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Abstract

A big Ramsey spectrum of a countable chain C is a sequence of
big Ramsey degrees of finite chains computed in C. In this paper we
consider big Ramsey spectra of countable chains. We prove that a
countable scattered chain has finite big Ramsey spectrum if and only
if its Hausdorff degree is finite. Since big Ramsey spectra of all non-
scattered countable chains are infinite, this completes the characteri-
zation of countable chains with finite big Ramsey spectra (or degrees).
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1 Introduction

Ramsey’s famous theorem:

Theorem 1.1 (Ramsey’s Theorem [18]). For any n > 1 and an arbitrary
coloring χ :

(

ω
n

)

→ k of n-element subsets of ω with k > 2 colors there
exists a copy M ⊆ ω of ω which is monochromatic in the following sense:
χ(X) = χ(Y ) for all X,Y ∈

(

M
n

)

.

was published in 1930, but already in 1933 it was generalized to cardinals
by Sierpiński. This marked the beginning of combinatorial set theory which
is nowdays a deep and influential part of set theory (see [22]). In con-
trast to Ramsey theory which abounds with positive results of the form “for
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any coloring there is a monochromatic copy”, the generalization of Ram-
sey’s Theorem to cardinals brought a plethora of negative or conditionally
positive results of the form “there is a complicated coloring such that no
monochromatic copy exists” or “for any coloring there is a monochromatic
copy provided we exclude a certain type of behaviour”.

Scaling down to countable chains does not take us back to the realm
where monochromatic copies dwell. It is easy to construct a Sierpiński-
style coloring of

(

Q
2

)

with two colors and with no monochromatic subchain
isomorphic to Q. However, Galvin showed in [7, 8] that for every coloring
χ :

(

Q
2

)

→ k, k > 2, there is an oligochromatic copy of Q in the following
sense: there is a U ⊆ Q order-isomorphic to Q such that χ takes at most
two colors on

(

U
2

)

. This observation was later generalized by Devlin in his
thesis [1]. For each n > 1 Devlin found a positive integer Tn so that for
every coloring χ :

(

Q
n

)

→ k where k > 2 there is a U ⊆ Q order-isomorphic

to Q such that χ takes at most Tn colors on
(

U
n

)

. Devlin actually managed

to compute the numbers Tn and it turns out that Tn = tan(2n−1)(0).
The integer Tn is referred to as the big Ramsey degree of n in Q fol-

lowing Kechris, Pestov and Todorčević [12] where big Ramsey degrees were
explicitely introduced under this name in the context of structural Ramsey
theory of Fräıssé limits. In the concluding remarks the paper [12] points to
deep implications Big Ramsey degrees have on topological dynamics. Many
of the ideas promoted there were later operationalized by Zucker in [23].

The chain of the rationals, Q, is not only a countable chain but also a
Fräıssé limit of the class of all the finite chains. Not surprisingly, Q is not
the only Fräıssé limit whose every finite substructure has finite big Ramsey
degree in it. Sauer proved in [20] that several classes of finite structures have
finite big Ramsey degrees in the corresponding Fräıssé limits. Most notably,
every finite graph has finite big Ramsey degree in the Rado graph — the
Fräıssé limit of the class of all the finite graphs. Nugyen Van Thé proved
in [17] that for every nonempty finite set S of non-negative reals, every finite
S-ultrametric space has finite big Ramsey degree in the Fräıssé limit of the
class of all the finite S-ultrametric spaces. Another class of metric spaces
was shown to have finite big Ramsey degrees in [15]. Laflamme, Nugyen
Van Thé and Sauer proved in [13] that every finite local order has finite big
Ramsey degree in the dense local order S(2) — the Fräıssé limit of the class
of all the finite local orders. Finally, a remarkable result of Dobrinen [2, 3]
shows that every finite Kn-free graph has finite big Ramsey degree in the
Henson graph Hn — the Fräıssé limit of the class of all the finite Kn-free
graphs [3].
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In particular, an integer T > 1 is a big Ramsey degree of a finite chain n
in a chain A if it is the smallest positive integer such that for every coloring
χ :

(

A
n

)

→ k where k > 2 there is a U ⊆ A order-isomorphic to A such that

χ takes at most T colors on
(

U
n

)

. If no such T exists we say that n does

not have big Ramsey degree in A. We denote the big Ramsey degree of n
in A by T (n,A), and write T (n,A) =∞ if n does not have the big Ramsey
degree in A.

