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Abstract

In this paper, a natural bijection between multichains of binary paths and shifted

tableaux is presented, and it is used for the enumeration of the chains with maximum

length from a given path P to the maximum path 1|P |. By mapping chains to shifted

tableaux, the main formulas given in a recent paper by the authors for the enumeration

of the P−1|P | chains having only small intervals and minimum length are proved, using

some new bijections on shifted tableaux.
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1 Introduction

Let Pn be the set of all (binary) paths P of length |P | = n, i.e., lattice paths P = p1p2 · · · pn
where each step pi, i ∈ [n], is either an upstep u = (1, 1) or a downstep d = (1,−1) and
connects two consecutive points of the path. We denote by |P |u (resp. |P |d) the number of
upsteps (resp. downsteps) of P . An ascent (resp. descent) of P is a maximal sequence of u’s
(resp. d’s) in P . The last point of an ascent (resp. descent) is called peak (resp. valley) of
the path. Clearly, every peak (resp. valley) corresponds to either an occurrence of ud (resp.
du), or an occurrence of u (resp. d) at the end of the path. It is convenient to consider that
the starting point of a path is the origin of a pair of axes. The height of a point of P is
its y-coordinate. We denote by lv(P ) (resp. hv(P )) the height of the lowest (resp. highest)
valley of P . A valley of P with height lv(P ) is called low valley of P . We set P =

⋃
n≥0Pn,

where P0 consists of only the empty path ε (the path which has no steps).
A Dyck path is a path that starts and ends at the same height and lies weakly above this

height. In this paper, all Dyck paths are denoted by lowercase letters. The set of Dyck paths
of length 2n is denoted by Dn, and we set D =

⋃
n≥0Dn, where D0 = {ε}.

A path which is a prefix (resp. suffix) of a Dyck path, is called Dyck prefix (resp. Dyck
suffix). Every non-initial point of a Dyck prefix having height zero is called return point.
A Dyck path with only one return point is called prime. Every non-empty Dyck path a
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can be uniquely decomposed as a product of prime Dyck paths, i.e., a = ua1dua2d · · ·uakd,
where ai ∈ D, i ∈ [k]. Furthermore, every Dyck prefix (resp. Dyck suffix) P can be uniquely
decomposed in the form P = a0ua1 · · ·uak (resp. P = a0da1 · · · dak), where ai ∈ D, i ∈ [0, k],
k ≥ 0.

A natural (partial) ordering on Pn is defined via the geometric representation of the
paths P,Q ∈ Pn, where P ≤ Q whenever P lies (weakly) below Q. Obviously, a path Q

covers a path P whenever Q is obtained from P by turning exactly one valley of P into a
peak. This ordering is better understood by considering the following alternative encoding
of binary paths: Every P ∈ Pn can be described uniquely by the sequence (hi(P ))i∈[n] of the
heights of its points, so that P ≤ Q iff hi(P ) ≤ hi(Q), i ∈ [n]. Then, the join and meet of
P , Q are given by

hi(P ∨Q) = max{hi(P ), hi(Q)} and hi(P ∧Q) = min{hi(P ), hi(Q)}.

It is well-known that the poset (Pn,≤) is a finite, self-dual, distributive lattice with minimum
and maximum elements the paths 0n = dn = dd · · ·d︸ ︷︷ ︸

n times

and 1n = un = uu · · ·u︸ ︷︷ ︸
n times

respectively. We

note that the length of every saturated P −Q chain, where P = p1p2 · · · pn, Q = q1q2 · · · qn,
is equal to

l(P,Q) =
1

2

n∑

i=1

(hi(Q)− hi(P )) =

n∑

i=1

(n− i+ 1) · ([qi = u]− [pi = u]),

where [S] is the Iverson binary notation, i.e., for every proposition S, [S] = 1 if S is true,
and 0 if S is false.

The above lattice appears in the literature in various equivalent forms (e.g., binary words
[3, p. 92], subsets of [n] [5], permutations of [n] [14, p. 402], partitions of n into distinct
parts [13], threshold graphs [8]). Sapounakis et al [11] studied its sublattice of Dyck paths.
Recently, a bijection between comparable pairs of paths of this lattice and Dyck prefixes of
odd length has been presented [7].

An interval [x, y] in a poset is called small if y is the join of some elements covering x.
It is easy to see that a multichain C : P0 ≤ P1 ≤ · · · ≤ Pk in Pn has (only) small intervals
if Pi is obtained by turning some valleys of Pi−1 into peaks, for every i ∈ [k]. Saturated
P − 1n chains are those chains with small intervals that have maximum length. In a recent
work [15], the authors evaluated the number f(P ) of P − 1n chains with small intervals and
minimum length, for a given arbitrary P ∈ Pn. In this work, we study the same subject
from another point of view, giving bijective proofs for the main results. In the sequel, we
summarize the main definitions and results of [15].

