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Pólya urns are urns where at each unit of time a ball is drawn and
replaced with some other balls according to its colour. We introduce a more
general model: the replacement rule depends on the colour of the drawn ball
and the value of the time (mod p). We extend the work of Flajolet et al. on
Pólya urns: the generating function encoding the evolution of the urn is
studied by methods of analytic combinatorics. We show that the initial
partial differential equations lead to ordinary linear differential equations
which are related to hypergeometric functions (giving the exact state of the
urns at time n). When the time goes to infinity, we prove that these periodic
Pólya urns have asymptotic fluctuations which are described by a product
of generalized gamma distributions. With the additional help of what we
call the density method (a method which offers access to enumeration and
random generation of poset structures), we prove that the law of the south-
east corner of a triangular Young tableau follows asymptotically a product
of generalized gamma distributions. This allows us to tackle some questions
related to the continuous limit of large random Young tableaux and links
with random surfaces.
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1. Introduction.

1.1. Periodic Pólya urns. Pólya urns were introduced in a simplified version
by George Pólya and his PhD student Florian Eggenberger in [27, 28, 75], with
applications to disease spreading and conflagrations. They constitute a powerful
model, which regularly finds new applications: see e.g. Rivest’s recent work on au-
diting elections [79], or the analysis of deanonymization in Bitcoin’s peer-to-peer
network [30]. They are well-studied objects in combinatorial and probabilistic lit-
erature [6,32,63], because they offer fascinatingly rich links with numerous objects
like random recursive trees, m-ary search trees, and branching random walks (see
e.g. [7,23,44,45]). In this paper we introduce a variation which leads to new links
with another important combinatorial structure: Young tableaux. What is more,
we solve the enumeration problem of this new Pólya urn model, derive the limit
law for the evolution of the urn, and give some applications to Young tableaux.

In the Pólya urn model, one starts with an urn with b0 black balls and w0 white
balls at time 0. At every discrete time step one ball is drawn uniformly at random.
After inspecting its colour this ball is returned to the urn. If the ball is black, a
black balls and b white balls are added; if the ball is white, c black balls and d
white balls are added (where a, b, c, d ∈ N are non-negative integers). This process
can be described by the so-called replacement matrix:

M = (a b
c d

) , a, b, c, d ∈ N.

We call an urn and its associated replacement matrix balanced if a + b = c + d.
In other words, in every step the same number of balls is added to the urn. This
results in a deterministic number of balls after n steps: b0 +w0 + (a + b)n balls.

Now, we introduce a more general model which has rich combinatorial, proba-
bilistic, and analytic properties.

Definition 1.1. A periodic Pólya urn of period p with replacement matri-
ces M1,M2, . . . ,Mp is a variant of a Pólya urn in which the replacement matrix
Mk is used at steps np+k. Such a model is called balanced if each of its replacement
matrices is balanced.
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For p = 1, this model reduces to the classical model of Pólya urns with one
replacement matrix. In this article, we illustrate the aforementioned rich properties
via the following model.

Definition 1.2. Let p, ` ∈ N. We call a Young–Pólya urn of period p and
parameter ` the periodic Pólya urn of period p (with b0 ≥ 1 to avoid degenerate
cases) and replacement matrices

M1 =M2 = ⋅ ⋅ ⋅ =Mp−1 = (1 0
0 1) and Mp = (1 `

0 1 + `) .

Example 1.3. Consider a Young–Pólya urn with parameters p = 2, ` = 1, and

initial conditions b0 = w0 = 1. The replacement matrices are M1 ∶= (1 0
0 1) for

every odd step, and M2 ∶= (1 1
0 2) for every even step. This case was analysed by

the authors in the extended abstract [9]. In the sequel, we will use it as a running
example to explain our results.

Let us illustrate the evolution of this urn in Figure 1. Each node of the tree
corresponds to the current composition of the urn (number of black balls, number
of white balls). One starts with b0 = 1 black ball and w0 = 1 white. In the first step,
the matrix M1 is used and leads to two different compositions. In the second step,
matrix M2 is used, in the third step, matrix M1 is used again, in the fourth step,
matrix M2, etc. Thus, the possible compositions are (2,1) and (1,2) at time 1,
(3,2), (2,3) and (1,4) at time 2, (4,2), (3,3), (2,4) and (1,5) at time 3.

M1

M2

M1

6

2

1 1

2 2

1

8 8 8

h0 = xy

h1 = x2y + xy2

h2 = 2x3y2 + 2x2y3 + 2xy4

h3 = 6x4y2 + 8x3y3 + 8x2y4 + 8xy5

Fig 1. The evolution of the Young–Pólya urn with period p = 2 and parameter ` = 1 with one
initial black and one initial white ball. Black arrows mark that a black ball was drawn, dashed
arrows mark that a white ball was drawn. Straight arrows indicate that the replacement matrix
M1 was used, curly arrows show that the replacement matrix M2 was used. The number below each
node is the number of possible transitions to reach this state. In this article we give a formula for
hn (which encodes all the possible states of the urn at time n) and the corresponding asymptotic
behaviour.
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In fact, each of these states may be reached in different ways, and such a sequence
of transitions is called a history. (Some authors also call it a scenario, an evolution,
or a trajectory.) Each history comes with weight one. Implicitly, they induce a
probability measure on the states at step n. So, let Bn andWn be random variables
for the number of black and white balls after n steps, respectively. As our model
is balanced, Bn +Wn is a deterministic process, reflecting the identity

Bn +Wn = b0 +w0 + n + ` ⌊
n

p
⌋ .

So, from now on, we concentrate our analysis on Bn.

1.2. The generalized gamma product distribution. For the classical model of a
single balanced Pólya urn, the limit law of the random variable Bn is fully known:
the possible limit laws include a rich variety of distributions. To name a few, let us
mention the uniform distribution [31], the normal distribution [7], and the beta and
Mittag-Leffler distributions [44, 46]. Now, periodic Pólya urns (which include the
classical model) lead to an even larger variety of distributions involving a product
of generalized gamma distributions [88].

Definition 1.4. The generalized gamma distribution GenGamma(α,β) with
real parameters α,β > 0 is defined on (0,+∞) by the density function

f(t;α,β) ∶= β t
α−1 exp(−tβ)
Γ (α/β)

,

where Γ is the classical gamma function Γ(z) ∶= ∫
∞

0 tz−1 exp(−t)dt.

The fact that f(t;α,β) is indeed a probability density function can be seen by
a change of variable t↦ tβ in the definition of the Γ function, or via the following
link.

Remark 1.5. Let Γ(α) be the gamma distribution1 of parameter α > 0, given
on (0,+∞) by

g(t;α) = t
α−1 exp(−t)

Γ(α)
.

Then, one has Γ(α) L= GenGamma(α,1) and, for r > 0, the distribution of the r-th
power of a random variable distributed according to Γ(α) is

Γ(α)r L= GenGamma(α/r,1/r).
1Caveat: it is traditional to use the same letter for both the Γ function and the Γ distribution.

Also, some authors add a second parameter to the Γ distribution, which is set to 1 here.
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The limit distribution of our urn models is then expressed as a product of such
generalized gamma distributions. We prove in Theorem 3.8 a more general version
of the following:

Theorem 1.6 (The generalized gamma product distribution GenGammaProd
for Young–Pólya urns). The renormalized distribution of black balls in a Young–
Pólya urn of period p and parameter ` is asymptotically for n → ∞ given by the
following product of distributions:

(1) pδ

p + `
Bn
nδ

LÐ→ Beta(b0,w0)
`−1
∏
i=0

GenGamma(b0 +w0 + p + i, p + `),

with δ = p/(p + `), and Beta(b0,w0) = 1 when w0 = 0 or Beta(b0,w0) is the beta
distribution with support [0,1] and density Γ(b0+w0)

Γ(b0)Γ(w0)
xb0−1(1 − x)w0−1 otherwise.

In the sequel, we call this distribution the generalized gamma product distribu-
tion and denote it by GenGammaProd(p, `, b0,w0). We will see in Section 3 that
this distribution is characterized by its moments, which have a nice factorial shape
given in Formula (19).

Example 1.7. In the case of the Young–Pólya urn with p = 2, ` = 1, and
w0 = b0 = 1, one has δ = 2/3. Thus, the previous result shows that the number of
black balls converges in law to a generalized gamma distribution:

22/3

3
Bn

n2/3
LÐ→ Unif(0,1) ⋅GenGamma(4,3) = GenGamma (1,3) .

See Section 5.3 and [25, Proposition 4.2] for more identities of this type.

Remark 1.8 (Period one). When p = 1, our results recover a classical (non-
periodic) urn behaviour. By [46, Theorem 1.3] the renormalization for the limit dis-

tribution of Bn in an urn with replacement matrix (1 `
0 1 + `) is equal to n−1/(1+`).

For ` = 0 the limit distribution is the uniform distribution, whereas for ` = 1 it is
a Mittag-Leffler distribution (see [46, Example 3.1], [31, Example 7]), and even
simplifies to a half-normal distribution2 when b0 = w0 = 1. Thus, the added period-
icity by using this replacement matrix only every p-th round and otherwise Pólya’s

replacement matrix (1 0
0 1) changes the renormalization to n−p/(p+`).

2See [94] for other occurrences of the half-normal distribution in combinatorics.
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The rescaling factor n−δ with δ = p/(p + `) on the left-hand side of (1) can
also be obtained via a martingale computation. The true challenge is to get exact
enumeration and the limit law. It is interesting that there exist other families of
urn models exhibiting the same rescaling factor, however, these alternative models
lead to different limit laws.

• A first natural alternative model consists in averaging the p replacement ma-
trices. This leads to a classical triangular Pólya urn model. The asymptotics
is then

Bn
nδ

LÐ→ B,(2)

where the distribution of B is e.g. analysed by Flajolet et al. [31] via an
analytic combinatorics approach, or by Janson [46] and Chauvin et al. [23] via
a probabilistic approach relying on a continuous-time embedding introduced
by Athreya and Karlin [5]. For example, averaging the Young–Pólya urn with

p = 2, ` = 1, and b0 = w0 = 1 leads to the replacement matrix (1 1/2
0 3/2) . The

corresponding classical urn model leads to a limit distribution with moments
given e.g. by Janson in [46, Theorem 1.7]:

E(Br) = Γ(4/3) r!
Γ(2r/3 + 4/3)

.

Comparing these moments with the moments of our distribution (Equa-
tion (19) hereafter) proves that these two distributions are distinct. However,
it is noteworthy that they have similar tails: we discuss this universality in
Section 5.2.

• Another interesting alternative model, called multi-drawing Pólya urn model,
consists in drawing multiple balls at once; see Lasmar et al. [59] or Kuba
and Sulzbach [57]. Grouping p units of time into one drawing leads to a new
replacement matrix. For example, for p = 2 and ` = 1 we can approximate
a Young–Pólya urn by an urn where at each unit of time 2 balls are drawn
uniformly at random. If both of them are black we add 2 black balls and 1
white ball, if one is black and one is white we add 1 black and 2 white ball, and
if both of them are white we add 3 white balls. Then, the same convergence
as in Equation (2) holds, yet again with a different limit distribution, as
can be seen by comparing the means and variances; compare Kuba and
Mahmoud [55, Theorem 1] with our Example 3.7.

For all these alternative models, the corresponding histories are inherently dif-
ferent: none of them gives the exact generating function of periodic Pólya urns nor
gives the closed form of the underlying distribution. This also motivates the exact
and asymptotic analysis of our periodic model, which therefore enriches the urn
world with new special functions.
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Fig 2. Left: 20 simulations (drawn in red) of the evolution of Bn, the number of black balls in
the Young–Pólya urn with period p = 2 and parameter ` = 1 (first 10000 steps, with initially b0 = 1
black and w0 = 1 white balls), and the mean E(Bn) (drawn in blue). Right: the average (in red)
of the 20 simulations, fitting neatly (almost indistinguishable!) the limit curve E(Bn) = Θ(n2/3)
(in blue).

Figure 2 shows that the distribution of Bn is spread; this is consistent with our
result that the standard deviation and the mean E(Bn) (drawn in blue) have the
same order of magnitude3. The fluctuations around this mean are given by the
generalized gamma product limit law from Equation (1), as proven in Section 3.
Let us first mention some articles where this distribution has already appeared
before:

• in Janson [48], as an instance of distributions with moments of gamma type,
like the distributions occurring for the area of the supremum process of the
Brownian motion;

• in Peköz, Röllin, and Ross [71], as distributions of processes on walks, trees,
urns, and preferential attachments in graphs, where these authors also con-
sider what they call a Pólya urn with immigration, which is a special case of a
periodic Pólya urn (other models or random graphs have these distributions
as limit laws [20,85]);

• in Khodabin and Ahmadabadi [54] following a tradition to generalize special
functions by adding parameters in order to capture several probability dis-
tributions, such as e.g. the normal, Rayleigh, and half-normal distribution,
as well as the MeijerG function (see also the addendum of [48], mentioning
a dozen other generalizations of special functions).

3 The classical urn models with replacement matrices being either M1 or M2 also have such a
spread; see [31, Figure 1].
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1.3. Plan of the article. Our main results are the explicit enumeration results
and links with hypergeometric functions (Theorems 2.3 and 3.1), and the limit
law involving a product of generalized gamma distributions (Theorem 3.8, or the
simplified version of it given for readability in Theorem 1.6 above). It is a nice
cherry on the cake that this limit law also describes the fluctuations of the south-
east4 corner of a random triangular Young tableau (as proven in Theorem 4.23).
We believe that the methods used, i.e. the generating functions for urns (devel-
oped in Section 2), the way to access the moments (developed in Section 3), and
the density method for Young tableaux (developed in Section 4) are an original
combination of tools, which should find many other applications in the future.
Finally, Section 5 gives a relation between the south-east and the north-west cor-
ners of triangular Young tableaux (Proposition 5.7) and a link with factorizations
of gamma distributions. Additionally, we discuss some universality properties of
random surfaces, and we show to what extent the tails of our distributions are
related to the tails of Mittag-Leffler distributions (Theorem 5.3), and when they
are subgaussian (Proposition 5.6).

In the next section, we translate the evolution of the urn into the language of
generating functions by encoding the dynamics of this process into partial differ-
ential equations.

2. A functional equation for periodic Pólya urns.

2.1. Urn histories and differential operators. Let hn,b,w be the number of his-
tories of a periodic Pólya urn after n steps with b black balls and w white balls,
with an initial state of b0 black and w0 white balls. We define the polynomials

hn(x, y) ∶= ∑
b,w≥0

hn,b,wx
byw.