Clearly, for every n ∈ N there is, up to isomorphism, only one chain of
length n. Hence, for any chain A it makes sense to consider the big Ramsey

spectrum of A:

spec(A) = (T (1, A), T (2, A), T (3, A), . . .) ∈ (N ∪ {∞})N.

A chain A has finite big Ramsey spectrum if T (n,A) <∞ for all n > 1, that
is, if spec(A) ∈ NN. In this parlance the Ramsey’s theorem and the results
of Galvin and Devlin take the following form:

Theorem 1.2. (a) (Ramsey [18]) spec(ω) = (1, 1, 1, . . .).
(b) (Galvin [7, 8]) T (2,Q) = 2.
(c) (Devlin [1]) spec(Q) = (T1,T2,T3, . . .), which coincides with the

OEIS sequence A000182.

For a chain A let A∗ denote A with the order reversed. It is obvious that
spec(A) = spec(A∗) for all chains A. In particular, spec(ω) = spec(ω∗).
Interestingly, ω and ω∗ are the only countable chains whose spectrum is
(1, 1, 1, . . .) [19]. We thus get the following strengthening of Ramsey’s The-
orem:

Theorem 1.3 ([19, Corollary 11.4]). Let A be a countable chain.
(a) T (2, A) = 1 if and only if A ∼= ω or A ∼= ω∗.
(b) Consequently, spec(A) = (1, 1, 1, . . .) if and only if A ∼= ω or A ∼= ω∗.

It is very easy to show that if A and B are chains such that A embeds
into B and B embeds into A then spec(A) = spec(B) for all n > 1. Devlin’s
result, therefore, immediately applies to any non-scattered countable chain
(recall that a countable chain is scattered if it does not embed Q, otherwise
it is non-scattered):

Theorem 1.4 (Devlin [1]). If A is a non-scattered countable chain then
spec(A) = spec(Q) = (T1,T2,T3, . . .).

Not much is known about big Ramsey spectra of scattered chains. One
of the most notable results in this direction was proved by R. Laver:
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Theorem 1.5 (Laver [14]). T (1, S) <∞ for every scattered chain S.

In case S is an ordinal a direct (and much simpler) proof can be found in
[6, p. 189]:

Theorem 1.6 (Fräıssé [6, p. 189]). (a) T (1, ωα) = 1 for every ordinal α.
(b) T (1, α) <∞ for every ordinal α.

There is a bit more clarity in case of finite powers of ω:

Theorem 1.7. (a) T (n, ωm) <∞ for all 1 6 n,m < ω.
(b) (Galvin [9]) spec(ω2) coincides with the OEIS sequence A000311.

A proof of (a) in case n = 2 (which easily generalizes to other values of n)
can be found in [22, Theorem 7.2.7]. Another proof of (a) can be found
in [16].

A systematic treatment and some explicit calculations of T (n, α) for a
countable ordinal α and n > 2 can be found in [16]. The main result of [16]
characterizes countable ordinals with finite big Ramsey spectra:

Theorem 1.8 ([16]). Let α be a countable ordinal.
(a) If α < ωω then α has finite big Ramsey spectrum.
(b) If α > ωω then spec(α) = (n,∞,∞,∞, . . .) for some n ∈ N.

In [16] we also managed to compute the big Ramsey spectra in some
simple cases.

Theorem 1.9 ([16]). Let m ∈ N be arbitrary.
(a) T (n, ω+m) =

∑n
j=0

(

m
j

)

for all n > 1 (where
(

m
j

)

= 0 when m < j);

(b) spec(ωm) = (1,m2,m3,m4, . . .);
(c) spec(Z) = (2, 22, 23, 24, . . .).