We recall that for every path P ∈ Pn \{1n} the join P̃ of all elements covering P is called

the filling of P and 1̃n = 1n. Obviously, the filling of P is obtained by turning every valley
of P into a peak. Moreover, for every path P ∈ Pn we define by induction a finite sequence

of paths P (i) in Pn such that P (0) = P and P (i) = P̃ (i−1) whenever P (i−1) 6= 1n. The number
δ(P ) for which P (δ(P )) = 1n is called degree of P . For every path P ∈ P with P 6= 1|P |, the
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degree δ(P ) is given by the formula

δ(P ) = |P | − 1− lv(P ).

The length of each P − 1n chain with small intervals and minimum length is equal to δ(P ).
In order to count the number f(P ) of these chains, a new kind of multichains of Dyck paths,
based on the heights of the valleys of the paths, was introduced: A multichain of Dyck paths
C : σ0 ≤ σ1 ≤ · · · ≤ σh, where h = hv(σ0), is of type v iff for every j ∈ [h] the paths σj , σj−1

have the same valleys at every height ≤ h− j. For a, b ∈ D with a ≤ b, we denote by v(a, b)
the number of all a − b multichains of type v. Clearly, v(a, b) 6= 0 iff a, b have exactly the
same low valleys.

Since f(uP ) = f(P ), it is enough to evaluate f only for Dyck prefixes. This has been
done by combining the next three results, where the following notation is used:

I(a) = |[a, u|a|/2d|a|/2]|, for every a ∈ D, and J(P ) = |[P, u|P |]|, for every P ∈ P.

Proposition 1. The mapping f satisfies the following properties:

i) f(P1P2) = f(P1)f(dP2), where P1 is a Dyck suffix and P2 is a Dyck prefix.

ii) f(dP ) = f(P ), where P is a Dyck prefix that has at least one return point.

Proposition 2. For every Dyck path a ∈ D, we have that

f(uad) =
∑

s≥a

v(a, s)I(s). (1)

Proposition 3. For every Dyck prefix P = a0ua1 · · ·uak, k ≥ 0, al ∈ D, l ∈ [0, k], we have
that

f(duP ) =
∑ k∏

l=0

v(al, sl)J(s0V1), (2)

where the sum is taken over all finite sequences (sl), l ∈ [0, k], of Dyck paths with sl ≥ al,
and over all finite sequences of Dyck prefixes (Vi), i ∈ [k+1], with Vi ≥ usiVi+1, i ∈ [k], and
Vk+1 = ε.

The above propositions have been proved using induction and an algebraic approach.
In this paper, we follow a completely different method. Firstly, in section 2, we exhibit
a natural bijection between multichains and shifted tableaux, which is used to enumerate
saturated P −1n chains and to give a new combinatorial interpretation for the number f(P ),
using certain shifted increasing tableaux. Then, in section 3, we give bijective proofs of the
above propositions by utilizing decompositions of shifted tableaux, thus also enumerating
some new classes of shifted tableaux.
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2 Multichains of paths and shifted tableaux

A strict partition of a positive integer N is a (strictly) decreasing sequence λ = (λ1, λ2, . . .,
λm) with λm > 0, such that

∑m
i=1 λi = N . The integer N is called size of λ. The shifted

(Ferrers) diagram of shape λ is the set {(i, j) : i ∈ [m], i ≤ j ≤ λi + i− 1} and it is depicted
by an array of cells with m rows, where each row is indented by one cell to the right with
respect to the previous row, and with λi cells in row i. A shifted tableau T = (ti,j) (or more
simply T = (tij) if there is no ambiguity) of shape λ is a filling of the cells of the shifted
diagram of shape λ with positive integers, such that the entries along rows and columns are
non-decreasing. We denote by max(T ) the maximum element of T .

A shifted tableau T is called strictly increasing (or simply increasing) if its entries along
rows and columns are strictly increasing. In particular, T is a standard shifted tableau if
every number of the interval [N ] appears exactly once in T . Increasing tableaux (either
left-aligned, or shifted) have been studied by many authors (e.g., see [2, 9, 10, 16]).

If T is an increasing shifted tableau, it is easy to check that

tij ≥ i+ j − 1 for every i, j and that max(T ) ≥ max
i∈[m]

(λi + 2i− 2).

Clearly, if tij = i+ j − 1, then ti′j′ = i′ + j′ − 1 for every i′ ≤ i and j′ ≤ j.
The shifted diagrams are closely related with the paths. Every path P can be decomposed

as
P = uk1duk2−k1duk3−k2d · · ·ukm−km−1dukm+1−km, (3)

where m = |P |d, ki, i ∈ [m], is the number of u’s before the i-th downstep of P and
km+1 = |P |u. In the sequel, we will write P = (ki)i∈[m+1] to denote the encoding of P by the
sequence of these ki’s. Using this encoding, we map every path P = (ki)i∈[m+1] ∈ Pn to a
shifted diagram F (P ) of shape λ(P ) = (λ1, λ2, . . . , λm), where

λi = n− i− ki + 1, i ∈ [m].

Clearly, the restriction of this mapping to the set of all paths starting with d is a bijection,
since in this case λ1 = n.