Note that these are indeed polynomials as there is just a finite number of histories
after n steps. Due to the balanced urn model these polynomials are homogeneous.
We collect all these histories in the trivariate exponential generating function

H(x, y, z) ∶= ∑
n≥0

hn(x, y)
zn

n!
.

Example 2.1. For the Young–Pólya urn with p = 2, ` = 1, and b0 = w0 = 1,
we get for the first three terms of H(x, y, z) the expansion (compare Figure 1)

H(x, y, z) = xy + (xy2 + x2y) z + (2xy4 + 2x2y3 + 2x3y2) z
2

2
+ . . .

In this section, our goal is to derive a partial differential equation describing the
evolution of the periodic Pólya urn model.

4In this article, we use the French convention to draw the Young tableaux; see Section 4
and [62].
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The periodic nature of the problem motivates to split the number of histories into
p residue classes. Let H0(x, y, z),H1(x, y, z), . . . ,Hp−1(x, y, z) be the generating
functions of histories after 0,1, . . . , p−1 draws modulo p, respectively. In particular,
we have

Hi(x, y, z) ∶= ∑
n≥0

hpn+i(x, y)
zpn+i

(pn + i)!
,

for i = 0,1, . . . , p − 1 such that

H(x, y, z) =H0(x, y, z) +H1(x, y, z) + ⋅ ⋅ ⋅ +Hp−1(x, y, z).

Next, we associate with the two distinct replacement matrices

(1 0
0 1) and (1 `

0 1 + `)

from Definition 1.2 the differential operators D1 and D2, respectively. We get

D1 ∶= x2∂x + y2∂y and D2 ∶= y`D1,

where ∂x and ∂y are defined as the partial derivatives ∂
∂x and ∂

∂y , respectively. This
models the evolution of the urn. For example, in the term x2∂x, the derivative ∂x
represents drawing a black ball and the multiplication by x2 returning this black
ball and an additional black ball into the urn. The other terms have analogous
interpretations.

With these operators we are able to link the consecutive drawings with the
following system

⎧⎪⎪⎨⎪⎪⎩

∂zHi+1(x, y, z) = D1Hi(x, y, z), for i = 0,1, . . . , p − 2,
∂zH0(x, y, z) = D2Hp−1(x, y, z).

(3)

Note that the derivative ∂z models the evolution in time. We see two types of
transitions: in the first p − 1 rounds the urn behaves like a normal Pólya urn, but
in the p-th round we additionally add ` white balls. The first transition type is
modelled by the D1 operator and the second type by the D2 operator. This system
of partial differential equations naturally corresponds to recurrences on the level of
coefficients hn,b,w, and vice versa. This philosophy is well explained in the symbolic
method part of [34] (see also [31,32,43,68] for examples of applications to urns).

As a next step, we want to eliminate the y variable in these equations. This is
possible as the number of balls in each round and the number of black and white
balls are connected due to the fact that we are dealing with balanced urns. As
observed previously, one has

number of balls after n steps = s0 + n + ` ⌊
n

p
⌋ ,(4)
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with s0 ∶= b0 + w0 being the number of initial balls. Therefore, for any xbywzn

appearing in H(x, y, z), we have

b +w = s0 + n + `
n − i
p

if n ≡ i mod p,

which directly translates into the following system of equations (for i = 0, . . . , p−1)

x∂xHi(x, y, z) + y∂yHi(x, y, z) = (1 + `
p
) z∂zHi(x, y, z) + (s0 −

i`

p
)Hi(x, y, z).(5)

These equations are contractions in the metric space of formal power series in z
(see e.g. [8] or [34, Section A.5]), so, given the initial conditions [z0]Hi(x, y, z),
the Banach fixed-point theorem entails that this system has a unique solution: our
set of generating functions. Now, because of the deterministic link between the
number of black balls and the number of white balls, it is natural to introduce the
shorthands H(x, z) ∶= H(x,1, z) and Hi(x, z) ∶= Hi(x,1, z). What is the nature of
these functions? This is what we tackle now.

2.2. D-finiteness of history generating functions. Let us first give a formal def-
inition of the fundamental concept of D-finiteness.

Definition 2.2 (D-finiteness). A power series F (z) = ∑n≥0 fnz
n with coeffi-

cients in some ring A is called D-finite if it satisfies a linear differential equation
L.F (z) = 0, where L ≠ 0 is a differential operator, L ∈ A[z, ∂z]. Equivalently, the
sequence (fn)n∈N is called P-recursive: it satisfies a linear recurrence with poly-
nomial coefficients in n. Such functions and sequences are also sometimes called
holonomic.

D-finite functions are ubiquitous in combinatorics, computer science, probability
theory, number theory, physics, etc.; see e.g. [1] or [34, Appendix B.4]. They pos-
sess closure properties galore; this provides an ideal framework for handling (via
computer algebra) sums and integrals involving such functions [16, 72]. The same
idea applies to a full family of linear operators (differentiations, recurrences, finite
differences, q-shifts) and is unified by what is called holonomy theory. This theory
leads to a fascinating algorithmic universe to deal with orthogonal polynomials,
Laplace and Mellin transforms, and most of the integrals of special functions: it
offers powerful tools to prove identities, asymptotic expansions, numerical values,
structural properties; see [51,69,77].

We have seen in Section 2.1 that the dynamics of urns is intrinsically related to
partial differential equations (mixing ∂x, ∂y, and ∂z). It is therefore a nice surprise
that it is also possible to describe their evolution in many cases with ordinary
differential equations (i.e. involving only ∂z).
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Theorem 2.3 (Differential equations for histories). The generating functions
describing a Young–Pólya urn of period p and parameter ` with initially s0 = b0+w0
balls, where b0 are black and w0 are white, satisfy the following system of p partial
differential equations:

∂zHi+1(x, z) = x(x − 1)∂xHi(x, z) + (1 + `
p
) z∂zHi(x, z) + (s0 −

i`

p
)Hi(x, z),(6)

for i = 0, . . . , p− 1 with Hp(x, z) ∶=H0(x, z). Moreover, if any of the corresponding
generating functions (ordinary, exponential, ordinary probability, or exponential
probability) is D-finite in z, then all of them are D-finite in z.

Proof. First, let us prove the system involving ∂z and ∂x only. Combining (3)
and (5), we eliminate ∂y. Then it is legitimate to insert y = 1 as there appears no
differentiation with respect to y anymore. This gives (6).

Now, assume the ordinary generating function is D-finite. Multiplying a holo-
nomic sequence by n! (or by 1/n!, or more generally by any holonomic sequence)
gives a new sequence, which is also holonomic. In other words, the Hadamard prod-
uct of two holonomic sequences is still holonomic [90, Chapter 6.4]. This proves
that the ordinary and exponential versions of our generating functions H and Hi

are D-finite in z.
Finally, for the probability generating function defined as

∑
n,b,w

P (Bn = b and Wn = w)xbywzn =∑
n

hn(x, y)
hn(1,1)

zn,

it is in general not the case that it is holonomic if the initial ordinary gener-
ating function is holonomic! But in our case a miracle occurs: in each residue
class of n mod p, the sequence (hpm+i(1,1))m∈N is hypergeometric (as shown in
Theorem 3.1), therefore the p subsequences (1/hpm+i(1,1))m∈N are also hyperge-
ometric, and thus the above probability generating function (which is the sum of
p holonomic functions, each one being the Hadamard product of two holonomic
functions) is holonomic.

Experimentally, in most cases a few terms suffice to guess a holonomic sequence
in z. We believe that this sequence is always holonomic, yet we were not able to
prove it in full generality. We plan to comment more on this and other related
phenomena in the forthcoming article [11].
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Type Generating function Order in ∂z Degree in z Degree in x

EGF ∑
n,b,w

hn,b,wxbyw
zn

n!
5 13 16

OGF ∑
n,b,w

hn,b,wxbywzn 7 23 20

EPGF ∑
n,b,w

P (Bn = b and Wn = w)xbyw
zn

n!
8 4 15

OPGF ∑
n,b,w

P (Bn = b and Wn = w)xbywzn 3 13 14

Table 1: Size of the D-finite equations for the four types of generating functions of histories (for
the urn model of Example 2.4). We use the abbreviations EGF (exponential generating function),
OGF (ordinary generating function), EPGF (exponential probability generating function), OPGF
(ordinary probability generating function). We omit the degree of the variable y, as, for balanced
urns, it is trivially related to the degree in x.

Example 2.4. In the case of the Young–Pólya urn with p = 2, ` = 1, and
b0 = w0 = 1, the differential equations for histories (6) are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂zH0(x, z) = x(x − 1)∂xH1(x, z) +
3
2
z∂zH1(x, z) +

3
2
H1(x, z),

∂zH1(x, z) = x(x − 1)∂xH0(x, z) +
3
2
z∂zH0(x, z) + 2H0(x, z).

In addition to this system of partial differential equations, there exist also two
ordinary linear differential equations in z for H0 and H1, and therefore for their
sum H ∶=H0 +H1, the generating function of all histories.

In Table 1 we compare the size of the D-finite equations5 for the different gener-
ating functions. For example, for the ordinary probability generating function one
has the equation L.F (x, z) = 0, where L is the following differential operator of
order 3 in ∂z:

L = 9 z(z − 1) (z + 1) (15x13z10 + ⋅ ⋅ ⋅ + 3)∂3
z + 3 (375x13z12 + ⋅ ⋅ ⋅ − 21)∂2

z

+ 2 (1020x13z11 + ⋅ ⋅ ⋅ + 42)∂z + 600x13z10 + ⋅ ⋅ ⋅ + 1.

The singularity at z = 1 of the leading coefficient reflects the fact that F is a
probability generating function (and thus has radius of convergence equal to 1). It
is noteworthy that some roots of the indicial polynomial of L at z = 1 differ by an
integer, this phenomenon is sometimes called resonance, and often occurs in the
world of hypergeometric functions; we will come back to these facts and what they
imply for the asymptotics (see also [34, Chapter IX. 7.4]).

Note that the fact to be D-finite has an unexpected consequence: it allows a
surprisingly fast computation of hn in time O(

√
n log2 n) (see [16, Chapter 15]

5When we say the equation, we mean the linear differential equation of minimal order in ∂z,
and then minimal degrees in z and x, up to a constant factor for its leading term.
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for a refined complexity analysis of the corresponding algorithm). Such efficient
computations are e.g. implemented in the Maple package gfun (see [84]). This
package, together with some packages for differential elimination (see [17, 36]),
allows us to compute the different D-finite equations from Table 1, via the union
of our Theorem 3.1 on the hypergeometric closed forms and the closure properties
mentioned above.

Another important consequence of the D-finiteness is that the type of the sin-
gularities that the function can have is constrained. In particular, one important
subclass of D-finite functions can be automatically analysed:

Remark 2.5. Flajolet and Lafforgue have proven that under some “generic”
conditions, such D-finite equations lead to a Gaussian limit law (see [33, Theo-
rem 7] and [34, Chapter IX. 7.4]). It is interesting that these generic conditions
are not fulfilled in our case: we have a cancellation of the leading coefficient of L
at (x, z) = (1,1), a confluence for the indicial polynomial, and the resonance phe-
nomenon mentioned above! The natural model of periodic Pólya urns thus leads to
an original analytic situation, which offers a new (non-Gaussian) limit law.

We thus need another strategy to determine the limit law. In the next section, we
use the system of equations (6) to iteratively derive the moments of the distribution
of black balls after n steps.

3. Moments of periodic Pólya urns. In this section, we give the proof of
Theorem 1.6 and a generalization of it. As it will use the method of moments, let
us introduce mr(n), the r-th factorial moment of the distribution of black balls
after n steps, i.e.

mr(n) ∶= E (Bn(Bn − 1)⋯(Bn − r + 1)) .

Expressing them in terms of the generating function H(x, z), it holds that

mr(n) =
[zn] ∂r

∂xrH(x, z)∣
x=1

[zn]H(1, z)
,

where [zn]∑n fnzn ∶= fn is the coefficient extraction operator.
We will compute the sequences of the numerator and denominator separately.

We start with the denominators, the total number of histories after n steps.

3.1. Number of histories: a hypergeometric closed form. We prove that H(1, z)
satisfies a miraculous property which does not hold for H(x, z): it is a sum of gen-
eralized hypergeometric functions (see e.g. [3] for an introduction to this important
class of special functions).
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Theorem 3.1 (Hypergeometric closed forms). Let hn ∶= n![zn]H(1, z) be the
number of histories after n steps in a Young–Pólya urn of period p and parameter `
with initially s0 = b0 + w0 balls, where b0 are black and w0 are white. Then, for
each i, (hpm+i)m∈N is a hypergeometric sequence, satisfying the recurrence

hp(m+1)+i =
i−1
∏
j=0

((p + `)(m + 1) + s0 + j)
p−1
∏
j=i

((p + `)m + s0 + j)hpm+i.(7)

Equivalent closed forms are given in Equations (10) and (11).

Proof. Substituting x = 1 into (6) and extracting the coefficient of zn for
i = 0, . . . , p − 1 gives the recurrence

hn+1 = ((1 + `
p
)n + bn)hn, with(8)

bn ∶ = s0 −
`

p
(n mod p),(9)

where n mod p gives values in {0,1, . . . , p−1}. Iterating this recurrence relation p
times gives (7). This leads to the following equivalent closed forms

hpm+i =
(p + `)pm+i

∏p−1
j=0 Γ ( s0+j

p+` )

i−1
∏
j=0

Γ(m + 1 + s0 + j
p + `

)
p−1
∏
j=i

Γ(m + s0 + j
p + `

) ,(10)

hpm+i = (p + `)pmΓ(s0 + (p + `)m + i)
Γ(s0 + (p + `)m)

p−1
∏
j=0

Γ (m + s0+j
p+` )

Γ ( s0+j
p+` )

.(11)

Accordingly, the function H(1, z) is the sum of p generalized hypergeometric func-
tions pF0.

Example 3.2. In the case of the Young–Pólya urn with p = 2, ` = 1, and
b0 = w0 = 1, one has the hypergeometric closed forms for hn ∶= n![zn]H(1, z):

hn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3n Γ(n2 +1)Γ(n2 +
2
3 )

Γ(2/3) if n is even,

3n Γ(n2 +
1
2 )Γ(n2 +

7
6 )

Γ(2/3) if n is odd.

Alternatively, this sequence satisfies h(n+ 2) = 3
2h(n+ 1)+ 1

4(9n
2 + 21n+ 12)h(n).