In this paper we consider big Ramsey spectra of countable scattered
chains. In Section 2 we recall some standard notions and notation. In
Section 3 we prove that big Ramsey spectra of countable chains are non-
decreasing (where, as usual, we take n <∞ for all n ∈ N). In Section 4 we
prove that countable scattered chains of finite Hausdorff rank (to be defined
below) have finite big Ramsey spectra (Theorem 4.3). In Section 5, on the
other hand, we prove that big Ramsey spectra of countable scattered chains
of infinite Hausdorff rank take the form (n,∞,∞,∞, . . .) for some n ∈ N

(Theorem 5.4). In both cases we rely on a Ramsey-type result and an appro-
priate representation of countable scattered chains. Whereas in Section 4
we use an infinite version of the Product Ramsey Theorem from [16] and
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work top-down using a syntactical representation of scattered chains based
on “chain terms”, in Section 5 we use Galvin’s result about square bracket
partition relation and work bottom-up using a “semantical representation”
of scattered chains based on condensations.

Together with the fact that all countable non-scattered chains have finite
big Ramsey spectra (Theorem 1.4) the final result of the paper takes the
following form:

Main result (Corollary 5.5). Let A be a countable chain.
(a) If A is a scattered chain of infinite Hausdorff rank then spec(A) =

(n,∞,∞, . . .) for some n ∈ N.
(b) In all other cases spec(A) is a non-decreasing chain of integers.

2 Preliminaries

A chain is a pair (A,<) where < is a linear order on A. For a, b ∈ A let
[a, b]A = {x ∈ A : a 6 x 6 b}. Note that in case a > b we have that
[a, b]A = ∅. An interval of A is a subset I ⊆ A such that [x, y]A ⊆ I for
all x, y ∈ I. If we wish to stress that A and B are isomorphic as ordered
sets we shall say that they are order-isomorphic and write A ∼= B. For a
well-ordered set A let tp(A) denote the order type of A.

As usual, N = {1, 2, 3, . . .} is the chain of all the positive integers with the
usual ordering, Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the chain of all the integers
with the usual ordering, and Q is the chain of all the rationals with the usual
ordering. The order type of Z will be denoted by ζ.

A chain A is scattered if Q 6 →֒ A. Otherwise it is non-scattered. In 1908
Hausdorff published a structural characterization of scattered chains [11],
which was rediscovered by Erdős and Hajnal in their 1962 paper [4]. We
shall now present Hausdorff’s characterization of countable scattered chains.
Define a sequence Σα of chains indexed by ordinals as follows:

• Σ0 = {0, 1};

• for an ordinal α > 0 let Σα = {
∑

i∈Z Si : Si ∈
⋃

β<α Σβ for all i ∈ Z}.

Theorem 2.1 (Hausdorff [11]). For each ordinal α the elements of Σα are
countable scattered chains. Conversely, for every countable scattered chain
S there is an ordinal α such that S ∈ Σα.

The least ordinal α such that Σα contains a countable scattered chain S
is referred to as the Hausdroff rank of S and denoted by rH(S). A countable
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scattered chain S has finite Hausdorff rank if rH(S) < ω. Otherwise it has
infinite Hausdorff rank.

Let C be a chain and n a finite chain. Then the set
(

C
n

)

of all the n-
element subsets of C clearly corresponds to the set Emb(n,C) of all the
embeddings n →֒ C. We sometimes find it more convenient to formally
introduce big Ramsey degrees as follows. For chains A, B, C and integers
k > 2 and t > 1 we write C −→ (B)Ak,t to denote that for every k-coloring
χ : Emb(A,C)→ k there is an embedding w ∈ Emb(B,C) such that |χ(w ◦
Emb(A,B))| 6 t. For a chain C and a finite chain n we say that n has finite
big Ramsey degree in C if there exists a positive integer t such that for each
k > 2 we have that C −→ (C)nk,t. Equivalently, a finite chain n has finite
big Ramsey degree in a chain C if there exists a positive integer t such that
for every k > 2 and every k-coloring χ : Emb(n,C) → k there is a U ⊆ C
order-isomorphic to C such that |χ(Emb(n,U))| 6 t. The least such t is
then denoted by T (n,C). If such a t does not exist we say that A does not

have finite big Ramsey degree in C and write T (A,C) =∞. The sequence

spec(C) = (T (1, C), T (2, C), T (3, C), . . .) ∈ (N ∪ {∞})N

is referred to as the big Ramsey spectrum of C. We say that C has finite

big Ramsey spectrum if spec(C) ∈ NN. For the sake of convenience, for any
chain C we let T (0, C) = 1 by definition.