We can easily check that the mapping (i, j) 7→ (n + i − j, n − i − j) maps bijectively
the cells of the shifted diagram F (P ) to the lattice points that are weakly above P , strictly
below 1n and have coordinates of the same parity. In particular, the cells (i, j), j ≥ m,
that have their south-eastern corner on the border of the shifted diagram correspond to the
lattice points of the path P (excluding the initial point (0, 0)), e.g., see Figure 1 for the path
P = dudu2d, colored blue. Thus, the path P is obtained by rotation and reflection of the
staircase path starting from the north-eastern corner of the cell (1, n) and passing through
these corner points.

Next, some easily verified facts concerning the shifted diagrams are stated.

Remark 4.

i) For every P,Q ∈ Pn, we have that P ≤ Q iff F (Q) is a subdiagram of F (P ).
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 2) (2, 3) (2, 4)

(3, 3)

(2, 5)

(i, j)

↔

b

b

b

b

b

b

b

b

b

b

b

(6, 4)

(5, 3)

(4, 2)

(3, 1)

(6, 2)

(2, 0)

(1,−1)

(5, 1)

(4, 0) (6, 1)

(3,−1)

(n + i − j, n − i − j)

Figure 1: The mapping of the cells (i, j) of F (P ) to the lattice points (n + i− j, n− i − j)
weakly above P = dudu2d

ii) Let P ≤ Q and a cell (i, j) of F (Q); if the point A(n + i− j, n− i− j) belongs to the
path P , then it also belongs to the path Q.

iii) A cell (i, j) of F (P ) corresponds to a low valley point of P iff i+ j − 1 = δ(P ).

iv) If the corresponding points of two cells (i, j), (i′, j′) of F (P ) are path-connected (i.e.,
there exists a lattice path connecting them) and j′ − i′ < j − i, then j′ ≤ j.

In the sequel, we define a mapping between P −1n multichains C of length k and shifted
tableaux T of shape λ(P ) with max(T ) ≤ k. Given a multichain C : P0 = P ≤ P1 ≤ · · · ≤
Pk = 1n and a cell (i, j) ∈ F (P ), there exists a unique ξ ∈ [0, k − 1] such that the point
A(n+ i− j, n− i− j) lies weakly above Pξ and strictly below Pξ+1. Then, we define T = (tij)
with tij = k − ξ, i.e.,

tij = k − ξ ⇔ hn+i−j(Pξ) ≤ n− i− j < hn+i−j(Pξ+1). (4)

Conversely, in order to construct a unique multichain from a shifted tableau, we must know
the length k of the desired multichain. More precisely, given a pair (T, k) where T = (tij) is
a shifted tableau of shape λ(P ) with max(T ) ≤ k, we recover the original chain C = (Pξ),
0 ≤ ξ ≤ k, where Pξ is defined by the staircase path that is determined by the boundary
between the cells with numbers less than or equal to k−ξ and the cells with numbers greater
than k − ξ.

The above procedure determines a bijection between multichains of paths and shifted
tableaux, that can be described practically as in Figure 2, where the integers in Figure 2(a)
count the number of paths in the chain that lie above a given lattice point, so that they
generate the tableau of Figure 2(b), which by rotation and reflection gives the corresponding
shifted tableau of Figure 2(c).

In the following we give some characterizations for special kinds of multichains.
Firstly, for t ∈ [k] we have that Pk−t 6= Pk−t+1 iff there exists a point (n+ i− j, n− i− j)

which lies weakly above Pk−t and strictly below Pk−t+1, i.e., iff there exists a cell (i, j) of T
such that tij = t. In particular, C is a chain iff the entries of T form the interval [k].
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b9
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b
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b
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b
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b11

↔

1

2

6

7

6

8

9

6

9 8

11

↔

1 2 6 7

6

8 9

6 9

8

11

(a) (b) (c)

Figure 2: A dudu2d− 16 multichain and the corresponding shifted tableau

Secondly, if C has small intervals and tij = k−ξ, by relation (4) we have that hn+i−j(Pξ+1) =
hn+i−j(Pξ) + 2 = n − i − j + 2, and hence the point A(n + i − j, n − i − j) is a valley of
Pξ and the point B(n + i − j, n − i − j + 2) is a peak of Pξ+1. It follows that the points
Γ(n+ (i− 1)− j, n− (i− 1)− j) and ∆(n+ i− (j − 1), n− i− (j − 1)) lie on the path Pξ+1.
Hence, ti−1,j , ti,j−1 < k−ξ = tij, i.e., T is increasing. Conversely, assume that T is increasing
and let ξ ∈ [0, k − 1] and x ∈ [n], such that hx(Pξ) < hx(Pξ+1). Let (i, j) ∈ F (P ) such that
n+ i− j = x and n− i− j = hx(Pξ); it follows that tij = k − ξ. Then, since T is increasing
we have that ti−1,j, ti,j−1 < k−ξ = tij , so that the points Γ(n+(i−1)−j, n− (i−1)−j) and
∆(n+i−(j−1), n−i−(j−1)) lie on Pξ+1, and so the point B(n+i−j, n−i−j+2) is a peak
of Pξ+1 with hx(Pξ+1) = hx(Pξ) + 2. Moreover, since ti,j+1, ti+1,j > k− ξ, the path Pξ passes
strictly above the points E(n+ i−(j+1), n− i−(j+1)) and Z(n+(i+1)−j, n−(i+1)−j);
hence, Pξ passes from the points Γ and ∆, so that the point A is a valley of Pξ. This shows
that C has small intervals (see Figure 3).