This sequence was not in the On-Line Encyclopedia of Integer Sequences, ac-
cessible at https://oeis.org. We added it there; it is now A293653, and it starts
like this: 1,2,6,30,180,1440,12960,142560,1710720, . . . The exponential generat-
ing function can be written as the sum of two hypergeometric functions:

H(1, z) = 2F1 ([
2
3
,1] , [1

2
] ,(3z

2
)

2
) + 2z 2F1 ([

5
3
,1] , [3

2
] ,(3z

2
)

2
) .

https://oeis.org
https://oeis.org/A293653
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3.2. Mean and critical exponent. Let us proceed with the computation of mo-
ments. For this purpose, define

h(r)
n ∶= n![zn] ∂r

∂xr
H(x, z)∣

x=1
,

as the coefficient of (x−1)rzn
r!n! of H(x, z). Then the r-th moment is obviously com-

puted as mr(n) = h
(r)
n

hn
. The key idea why to use these quantities comes from the

differential equations for histories (6). The derivative of Hi(x, z) with respect to x
has a factor (x− 1), which makes it possible to compute h(r)

n iteratively by taking
the r-th derivative with respect to x and substituting x = 1. Let us define the
auxiliary functions

H
(r)
i (z) ∶= ∂r

∂xr
Hi(x, z)∣

x=1
.

We get for i = 0, . . . , p − 1 (with bi as defined in (9)):

∂zH
(r)
i+1(z) = (1 + `

p
)z∂zH(r)

i (z) + (bi + r)H(r)
i (z) + (r − 1)rH(r−1)

i (z).

From this equation we extract the n-th coefficient with respect to z and multiply
by n! to get

h
(r)
n+1 = ((1 + `

p
)n + bn + r)h(r)

n + (r − 1)rh(r−1)
n .(12)

We reveal a perturbed version of (8). In particular, this is a non-homogeneous
linear recurrence relation. Yet, the inhomogeneity only emerges for r ≥ 2. Thus,
the mean is derived directly with the same approach as hn previously. Note that
for r = 1 Equation (12) is exactly of the same type as (8) after replacing s0 by
s0 + r and h0 by b0. We get without any further work

h
(1)
pm+i = C1 (p + `)pm+i

i−1
∏
j=0

Γ(m + 1 + s0 + 1 + j
p + `

)
p−1
∏
j=i

Γ(m + s0 + 1 + j
p + `

) ,

C1 = b0
p−1
∏
j=0

Γ(s0 + 1 + j
p + `

)
−1
.

Combining the last two results, we get a (surprisingly) simple expression

EBpm+i =
h
(1)
pm+i

hpm+i
= C1
C0

∏i−1
j=0 Γ (m + 1 + s0+1+j

p+` )∏p−1
j=i Γ (m + s0+1+j

p+` )

∏i−1
j=0 Γ (m + 1 + s0+j

p+` )∏
p−1
j=i Γ (m + s0+j

p+` )

= b0
Γ ( s0

p+`)

Γ ( s0+p
p+` )

(m + s0 + i
p + `

)
Γ (m + s0+p

p+` )

Γ (m + 1 + s0
p+`)

.
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In particular, it is straightforward to compute an asymptotic expansion for the
mean by Stirling’s approximation. For i = 0,1, . . . , p − 1, we get

EBpm+i = b0
Γ ( s0

p+`)

Γ ( s0+p
p+` )

m
p
p+` (1 +O ( 1

m
)) .

This leads to the following proposition.

Proposition 3.3 (Formula for the mean of Young–Pólya urns). The expected
number of black balls in a Young–Pólya urn of period p and parameter ` with
initially s0 = b0+w0 balls, where b0 are black and w0 are white, satisfies for large n

EBn = b0
Γ ( s0

p+`)

Γ ( s0+p
p+` )

(n
p
)

p
p+`

(1 +O ( 1
n
)) .

Remark 3.4 (Critical exponent). As will be more transparent from discussions
in the next sections, the exponent δ ∶= p

p+` is here the crucial quantity to keep in
mind. It is sometimes called “critical exponent” as such exponents can often be
captured by ideas from statistical mechanics, as a signature of a phase transition
phenomenon.

Example 3.5. For the Young–Pólya urn with p = 2, ` = 1, and b0 = w0 = 1, the
expected number of black balls at time n is thus

EBn =
Γ(2/3)
Γ(4/3)

(n
2
)

2
3
(1 +O ( 1

n
)) ≈ 0.9552 n2/3 (1 +O ( 1

n
)) .

This is coherent with the renormalization used for the limit law of Bn in Exam-
ple 1.7.

3.3. Higher moments. When computing higher moments, the first idea is to
transform the non-homogeneous recurrence relation (12) into a homogeneous one.
To this aim, one rewrites this equation into

yn+1 − (an + bn + r) yn = (r − 1) r h(r−1)
n and y0 = ∂rxH(x,0)∣x=1.(13)

Note that we have yn = h(r)
n , the r-th moment we want to determine. From now on

we speak of the homogeneous equation to refer to the left-hand side of Equation (13)
set equal to 0, whereas Equation (13) itself is called the non-homogeneous equation.
In order to get h(r)

n we proceed by induction on r: we assume that the (r − 1)-st
moment is known (thus, we know the right-hand side of (13)), and we want to
express the r-th moment h(r)

n (i.e. we want to solve the recurrence (13) for yn) in
terms of this previously computed quantity.
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As for any linear recurrence, its solution is given by a combination of a solution
h
(r)
n,hom of the homogeneous equation and of a particular solution h(r)

n,par such that

h(r)
n = Cr h(r)

n,hom − h(r)
n,par ,(14)

with Cr ∈ R such that the initial condition in (13) is satisfied. We will show that
asymptotically only the solution h(r)

n,hom of the homogeneous equation is dominant.
First of all, this solution is easy to compute, as it is again of the same type as (8).
We have

h
(r)
pm+i,hom = (p + `)pm+i

i−1
∏
j=0

Γ(m + 1 + s0 + r + j
p + `

)
p−1
∏
j=i

Γ(m + s0 + r + j
p + `

) .(15)

The next idea is to find a particular solution of the non-homogeneous recurrence
relation (13). We will show that the equation exhibits a phenomenon similar to
resonance and we will show that the particular solution is

h(r)
n,par =

r−1
∑
j=1

djh
(j)
n , for constants dj ∈ R.(16)

We will compute the coefficients dj by induction from r−1 to 1. First, we observe
that the inhomogeneous part in the r-th equation is a multiple of the solution h(r−1)

n

of the (r− 1)-st equation. This motivates us to set yn = h(r−1)
n in the homogeneous

equation of the r-th equation. Using (13) then leads to

h
(r−1)
n+1 − (an + bn + r)h(r−1)

n = (r − 1)(r − 2)h(r−2)
n − h(r−1)

n .

Thus, by linearity we choose h(r)
n,par = zn−(r−1)rh(r−1)

n , i.e. dr−1 = (r−1)r, as a first
candidate for a particular solution where zn is (still) an undetermined sequence.
Inserting this into (13), we get a recurrence relation for zn, where we reduced the
order of the inhomogeneity by one in r (in comparison with (13)):

zn+1 − (an + bn + r) zn = r(r − 1)2(r − 2)h(r−2)
n .

Continuing this approach, we compute all dj ’s inductively. As the order in r de-
creases, this approach terminates at r = 1. One thus identifies the constants dj of
Formula (16):

dj =
r

∏
i=j+1

(i − 1)i
r − i + 1

= (r − 1
j − 1

)r!
j!

= L(r, j),

with L(r, j) being the Lah numbers, which express the rising factorials in terms
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of falling factorials6 (see [58] and [78, p. 43]):
r

∑
j=1

L(r, j)xj = xr.(17)

Then, by (14) we get the general solution of the r-th moment

h(r)
n = Cr h(r)

n,hom −
r−1
∑
j=1

L(r, j)h(j)
n .(18)

For n = 0, Equation (18) becomes

h
(r)
0 = ∂rxH(x,0)∣x=1 = b0r = Cr h(r)

0,hom −
r−1
∑
j=1

L(r, j)b0j ,

which gives together with (17) that Cr h(r)
0,hom = b0r.

Finally, we are now able to compute the asymptotic expansion of the r-th (facto-
rial) moment. Using Stirling’s approximation, the quotient of the quantities given
by (18) and (15) gives that h

(j)
n

h
(r)
n,hom

= O (n−
(r−j)p
p+` ) , for j = 1, . . . , r − 1. Hence, for

the r-th moment given by (18), we proved that the contribution of h(r)
n,hom is the

asymptotically dominant one. This leads to the main result on the asymptotics of
the moments:

Proposition 3.6 (Moments of Young–Pólya urns). The r-th (factorial) mo-
ment of Bn (the number of black balls in the Young–Pólya urn of period p and
parameter ` with initially s0 = b0 +w0 balls, where b0 are black and w0 are white)
for large n satisfies6

mr(n) = γr nδr (1 +O ( 1
n
)) , with γr =

b0
r

pδr

p−1
∏
j=0

Γ ( s0+j
p+` )

Γ ( s0+r+j
p+` )

and δ = p

p + `
.

Example 3.7. For the Young–Pólya urn with p = 2, ` = 1, and b0 = w0 = 1, the
variance of the number of black balls at time n is thus

VBn =
27
8

Γ (2
3)

2 (3Γ (4
3) − Γ (2

3)
2)

21/3π2 n4/3 (1 +O ( 1
n
)) ≈ 0.42068 n4/3 (1 +O ( 1

n
)) .

Nota bene: The reasoning following Equation (18) shows that these asymptotics
are the same for the moments and the factorial moments, so in the sequel we refer
to this result indifferently from both points of view.

6The falling factorial xr is defined by xr ∶= x(x − 1)⋯(x − r + 1) = Γ(x + 1)/Γ(x − r + 1), while
the rising factorial xr is defined by xr ∶= Γ(x + r)/Γ(x) = x(x + 1)⋯(x + r − 1). These notations
were introduced as an alternative to the Pochhammer symbols by Graham, Knuth, and Patashnik
in [40].
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3.4. Limit distribution for periodic Pólya urns. We use the method of moments
to prove Theorem 1.6 (the generalized gamma product distribution for Young–
Pólya urns). The natural factors occurring in the constant γr of Proposition 3.6,
may they be 1/Γ( s+r+jp+` ) or (b0r)1/p/Γ( s+r+jp+` ), do not satisfy the determinant/finite
difference positivity tests for the Stieltjes/Hamburger/Hausdorff moment prob-
lems, therefore no continuous distribution has such moments (see [93]). However,
the full product does correspond to moments of a distribution which is easier to
identify if we start by transforming the constant γr by the Gauss multiplication
formula of the gamma function; this gives

γr =
(p + `)r

pδr
Γ (b0 + r)Γ (s0)
Γ (b0)Γ (s0 + r)

`−1
∏
j=0

Γ ( s0+r+p+j
p+` )

Γ ( s0+p+j
p+` )

.

Combining this result with the r-th (factorial) momentmr(n) from Proposition 3.6,
we see that the moments E (B∗

n
r) of the rescaled random variable B∗

n ∶= pδ

p+`
Bn
nδ

converge for n→∞ to the limit

mr ∶=
Γ (b0 + r)Γ (s0)
Γ (b0)Γ (s0 + r)

`−1
∏
j=0

Γ ( s0+r+p+j
p+` )

Γ ( s0+p+j
p+` )

,(19)

a simple formula involving the parameters (p, `, b0,w0) of the model (with s0 ∶=
b0 +w0).

Next note that the following sum diverges (recall that 0 ≤ (1 − δ) < 1):

∑
r>0

m−1/(2r)
r =∑

r>0
((p + `)e

r
)
(1−δ)/2

(1 + o(1)) = +∞ .

Therefore, a result by Carleman (see [22, pp. 189–220]) implies that there exists
a unique distribution (let us call it D) with such moments mr. Then, by the limit
theorem of Fréchet and Shohat [35, p. 536]7, B∗

n converges to D.
Finally, we use the shape of the moments in (19) in order to express this dis-

tribution D in terms of the main functions defined in Section 1. First, note that
if for some independent random variables X,Y,Z, one has E(Xr) = E(Y r)E(Zr)
(and if Y and Z are determined by their moments), then X L= Y Z. Therefore, we
treat the factors independently. The first factor corresponds to a beta distribution
Beta(b0,w0). For the other factors it is easy to check that if X ∼ GenGamma(α,β)
is a generalized gamma distributed random variable (as defined in Definition 1.4),
then it is a distribution determined by its moments, which are given by E(Xr) =
Γ(α+r

β
)

Γ(α
β
)
. Therefore, the expression in (19) characterizes the GenGammaProd dis-

tribution. This completes the proof of Theorem 1.6.
7As a funny coincidence, Fréchet and Shohat mention in [35] that the generalized gamma

distribution with parameter p ≥ 1/2 is uniquely characterized by its moments.
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For reasons which would be clear in Section 4, it was natural to focus first
on Young–Pólya urns. However, the method presented is this section allows us
to handle more general models. It would have been quite indigestible to present
directly the general proof with heavy notations and many variables but now that
the reader got the key steps of the method, she should be delighted to recycle all
of this for free in the following much more general result:

Theorem 3.8 (The generalized gamma product distribution for triangular bal-
anced urns). Let p ≥ 1 and `1, . . . , `p ≥ 0 be non-negative integers. Consider a
periodic Pólya urn of period p with replacement matrices M1, . . . ,Mp given by

Mj ∶= (1 `j
0 1 + `j

) . Then, the renormalized distribution of black balls is asymptoti-

cally for n→∞ given by the following product of distributions:

pδ

p + `
Bn
nδ

LÐ→ Beta(b0,w0)
p+`−1
∏
i=1

i≠`1+⋅⋅⋅+`j+j with 1≤j≤p−1

GenGamma(b0 +w0 + i, p + `).

with ` = `1 + ⋅ ⋅ ⋅ + `p, δ = p/(p + `), and Beta(b0,w0) = 1 when w0 = 0.

In the sequel, we denote this distribution by GenGammaProd([`1, . . . , `p]; b0,w0).

Proof. The proof relies on the same steps as in Sections 2 and 3 with some
minor technical changes, so we only point out the main differences.