3 Monotonicity

Big Ramsey degrees in Fräıssé limits are monotonous in the following sense
(see [23]). Let F be a countable Fräıssé limit in a relational language and
let A and B be finite substructures of F . Then A →֒ B implies that
T (A,F ) 6 T (B,F ). In this section we prove that the same holds for count-
able chains. Consequently, the big Ramsey spectrum of any countable chain
is a nondecreasing sequence of elements of N ∪ {∞} where, of course, we
take ∞ to be larger than any integer. Since in the context of arbitrary
chains we cannot rely on ultrahomogeneity, we shall proceed by discussing
the structure of countable chains.

Lemma 3.1. Let A be an infinite chain and m,n ∈ N such that 2 6 m 6 n.
If T (n,A) <∞ then T (m,A) <∞.

Proof. Let T (n,A) = t ∈ N and let us show that T (m,A) 6 t ·
(

n
m

)

. Take
any k > 2 and any χ : Emb(m,A)→ k. Define

χ′ : Emb(n,A)→ P(k)
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by
χ′(f) = χ(f ◦ Emb(m,n)) ⊆ k.

Since T (n,A) = t, there is an A′ ⊆ A order-isomorphic to A such that

|χ′(Emb(n,A′))| 6 t.

Therefore,

χ′(Emb(n,A′)) = {χ′(f) : f ∈ Emb(n,A′)}

= {χ(f ◦ Emb(m,n)) : f ∈ Emb(n,A′)}

has at most t elements, so there exist not necessarily distinct g0, g1, . . . , gt−1 ∈
Emb(n,A′) such that

{χ(f ◦ Emb(m,n)) : f ∈ Emb(n,A′)} = {χ(gi ◦ Emb(m,n)) : i < t}. (3.1)

On the other hand, it is easy to see that Emb(m,A′) = Emb(n,A′) ◦
Emb(m,n) because A′, as a chain isomorphic to A, is infinite. So,

χ(Emb(m,A′)) = χ(Emb(n,A′) ◦ Emb(m,n))

= χ(
⋃

f∈Emb(n,A′) f ◦ Emb(m,n))

=
⋃

f∈Emb(n,A′) χ(f ◦ Emb(m,n))

=
⋃

i<t χ(gi ◦ Emb(m,n)) because of (3.1).

Therefore,

|χ(Emb(m,A′))| 6
∑

i<t

|χ(gi ◦ Emb(m,n))| 6 t ·

(

n

m

)

,

because |χ(gi ◦ Emb(m,n))| 6
(

n
m

)

.

Lemma 3.2. Let A be a chain with no maximal element. Then m 6 n
implies T (m,A) 6 T (n,A) for all m,n ∈ N.

Proof. Let T (n,A) = t ∈ N. Take any k > 2 and let χ : Emb(m,A) → k
be a coloring. Define χ′ : Emb(n,A) → k by χ′(h) = χ(h↾m). Then there
is an A′ ⊆ A order-isomorphic to A such that |χ′(Emb(n,A′))| 6 t. Since
A′ is a chain with no maximal element, every m-element subchain of A′

can be extended to an n-element subchain of A′, whence χ(Emb(m,A′)) ⊆
χ′(Emb(n,A′)). Therefore, |χ(Emb(m,A′))| 6 t.
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Lemma 3.3. Let A be a chain such that A = B + ω∗ for some chain B.
Then m 6 n implies T (m,A) 6 T (n,A) for all m,n ∈ N.