Γ
∆

B

A

E Z

x = n+ i− j

y = n− i− j + 1

O

Pξ+1

Pξ

Figure 3: Two consecutive paths of the multichain generated by an increasing tableau
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Finally, since the length of every saturated P − 1n chain is equal to l(P, 1n) = λ1 + λ2 +
· · ·+λm, using the first characterization, we obtain that C is a saturated chain iff the entries
of T form the interval [λ1 + λ2 + · · ·+ λn], i.e., iff T is standard.

Summarizing, we obtain the following result.

Proposition 5. If P ∈ Pn starts with d and k ∈ N∗ then, there exists a bijection between the
P −1n multichains C of length k and the shifted tableaux T of shape λ(P ) with max(T ) ≤ k.
In particular,

i) C is a chain iff the entries of T form the interval [k].

ii) C has small intervals iff T is increasing.

iii) C is a saturated chain iff T is standard.

We note that from the construction of the bijection of the previous proposition, it follows
that the number k − max(T ) + 1 counts the members of the chain which are equal to P .
Furthermore, if a path P ∈ Pn does not necessarily start with d and the length of its first
ascent is equal to ν, then by applying Proposition 5 for the path obtained by deleting the
first ascent of P , the tableau that we obtain has a first row of length n − ν, giving the
following result.

Corollary 6. The number of multichains C of the form P0 = P1 = · · · = Pµ−1 < Pµ ≤ · · · ≤
Pk = 1n, where P0 ∈ Pn and it has length of the first ascent equal to ν, is equal to the number
of shifted tableaux T with length of the first row equal to n− ν and max(T ) = k − µ+ 1.

Clearly, since the minimum length of every P − 1n chain with small intervals is equal to
δ(P ), by Proposition 5 it follows that

f(P ) = # increasing shifted tableaux T of shape λ(P )

such that the entries of T form the interval [δ(P )].

Note that in this case, the condition “the entries of T form the interval [δ(P )]” can be
replaced by the weaker condition “max(T ) = δ(P )”. Indeed, if (i, j) is a cell of F (P ) which
corresponds to a low valley point of P , then tij = i + j − 1 = δ(P ) (see Remark 4iii)), and
since T is increasing we deduce that there exist δ(P ) different entries of T with values less
than or equal to δ(P ), giving that the entries of T form the interval [δ(P )].

Summarizing, we obtain the following result.

Corollary 7. For every path P ∈ Pn that starts with d, we have that

f(P ) = # increasing shifted tableaux T of shape λ(P ), with max(T ) = δ(P ).

Finally, given any path P = (ki)i∈[m] in Pn \ {1n}, by applying Proposition 5 iii) for the
path obtained by deleting the first ascent of P , we deduce that the number of saturated P−1n

chains is equal to the number of standard shifted tableaux of shape λ = (λ1, λ2, . . . , λm),
where λi = n− i− ki + 1, i ∈ [m]. Then, using the well-known formula for standard shifted
tableaux (e.g., see [6, p. 267]) we obtain the following result.
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Corollary 8. For every path P = (ki)i∈[m] in Pn \ {1n}, the number of saturated P − 1n

chains is equal to
(λ1 + λ2 + · · ·+ λm)!

λ1!λ2! · · ·λm!

∏

i<j

λi − λj

λi + λj
,

where λi = n− i− ki + 1, i ∈ [m].

3 Bijective proofs

In this section we prove Propositions 1, 2 and 3 via increasing shifted tableaux.

Proof of Proposition 1.

i) Without loss of generality we may assume that P1 starts with d, P1 6= d and P2 6= ε. Let
n1 = |P1|, n2 = |P2|, m1 = |P1|d, m2 = |P2|d and λ(P1) = (λ1

i )i∈[m1], λ(P2) = (λ2
i )i∈[m2].

Clearly, λ(dP2) = (λ2
1 + 1, λ2

1, λ
2
2, . . . , λ

2
m2

) and λ(P1P2) = (λ1
1 + n2, λ

1
2 + n2, . . . , λ

1
m1

+
n2, λ

2
1, λ

2
2, . . . , λ

2
m2

).
In view of Corollary 7, it is enough to construct a bijection between increasing shifted

tableaux T of shape λ(P1P2) with max(T ) = δ(P1P2) = 2m1 + n2 − 1, and pairs (T1, T2) of
increasing shifted tableaux of shapes λ(P1) and λ(dP2) with maximum elements max(T1) =
δ(P1) = 2m1 − 1 and max(T2) = δ(dP2) = n2 + 1 respectively.