The behaviour of the urn is now modeled by the p differential operators Dj =
y`j(x2∂x + y2∂y). As the matrices are balanced, there is (like in Equation (4)) a
direct link between the number of black balls and the total number of balls. This
allows to eliminate the y variable and leads to the following system of partial
differential equations (which generalizes Equation (6)):

∂zHi+1(x, z) = x(x − 1)∂xHi(x, z) + (1 + `
p
) z∂zHi(x, z) +

⎛
⎝
s0 −

i

∑
j=1

`j −
i`

p

⎞
⎠
Hi(x, z),

for i = 0, . . . , p − 1 with Hp(x, z) ∶= H0(x, z). Here, one again applies the method
of moments used in this Section 3. In particular, Equation (8) remains the same.
Only the coefficients bn in Equation (9) change to s0 −∑ij=1 `j − `

p(i mod p).
Hence, we get the following asymptotic result for the moments generalizing

Proposition 3.6:

mr(n) = γr nδr (1 +O ( 1
n
)) , with γr =

b0
r

pδr

p−1
∏
j=0

Γ( s0
p+` +

j+∑
j
k=1 `k
p+` )

Γ( s0+r
p+` +

j+∑
j
k=1 `k
p+` )

.(20)

After rewriting γr via the Gauss multiplication formula, we recognize the product
of distributions (characterized by their moments) which we wanted to prove.
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Let us illustrate this theorem with what we call the staircase periodic Pólya urn
(this model will reappear later in the article).

Example 3.9 (Staircase periodic Pólya urn). For the Pólya urn of period 3
with replacement matrices

M1 ∶= (1 0
0 1) , M2 ∶= (1 1

0 2) , and M3 ∶= (1 2
0 3) ,

the number Bn of black balls has the limit law GenGammaProd([0,1,2]; b0,w0):
√

3
6
Bn√
n

LÐ→ Beta(b0,w0) ∏
i=2,4,5

GenGamma(b0 +w0 + i,6).

In the next section, we will see what are the implications of our results for urns
on an apparently unrelated topic: Young tableaux.

4. Urns, trees, and Young tableaux. As predicted by Anatoly Vershik
in [91], the 21st century should see a lot of challenges and advances on the links
between probability theory and (algebraic) combinatorics. A key rôle is played
here by Young tableaux8 because of their ubiquity in representation theory. Many
results on their asymptotic shape have been collected, but very few results are
known on their asymptotic content when the shape is fixed (see e.g. the works
by Pittel and Romik, Angel et al., Marchal [4, 64, 74, 82], who have studied the
distribution of the values of the cells in random rectangular or staircase Young
tableaux, while the case of Young tableaux with a more general shape seems to be
very intricate). It is therefore pleasant that our work on periodic Pólya urns allows
us to get advances on the case of a triangular shape, with any rational slope.

Definition 4.1. For any fixed integers n, `, p ≥ 1, we define a triangular Young
tableau of parameters (`, p, n) as a classical Young tableau with N ∶= p`n(n + 1)/2
cells, with length n`, and height np such that the first ` columns have np cells, the
next ` columns have (n − 1)p cells, and so on (see Figure 3).

For such a tableau, we now study what is the typical value of its south-east
corner (with the French convention of drawing tableaux; see [62] but, however,
take care that on page 2 therein, Macdonald advises readers preferring the French
convention to “read this book upside down in a mirror”! Some French authors
quickly propagated the joke that Macdonald was welcome to apply his own advice
while reading their articles!).

8A Young tableau of size n is an array with columns of (weakly) decreasing height, in which
each cell is labelled, and where the labels run from 1 to n and are strictly increasing along rows
from left to right and columns from bottom to top; see Figure 3. We refer to [62] for a thorough
discussion on these objects.
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It could be expected (e.g. via the Greene–Nijenhuis–Wilf hook walk algorithm
for generating Young tableaux; see [41]) that the entries near the hypotenuse should
be N −o(N). Can we expect a more precise description of these o(N) fluctuations?
Our result on periodic urns enables us to exhibit the right critical exponent, and
the limit law in the corner:

Theorem 4.2. Choose a uniform random triangular Young tableau of param-
eters (`, p, n) and of size N = p`n(n + 1)/2 and put δ = p/(p + `). Let Xn be
the entry of the south-east corner. Then (N −Xn)/n1+δ converges in law to the
same limiting distribution as the number of black balls in the periodic Young–
Pólya urn with initial conditions b0 = p, w0 = ` and with replacement matrices

M1 = ⋅ ⋅ ⋅ = Mp−1 = (1 0
0 1) and Mp = (1 `

0 1 + `), i.e. we have the convergence in

law, as n goes to infinity, towards GenGammaProd (the distribution defined by
Formula (1), page 5):

2
p`

N −Xn

n1+δ
LÐ→ GenGammaProd(p, `, p, `).

Remark 4.3. The case p = 1 corresponds to a classical (non-periodic) urn; see
Remark 1.8. The case p = 2 and ` = 1 corresponds to our running example of a
Young–Pólya urn; see Example 1.7.

Remark 4.4. If we replace the parameters (`, p, n) by (K`,Kp,n) for some
integer K > 1, we are basically modelling the same triangle, yet the limit law is
GenGammaProd(Kp,K`,Kp,K`), which differs from GenGammaProd(p, `, p, `).
It is noteworthy that one still has some universality: the critical exponent δ remains
the same and, besides, the limit laws are closely related in the sense that they have
similar tails. We address these questions in Section 5.2.

Proof. As this proof involves several technical lemmas (which we prove in the
next subsections), we first present its structure so that the reader gets a better un-
derstanding of the key ideas. Our proof starts by establishing a link between Young
tableaux and linear extensions of trees. After that we will be able to conclude via
a second link between these trees and periodic Pólya urns.

Let us begin with Figure 3 which describes the link between the main characters
of this proof: the Young tableau Y and the “big” tree T (which contains the “small”
tree S). More precisely, we define the rooted planar tree S as follows:

• The leftmost branch of S is a sequence of vertices which we call v1, v2, . . .
• Set m ∶= n`. The vertex vm (the one in black in Figure 3) has p − 1 children.
• For 2 ≤ k ≤ n − 1, the vertex vk` has p + 1 children.
• All other vertices vj (for j <m,j ≠ k`) have exactly one child.
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Now, define T as the “big” tree obtained from the “small” tree S by adding a
vertex v0 as the parent of v1 and adding a set S ′ of children to v0. The size of S ′
is chosen such that ∣T ∣ = 1+ ∣S ∣+ ∣S ′∣ = 1+N , where N is the number of cells of the
Young tableau Y. Moreover, the hook length of each cell (in grey) in the first row
of Y is equal to the hook length9 of the corresponding vertex (in grey also) in the
leftmost branch of S.

Let us now introduce a linear extension ET of T , i.e. a bijection from the set of
vertices of T to {1, . . . ,N +1} such that ET (u) < ET (u′) whenever u is an ancestor
of u′. A key result, which we prove hereafter in Proposition 4.9, is the following:
if ET is a uniformly random linear extension of T , then EY(v) (the entry of the
south-east corner v in a uniformly random Young tableau Y) has the same law as
ET (vm):

(21) 1 +EY(v)
L= ET (vm).

Note that in the statement of the theorem, EY(v) is denoted by Xn to initially
help the reader to follow the dependency on n.

Furthermore, recall that T was obtained from S by adding a root and some
children to this root. Therefore, one can obtain a linear extension of the “big”
tree T from a linear extension of the “small” tree S. In Section 4.4, we show that
this allows us to construct a uniformly random linear extension ET of T and a
uniformly random linear extension ES of S such that

(22) ∣T ∣ −ET (vm) L= n (∣S ∣ −ES(vm) + smaller order error terms).

The last step, which we prove in Proposition 4.17, is that

(23) ∣S ∣−ES(vm) L= distribution of periodic Pólya urn+deterministic quantity.

Indeed, more precisely ∣S ∣ − ES(vm) has the same law as the number of black
balls in a periodic urn after (n−1)p steps (an urn with period p, with parameter `,
and with initial conditions b0 = p and w0 = `). Thus, our results on periodic urns
from Section 3 and the conjunction of Equations (21), (22), and (23) give the
convergence in law for EY(v) which we wanted to prove.

The subsequent sections are dedicated to the proofs of the auxiliary propositions
that are crucial for the proof of Theorem 4.2. First, we establish a link between our
problem on Young tableaux and a related problem on trees. Second, we explain
the connection between the related problem on trees and the model of periodic
urns.

9The hook length of a vertex in a tree is the size of the subtree rooted at this vertex.
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43 55 61 72

31 44 60 71

22 25 32 39

18 24 27 35 41 58 59 68

17 19 26 30 40 52 56 63

12 14 20 29 38 49 51 62

6 8 10 21 28 46 50 53 57 65 67 70

3 5 7 13 15 45 47 48 54 64 66 69

1 2 4 9 11 16 23 33 34 36 37 42

` ` `

p

p

p

v0

v1

subtree S

vm

︸ ︷︷ ︸

︸ ︷︷ ︸

︸ ︷︷ ︸

p children

` nodes

p children

` nodes

` nodes

p− 1 children

set of leaves S ′

tree T

Fig 3. In this section, we see that there is a relation between Young tableaux with a given periodic
shape, some trees, and the periodic Young–Pólya urns. The key observation is that the cells (in
grey) in the first row of the tableaux have the same hook lengths as the nodes (in grey) in the
leftmost branch of the tree. The south-east cell v (in black) of this Young tableau has also the
same hook length as the node vm (in black) in the tree, and is following the same distribution we
proved for urns (generalized gamma product distribution).
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4.1. The link between Young tableaux and trees. We will need the following
definitions.

Definition 4.5 (The shape of a tableau10). We say that a tableau has shape
λi11 ⋯λ

in
n (with λ1 > ⋅ ⋅ ⋅ > λn) if it has (from left to right) first i1 columns of height

λ1, etc., and ends with in columns of height λn.

As an illustration, the tableau on the top of Figure 3 has shape 946434.

Definition 4.6 (The shape of a tree). Consider a rooted planar tree T with at
least two vertices and having the shape of a “comb”: at each level only the leftmost
node can have children. It has shape (i0, j0; i1, j1; . . . ; in, jn) if

• when n = 0, then T is the tree with j0 leaves and i0 internal nodes, all of
them unary except for the last one which has j0 children;

• when n ≥ 1, then T is the tree with shape (i0, j0; i1, j1; . . . ; in−1, jn−1) to which
we attach a tree of shape (in, jn) as a new leftmost subtree to the parent of
the leftmost leaf.

Figure 4 illustrates the recursive construction of a tree of shape (1,4; 1,2; 2,2).
As another example, the tree T in Figure 3 has shape (1, ∣S ′∣; 4,3; 4,3; 4,2), where
∣S ′∣ stands for the number of leaves in S ′.

Fig 4. The recursive construction of a tree of shape (1, 4; 1, 2; 2, 2). First, a tree of shape (1, 4),
second, a tree of shape (1, 4; 1, 2), third, a tree of shape (1, 4; 1, 2; 2, 2).

Let us end this small collection of definitions with a more classical one:

Definition 4.7 (Linear extension of a poset and of a tree). A linear exten-
sion E of a poset A of size N is a bijection between this poset and {1, . . . ,N}
satisfying E(u) ≤ E(v) whenever u ≤ v. Accordingly, a linear extension of a tree A
with N vertices is a bijection E between the vertices of A and {1, . . . ,N} satisfying
E(u) ≤ E(v) whenever u is a child of v.
We denote by ext(A) the number of linear extensions of A.

10Some authors define the shape of a tableau as its row lengths from bottom to top. In this
article we use the list of column lengths, as it directly gives the natural quantities to state our
results in terms of trees and urns.
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Remark 4.8. In combinatorics, a linear extension is also called an increasing
labelling. In the sequel, we will sometimes say “(increasing) labelling” instead of
“linear extension”, hoping that this less precise terminology will help the intuition
of the reader.

We are now ready to state the following result:

Proposition 4.9 (Link between the south-east corner of Young tableaux and
linear extensions of trees). Fix a tableau with shape λi11 ⋯λinn and consider a ran-
dom uniform Young tableau Y with this given shape. Let EY(v) be the entry of the
south-east corner of this Young tableau. Let T be a tree with shape (1,N−m−λ1+1;
i1, λ1 − λ2; i2, λ2 − λ3; . . . ; in, λn − 1), where N = ∑λkik is the size of the tableau Y
and m = i1 + ⋅ ⋅ ⋅ + in is the number of its columns. Let ET be a random uniform
linear extension of T , and vm be the m-th vertex in the leftmost branch of this
tree T . Then ET (vm) and 1 +EY(v) have the same law.

Proof. The proof will be given on page 34, as it requires two ingredients, which
have their own interest and which are presented in the two next sections (4.2 on the
density method for Young tableaux, and 4.3 on the density method for trees).

Example 4.10. Let us apply the previous result to the tree of shape (1,4; 1,2;
2,2) from Figure 4. There we have n = 2, m = 3. Then, this tree corresponds to a
Young tableau of shape 5132 and size N = 11.

Remark 4.11. In the simplest case when the tableau is a rectangle (i.e. it has
shape λi11 ), the associated tree has shape (1, (λ1 − 1)(i1 − 1); i1, λ1 − 1). In that
case, the law of ET (vm) is easy to compute and we get an alternative proof of the
following formula, first established in [64]:

P(EY(v) = k) =
(k−1
i1−1)(

λ1 i1 −k
λ1−1 )

( λ1 i1
λ1+i1−1)

.

The fact that Y and T are related is obvious from the construction of T , but it is
not a priori granted that it will lead to a simple, nice link between the distributions
of v and vm (the two black cells in Figure 3). So, ET (vm) L= 1 +EY(v) deserves a
detailed proof: it will be the topic of the next subsections. The proof has a nice
feature: it uses a generic method, which we call the density method and which
was introduced in our articles [10, 65]. In fact, en passant, these next subsections
also illustrate the efficiency of the density method in order to enumerate (and
to perform uniform random generation) of combinatorial structures (like we did
in the two aforementioned articles for permutations with some given pattern, or
rectangular Young tableaux with “local decreases”).

The advantage of Proposition 4.9 is that linear extensions of a tree are easier to
study than Young tableaux and can, in fact, be related to our periodic urn models,
as shown in Section 4.3.
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4.2. The density method for Young tableaux. Trees and Young tableaux can be
viewed as posets [89]. We will use this point of view to prove Proposition 4.9. We
recall here some general facts that will be useful in the sequel.

Definition 4.12 (Order polytope of a poset). Let A be a general poset with
cardinality N and order relation ≤. We can associate with A a polytope P ⊂ [0,1]A
defined by the condition (Ye)e∈A ∈ P if and only if Ye ≤ Ye′ whenever e ≤ e′. Then
P is called the order polytope of the poset A.

