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Abstract

This article explores the question concerning the number of distinct resonant algebras
depending on the generator content, which consists of the Lorentz generator, translation,
and new additional Lorentz-like and translation-like generators. Such algebra enlargements
originate directly from the so-called Maxwell algebra and implement the S-expansion frame-
work. They find use not only in the construction of gravity and supergravity models but
also attract interest in some other applications. The undertaken task is closely related to
the subject of finding commutative monoids (semigroups with the identity element) of the
particular order, were we additionally enforce the parity condition.

1 Introduction

In the past years we have observed the growing number of works exploring the framework
of the so-called semigroup expansion (S-expansion) [1, 2, 3]. The resulting enlargements of the
Lorentz/(A)dS/Poincaré algebras correspond to the so-called Maxwell algebras containing the
original Maxwell algebra introduced in the 70’s [4, 5], the Soroka-Soroka algebra [6, 7], as well
as their generalizations to Bm and Cm families [3, 8], along with extension to the new family
Dm [9], and a recipe for further families [10]. Ultimately, one can generalize it even further to
the wider class of the so-called resonant algebras [10, 11].

Presented enlargements deliver a very rich structure offering some non-trivial and interesting
features. The applications mostly correspond to the construction of the gravity and supergravity
actions. Notable examples concern [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
It is worth to mention a recent contribution to the subject of bms symmetry [28, 29, 30] and
topological insulators [11, 31].

In the indicated constructions of the gauge theories, the particular features and outcomes
depend on the chosen Lie algebra, which has a direct impact on the field content, structure
constants, symmetries, existence of the particular terms in action and field equations. There-
fore, determining the range of possible algebra constructions for a given generator content is of
great importance. We are going to tackle this problem by employing computer-assisted compu-
tations. After a brief introduction to the semigroup expansion, leading to the discussed algebra
enlargements, we will present the outcomes and provide some systematization.
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2 Semigroup expansion

In this section, we will shortly summarize key elements of the semigroup expansion. First
let us recall the nn-Wigner contraction [32] that allows us to obtain the Poincaré algebra as the
limit of the Anti-de Sitter (AdS) algebra. This is established by the re-scaling of the translation
generator Pa → ℓPa with Λ = − 3

ℓ2
. The commutator [Pa, Pb] = Jab then becomes [ℓPa, ℓPb] = Jab

and [Pa, Pb] = 1
ℓ2
Jab. Enforcing the limit corresponding to the vanishing of the cosmological

constant makes the right-hand side equal to zero

[Pa, Pb]
ℓ→∞
= 0 . (1)

This way we connect two different algebras by the means of a limit. The semigroup expansion
framework can be seen as some generalization, which assigns to generators the semigroup ele-
ments instead of a scalar parameter like ℓ (see [1, 2, 3] and [12]). Naturally, this new ”semigroup
scaling” now concerns all the generators. Note, however, that various algebraic outcomes on
the right-hand sides are not the consequence of a limit, but the generator redefinition after the
evaluation of the original AdS commutators. Choice of the AdS and not dS is due to the possible
supersymmetric applications in the future.

The S-expanded algebra is understood as the product S × g, where the new generators are
given by:

Jab,(i) = s2iJ̃ab and Pa,(i) = s2i+1P̃a, for i = {0, 1, 2, ...} (2)

with the original algebra g = AdS:
[

J̃ab, J̃cd

]

= ηbcJ̃ad − ηacJ̃bd + ηadJ̃bc − ηbdJ̃ac , (3)
[

J̃ab, P̃c

]

= ηbcP̃a − ηacP̃b , (4)
[

P̃a, P̃b

]

= J̃ab , (5)

and semigroup elements si ∈ S. All the commutation relations between the generators belonging
to the enlarged algebra are established from the AdS algebra of J̃ab and P̃a along particular
semigroup S = {s0, s1, s2, ...} multiplication (Cayley) table

s0 s1 s2 .

s0 . . . .
s1 . . . .
s2 . . . .
. . . . .

(6)

Elements in these tables must admit the commutative sα ·sβ = sβ ·sα and associativity conditions
(sα · sβ) · sγ = sα · (sβ · sγ). Naturally, the associativity directly translates to the Jacobi identity
at the level of the generators [[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0. For the convenience in
the further part of the article, we will call generators using the distinct letters:

Jab = s0J̃ab , Pa = s1P̃a , Zab = s2J̃ab , Ra = s3P̃a , Wab = s4J̃ab , ... (7)

It was pointed out [9, 10] that useful algebras, from the point of the view gauge actions,
require the Lorentz generator obeying [J, J ] ∼ J and [J, P ] ∼ P , so we do not break the
definitions of the curvature Rab(ω) = dωab + ωa

c ∧ ωcb and torsion T a = dea + ωa
c ∧ ec forms.