Indeed, for T = (tij) we define T1 = (t1ij) and T2 = (t2ij) as follows:

t1ij = ti,j+n2 − n2, where (i, j) ∈ F (P1)

and
t2ij = ti+m1−1,j+m1−1 − 2(m1 − 1), where (i, j) ∈ F (dP2).

Clearly, since T is an increasing tableau, tm1,m1+n2 = 2m1+n2− 1. Hence, tij = i+ j− 1
for every i ≤ m1 and j ≤ m1 + n2. It follows that t111 = 1 = t211. Since the entries of T1, T2

are increasing along rows and columns, we obtain that T1, T2 are increasing shifted tableaux
of shapes λ(P1) and λ(dP2) respectively, with

max(T1) = t1m1m1
= tm1,m1+n2 − n2 = 2m1 − 1,

and
max(T2) = t21,n2+1 = tm1,m1+n2 − 2(m1 − 1) = n2 + 1.

From the above construction we see that T can be decomposed into three parts. Two of
them generate T1, T2 by translation, and for the third (north-western) part the corresponding
cells (i, j) have tij = i+ j − 1 (see Figure 4).

Clearly, this procedure is reversible, so that we obtain the desired bijection.
ii) Let P = ukQ, where k > 0 and Q starts with d. It is enough to prove that f(dP ) = f(Q).
In view of Corollary 7, it is enough to construct a bijection between increasing shifted
tableaux T = (tij) of shape λ(dP ) = (λ1, . . . , λm+1), where m = |P |d with max(T ) =

8



m1

m2

n2 n1

T1

T2

Figure 4: A decomposition of a shifted tableau corresponding to a product of paths

δ(dP ) = |P | + 1, and increasing shifted tableaux T ′ = (t′ij) of shape λ(Q) = (λ2, . . . , λm+1)
with max(T ′) = δ(Q) = |P | − 1.

A return point of P corresponds to a cell (r, c) of T such that trc = r + c− 1 = |P |+ 1
and 2 ≤ r ≤ c, (see Remark 4iii)). Thus, tij = i + j − 1 whenever i ≤ r and j ≤ c and, in
particular, t2,2 = 3. Moreover, since the first row of T has |P |+ 1 = max(T ) cells, it follows
that t1j = j, for all j ∈ [|P |+ 1]. Then, T ′ is obtained by deleting the first row of T and by
subtracting 2 from each of the remaining elements, i.e.,

t′ij = ti+1,j+1 − 2.

Clearly, T ′ satisfies the required conditions. On the other hand, by adding 2 to each element
of T ′, and by adding an extra first row of length |P |+ 1 consisting of the interval [|P |+ 1],
we recover T (see Figure 5).

m

|P |+ 1

(r, c)
T ′

Figure 5: A decomposition of a shifted tableau corresponding to a path starting with d
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Proof of Proposition 2. Set a = (ki)i∈[m+1] ∈ Dm and let P be the suffix of a starting at
the first d of a, i.e., a = uk1P . Then, Pd is written in the form Pd = (ki − k1)i∈[m+2], where
km+2 = km+1 = km = m.

Applying Corollary 7 for the path Pd, we obtain that

f(uad) = f(Pd) =# increasing shifted tableaux T of shape

λ(Pd) = (λ1, λ2, . . . , λm+1), with max(T ) = δ(Pd) = 2m+ 1,
(5)

where λi = 2m+ 2− i− ki, i ∈ [m+ 1].
We first show that for any such tableau T = (tij) we have that

tij = i+ j − 1, for j ≤ m+ 1, (6)

and
tij ≤ i+ j + hv(a), for (i, j) ∈ F (Pd). (7)

Indeed, since tm+1,m+1 = 2m + 1, formula (6) is a direct consequence of the increasing
property of T . Moreover, we note that if (7) holds for either one of the cells (i + 1, j),
(i, j + 1) then, using the increasing property of T , it must also hold for the cell (i, j). Thus,
it is enough to show (7) for every cell (i, j) which is the rightmost cell in its row as well as
the lowest cell in its column, i.e., j = i+ λi − 1 = 2m+ 1− ki and ki+1 > ki. Clearly, since
each one of these cells corresponds to a valley point of a, we have that ki − i ≤ hv(a), and
since max(T ) = 2m+ 1, we conclude that

ti,2m+1−ki ≤ i+ (2m+ 1− ki) + hv(a),

so that (7) holds.
On the other hand, we note that the sum of the right-hand side of formula (1) counts the

multichains (σi)i∈[0,k], where σ0 = a, σk−1 = umdm, σk = u2m, such that the sub-multichain
σ0 ≤ σ1 ≤ · · · ≤ σk−3 is of type v, and k = hv(a)+3, or equivalently it counts the multichains
(si)i∈[0,k], where each si is obtained from σi by deleting the first k1 upsteps of σi.