Example 4.13. Let A be the set of subsets of {a, b} ordered by inclusion.
Then its order polytope is given by P = {(Y∅, Y{a}, Y{b}, Y{a,b}) ∈ [0,1]4 ∶ Y∅ ≤ Y{a},
Y∅ ≤ Y{b}, Y∅ ≤ Y{a,b}, Y{a} ≤ Y{a,b}, Y{b} ≤ Y{a,b}}.

Let Y = (Ye)e∈A ∈ [0,1]A be a tuple of random variables11 chosen according to
the uniform measure on the polytope P. Then we consider the function X having
integer values, defined by Xe ∶= k if Ye is the k-th smallest real in the set of
reals {Ye ∶ e ∈ A}. It is sometimes called order statistic. Note that X is a random
variable, defined almost surely as we have a zero probability that some marginals
of Y have the same value, and X is uniformly distributed on the set of all linear
extensions of A. The last claim holds because the wedges of each linear extension
have equal size 1/N ! for N = ∣A∣ being the size of the poset A.

Example 4.14. Continuing Example 4.13, there are two linear extensions of
A: (X∅, X{a}, X{b}, X{a,b}) = (1,2,3,4) and (X∅, X{a}, X{b}, X{a,b}) = (1,3,2,4).
They correspond to the following two wedges in P: Y∅ ≤ Y{a} ≤ Y{b} ≤ Y{a,b} and
Y∅ ≤ Y{b} ≤ Y{a} ≤ Y{a,b}. The volume of each of them is 1/24, while the volume of
P is 1/12.

Conversely, ifX is a random uniform increasing labelling ofA, one gets a random
variable Y on the polytope P via Ye ∶= TXe , where T is a random uniform N -
tuple from the set {(T1, . . . , TN) ∈ [0,1]N ∶ T1 < ⋅ ⋅ ⋅ < TN}. Therefore, Y is uniformly
distributed on P. What is more, Tk is the k-th largest uniform random variable
amongN independent uniform random variables. Thus, it has density k(Nk )x

k−1(1−
x)N−k. As a consequence, for any e ∈ A, Ye has density

(24) ge(x) =
N

∑
k=1

P(Xe = k)k(
N

k
)xk−1(1 − x)N−k.

11When the poset is a Young tableau, this corresponds to what is called a Poissonized Young
tableau in [38].
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This formula can be read as two different writings of the same polynomial in two
different bases; thus, by elementary linear algebra, it implies that P(Xe = k) can
be deduced from the polynomial ge. In particular, we have the following property:

Lemma 4.15. Let A, A′ be two posets with the same cardinality, and let P, P ′
be their respective order polytopes. Let X (resp. X ′) be a random linear extension
of A (resp. A′). Let Y (resp. Y ′) be a uniform random variable on P (resp. P ′).
Then, for any e ∈ A and e′ ∈ A′, such that Ye and Y ′

e′ have the same density, Xe

and X ′
e′ have the same law.

Let Y be a tableau with shape λi11 . . . λinn and total size N = ∑k λkik. We view Y
as a poset: Y is a set of N cells equipped with a partial order “≤”, where c ≤ c′ if
one can go from c to c′ with only north and east steps. We denote by P the order
polytope of the tableau Y.

We will introduce an algorithm generating a random element of P according to
the uniform measure. In order to do so, we fill the diagonals one by one. Let us
introduce some notation. The tableau Y can be sliced into M = λ1 + i1 + ⋅ ⋅ ⋅ + in − 1
diagonals D1, . . . ,DM as follows: D1 is the north-west corner and recursively, Dk+1
is the set of cells which are adjacent to one of the cells of D1 ∪ ⋅ ⋅ ⋅ ∪Dk and which
are not in D1 ∪ ⋅ ⋅ ⋅ ∪Dk. In particular, DM is the south-east corner. For example,
Figure 3 has M = 20 such diagonals.

Note that between two consecutive diagonals Dk and Dk+1 (let us denote their
cell entries by y1 < ⋯ < yj and x1 < ⋅ ⋅ ⋅ < xj′), there exist four different interlocking
relations illustrated by Figure 5. The shape of the tableau implies that for each k
we are in one of these four possibilities, each of them thus corresponds to a polytope
Pk defined as:

case 1: Pk ∶= {y1 < x1 < ⋅ ⋅ ⋅ < yj < xj},(25)
case 2: Pk ∶= {x1 < y1 < ⋅ ⋅ ⋅ < xj < yj},(26)
case 3: Pk ∶= {y1 < x1 < ⋅ ⋅ ⋅ < xj−1 < yj},(27)
case 4: Pk ∶= {x1 < y1 < ⋅ ⋅ ⋅ < xj < yj < xj+1}.(28)

y5 x5

y4 x4

y3 x3

y2 x2

y1 x1

y4

y3 x4

y2 x3

y1 x2

x1

y5

y4 x4

y3 x3

y2 x2

y1 x1

y4 x5

y3 x4

y2 x3

y1 x2

x1

Fig 5. Young tableaux of any shape can be generated by a sequence of “diagonals”, which interlock
according to the four possibilities above.
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Our algorithm will make use of conditional densities along the M diagonals of
Y. For this purpose, for every k ∈ {1, . . . ,M} we define a polynomial gk in ∣Dk∣
variables as follows. First, one sets g1 ∶= 1; the next polynomials are defined by
induction. Suppose that 1 ≤ k ≤ M − 1 and Dk = (y1 < ⋅ ⋅ ⋅ < yj). The four above-
mentioned possibilities for Dk+1 lead to the definition of the following polynomials.

1. In the first case (interlocking given by (25)), this gives

gk+1(x1, . . . , xj) ∶= ∫
x1

0
dy1∫

x2

x1
dy2 . . .∫

xj

xj−1
dyj gk(y1, . . . , yj).

2. In the second case (interlocking given by (26)), this gives

gk+1(x1, . . . , xj) ∶= ∫
x2

x1
dy1∫

x3

x2
dy2 . . .∫

xj

xj−1
dyj−1∫

1

xj
dyj gk(y1, . . . , yj).

3. In the third case (interlocking given by (27)), this gives

gk+1(x1, . . . , xj−1) ∶= ∫
x1

0
dy1∫

x2

x1
dy2 . . .∫

1

xj−1
dyj gk(y1, . . . , yj).

4. In the fourth case (interlocking given by (28)), this gives

gk+1(x1, . . . , xj+1) ∶= ∫
x2

x1
dy1∫

x3

x2
dy2 . . .∫

xj+1

xj
dyj gk(y1, . . . , yj).

Now, we use these polynomials to formulate a random generation algorithm
which will also be able to enumerate the corresponding Young tableaux. Note that
faster random generation algorithms are known (like the hook walk from [41]),
but it is striking that the above polynomials gk will be the key to relate the
distributions of different combinatorial structures, allowing us to capture second
order fluctuations in Young tableaux, trees, and urns. It is also noteworthy that our
density method is in some cases the most efficient way to enumerate and generate
combinatorial objects (see [10] for applications on variants of Young tableaux,
where the hook length formula is no more available, and see [24] for algorithmic
subtleties related to sampling conditional multivariate densities).

Recall that P is the order polytope of the tableau Y and that we want to
generate a random element of P according to the uniform measure. The algorithm
is the following. We generate by descending induction on k, for each diagonal Dk,
a ∣Dk∣-tuple of reals in [0,1] which will be the entries of the cells of Dk.

First, remark that the functions defined by (29) and (30) in Algorithm 1 are
indeed probability densities. That is, they are measurable, positive functions and
their integral is equal to 1. To prove this, remark first that these functions are
polynomials and therefore measurable. Next, by definition, as integrals of positive
functions, they are positive. Finally, the fact that the integral is equal to 1 follows
from their definition.



30 C. BANDERIER, P. MARCHAL, M. WALLNER

Algorithm 1 (Output: a random uniform Young tableau Y, via the density
method)

Step 1. Recall that DM is the south-east corner. Generate the corresponding
cell entry at random with probability density

(29) gM(x)

∫
1

0 gM(y)dy
.

Step 2. By descending induction on k from M − 1 down to 1, generate the
diagonal Dk (seen as a tuple of ∣Dk∣ reals in [0,1]) according to the
density

(30)
gk(x1, . . . , x∣Dk ∣)
gk+1(Dk+1)

1Pk ,

where gk and 1Pk are chosen according to the cases given by (25),
(26), (27), (28).

We then claim that Algorithm 1 yields a random element (D1, . . . ,DM) of P
with the uniform measure. Indeed, by construction, its density is the product of
the conditional densities of the diagonals D1, . . . ,DM . The crucial observation now
is that the product of the conditional densities (30) is a telescopic product, so the
algorithm generates each Young tableau Y with the same “probability” (or more
rigorously, as we have continuous variables, with the same density):

(31) gM(DM)

∫
1

0 gM(y)dy

M−1
∏
k=1

gk(Dk)
gk+1(Dk+1)

1Pk =
1{Y∈P}

∫
1

0 gM(y)dy
.

This indeed means that our algorithm yields a uniform random variable on the
order polytope P. Alternatively, one can say that the Young tableau Y is a random
variable on [0,1]N with density given by (31), therefore

∫
[0,1]N

1{Z∈P} dZ = ∫
1

0
gM(y)dy.

Now, suppose that we pick uniformly at random an element Z ′ of [0,1]N . Then
one has

P(Z ′ ∈ P) = ∫
[0,1]N

1{Z∈P} dZ = ext(Y)
N !

,

where ext(Y) is the number of increasing labellings (linear extensions) of the
tableau Y. Thus,

ext(Y) = N !∫
1

0
gM(y)dy.

In the next section, we turn our attention to the density method for trees.
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4.3. The density method for trees. Let the tree T , its subtree S, and the vertices
v0, . . . , vm be defined as on page 23 (see Figure 3). As in Section 4.2, it is possible
to construct a random linear extension of S by using a uniform random variable Y
on the order polytope of S. The vertex vm has then a random value Yvm between 0
and 1, and we want to compute its density. To this aim, we associate to each
internal node vk a polynomial fk (in σk variables, where σk is the number of siblings
of vk). These polynomials fk are defined by induction starting with f1 ∶= 1, while
f2, . . . , fm−1 are defined by

fk(x0, . . . , xσk) ∶= ∫
inf{x0,...,xσk}

0
dy0∫

1

0
dy1 . . .∫

1

0
dyσk−1 fk−1(y0, y1, . . . , yσk−1),

The last polynomial, fm, additionally depends on the number j of children of vm:
fm(x0, . . . , xσm) ∶=

(1 − x0)j ∫
inf{x0,...,xσm}

0
dy0∫

1

0
dy1 . . .∫

1

0
dyσm−1 fm−1(y0, y1, . . . , yσm−1).

(32)

We also define hvm :

hvm(x) ∶= ∫
1

0
dx1 . . .∫

1

0
dxσm fm(x,x1, . . . , xσm).

We claim that hvm(x) is (up to a multiplicative constant) the density of Yvm . This
is shown as in Section 4.2 using Algorithm 2, which generates uniformly at random
a labelling of S.

Algorithm 2 (Output: a random uniform increasing labelling Y of the tree S)

Step 1. Generate Yvm according to the density hvm(x)

∫
1

0 hvm(x)dx
.

Step 2. If vm has j children s1, . . . , sj , then generate (Ys1 , . . . , Ysj) according
to the density

∏j
i=1 1{yi>Yvm}

(1 − Yvm)j
.

Step 3. If vm has j siblings s1, . . . , sj , then generate (Ys1 , . . . , Ysj) according
to the density

fm(Yvm , y1, . . . , yj)

∫
1

0 dy1 . . . ∫
1

0 dyj fm(Yvm , y1, . . . , yj)
.

Step 4. By descending induction for k fromm−1 down to 1, if vk has j siblings
s1, . . . , sj , then generate the tuple Yk = (Yvk , Ys1 , . . . , Ysj) according
to the density

fk(y0, . . . , yj)
fk+1(Yk+1)

1{y0<min Yk+1}.
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Indeed, the random tuple Y generated by this algorithm is by construction an
element of the order polytope. What is more, we have the uniform distribution, as
the probabilities of all Y ’s are equal to a telescopic product similar to Formula (31).
Therefore hm(x) is (up to a multiplicative constant) the density of Yvm and the
number ext(S) of linear extensions of S is given by

ext(S) = ∣S ∣!∫
1

0
hvm(x)dx.

It remains to connect the densities of v in Y and vm in S; we do this in the
following lemma.

Lemma 4.16. The polynomial gM(x) (which gives the density of v, the south-
east corner of the Young tableau Y) and the polynomial hvm(x) (which gives the
density of vm in the tree S) are equal up to a multiplicative constant:

hvm(x) = c gM(x) with c = ∣Y ∣!
∣S ∣!

ext(S)
ext(Y)

.

Proof. The main idea of the proof consists in adding a filament to the tree
and to the tableau, and inspecting the consequences via the density method.

Part 1 (adding a filament to the tableau). Let YL be the tableau obtained by
adding to Y L cells horizontally to the right of its south-east corner v (and denote
these new cells by e1, . . . , eL). We can generate a random element of the order
polytope of YL as follows: remark that Y is a subtableau of YL and that the first
M diagonals D1, . . . ,DM of YL are the same as the first M diagonals of Y (recall
that the diagonals are lines with positive slope +1, starting from each cell of the
first column and row). In particular, DM is the south-east corner cell v. Then, we
can extend Algorithm 1 in the following way:

Algorithm 3 (Output: a random uniform increasing labelling X of the
tableau with L added cells)

Step 1. Generate XM,L the entry of the cell v according to the density

gM,L(x)

∫
1

0 gM,L(y)dy
where gM,L(x) ∶=

gM(x)(1 − x)L
L!

.

Step 2. Generate the entries of the diagonals DM−1, . . . ,D1 as in Algorithm 1.
Step 3. Generate the entry X1 of e1 with density

L
(1 − x)L−1

(1 −XM,L)L
1{x>XM,L}.

Step 4. For i from 1 to L − 1, generate the entry Xi+1 of ei+1 with density

(L − i)(1 − x)
L−i−1

(1 −Xi)L−i
1{x>Xi}.
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Using the same arguments as for Algorithm 1, we can show that Algorithm 3
yields a uniform random variable on the order polytope of YL and that the number
of increasing labellings of YL is

ext(YL) = (N +L)!∫
1

0
gM,L(y)dy = (N +L)!∫

1

0

gM(y)(1 − y)L
L!

dy.