This should be extended further to all the other generators. Therefore, we start by introducing
a semigroup element s0 playing the role of the identity element s0 · sα = sα · s0 = sα, which
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needs to be associated with the Lorentz generator Jab preserving all the generators [J,X] ∼ X.
Similarly, we associate s1 element with the translation generator. In addition, we require the
so-called resonant condition (see [1, 2, 3]), which mathematically is just a parity requirement:

seven · seven = seven , seven · sodd = sodd , sodd · sodd = seven, (8)

which reflects the AdS algebra structure

[J̃.., J̃..] ∼ J̃.. [J̃.., P̃.] ∼ P̃. [P̃., P̃.] ∼ J̃.. . (9)

To fully complete the picture, we also separately include the absorbing element 0S , defined as
0S · sα = sα · 0S = 0S . It is not related to any generator. On the contrary, by acting on any
generator T it gives zero 0S T = 0, which is needed for example as the output of the Poincaré
algebra. One can find more on that subject under the name 0S-reduction within [1, 2, 3]. As
we are going to provide a particular algebra systematization to make semigroup order n and
amount of the generators on the same footing, we will not include the separate row and column
for 0S in semigroup/monoid Cayley tables, as they anyway contain only 0S .

To better understand the presented framework, let us look at one particular example. Fo-
cusing on the case of the original Maxwell algebra [4, 5] with the generators Jab, Pa, Zab we can
read off all the commutation relations directly from the schematic ”commutation” table

[ . , . ] J.. P. Z..

J.. J.. P. Z..

P. P. Z.. 0
Z.. Z.. 0 0

(10)

where one needs to keep in mind a specific form of the structure constants. Naturally, this is a
consequence of the corresponding semigroup multiplication table:

B4 s0 s1 s2

s0 s0 s1 s2
s1 s1 s2 0S
s2 s2 0S 0S

(11)

applied to

[Jab, Jcd] = s0 · s0(ηbcJ̃ad − ηacJ̃bd + ηadJ̃bc − ηbdJ̃ac) = ηbcJad − ηacJbd + ηadJbc − ηbdJac ,

[Jab, Zcd] = s0 · s2(ηbcJ̃ad − ηacJ̃bd + ηadJ̃bc − ηbdJ̃ac) = ηbcZad − ηacZbd + ηadZbc − ηbdZac ,

[Zab, Zcd] = s2 · s2(ηbcJ̃ad − ηacJ̃bd + ηadJ̃bc − ηbdJ̃ac) = 0 ,

[Jab, Pc] = s0 · s1(ηbcP̃a − ηacP̃b) = ηbcPa − ηacPb ,

[Zab, Pc] = s2 · s1(ηbcP̃a − ηacP̃b) = 0 ,

[Pa, Pb] = s1 · s1J̃ab = Zab . (12)

The internal product/invariant tensor 〈 . , . 〉, necessary for the construction of actions, can be
similarly read off, according to the same scheme with the particular constants σγ depending on
the outcome sα · sβ = sγ . For example, in 3D theory with S-expanded algebra with s2 · s1 = s3
we will have 〈Zab, Pc〉 = σ3ǫabc. Naturally, when one considers 3D theory (like in [11]) it is also
quite convenient to make a transition to the dual definitions of the generators Xa = 1

2ǫ
bc
a Xbc

(and corresponding fields), which simplifies and uniforms the form of the commutation relations

[Ja, Jb] = ǫ c
ab Jc , [Ja, Pb] = ǫ c

ab Pc , [Pa, Pb] = ǫ c
ab Jc . (13)

Further details concerning derivation, notation, and gauging these type of algebras can be found
in the literature about the S-expansion and [8, 10, 11].
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3 How many resonant algebras is there

Some general considerations about finding all (unrestricted) semigroup expanded algebras
were brought in the past [33, 34, 35]. Unfortunately, the overwhelming vastness of algebraic
examples does not seem to translate into physically relevant results. We argue that the key to
assure the consistent grounds lies in demanding specific properties concerning the commutative
semigroups. This includes the resonant/parity condition and requirement of the identity element
set to be s0. Obtained in this way the class of resonant algebras [10], being a sub-class of the S-
expanded algebras, requires then a specific construction of the semigroups. To this end, we notice
that the parity even entries can have only s2i∪ 0S elements related respectively to {0, J, Z,W, ...},
whereas parity odd entries can be filled by odd s2i+1 ∪ 0S related to {0, P,R,U, ...}. By brute-
force we can generate all possible multiplication tables obeying all given requirements with the
exception of associativity. The associativity check has to be employed afterwards upon obtained
candidates, which mathematically speaking represent the ”unital magma”. The number of
potential tables can be expressed by the combinatorial formula