Using the bijection of Proposition 5 for the path P , we deduce that each one of these
multichains (si)i∈[0,k] corresponds bijectively to a shifted tableau V = (vij) of shape λ(P ) =
(λ1− 1, λ2− 1, . . . , λm− 1), with max(V ) ≤ k. Furthermore, using relation (4) we have that

vij = k − ξ ⇔ h2m−k1+i−j(sξ) ≤ 2m− k1 − i− j < h2m−k1+i−j(sξ+1)

⇔ h2m+i−j(σξ) ≤ 2m− i− j < h2m+i−j(σξ+1). (8)

We will show that
vij = 1 iff j ≤ m, (9)

and
vij ≤ 2m+ 3− i− j, for (i, j) ∈ F (P ). (10)

Firstly, since σk−1 = umdm, we have that

h2m+i−j(σk−1) =

{
j − i, if j ≤ i+m;

2m+ i− j, if j > i+m;

10



so, by applying relation (8) for ξ = k − 1 we obtain relation (9).
Clearly, by the non-decreasing property of the tableau V , it is enough to show relation

(10) for j = i+ λi − 2 and i+ 1 + λi+1 − 2 < i+ λi − 2, i.e., for j = 2m− ki and ki < ki+1.
We note that, in this case the cell (i, j) corresponds to the point (ki + i, ki − i) which is a
valley point of a, so that ki − i ∈ [0, k − 3]. Now, since the multichain σ0 ≤ σ1 ≤ · · · ≤ σk−3

is of type v, the paths a and σk−3−(ki−i) coincide up to height ki − i, so that

hki+i(σk−3−(ki−i)) = hki+i(a) = ki − i.

Then, if vi,2m−ki = k − ξ, by relation (8) we have that ki − i < hki+i(σξ+1), so that by the
above equality we obtain that k − 3− (ki − i) < ξ + 1. Hence,

vi,2m−ki = k − ξ ≤ 3 + ki − i = 2m+ 3− i− (2m− ki).

Conversely, assuming that the tableau V satisfies relations (9) and (10), we can easily
check that the multichain σ0 ≤ σ1 ≤ · · · ≤ σk−3 is of type v, and σk−1 = umdm, which gives
that∑

s≥a

v(a, s)I(s) = # shifted tableaux V of shape λ = (λ1 − 1, λ2 − 1, . . . , λm − 1)

such that the entries vij of V satisfy relations (9) and (10).

(11)

In view of formulas (5) and (11), for the justification of formula (1) it is enough to give
a bijection between the tableaux T = (tij) and V = (vij).

For this, set

vij =

{
1, if j ≤ m;

ti,j+1 + 2− i− j, if j ≥ m+ 1.

It is easy to check that V is a shifted tableau, with vij ≥ 2 iff j ≥ m + 1, so that relation
(9) holds. Since max(T ) = 2m + 1, we obtain that relation (10) holds too, and by relation
(7), we obtain automatically that max(V ) ≤ k. For the reverse, set

tij =

{
i+ j − 1 if j ≤ m+ 1;

vi,j−1 + i+ j − 3 if j ≥ m+ 2,

giving the required bijection.

An example of the bijection presented in the proof of the previous proposition is illustrated
in Figure 6.

Proof of Proposition 3. Set duP = (ki)i∈[m+2], where m = |P |d, n = |duP | = |P | + 2,
λ(duP ) = (λ1, λ2, . . . , λm+1), where λi = n−i−ki+1, i ∈ [m+1], and h = max{hl : l ∈ [0, k]},
where hl = hv(al), l ∈ [0, k].

We first note that formula (2) is equivalent to the formula

# increasing shifted tableaux T = (tij) of shape λ(duP ) with max(T ) = n

= # multichains (Wr), r ∈ [0, h+ k + 1],
(12)

such that W0 = P and

11



1 2 3 4 5 6 7 8 9 10 11 12 13 15 16

3 4 5 6 7 8 9 10 11 12 13 15 16

5 6 7 8 9 10 11 13 14 15 16 17

7 8 9 10 11 12 14 17

9 10 11 12 13 15

11 12 13 14 16

13 14 15

15 16

17

T

1 1 1 1 1 1 1 1 2 2 2 2 3 3

1 1 1 1 1 1 1 2 2 2 3 3

1 1 1 1 1 1 3 3 3 3 3

1 1 1 1 1 3 5

1 1 1 1 3

1 1 1 3

1 1

1

V

Figure 6: The bijection between the shifted tableaux T and V

i) Wr = wr0uwr1 · · ·uwrk, for r ∈ [0, h], where wrl = al, for r ∈ [0, h − hl] and the
multichain (wrl)r∈[h−hl,h] is of type v, for every l ∈ [0, k].

ii) The path wh0uwh1 · · ·uwh,h+k−r is a prefix of Wr, for r ∈ [h, h+ k].