On the other hand, using the hook length formula, we see that the hook lengths
of YL are the same as those of Y, except for the first row. A straightforward
computation shows that

ext(Y)
N !

= ext(YL)
(N +L)!

×GL,

where, as Y has shape λi11 ⋯λinn , the constant GL is given by

(33) GL = L!
n

∏
k=1

(i1 + ⋅ ⋅ ⋅ + ik +L + λk − 1)ik

(i1 + ⋅ ⋅ ⋅ + ik + λk − 1)ik
,

where we reuse the falling factorial notation ab = a(a − 1)⋯(a − b + 1). Therefore,
this leads to

(34) ∫
1

0
gM(y)(1 − y)L dy = L!

GL

ext(Y)
N !

.

Part 2 (adding a filament to the tree). Suppose that we extend the tree S by
adding a filament of length L. Let SL be the tree obtained from S by attaching
to vm a subtree consisting of a line with L vertices. Put

fL(x) ∶=
(1 − x)Lhvm(x)

L!
.

With the same arguments as for the function hvm defined in (32), we see that
fL/ ∫

1
0 fL(x)dx is the density of YL(vm) where YL is a uniform random variable

on the order polytope of SL. Following the same reasoning, we can show that the
number of linear extensions of SL is

ext(SL) = (∣S ∣ +L)!∫
1

0
fL(y)dy.

On the other hand, recall that a version of the hook length formula holds for trees
(see e.g. [42,56,83]): the number of linear extensions of a tree of size N is given by

N !
∏v∈S hook(v)

,

where here hook(v) is the number of descendants of v (including v itself).
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Applying this formula to the tree S yields

ext(S)
∣S ∣!

= ext(SL)
(∣S ∣ +L)!

×GL,

with the same GL as in (33). Indeed, the most crucial point is that the hook lengths
of the Young tableau on the first row are the same as the hook lengths of the tree
along the leftmost branch. This key construction allows us to connect these two
structures. Hence, one has

(35) ∫
1

0
hvm(y)(1 − y)L dy = L!

GL

ext(S)
∣S ∣!

.

Part 3 (conclusion): linking tableaux and trees. Comparing (34) with (35), we
see that for every integer L ≥ 1,

∫
1

0
hvm(y)(1 − y)L dy = c∫

1

0
gM(y)(1 − y)L dy,

where c is the constant given by

c = ∣Y ∣!
∣S ∣!

ext(S)
ext(Y)

.

Since hvm(x) and gM(x) are polynomials, this implies that hvm = c gM .

Before establishing the final link between Young tableaux and urns, we start
by collecting what we got via the density method: this gives the proof of Proposi-
tion 4.9, which we now restate.

Proposition 4.9 (Link between the corner of a Young tableau and linear ex-
tensions of trees). Fix a tableau with shape λi11 ⋯λinn and consider a random uni-
form Young tableau Y with this given shape. Let EY(v) be the entry of the south-
east corner of this Young tableau. Let T be a tree with shape (1,N −m − λ1 + 1;
i1, λ1 − λ2; i2, λ2 − λ3; . . . ; in, λn − 1), where N = ∑λkik is the size of the tableau Y
and m = i1 + ⋅ ⋅ ⋅ + in is the number of its columns. Let ET be a random uniform
linear extension of T , and vm be the m-th vertex in the leftmost branch of this
tree T . Then ET (vm) and 1 +EY(v) have the same law.

Proof. The reader is invited to have a new look on Figure 3 (page 24), which
illustrates for this proof the idea of the trees T , S, and the set of leaves S ′. We
first introduce a forest T ∗ ∶= S ∪ S ′ obtained by adding N −m − λ1 + 1 vertices
without any order relation to the tree S. T ∗ has an order relation inherited from
the order relation ≤ on S: two nodes x, y of T ∗ are comparable if and only if they
belong to S and in that case, the order relation on T ∗ is the same as the one on S.



PÓLYA URNS AND YOUNG TABLEAUX 35

Let P ′ be the order polytope of S. Then it is clear that the order polytope of T ∗
is

P = P ′ × [0,1]N−m−λ1+1.

In particular, if Y ′ is a uniform random variable on P ′ and if Y is a uniform random
variable on P, then Y ′

v and Yv have the same density. This density is proportional
to the function hvm computed in Section 4.3. Next, recall the notation gM and DM

from Section 4.2. Lemma 4.16 gives that hvm = c gM . Thus, the density of Yvm is
the same as the density of DM . Moreover, T ∗ and Y have the same cardinality.
Therefore, Lemma 4.15 entails that if ET ∗ is a random uniform linear extension
of T ∗ and if EY(v) is the entry of the south-east corner in a random increasing
labelling of Y, then ET ∗(vm) and EY(v) have the same distribution.

Now, it is easy to deduce from ET ∗ a random uniform linear extension ET of T :
set ET (u) = 1 if u is the root of T , and set ET (u) = 1+ET ∗(u) for the other nodes
(since any such node u can be identified as a node of T ). Applying this to the
vertex vm finishes the proof of Proposition 4.9.

4.4. The link between trees and urns. In order to end the proof of Theorem 4.2,
we need two more propositions.

Proposition 4.17 (Link between trees and urns). Consider a tree S with
shape (i1, j1; . . . ; in, jn). Let v be the parent of the leftmost leaf if jn ≥ 1, or the
leftmost leaf if jn = 0. Let ES be a random uniform linear extension of S.

Let X = ∣S ∣ −ES(v). Then, X has the same law as the number of black balls in
the following urn process:

• Initialize the urn with b0 ∶= jn + 1 black balls and w0 ∶= in white balls.
• For k from n − 1 to 1, perform the following steps:

1. Perform jk − 1 times the classical Pólya urn with replacement matrix

(1 0
0 1).

2. Make one transition with the replacement matrix (1 ik
0 1 + ik

).

Remark 4.18. Note that the urn scheme described in the proposition is pre-
cisely the model of periodic Pólya urns covered by Theorem 3.8. For Young–Pólya
urns, one has ik = ` and jk = p for k < n, and in = ` and jn = p − 1, compare
Figure 3.

Proof (Proposition 4.17). First consider the transition probabilities in the
classical Pólya urn. At step i > 0 the composition (Bi,Wi) is obtained from
(Bi−1,Wi−1) by adding a black ball with probability Bi−1

Bi−1+Wi−1
and a white ball

with probability Wi−1
Bi−1+Wi−1

. We will now show that the same transition probabili-
ties are imposed by the linear extension of the tree.
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We start with a definition. If R ⊂ S we define ER ∶R→ {1, . . . , ∣R∣} as the only
bijection preserving the order relation induced by ES . That is, ER(u) = k if and
only if ES(u) is the k-th smallest value in the set {ES(r) ∶ r ∈ R}. It is easy to
check that ER is a uniform linear extension of R seen as a poset equipped with
the order relation inherited from S.

Let us prove our claim. On the one hand, for every vertex w which is one of the
jn children of v, we have ES(w) > ES(v). On the other hand, for every vertex u
which is one of the (in − 1)-st most recent ancestors of v, we have ES(u) < ES(v).
Let S0 be the set consisting of v, all its children and its (in − 1)-st most recent
ancestors; see Figure 6.

We will perform two nested inductions. The outer one is decreasing from k = n−1
to 1, and each inner one increasing from 1 to jk. We start with k = n− 1. First, let
un be the in-th most recent ancestor of v. The node un has jn−1 children which are
not ancestors of v. Call these un,1, . . . , un,jn−1 . Let S1 ∶= S0∪{un,1}, then ES1(un,1)
is uniformly distributed on {1, . . . , ∣S1∣}. As a consequence, ES1(un,1) > ES1(v)
with probability (jn + 1)/(jn + 1+ in). This probability can be expressed as b0

b0+w0
,

where b0 is the number of vertices u in S0 such that ES(u) ≥ ES(v) and w0 is
the number of vertices u in S0 such that ES(u) ≤ ES(v). Conditionally on the
initial configuration S0, this defines two random variables: let B1 be the number
of vertices u in S1 such that ES(u) ≥ ES(v) and W1 be the number of vertices u
in S1 such that ES(u) ≤ ES(v).

Next, let S2 ∶= S1∪{un,2}, then ES2(un,2) is uniformly distributed on {1, . . . , ∣S2∣}.
Then, conditionally on B1 and W1, one has ES2(un,2) ≥ ES2(v), with probability
B1

B1+W1
. This process is then continued by induction until Sjn−1 . After that in−1

white balls are added.
Continuing this process via a decreasing induction in k from n − 2 to 1 finishes

the proof.

Our final proposition requires first the following basic lemma.

Lemma 4.19 (Order statistics comparisons). Let (Zi,1 ≤ i ≤ N − s − 1) be
independent, uniform random variables on [0,1] and let Z be a random variable
on [0,1], independent of each Zi, and distributed like Beta(a, s + 1 − a). Let I be
the number of indices i ≥ 1 such that Zi < Z. Then, one has

(36) E(I) = (N − s − 1)a
s + 1

and

(37) E(I2) = a(N − s − 1)((a + 1)N − (s + 2)a)
(s + 1)(s + 2)

.
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v

︸ ︷︷ ︸

in−1

in

︸ ︷︷ ︸
jn

jn−1

unS0

un,1

un−1

︸ ︷︷ ︸
jn−2

Fig 6. Proposition 4.17 relates the labels in the tree S with a Pólya urn process. For periodic
shapes, it gives a periodic Pólya urn. The initial conditions are given by S0. The tree is traversed
bottom to top, along vertices not in the leftmost branch, starting at un,1. Each of these nodes
corresponds to a classical Pólya urn step, whereas each vertex in the leftmost branch corresponds
to an additionally added white ball.

Proof. The density of the beta distribution Z was already encountered in
Equation (24); Z is thus the a-th order statistic of the uniform distribution. It is
easily seen that for all 1 ≤ i < j ≤ N − s − 1,

P(Zi < Z) = a

s + 1
and P(Zi < Z,Zj < Z) = a(a + 1)

(s + 1)(s + 2)
.

Moreover, writing the random variable I as I = ∑N−s−1
i=1 1{Zi<Z}, we get

E(I) =
N−s−1
∑
i=1

P(Zi < Z) = (N − s − 1)a
s + 1

E(I2) = ∑
1≤i≠j≤N−s−1

P(Zi < Z,Zj < Z) +
N−s−1
∑
i=1

P(Zi < Z)

= (N − s − 1)(N − s − 2) a(a + 1)
(s + 1) (s + 2)

+ (N − s − 1)a
s + 1

.

In order to finish the proof of Theorem 4.2, we still have to relate ∣S ∣ −ES(vm)
to the quantity that we are interested in, namely N −ET (vm).

Proposition 4.20 (Same asymptotic densities). The random variables ES(vm)
and ET (vm) satisfy asymptotically the following link: for any s, t ∈ R+, one has

(38) lim
n→∞

P(s < ∣S ∣ −ES(vm)
nδ

< t) = lim
n→∞

P(s < 2(p + `)
p`

N −ET (vm)
n1+δ < t) .
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Proof. Let T ∗ = S ∪ S ′ be the graph obtained from T by removing the root.
Then T ∗ is a poset where there is no order relation between any vertex of S ′ and
any other vertex from T ∗. Due to this independence, the order polytope of T ∗ is
the Cartesian product of the order polytope of S and [0,1]∣S′∣. Now, let a > 0 be
an integer and let Fa be the event that

∣S ∣ −ES(vm) = a.

In other words, a is the number of vertices in S with a label greater than ES(vm).
Let I be the random variable counting the number of vertices in S ′ with a label
greater than ET (vm). Then, conditionally on the event Fa, the random variable
N −ET (vm) has the same law as I + a. Indeed, N −ET (vm) counts the number of
vertices in T with a label greater than ET (vm). Note that I satisfies the conditions
of Lemma 4.19 (with s ∶= ∣S ∣ therein), due to the order polytope independence
mentioned above.

Recall that ∣S ∣ = Θ(n) while N = Θ(n2) (in fact, ∣S ∣ = (p+ `)n− 1 and ∣T ∣ = N =
1
2p`n(n + 1)). Therefore, if (an)n≥1 is a sequence of integers tending to +∞ and
such that an = o(n), then, thanks to (36), we have the estimates for the conditional
expectation

(39) E(I ∣Fan) ∼
anN

∣S ∣
∼ cnan,

with the constant c = p`
2(p+`) and, thanks to (37), for the conditional variance

(40) var(I ∣Fan) = E(I2∣Fan) − (E(I ∣Fan))2 ∼ c2n2an.

Combining (39) and (40), the Bienaymé–Chebyshev inequality gives that (for any
κ > 0):

(41) P({∣ I

cnan
− 1∣ > κ} ∣Fan) ≤

1 + εn
κ2an

,

where εn is a sequence converging to 0 as n→∞. Since we have

N −ET (vm)
nan

= I + an
nan

= I

nan
+ 1
n
,

the inequality (41) can be rewritten into

(42) P({∣N −ET (vm)
cnan

− 1∣ > κ} ∣Fan) ≤ 1 + ε′n
κ2an

,

where ε′n is a sequence converging to 0 as n →∞. In particular, for any t > 0 and
0 < δ < 1, setting an = ⌈tnδ⌉ in (42) gives

(43) P({∣N −ET (vm)
cn1+δ − t∣ > κt} ∣Fan) ≤ 1 + o(1)

κ2tnδ
.
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Finally, for all reals 0 < s < t, define the event

Fs,t = ⋃
snδ<a<tnδ

Fa = {s < ∣S ∣ −ES(vm)
nδ

< t} .

According to (43) (set κ = ε/t for any ε > 0), we have for n→∞

P({s < N −ET (vm)
cn1+δ < t} ∣Fs,t)→ 1.

Thus, conditioning on the complementary event F̄s,t, we have

(44) lim
n→∞

P({s < N −ET (vm)
cn1+δ < t} ∩ F̄s,t) = 0,

whereas conditioning on Fs,t gives

(45) lim
n→∞

P({s < N −ET (vm)
cn1+δ < t} ∩ Fs,t) = lim

n→∞
P(s < ∣S ∣ −ES(vm)

nδ
< t) .

Summing (44) and (45) leads to (38).