(

2k + 5 − (−1)k

4

)F loor
[

k
2

4

]

·

(

2k + 3 + (−1)k

4

)F loor

[

(k−1)2

4

]

(14)

where k represents the number of used generators. Starting point, k = 2, corresponds to the
J, P setup. For k = {2, 3, ..., 8} this gives us, respectively,

2, 18, 729, 331776, 1073741824, 64000000000000, 37252902984619140625 .

The associativity filtering significantly reduces the final number of tables, ultimately assuring
required commutative semigroup structure with identity and resonant condition. Based on
them we generate the resonant algebras. For the available generators {Jab, Pa, Zab, Ra,Wab, Ua},
therefore up to three copies of the Lorentz/translation-like generators, we can summarize our
explicit findings as

{J, P} {J, P, Z} {J, P, Z,R} {J, P, Z,R,W} {J, P, Z,R,W,U}

Possible algebras 2 6 30 347 3786

Algebras without 0 1 1 6 28 222

Obviously, the pair {Jab, Pa} results in the Poincaré and AdS algebra. By enlarging algebra to
the set of {Jab, Pa, Zab} we end up with the Maxwell algebra [4, 5] along with the Soroka-Soroka
algebra [6, 7] and four more examples showed in [10] and [11]. Due to the plethora of examples,
we suggest that more emphasis should be placed on the fully non-abelian algebras, i.e. not
having any zeros in the commutation outcomes, thus offering the most general content and the
widest scope of the corresponding phenomena.

The explicit form of algebras, up to the case of {Jab, Pa, Zab, Ra}, will be presented in the
next section, whereas rest will be attached to the publication.

Before we go any further let us classify obtained resonant algebras. Depending on the closing
commutator [Pa, Pb] we can organize algebras according to the resulting sub-algebras:

{J, P} {J, P, Z} {J, P, Z,R} {J, P, Z,R,W} {J, P, Z,R,W,U}

Possible algebras 2 6 30 347 3786

Poincaré-like 1 4 17 211 2062

AdS-like 1 0 3 0 38

Maxwell-like - 2 10 68 843

Extra-Maxwell-like - - - 68 843

Obviously Poincaré-like algebras are the ones possessing [Pa, Pb] = 0, AdS-like [Pa, Pb] = Jab,
Maxwell-like [Pa, Pb] = Zab, and so on.
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As we can see, the task of generating the resonant algebras is inextricably related to the
subject of finding the semigroups (and monoids) of a particular order n. Unfortunately, there
is little known about the inclusion of the parity condition. As for now, the amounts of the
particular resonant algebras seem not to follow any known general sequence, just like for the
semigroups and monoids. In literature [33, 36, 37, 38, 39, 40] and through oeis.org we find:

• A001423 Number of semigroups of order n for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10:
1, 4, 18, 126, 1160, 15973, 836021, 1843120128, 52989400714478, 12418001077381302684

• A001426 Number of commutative semigroups of order n:
1, 3, 12, 58, 325, 2143, 17291, 221805, 11545843, 3518930337

• A058129 Number of monoids (semigroups with identity) of order n:
1, 2, 7, 35, 228, 2237, 31559, 1668997, ...

• A058131 Number of commutative monoids of order n:
1, 2, 5, 19, 78, 421, 2637, ...

One might wonder, why not start with the given (commutative) semigroups available even up to
order n = 10, and then just filter them due to the identity and parity. That path naturally has
much higher efficiency (paid by someone’s else prior work). Unfortunately, all the available tables
are given up to isomorphism. For instance, without the resonant condition, for the commutative
monoids of order n = 3 with an identity fixed as the first element, we can find 9 tables:

M1 s0 s1 s2

s0 s0 s1 s2

s1 s1 s2 s0

s2 s2 s0 s1

M2 s0 s1 s2

s0 s0 s1 s2

s1 s1 s0 s2

s2 s2 s2 s2

M3 s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s1

s2 s2 s1 s2

M4 s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s1

s2 s2 s1 s1

M5 s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s2

s2 s2 s2 s1

M6 s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s1

s2 s2 s1 s0

M7 s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s2

s2 s2 s2 s2

M8 s0 s1 s2

s0 s0 s1 s2

s1 s1 s2 s2

s2 s2 s2 s2

M9 s0 s1 s2

s0 s0 s1 s2

s1 s1 s2 s1

s2 s2 s1 s2

The four bottom examples will be rejected, because with a redefinition of elements s1 ↔ s2, and
changing the order of rows and columns, we reproduce exactly four examples lying above them.
We could even miss the Soroka-Soroka C4 algebra, represented by the last M9 table (incidentally,
the only one obeying resonant condition!) as it might not be directly visible in an isomorphic
output. The presence of the absorbing element introduce yet another complication. Including
0S means searching among monoids of a higher order. Notice, that here M8 table essentially
gives the Poincaré algebra with s2 not associated with Zab generator but playing the role of 0S .

The setup we have presented in the previous section is much more comfortable. The physical
properties attached to s0 and s1, along with the resonant/parity condition, remove the isomor-
phic ambiguities because similar re-definitions as above are just impossible. The lack of physical
restrictions concerning Zab and Wab, thus some interchangeability, might lead to some issues,
but for now, we will just assume that the role of all generators is somehow unique.

4 Panorama of algebras

Below we present an overview of the resonant algebras obtained by subsequent including
further generators.
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4.1 J algebra

We can consider the Lorentz algebra as the starting point obeying all the requirements.

Lorentz J
J J

(15)

4.2 J and P algebras

With the translation generator we see only two possibilities: Poincaré and AdS algebra.

Poincaré J P
J J P
P P 0

AdS J P
J J P
P P J

(16)

4.3 J and P and Z algebras

Including another generator, Zab, brings much richer structure:

• 2 Maxwell-like algebras (i.e. containing [P,P ] ∼ Z): of type B4 (original Maxwell algebra
introduced in the 70’s) and type C4 ≡ AdS⊕Lorentz (introduced by Soroka-Soroka, which
was shown to represent under a change of basis the direct sum of two algebras)

B4 J P Z

J J P Z
P P Z 0
Z Z 0 0

C4 J P Z

J J P Z
P P Z P
Z Z P Z

(17)

• 0 of AdS-like algebras, which would contain [P,P ] ∼ J

• 4 Poincaré-like algebras (i.e. having [P,P ] ∼ 0), which we denote as type: B4, B̃4, C̃4,
and C4 ≡ Poincare⊕ Lorentz

B4 J P Z

J J P Z
P P 0 0
Z Z 0 0

B̃4 J P Z

J J P Z
P P 0 P
Z Z P 0

C̃4 J P Z

J J P Z
P P 0 0
Z Z 0 Z

C4 J P Z

J J P Z
P P 0 P
Z Z P Z

(18)

For the set of three generators {J, P, Z} we have 6 different algebras, which can correspond to
six different Lagrangians, thus six different configurations of the field equations, just as it was
recently shown in the analysis of topological insulators [11].

4.4 J and P and Z and R algebras

The last presented here explicitly example consists of 30 cases:

• 10 Maxwell-like

B5 J P Z R

J J P Z R
P P Z R 0
Z Z R 0 0
R R 0 0 0

C4 J P Z R

J J P Z R
P P Z R J
Z Z R J P
R R J P Z

D4 J P Z R

J J P Z R
P P Z R Z
Z Z R Z R
R R Z R Z

J P Z R
J J P Z R
P P Z P 0
Z Z P Z 0
R R 0 0 0

J P Z R
J J P Z R
P P Z P Z
Z Z P Z P
R R Z P J

J P Z R
J J P Z R
P P Z P Z
Z Z P Z P
R R Z P Z
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J P Z R
J J P Z R
P P Z 0 0
Z Z 0 0 0
R R 0 0 0

J P Z R
J J P Z R
P P Z 0 0
Z Z 0 0 0
R R 0 0 Z

J P Z R
J J P Z R
P P Z 0 Z
Z Z 0 0 0
R R Z 0 0

J P Z R
J J P Z R
P P Z 0 Z
Z Z 0 0 0
R R Z 0 Z

(19)

• 3 AdS-like

B5 J P Z R

J J P Z R
P P J R Z
Z Z R 0 0
R R Z 0 0

C5 J P Z R

J J P Z R
P P J R Z
Z Z R J P
R R Z P J

D5 J P Z R

J J P Z R
P P J R Z
Z Z R Z R
R R Z R Z

(20)