Indeed, since δ(duP ) = n, from Corollary 7, it follows that the left-hand sides of formulas
(2) and (12) are equal. On the other hand, given a sequence (sl)l∈[0,k] such that al ≤ sl,
and a multichain (wrl) of type v from al to sl, r ∈ [h − hl, h], we set wrl = al for every
r ∈ [0, h − hl], and we define Wr = wr0uwr1 · · ·uwrk. Furthermore, given a sequence Vi,
i ∈ [k+1], with the properties stated in formula (2) and a path V ≥ s0V1, we define Wr, for
r ∈ [h, h + k], as Wr = wh0uwh1 · · ·uwh,h+k−rVh+k+1−r and Wh+k+1 = V ≥ Wh+k. Clearly,
(Wr), r ∈ [0, h + k + 1], is a multichain satisfying the properties of formula (12). Since the
converse can be easily verified, we deduce that the right-hand sides of formulas (2) and (12)
are equal, so that the two formulas are equivalent.

We will prove formula (12) bijectively. We can easily check that each cell (il, jl) of

F (duP ), where il = 1 + 1
2

l∑
ν=0

|aν | and jl = n− 1 − l − 1
2

l∑
ν=0

|aν |, l ∈ [−1, k], corresponds to

the last point Al of the component al of duP for l ≥ 0, and (i−1, j−1) corresponds to the
second point A−1 of duP . Clearly, the sequence (jl), l ∈ [−1, k + 1], with jk+1 = 1, is a
decreasing sequence from n to 1.

Given an increasing shifted tableau T = (tij) of shape λ(duP ), with max(T ) = n, we
define Fr, r ∈ [0, h+k+1], to be the subdiagram of F (duP ) consisting of all cells (i, j) with

tij ≤ i+ j + bjr,

where
bjr = min{h− r + k, l}+ (h− r)[r ≤ h],

and

l =





k, if j ∈ [1, jk);

ν, if j ∈ [jν , jν−1), ν ∈ [0, k];

−1, if j = n.

(13)
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Obviously, since λ1 = n = max(T ), by the increasing property of T it follows that t1j = j,
for j ∈ [n], so that each Fr contains the first row of F (duP ). Furthermore, we can easily
check that Fr is a shifted diagram, and Fr+1 is a subdiagram of Fr, for each r ∈ [0, h + k].
It clearly follows that the path corresponding to Fr, r ∈ [0, h+ k + 1], is of the form duWr,
where P ≤ Wr, and that (Wr), r ∈ [0, h+ k + 1], is a multichain (see Remark 4i)). We will
show that this multichain satisfies the properties of formula (12).

Firstly, we note that for every r ∈ [0, h] and l ∈ [0, k], the path duWr passes from all points
of duP at height ≤ h− r+ l, lying on al. Indeed, since any such point A(n+ i− j, n− i− j)
is path-connected with the points Al and Al−1, we have that j ∈ [jl, jl−1) (see Remark 4iv))
and, since n− i− j ≤ h− r + l, we obtain that

tij ≤ n ≤ i+ j + l + h− r = i+ j + bjr,

which gives that (i, j) ∈ Fr; so, by Remark 4ii), duWr passes from A. In particular, Wr,
r ∈ [0, h], passes from all points of P at height l lying on al (including the endpoints of al),
so that Wr is uniquely decomposed in the form

Wr = wr0uwr1 · · ·uwrk,

where wrl ∈ D, al ≤ wrl and wrl, al have the same low valleys for every l ∈ [0, k]. Further-
more, for each l ∈ [0, k] and r ∈ [0, h− hl], the component wrl of Wr passes from all points
of P at height ≤ hl + l lying on al, so that the paths wrl and al have the same valleys;
hence, wrl = al. In particular, w0l = al for every l ∈ [0, k], i.e., W0 = P . Moreover, since
for each l ∈ [0, k] and for every r ∈ [h − hl, h] the component wrl passes from all points of
duP at height ≤ h− r + l lying on al, the paths wrl and al have the same valleys for every
height ≤ h − r (considering that they both start from the origin), so that the multichain
(wrl)r∈[h−hl,h] is of type v.

In addition, we will show that for every r ∈ [h, h + k] the path wh0uwh1 · · ·uwh,h+k−r is
a prefix of Wr. Indeed, let A(n+ i− j, n− i− j) be a point in the component whl, for some
l ∈ [0, h+ k − r]; then, since j ∈ [jl, jl−1) and (i, j) ∈ Fh, we have that

tij ≤ i+ j + l = i+ j + bjr,

so that (i, j) ∈ Fr, and consequently, according to Remark 4ii), A is a point of Wr.
Thus, the multichain (Wr), satisfies the properties of formula (12).
We finally note that since

0 ≤ bjr − bj,r+1 ≤ 1,

we can easily check that
tij = i+ j + bjr, (14)

for every cell (i, j) ∈ Fr \Fr+1, r ∈ [0, h+k+1], where l is given by equality (13) and Fh+k+2

is the empty diagram.
For the converse, given a multichain (Wr), r ∈ [0, h+ k + 1], satisfying the properties of

formula (12), in view of the above observation, we define T = (tij) by formula (14), where
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Fr = F (duWr). It is enough to show that T is an increasing shifted tableau of shape λ(duP )
with max(T ) = n. We consider two cases:

Firstly, assume that (i, j) ∈ Fh+k+1; then, it follows immediately from (14) that tij =
i+j−1 and (i−1, j), (i, j−1) ∈ Fh+k+1, so that ti−1,j = ti,j−1 = i+j−2 < tij . Furthermore,
in this case we have that tij = i+ j − 1 ≤ λi +2i− 2 = n+ i− ki − 1 ≤ n, since P is a Dyck
prefix.