In summary, in this Section we have proven that the four following quantities
have asymptotically the same distribution:

(46) 2
p`

N −EY(v)
n1+δ =

Proposition 4.9
(density method)

2
p`

N −ET (vm)
n1+δ ∼

Proposition 4.20
(order statistics)

1
p + `

∣S ∣ −ES(vm)
nδ

=

Proposition 4.17
(Pólya urn)

1
p + `

B(n−1)p

nδ
.

In conjunction with Theorem 1.6 proven via analytic combinatorics methods,
this implies that the four quantities in (46) converge in law to the distribution
GenGammaProd(p, `, b0,w0), when δ = p/(p + `). This is exactly the statement of
Theorem 4.2.
Nota bene: It should be stressed that the sequence of transformations in (46) is
not a bijection between Young tableaux and urns, it is only asymptotically that
the corresponding distributions are equal.

The perspicacious reader would have noted that in the previous pages, we used
several small lemmas and propositions which were stated with slightly more gen-
erality than what was a priori needed. In fact, this now allows us to state an even
stronger version of Theorem 4.2. (It would have been not pedagogical to introduce
it first: we think it would have been harder for the reader to digest the different key
steps/definitions/figures used in the proof.) In order to state this generalization to
any Young tableau with a more general periodic shape, we need a slight extension
of the shape λi11 ⋯λinn introduced in Definition 4.5: we allow some of the indices ik
to be equal to zero, in which case there is no column of height λk:
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Definition 4.21 (Periodic tableau). For any tuple of nonnegative integers
(`1, . . . , `p), a tableau with periodic pattern shape (`1, . . . , `p;n) is a tableau with
shape

((np)`p(np−1)`p−1⋯(np−p+1)`1)× (((n−1)p)`p⋯((n−1)p−p+1)`1)×⋯× (p`p⋯1`1).

A uniform random Young tableau with periodic pattern shape (`1, . . . , `p;n) is a
uniform random filling of a tableau with periodic pattern shape (`1, . . . , `p;n).

Let us put the previous pattern in words: we have a tableau made of n blocks,
each of these blocks consisting of p smaller blocks of length `p, . . . , `1, and the
height decreases by 1 between each of these smaller blocks. This leads to a tableau
length (`1 + ⋅ ⋅ ⋅ + `p)n, which repeats periodically the same sub-shape along its
hypotenuse.

Note that the triangular Young tableau of parameters (`, p, n) from Defini-
tion 4.1 corresponds to Definition 4.21 for the (p+1)-tuple (0, . . . ,0, `;n). In order
to state our main result in full generality, we extend the above-defined Young
tableau by additional rows from below.

Definition 4.22. Let b0,w0 > 0. A tableau of shape λi11 ⋯λinn shifted by a block
bw0
0 is a tableau of shape (λ1 + b0)i1⋯(λn + b0)inbw0

0 .

We can now state the main theorem of this section:

Theorem 4.23 (The distribution of the south-east entry in periodic Young
tableaux). Choose a uniform random Young tableau with periodic pattern shape
(`1, . . . , `p;n) shifted by a block bw0

0 . Let N be its size, set ` ∶= `1 + ⋅ ⋅ ⋅ + `p and
δ ∶= p/(p + `). Let Xn be the entry of the south-east corner. Then (N −Xn)/n1+δ

converges in law to the same limiting distribution as the number of black balls in
the periodic Young–Pólya urn with initial conditions (b0,w0) and with replacement

matrices Mi = (1 `i
0 1 + `i

):

2
p`

N −Xn

n1+δ
LÐ→ Beta(b0,w0)

p+`−1
∏
i=1

i≠`1+⋅⋅⋅+`j+j
with 1≤j≤p−1

GenGamma(b0 +w0 + i, p + `).

Proof. One just follows the same steps as in (46). The final proof holds ver-
batim, only the equality N = p`

2 n(n + 1) has to be replaced by an asymptotic
N ∼ pl

2 n, which is anyway the only information that is used. One then concludes
via Theorem 3.8.

In the next section, we discuss some consequences of our results in the context
of limit shapes of random Young tableaux.
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5. Random Young tableaux and random surfaces. There is a vast and
fascinating literature related to the asymptotics of Young tableaux when their
shape is free, but the number of cells is going to infinity: it even originates from
the considerations of Erdős, Szekeres, and Ulam on longest increasing subsequences
in permutations (see [2, 82] for a nice presentation of these fascinating aspects).
There, algebraic combinatorics and variational calculus appear to play a key rôle,
as became obvious with the seminal works of Vershik and Kerov, Logan and
Shepp [61,92]. The asymptotics of Young tableaux when the shape is constrained
is harder to handle, and this section tackles some of these aspects.

Gaussian free field?
proven in [52] for random tilings, see also [14, 73, 74]

Generalized gamma product distribution
local limit law proven in this article,

Airy ensemble?
proven in [64] for square shapes
(includes Tracy-Widom distribution),

Unknown

Local limit laws
see e.g. [15, 66]

& Gaussian for rectangular shapes [64], see also [49]
for some special cases

see also [38]

Fig 7. Known and conjectured limit laws of random Young tableaux. Would it one day lead to a
nice notion of “continuous Young tableau”?

5.1. Random surfaces. Figure 7 illustrates some known results and some con-
jectures on “the continuous” limit of Young tableaux (see also the notion of con-
tinual Young tableaux in [53]). Let us now explain a little bit what is summarized
by this figure, which, in fact, refers to different levels of renormalization in order
to catch the right fluctuations. It should also be pinpointed that some results are
established under the Plancherel distribution, while some others are established
under the uniform distribution (like in the present work).

First, our Theorem 4.2 can be seen as a result on random surfaces arising from
Young tableaux with a fixed shape. Let us be more specific. Consider a fixed
rectangular triangle Tr where the size of the edges meeting at the right angle are
p and q, respectively, where p and q are integers. One can approximate Tr by a
sequence of tableaux (Yn)n≥0 of the same form as Y in Section 4 where the size of
the sides meeting at the right angle are pn and qn.
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For each of these tableaux, one can pick a random standard filling and one
can interpret it as a random discretized surface. More precisely, if 0 ≤ x ≤ p and
0 ≤ y ≤ q are two reals and if the entry of the cell (⌊xn⌋ , ⌊yn⌋) is z, then we set
fn(x, y) ∶= 2z/(pqn2). Thereby, we construct a random function fn ∶ Tr → [0,1]
which is discontinuous but it is to be expected that, in the limit, the functions fn
converge in probability to a deterministic, continuous function f (see Figure 8).
Intuitively, for every point (x, y) on the hypotenuse, one will have f(x, y) = 1 and
this is the case in particular for the south-east corner, that is, the point (p,0).
Then, one can view Theorem 4.2 as a result on the fluctuations of the random
quantity fn(p,0) away from its deterministic limit, which is 1.

Fig 8. Random generation of Young tableaux, seen as random surfaces (the colours correspond to
level lines):

● top: triangular Young tableaux (size 60 × 60, seen as histogram, and 200 × 200),
● bottom: rectangular and triangular Young tableaux (400 × 200 and 410 × 20).

If one watches such surfaces from above, then one sees exactly the triangular/rectangular shapes,
but one loses the 3D effect. The images are generated via our own Maple package available at
https: // lipn. fr/ ~cb/ YoungTableaux , relying on a variant of the hook-length walk of [41].

https://lipn.fr/~cb/YoungTableaux
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As a matter of fact, the convergence of fn to f has only been studied when the
shape of the tableau is fixed. The convergence towards a limiting surface was first
proven when the limit shape is a finite union of rectangles; see Biane [14]. There,
the limiting surface can be interpreted in terms of characters of the symmetric
group and free probability but this leads to complicated computations from which
it is difficult to extract explicit expressions.

For rectangular Young tableaux, the limiting surface is described more precisely
by Pittel and Romik [74]. A limiting surface also exists for staircase tableaux: it
can be obtained by taking the limiting surface of a square tableau and cutting it
along the diagonal; see [4,60]. This idea does not work for rectangular (non-square)
Young tableaux: if one cuts such tableaux along the diagonal, one does not get the
limiting surface of triangular Young tableaux (the hypotenuse would have been the
level line 1, but the diagonal is in fact not even a level line, as visible in Figure 8
and proven in [74]).

Apart from the particular cases mentioned above, convergence results for sur-
faces arising from Young tableau seem to be lacking. There are also very few results
about the fluctuations away from the limiting surface. For rectangular shapes, these
fluctuations were studied by Marchal [64]: they are Gaussian in the south-east and
north-west corner, while the fluctuations on each edge follow a Tracy–Widom limit
law, at least when the rectangle is a square (for general rectangles, there remain
some technicalities, although the expected behaviour is the same). For staircase
triangles, Gorin and Rahman [38] use a sorting network representation to obtain
asymptotic formulas using double integrals. In particular, they find the limit law on
the edge. Their approach may be generalizable to other triangular shapes. Also,
instead of renormalized limits, one may be interested in local limits, there are
then nice links with the famous jeu de taquin [87] and characters of symmetric
groups [15].

There is another framework where random surfaces naturally arise, namely ran-
dom tilings and related structures (see e.g. [86]). Indeed, one can associate a height
function with a tiling: this gives an interpretation as a surface. In this framework,
similarly to the Young tableaux, there are results on the fluctuations of these sur-
faces. In the case of the Aztec diamond shape, Johansson and Nordenstam [49]
proved that the fluctuations of the Artic curve are related to eigenvalues of GUE
minors (and are therefore Gaussian near the places where the curve is touching
the edges, whereas they are Tracy–Widomian when the curve is far away from
the edges). Note that this gives the same limit laws as for the Artic curve of a
TASEP jump process associated to rectangular Young tableaux [64, 81]. Similar
results were also obtained for pyramid partitions [18,19]. Moreover, in other mod-
els of lozenge tilings, it is proven that for some singular points, other limit laws
appear: they are called cusp-Airy distributions, and are related to the Airy ker-
nel [26]. It has to be noticed that, up to our knowledge, the generalized gamma
distributions, which appear in our results, have not been found in the framework
of random tilings.
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A major challenge would be to capture the fluctuations of the surface in the
interior of the domain. For Young tableaux, it is reasonable to conjecture that
these fluctuations could be similar to those observed for random tilings: in this
framework, Kenyon [52] and Petrov [73] proved that the fluctuations are given by
the Gaussian free field (see also [21]).

Finally, a dual question would be: in which cell does a given entry lie in a random
filling of the tableau? In the case of triangular shapes like ours, if we look at the
largest entry, we get:

Proposition 5.1 (Limit law for the location of the maximum in a triangular
Young tableau). Choose a uniform random triangular Young tableau of parame-
ters (`, p, n) (see Definition 4.1). Let Posin ∈ {1, . . . , `n} be the x-coordinate of the
cell containing the largest entry. Then, one has

Posin
`n

LÐ→ Arcsine(δ), where δ ∶= p/(p + `).

Proof. Remove from the Young tableau Y the cell containing its largest entry,
and call Y∗ this new tableau. Then, using the hook length formula, the probability
that the largest entry of Y is situated at x-coordinate k` is

P(Posin = k`) =
∏c∈Y∗ hookY∗(c)
∏c∈Y hookY(c)

= ∏
c∈Y∗with (x-coord of c) = k`

or (y-coord of c) = (n − k + 1)p

hookY∗(c)
1 + hookY∗(c)

.

An easy computation then gives (with δ = p/(p + `)):

P(Posin = k`) ∼
(k/n)δ−1(1 − k/n)−δ

Γ(δ)Γ(1 − δ)
1
n
.

Here, one recognizes an instance of the generalized arcsine law on [0,1] with density

xδ−1(1 − x)−δ
Γ(δ)Γ(1 − δ)

.

So, if we compare models with different p and `, then the largest entry will
have the tendency to be on the top of the hypotenuse when ` is much larger than
p, while it will be on its bottom if p is much larger than ` (and on the bottom
or the top with equally high probabilities when p ≈ `); see Figure 8. This is in
sharp contrast with the case of an n × n square tableau where, for t ∈ (0,1), the
cell containing the entry tn2 is asymptotically distributed according to the Wigner
semicircle law on its level line; see [74]. We also refer to Romik [80] for further
discussions on Young tableau landscapes and to Morales, Pak, and Panova [67] for
recent results on skew-shaped tableaux.
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Fig 9. Different discrete models converge towards a tableau of slope −p/`. As usual for problems
related to urns, many statistics have a sensibility to the initial conditions; it is therefore nice that
some universality holds: the distributions (depending on p, `, and the “zoom factor” K) of our
statistics have similar tails compared to Mittag-Leffler distributions.

5.2. From microscopic to macroscopic models: universality of the tails. As men-
tioned in the previous section, we can approximate a triangle of slope −p/` by a
tableau of parameters (`, p, n) but what happens if we approximate it by a tableau
of parameters (K`,Kp,n) for any “zoom factor” K ∈ N? (See Figure 9.) In the first
case, we obtain as a limit law in the south-east corner GenGammaProd(p, `, p, `)
whereas in the second case, we get the law GenGammaProd(Kp,K`,Kp,K`) and
these two distributions are different.

In fact, we could even imagine more general periodic patterns as in Theorem 4.23
corresponding to the same macrosopic object. All these models lead to different
asymptotic distributions. However, we partially have some universal phenomenon
in the sense that, although these limit distributions are different, they are closely
related by the fact that their tails are similar to the tail of a Mittag-Leffler distri-
bution.

Definition 5.2 (Similar tails). One says that two random variables X and Y
have similar tails and one writes X ≍ Y if

log E(Xr)

E(Y r)

r
→ 0, as r →∞.

This definition has the advantage to induce an equivalence relation between ran-
dom variables which have moments of all orders: ifX,Y are in the same equivalence
class, then for every ε ∈ (0,1), for r large enough, one has

E(((1 − ε)X)r) ≤ E(Y r) ≤ E(((1 + ε)X)r) .

In the proof of the following theorem, we give much finer asymptotics than the
above bounds.

Theorem 5.3 (Similarity with the tail of a Mittag-Leffler distribution). Let X
be a random variable distributed as GenGammaProd([`1, . . . , `p]; b0,w0) and put
` = `1 + ⋅ ⋅ ⋅ + `p, δ = p/(p + `). Let Y ∶= ML(δ, β) (where ML is the Mittag-Leffler
distribution defined as in (47) hereafter, with any β > −δ). Then X and δpδ−1Y
have similar tails in the sense of Definition 5.2.
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Proof. First, recall from e.g. [37, page 8] that the Mittag-Leffler distribution
ML(α,β) (where 0 < α < 1 and β > −α) is determined by its moments. Its r-th
moment has two equally useful closed forms:

mML,r =
Γ(β)Γ(β/α + r)

Γ(β/α)Γ(β + αr)
= Γ(β + 1)Γ(β/α + r + 1)

Γ(β/α + 1)Γ(β + αr + 1)
.(47)

Now, we prove that, for a fixed α, the Mittag-Leffler distributions have similar
tails. From the Stirling’s approximation formula, we have

(48) log Γ(αr+β) = αr log(r)+(α log(α)−α)r+(β− 1
2
) log(αr)+ log(2π)

2
+O (1

r
) .