• 17 Poincaré-like

J P Z R
J J P Z R
P P 0 0 0
Z Z 0 0 0
R R 0 0 0

J P Z R
J J P Z R
P P 0 0 0
Z Z 0 Z 0
R R 0 0 0

J P Z R
J J P Z R
P P 0 0 0
Z Z 0 0 0
R R 0 0 Z

J P Z R
J J P Z R
P P 0 0 Z
Z Z 0 0 0
R R Z 0 0

J P Z R
J J P Z R
P P 0 0 Z
Z Z 0 0 0
R R Z 0 Z

J P Z R
J J P Z R
P P 0 R 0
Z Z R 0 0
R R 0 0 0

J P Z R
J J P Z R
P P 0 0 0
Z Z 0 0 P
R R 0 P 0

J P Z R
J J P Z R
P P 0 P 0
Z Z P Z 0
R R 0 0 0

J P Z R
J J P Z R
P P 0 0 0
Z Z 0 Z R
R R 0 R 0

J P Z R
J J P Z R
P P 0 0 Z
Z Z 0 0 P
R R Z P J

J P Z R
J J P Z R
P P 0 0 0
Z Z 0 0 P
R R 0 P Z

J P Z R
J J P Z R
P P 0 0 0
Z Z 0 Z R
R R 0 R Z

J P Z R
J J P Z R
P P 0 P 0
Z Z P J R
R R 0 R 0

J P Z R
J J P Z R
P P 0 R 0
Z Z R J P
R R 0 P 0

J P Z R
J J P Z R
P P 0 P 0
Z Z P Z R
R R 0 R 0

J P Z R
J J P Z R
P P 0 P 0
Z Z P Z P
R R 0 P 0

J P Z R
J J P Z R
P P 0 R 0
Z Z R Z R
R R 0 R 0

(21)
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4.5 Algebras with more generators

We will not present explicitly all the 347 {J, P, Z,R,W} algebras, nor 3876 examples of
{J, P, Z,R,W,U} but they will available through a separately supplemented file.

Values given in (14) show that incorporating further generators, beyond the last pair of
{Wab, Ua}, becomes quite a time-consuming exercise, requiring in the next steps the associativity
analysis of 6, 4×1013 and 3, 725×1019 candidates. The last result of 3876 resonant algebras was
established after 31 hours of medium-class PC computations concerning ”only” 109 candidates.

5 Other observations

Besides the systematization over the appearing sub-algebras, one could look for other things.
More emphasis should be placed on the non-abelian algebras (without zeros in the outcome).
They are particularly interesting because they give the most general actions. Intriguingly, we
notice quite a small number of AdS-like algebras. It seems even that we are unable to construct
such an algebraic type for the odd number of generators.

Another thing is matching some numbers concerning the Maxwell-like and algebras of a
further type. Generators Zab and Wab seem to be interchangeable from a certain point. This
will be always the case, until we deliver some interpretation or enforce special relations for Zab

generator, similarly as we did it for Lorentz and translation. One would expect more in the
future on the meaning of these additional bosonic fields.

For the few resonant tables, it happens that their elements form the cyclic group Zk.
There is one such table corresponding to the {J, P} content, one for {J, P, Z,R}, and six for
{J, P, Z,R,W,U}. When we look for the tables forming groups (monoids with the inverse) this
requires adding to a list above one more table for {J, P, Z,R}. While studying the gauged ac-
tions, this has no extra meaning or impact. As far as we know, there is nothing meaningful
about the generators and fields related to elements being inverses.

The extended set of possible algebras asks for further analysis corresponding to gauge models
(Chern-Simons in odd dimensions, Born-Infeld in even dimensions [8, 18] or BF → BFCG
construction [24, 27]). This also includes the supergravity models, where the supersymmetric
extensions should be now explored for all the resonant algebras.

Finally, the setup with the two sets of Lorentz- and translation-like generators: {J, P, Z,R}
might be particularly interesting from the perspective of the bi-metric theories [41]. The spin
connection ωab and vierbein ea (associated with Jab and Pa) would correspond to the background
metric, whereas the other pair kab and ha (associated with the Zab and Ra) could be related to
other metric field. Closing these algebras in thirty different ways means many various non-trivial
interaction terms, being usually put there by hand. With more generators in play, this opens
doors to the multi-metric formulation.

6 Summary

Within this paper, we have provided the complete overview of the resonant algebras, of which
only a limited portion [11] has been analyzed and incorporated in various applications. Provided
scope and classification helps us better understand all the relations between algebras, which in
the future might turn essential in realizing various formal and physical goals.
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