Secondly, assume that (i, j) ∈ Fr \ Fr+1 for some r ∈ [0, h + k], so that the point
A(n + i − j, n − i − j) lies below duWr+1 and weakly above duWr. Let l ∈ [0, k] such that
n+ il−1 − jl−1 < n + i− j ≤ n+ il − jl. We consider the following two subcases:

1. Assume that r < h and let (i′, j′), (i′′, j′′) be the cells of F (duP ) corresponding to the
points A′, A′′ of duWr, duWr+1 respectively, which lie on the line x = n + i− j (see Figure
7).

b b
a0

b b
Aℓ−1

aℓ−1
b b

Aℓ

aℓ

b b
akb

b

b

b

A′
A

A′′

B

W0 = P
Wr

Wr+1

b b

b b

b b

b b

Figure 7: The decomposition of the paths duWr, duWr+1 for r < h

Then, since the points A′, A′′ are path-connected with the points Al, Al−1, we deduce
that j′, j′′ ∈ [jl, jl−1) (see Remark 4iv)). Furthermore, since j′′ < j ≤ j′ we deduce that
j ∈ (jl, jl−1), so that, by formula (14), we have that

tij = i+ j + l + h− r.

Clearly, since the point B corresponding to the cell (i, j − 1) is weakly below duWr+1 and
above duWr, we deduce that (i, j − 1) ∈ Fs \ Fs+1 for some s ≥ r and since j − 1 ∈ [jl, jl−1),
by formula (14), we have that

ti,j−1 = i+ j − 1 + min{h− s+ k, l}+ (h− s)[s ≤ h] ≤ i+ j − 1 + l + h− r < tij .

Similarly, we can show that ti−1,j < tij .
Now, since the point A lies below the component wr+1,l and weakly above the component

wrl, we have that wr+1,l 6= al, so that r ≥ h − hl. Furthermore, since the sequence (wrl),
r ∈ [h− hl, h], is of type v, we have that the paths wrl, wr+1,l have the same valleys at every
height ≤ hl − (r− h+ hl +1) = h− r− 1 (considering that they both start from the origin),
i.e., the components wrl, wr+1,l have the same valleys at every height ≤ h− r− 1+ l. Thus,
since A does not belong to the component wr+1,l, its height is greater than h− r− 1+ l, i.e.,
n− i− j > h− r − 1 + l, so that tij ≤ n.
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2. Assume that r ≥ h. Clearly, by property ii) of (12), the paths duWr and duWr+1

coincide for every point up to Ah+k−r−1, and since A lies below duWr+1 and weakly above
duWr, the point Al must lie on the right of Ah+k−r−1, i.e., l ≥ h+ k − r (see Figure 8).

b b
a0

b b
Ah+k−r−1

ah+k−r−1

ah+k−r b
Ah+k−r

b b
Aℓ−1

aℓ−1
b b

Aℓ

aℓ

b b
akb

b

b

A′

A
B

W0 = P

Wh

Wr

Wr+1

b b

b b

b b

b b

b b

b b

Figure 8: The decomposition of the paths duWr, duWr+1 for r ≥ h

Furthermore, if (i′, j′) is the cell corresponding to the point A′ which lies on the path
duWh and on the line x = n+ i− j, then j′ > j and j′ ∈ [jl, jl−1), so that j ∈ [jν , jν−1), for
some ν ∈ [l, k + 1]. Then, by formula (14) we have that

tij = i+ j +min{h− r + k, ν}+ (h− r)[r ≤ h] = i+ j + h− r + k.

Clearly, as in the previous subcase, we have (i, j − 1) ∈ Fs \ Fs+1 for some s ≥ r and so, by
the above formula, we deduce that

ti,j−1 = i+ j − 1 + h− s+ k < tij.

Similarly, we obtain that ti−1,j < tij .
Finally, since the height of A is greater than or equal to l, we have that n− i− j ≥ l ≥

h− r + k, so that tij ≤ n.

An example of the bijection used for the proof of formula (12) is illustrated in Figure 9,
where the cells (i, j) ∈ F (duWr) \F (duWr+1) of the tableau are colored with the same color
as duWr.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 36 38 39

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 35 36 37

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38 39

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 37 38 39

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 37 38

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 38

17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 39

19 20 21 22 23 24 25 26 27 28 29 30 31 33 34 35 36 37

21 22 23 24 25 26 27 28 29 30 31 32 34 37 38 39

23 24 25 26 27 28 29 31 32 33 35 38 39

25 26 28 30 31 32 33 34 35 39

29 30 31 32 33 34 35 36

31 32 33 34 35 36 38

33 34 36 37 38 39

36 37 39

39
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Figure 9: An increasing shifted tableau and its corresponding multichain (duWr)r∈[0,6]
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