Applying this to the moments (47) of the Mittag-Leffler distribution Y = ML(α,β),
we get

logE(Y r) = (1 − α)r log(r) + (−α log(α) + α − 1) r + (β
α
− β) log(r) +O(1),(49)

and thus if one compares with another distribution Y ′ = ML(α,β′), this leads to
Y ≍ Y ′.

Next, we prove that GenGammaProd distributions with the same δ have sim-
ilar tails. The moments of X = GenGammaProd([`1, . . . , `p]; b0,w0) are given by
Formula (20). Using the approximation (48), we get

logE(Xr) =(1 − δ)r log(r) + (1 − δ) (log (δ
p
) − 1) r

+
⎛
⎝
b0 + s0δ +

(1 + δ)(p − 1)
2

− δ
p

p−1
∑
j=0

j

∑
k=1

`k
⎞
⎠

log(r) +O(1).(50)

Here, we see that in fact up to order O(r) only the slope δ and the period length p
play a rôle; it is only at order o(r) that b0, s0, and the `k really occur. Thus, if we
now also consider X ′ = GenGammaProd([`′1, . . . , `′p′]; b′0,w′

0), we directly deduce

X ≍ ( pp′ )
δ−1

X ′.
Finally, we can compare the moments of X (any GenGammaProd distribution

associated to a slope δ and period p) and Y (any Mittag-Leffler distribution with
α ∶= δ) via Formulas (49) and (50), this leads to X ≍ δpδ−1Y .

Remark 5.4. The tails of this distribution are universal: they depend only on
the slope δ and the period length p. They depend neither on the initial conditions
b0 and w0, nor on further details of the geometry of the periodic pattern (the `i’s).

One more universal property which holds for some families of urn distributions
is that they possess subgaussian tails, a notion introduced by Kahane in [50] (see
also [57] for some urn models exhibiting this behaviour):
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Definition 5.5. A random variable X has subgaussian tails if there exist two
constants c,C > 0, such that

P(∣X ∣ ≥ t) ≤ Ce−ct
2
, t > 0.

Proposition 5.6. The GenGammaProd(p, `, b0,w0) distributions have sub-
gaussian tails if and only if p ≥ `.

Proof. The GenGammaProd distribution, as defined in Equation (1), has mo-
ments given in Equation (19). As derived thereafter, it has moments asymptotically
equivalent to

(mr)1/r = ((p + `)e)(δ−1)r(1−δ)(1 + o(1)).

By [50, Proposition 9], a random variable X has subgaussian tails if and only if
there exists a constant K > 0 such that for all r > 0 we have (E(Xr))1/r ≤ K

√
r.

As δ = p
p+` the claim follows.

Another useful notion which helps to gain insight into the limit of Young
tableaux is the notion of a level line: let Cv be the curve separating the cells
with an entry bigger than v and the cells with an entry smaller than v (and to
get a continuous curve, one follows the border of the Young tableau if needed; see
Figure 10).

44 55 61 72

31 43 60 71

22 25 32 39

18 24 27 35 41 58 59 68

17 19 26 30 40 52 56 63

12 14 20 29 38 49 51 62

6 8 10 21 28 46 50 53 57 65 67 70

3 5 7 13 15 45 47 48 54 64 66 69

1 2 4 9 11 16 23 33 34 36 37 42

Fig 10. The level line (in red) of the south-east corner Xn: it separates all the entries smaller
than Xn from the other ones. On the left: one example with the level line of Xn = 42. One the
right: the level line of Xn, for a very large Young tableau of size N of triangular shape. The area
between this level line and the hypotenuse is the quantity N −Xn analysed in Section 4.

When n→∞, one may ask whether the level line CXn converges in distribution
to some limiting random curve C. If so, the limit laws we computed in Theorem 4.2
would give the (renormalized) area between the macroscopic curve C and the hy-
potenuse. In particular, the law of C would depend on the microscopic details of
the model, since we find for the renormalized area a whole family of distributions
GenGammaProd(p, `, b0,w0) depending on 4 parameters. Besides, note that we
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could imagine even more general microscopic models for the same macroscopic
triangle. For instance, for a slope −1, starting from the south-east corner we could
have a periodic pattern (1 step north, 2 steps west, 2 steps north, 1 step west).
All shapes leading to the same slope are covered by Theorem 3.8 (see also Exam-
ple 3.9), and our method then gives similar, but distinct, limit laws. Such models
thus yield another limit law for the area, and thus another limiting random curve C.

Note that the renormalized area between C and the hypotenuse does not have
the same distribution as the area below the positive part of a Brownian mean-
der [47]. Funnily, Brownian motion theory is cocking a snook at us: another one of
Janson’s papers [48] studies the area below curves which are related to the Brown-
ian supremum process and, here, one observes more similarities with our problem,
as the moments of the corresponding distribution involve the gamma function.
However, these moments grow faster than in the limit laws found in Theorem 4.2.
It is widely open if there is some framework unifying all these points of view.

5.3. Factorizations of gamma distributions. With respect to the asymptotic
landscape of random Young tableaux, let us add one last result: our results on
the south-east corner directly imply similar results on the north-west corner. In
particular, the critical exponent for the upper left corner is 1−δ. In fact, it is a nice
surprise that there is even more structure: any periodic pattern shape is naturally
associated with a family of patterns such that the limit laws of the south-east
corners of the corresponding Young tableaux are related to each other.

First, let us describe the periodic pattern via a shape path (i1, j1; . . . ; im, jm):
it starts at the north-west corner of the tableau described by the pattern with i1
right steps, followed by j1 down steps, etc.; see Figure 11. Then, its cyclic shift is
defined by (jm, i1; . . . ; jm−1, im).

Furthermore, this notion is equivalent to Definition 4.21 of a periodic tableau
via the following formula:

(`1, . . . , `p) = (0, . . . ,0, jm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
im elements

,0, . . . ,0, jm−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
im−1 elements

, . . . ,0, . . . ,0, j1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i1 elements

),

Then, the cyclic shift is given by

(`′1, . . . , `′p′) ∶= ( 0, . . . ,0, im
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
jm−1 elements

, . . . ,0, . . . ,0, i2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j1 elements

, 0, . . . ,0, i1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
jm elements

).

In particular we have p′ = ` and `′ = p.
Appending n copies of the shape path (i1, j1; . . . ; im, jm) to each other corre-

sponds to n repetitions of the pattern and therefore gives a periodic tableau. Note
that this new sequence is then equal to the shape of its associated tree similarly
to Figure 3 and in accordance with Definition 4.6.
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` = 9 `′ = 8

p = 8
p′ = 9

(i1, j1; . . . ; i4, j4) = (3, 2; 1, 3; 2, 2; 3, 1)

`′3`′5`′6`′9

(j4, i1; . . . ; j3, i4) = (1, 3; 2, 1; 3, 2; 2, 3)

3× 1

2× 2

3× 2

1
×
3 3× 2

2× 1

2× 3

1
×
3

cyclic shift

`1`3`6`8

Fig 11. Example of a cyclic shift on a periodic pattern. On the left: one sees the shape path
(3,2;1,3;2,2;3,1), it corresponds to the pattern (`1, . . . , `8) = (3, 0, 2, 0, 0, 1, 0, 3) (as sequence of
consecutive heights, from right to left). On the right: one sees its cyclic shift, which corresponds
to the pattern (`′1, . . . , `′9) = (0, 0, 2, 0, 3, 2, 0, 0, 1). In grey we see the size of the sub-rectangles
described by the shape path, i.e., the k-th rectangle has size ik × jk.

Proposition 5.7 (Factorization of gamma distributions). Let (`1, . . . , `p) and
(`′1, . . . , `′p′) be two sequences as defined above and let jm be the smallest index
such that `jm > 0. Let b0,w0 be two positive integers, and Y and Y ′ be independent
random variables with respective distribution GenGammaProd([`1, . . . , `p]; b0,w0)
and GenGammaProd([`′1, . . . , `′p′]; b0 + w0, jm) from Theorem 3.8. Then we have
the factorization

(51) Y Y ′ L= 1
p + `

Γ(b0).

Proof. The equality in distribution is obtained by checking the equality of
the r-th moments and then applying Carleman’s theorem: using Formula (19) for
the moments of GenGammaProd indeed leads (after simplification via the Gauss
multiplication formula on the gamma function) to E(Y r)E((Y ′)r) = 1

(p+`)rE(Zr)
where Z is a random variable distributed according to Γ(b0).

Remark 5.8 (A duality between corners). One case of special interest is the
case of Young tableaux having the mirror symmetry (`jm , . . . , `p) = (`p, . . . , `jm),
where jm is again the smallest index such that `jm > 0. Indeed, Y and Y ′ then
correspond to the limit laws for the south-east (respectively north-west) corner of
the same tableau. In this case, we can think of (51) as expressing a kind of duality
between the corners of the tableau.

Similar factorizations of the exponential law, which is a particular case of the
gamma distribution, have appeared recently in relation with functionals of Lévy
processes, following [13]. These formulas are also some probabilistic echoes of iden-
tities satisfied by the gamma function.
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We can mention one last result in this direction: indeed, Theorem 4.23 used for the
Young tableau with periodic pattern shape (`1, . . . , `p; 2n) and the (same) Young
tableau with periodic pattern shape (`1, . . . , `p, `1, . . . , `p;n) leads to two different
closed forms of the same limit distribution, and one also gets other closed forms
if one repeats m times the pattern (`1, . . . , `p). E.g., if one takes all the `′is equal
to 1, this gives

GenGamma(3,2) =
√

2 GenGamma(3,4)GenGamma(5,4),

and, more generally,

GenGamma(s0 + 1,2) =
√
m

m

∏
k=1

GenGamma(s0 + 2k − 1,2m).

Using the fact that GenGamma(a,1/b) = Γ(ab)b, we can rephrase this identity
in terms of powers of Γ distributions (the notation Γ, in bold, stands for the
distribution, while Γ stands for the function; below, we have only occurences in
bold):

Γ(s0 + 1
2

)
1
2
=
√
m

m

∏
k=1

Γ(s0 + 2k − 1
2m

)
1

2m
.

With x ∶= s0+1
2m , one gets the following formula equivalent to the Gauss multiplica-

tion formula:

Γ (mx)m =mm
m

∏
k=1

Γ(x + k − 1
m

) .

Choosing other values for the `i’s leads to more identities:
p+`−1
∏
i=1

i≠`1+⋅⋅⋅+`j+j
with 1≤j≤p−1

GenGamma(s0 + i, p + `) =m1−δ
m(p+`)−1
∏
i=1

i≠`′1+⋅⋅⋅+`
′

j+j

with 1≤j≤mp−1

GenGamma(s0 + i,m(p + `)).

It is pleasant that it is possible to reverse engineer such identities and thus obtain
a probabilistic proof of the Gauss multiplication formula (see [25]).

This ends our journey in the realm of urns and Young tableaux; in the next final
section, we conclude with a few words on possible extensions of the methods used
in this article.

“A method is a trick used twice.”
George Pólya (1887–1985)

“After this the reader who wishes to do so will have no difficulty in developing
the theory of urns12 when they are regarded as differential operators.”

Alfred Young (1873–1940)
12The reader is invited to compare with the original citations of Pólya and Young in [76, p. 208]

and [39, p. 366].
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6. Conclusion and further work. In this article, we introduced Pólya urns
with periodic replacements and showed that they can be exactly solved with gen-
erating function techniques. The initial partial differential equation encoding their
dynamics leads to D-finite moment generating functions, which we identify as the
signature of a generalized gamma product distribution. It is also pleasant that it
finds applications for some statistics of Young tableaux.

Many extensions of this work are possible:

• The density method which we introduced in [10,65] can be used to analyse
other combinatorial structures, like we did already on permutations, trees,
Young tableaux, and Young tableaux with local decreases. In fact, the idea
to use integral representations of order polytope volumes in order to enu-
merate poset structures is quite natural, and was used e.g. in [12,29,70]. Our
approach, which uses this idea while following at the same time the densities
of some parameter, allows us to solve both enumeration and random gener-
ation. We hope that some readers will give it a try on their favourite poset
structure!

• In [32], Flajolet et al. analyse an urn model which leads to a remarkably sim-
ple factorization for the history generating function; see Theorem 1 therein
and also Theorem 1 in [31]. This greatly helps them to perform the asymp-
totic analysis via analytic combinatorics tools. Our model does not pos-
sess such a factorization; this makes the proofs more involved. It is nice
that our new approach remains generic and can be applied to more general
periodic urn models (with weights, negative entries, random entries, unbal-
anced schemes, triangular urns with more colours, multiple drawings, . . . ).
It is a full programme to investigate these variants, in order to get a better
characterization of the zoo of special functions (combination of generalized
hypergeometric, etc.) and distributions occurring for the different models.

• There exists a theory of elimination for partial differential equations, chiefly
developed in the 1920’s by Janet, Riquier, and Thomas (see e.g. [17, 36] for
modern approaches). In our case, these approaches however fail to get the
linear ordinary differential equations satisfied by our generating functions.
It is thus an interesting challenge for computer algebra to get an efficient
algorithm taking as input the PDE and its boundary conditions, and giving
as output the D-finite equation (if any). Is it possible to extend holonomy
theory beyond its apparent linear frontiers? (See the last part of [72].) Also,
as an extension of Remark 2.5, it is natural to ask: is it possible to extend
the work of Flajolet and Lafforgue to the full class of D-finite equations, thus
exhibiting new universal limit laws like we did here?

• Our approach can also be used to analyse the fluctuations of further cells in a
random Young tableau. It remains a challenge to understand the full asymp-
totic landscape of surfaces associated with random Young tableaux,
even if it could be globally expected that they behave like a Gaussian free
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field, like many other random surfaces [52]. Understanding the fluctuations
and the universality of the critical exponent at the corner could help to get a
more global picture. The Arctic circle phenomenon (see [81]) and the study
of the level lines C in random Young tableaux and their possible limits in
distribution, as discussed in Section 5.2, seems to be an interesting but very
challenging problem.
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