ _x1_ . . ._xi−1_xi+1xi_xi+2_ . . ._xk_, (18)

where the values x1, . . . , xk appear in the same relative order as in τ , and which therefore
transposes the largest value xi and the smallest value xi+1 in this subpermutation. Combined for
all τ ∈ P , these rewriting rules define a lattice congruence of the weak order on Sn for any n ≥ 1.
Moreover, every equivalence class contains exactly one permutation that avoids every τ ∈ P ,
which is the minimum of its equivalence class.

Proof. We first show that the set of all pairs of permutations πm ρ in the weak order on Sn that
match one of the rewriting rules (18) given by the patterns τ ∈ P form a downset of fences in
the forcing order.

So suppose we are given π m ρ in Sn of the form

π = _x1_ . . ._xi−1_xixi+1_xi+2_ . . ._xk_,
ρ = _x1_ . . ._xi−1_xi+1xi_xi+2_ . . ._xk_,

where the values x1, . . . , xk appear in the same relative order as in one of the patterns τ ∈ P . Then
we have π ≡ ρ by (18). Furthermore, the cover edge ρlπ is contained in the fence f(xi+1, xi, L),
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where L is the set of all values between xi+1 and xi that appear to the left of xi and xi+1 in π
and ρ (in particular, {x1, . . . , xi−1} ⊆ L). Let F≡ be the union of all those fences, taken over all
choices of π and ρ and all patterns τ ∈ P .

Consider a fence f(a, b,M) such that f(a, b,M) ≺ f(xi+1, xi, L), i.e., we have a ≤ xi+1,
b ≥ xi, L = M ∩ ]xi+1, xi[, in particular x1, . . . , xi−1 ∈M and xi+2, . . . , xk /∈M . Consider the
two permutations π′ m ρ′ defined by

π′ := x1 . . . xi−1Abaxi+2 . . . xk B,

ρ′ := x1 . . . xi−1Aa b xi+2 . . . xk B,

where A and B are the increasing sequences of the elements in M \ {x1, . . . , xi−1} and [n] \
(M ∪ {xi+2, . . . , xk, a, b}), respectively. Then the edge ρ′ l π′ is in f(a, b,M). Further-
more, as a ≤ xi+1 = min{x1, . . . , xk} and b ≥ xi = max{x1, . . . , xk}, the subpermutation
x1 . . . xi−1 b a xi+2 . . . xk of π′ is a match of the pattern τ and hence π′ ≡ ρ′ by the corresponding
rewriting rule, which shows that f(a, b,M) ∈ F≡. It follows that F≡ is a downset of fences in the
forcing order, i.e., F≡ defines a lattice congruence of the weak order on Sn (recall Theorem 4).

It remains to show that any two permutations connected by an edge in one of the fences of F≡
are related by one of our rewriting rules. For this consider a fence f(a, b, L) from F≡. By the
definition above, there exists a sequence (x1, . . . , xk) of numbers from [n] and a pattern τ =
a1 . . . ak ∈ P with the vincular pair at position (i, i+ 1), i.e., ai ai+1 = k1, such that x1, . . . , xk
appear in the same relative order as in τ , a = xi+1, b = xi, x1, . . . , xi−1 ∈ L, and xi+2, . . . , xk /∈ L.
Hence, for any edge ρl π in f(a, b, L), we have that (xi+1, xi) = (a, b) is the pair transposed
along this edge, and the values x1, . . . , xi−1 appear to the left of this pair (not necessarily in
this order), and the values xi+1, . . . , xk appear to the right of this pair (not necessarily in this
order), in both ρ and π. As P is well-behaved, P contains all the patterns obtained from τ by
permuting a1, . . . , ai−1 to the left of ai and ai+2, . . . , ak to the right of ai+1, implying that π
matches a pattern from P , and hence there is a rewriting rule witnessing that π ≡ ρ.

The last part of the theorem follows by interpreting the rewriting rules as a downward
orientation of all bars of the lattice congruence ≡. Note here that the rule (18) removes the
inversion (xi+1, xi), so each equivalence class forms a directed acyclic graph, and the unique sink
in it, which must be the minimum, is the permutation that avoids all patterns in P . �

Applying Theorem 38 to the well-behaved sets of patterns mentioned before, P1 = {231}
yields the Tamari lattice via the sylvester congruence _b_ca_ ≡ _b_ac_ where a < b < c, with
231-avoiding permutations as the minima of the equivalence classes; see Figure 1 and note that
Sn(231) = Sn(231). Moreover, P2 ∪ P ′2 = {2413, 3412} yields the rotation lattice on diagonal
rectangulations [LR12, Gir12, CSS18], with twisted Baxter permutations as minima. Lastly,
P3 ∪ P ′3 = {35124, 35142, 24513, 42513} yields the lattice on generic rectangulations [Rea12b],
with 2-clumped permutations as minima.

6. Open questions

By our results, every quotient graph has a Hamilton path, and a very natural question that
comes to mind is whether it also has Hamilton cycle for n ≥ 3; recall Remark 16. With computer
help, we verified that this is the case for small n. We feel that the proof technique described
in [HN99] for the associahedron might be applicable for larger classes of quotientopes.

Given our results in Table 1, it seems challenging to characterize the non-isomorphic quotient
graphs Q′n by their arc diagrams, and to count them; recall the examples from Figure 10. In
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particular, we wonder whether the sequence |Q′n| grows more than exponentially with n, possibly
even double-exponentially like |Qn|?

It would also be interesting to provide a lower bound on the number of non-isomorphic regular
graphs R′n that improves upon the trivial lower bound |R′n| ≥ |V ′n|, which comes from number
partitions; recall Theorem 35. In the proof of this theorem, we can replace any factor Sai+1,
ai ≥ 3, coming from a partition with a part ai by a prime regular quotient graph. E.g., for n = 4
there are 7 non-isomorphic prime regular graphs (10 regular, 4 of which vertex-transitive, 3 of
which are products). This technique could be improved, if we produce non-isomorphic prime
regular graphs for larger part sizes ai. To this end, it seems interesting in its own right to study
the set P ′n ⊆ R′n of non-isomorphic prime regular graphs. Probably one can prove that most arc
diagrams with a single simple arc are prime graphs, which would show that |P ′n| ≥ Θ(n), and
this would give some improvement on the lower bound for |R′n|.

Another very natural direction would be to investigate the colorability properties of quotient
graphs. For a start, we found that all bipartite quotient graphs are characterized as follows: For
any integers a, b ∈ [n] with b − a ≥ 2, we let A(a, b) be the set of all arcs in the arc diagram
connecting the point a with the point b (there are 2b−a−1 such arcs). A quotient graph is
bipartite if and only if its arc diagram is a collection of arc sets of the form A(ai, bi), where the
[ai, bi] are non-nesting intervals. This shows that bipartite quotient graphs are counted by the
Catalan numbers Cn−1.
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