Proof. Without loss of generality we may assume that B ∩ ω∗ = ∅. Fix
m,n ∈ N such that m 6 n. Let f : m →֒ n be the inclusion f(i) = i, and
let g : A →֒ A be the self-embedding of A where g(b) = b for all b ∈ B and
g(i) = i+ n for all i ∈ ω∗. Because g “leaves enough room towards the end
of the chain” it is easy to show that g ◦ Emb(m,A) ⊆ Emb(n,A) ◦ f .

Let T (n,A) = t ∈ N. Take any k > 2 and let χ : Emb(m,A) → k be
a coloring. Define χ′ : Emb(n,A) → k by χ′(h) = χ(h ◦ f). Then there is
a w : A →֒ A such that |χ′(w ◦ Emb(n,A))| 6 t. The definition of χ′ then
yields that |χ(w ◦Emb(n,A)◦f)| 6 t. Therefore, |χ(w ◦g ◦Emb(m,A))| 6 t
because g ◦ Emb(m,A) ⊆ Emb(n,A) ◦ f .

Lemma 3.4. Let A be a chain such that A = B + r for some r ∈ N and
some chain B with no maximal element. Assume that B ∩ r = ∅ where
r = {0, 1, . . . , r − 1}, and that there exists an embedding ĝ : A →֒ A such
that ĝ(0) /∈ r. Then m 6 n implies T (m,A) 6 T (n,A) for all m,n ∈ N.

Proof. Let ĝ(0) = b0 ∈ B. Since B does not have the maximal element there
exist b1, . . . , br−1 ∈ B such that b0 < b1 < . . . < br−1. Let g : A →֒ A be
the self-embedding of A where g(b) = ĝ(b) for all b ∈ B and g(i) = bi for
all i < r. Then g is clearly a self embedding of A. Let f : m →֒ n be the
inclusion f(i) = i. As in the proof of Lemma 3.3 it is easy to show that
g ◦Emb(m,A) ⊆ Emb(n,A) ◦ f because g “leaves enough room towards the
end of the chain”. We can now simply repeat the argument of Lemma 3.3
to conclude the proof.

Let f : n →֒ B + r be an embedding, where n, r ∈ N and B is a chain
such that B ∩ r = ∅. Then tp(f) = im(f)∩ r will be referred to as the type

of f . (For a set map f : A→ B by im(f) we denote the image of f , that is,
the set {f(a) : a ∈ A}.) Given a type τ ⊆ r, let

Embτ (n,B + r) = {f ∈ Emb(n,B + r) : tp(f) = τ}.

Lemma 3.5. Let n, r ∈ N and let B be a chain such that B ∩ r = ∅.
For every type τ ⊆ r with |τ | 6 n, every k > 2 and every coloring χ :
Embτ (n,B + r) → k there is a U ⊆ B order-isomorphic to B such that
|χ(Embτ (n,U + r))| 6 T (n− |τ |, B).

Proof. Take an type τ ⊆ r such that |τ | 6 n and assume that T (n−|τ |, B) <
∞. If |τ | = n then for every U ⊆ B we have that |Embτ (n,U + r)| = 1,
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whence |χ(Embτ (n,U + r))| = 1 = T (0, B). So, let s = |τ | < n and
let Φ : Embτ (n,B + r) → Emb(n − s,B) be the bijection that takes f ∈
Embτ (n,B + r) to f↾n−s ∈ Emb(n − s,B). Fix a k > 2 and a coloring
χ : Embτ (n,B+ r)→ k. Let χ′ : Emb(n− s,B)→ k be the coloring defined
by χ′(f) = χ(Φ−1(f)). Then there is a U ⊆ B order-isomorphic to B such
that |χ′(Emb(n − s, U))| 6 T (n − s,B). But then it easily follows that
|χ(Embτ (n,U + r))| 6 T (n− s,B).

Lemma 3.6. Let B be a chain with no maximal element and let r ∈ N.
Assume that B∩ r = ∅ and that g↾r = idr for every embedding g : B+ r →֒
B + r.

(a) If T (n,B + r) <∞ then T (n− j,B) <∞ for all n ∈ N and 0 6 j 6
min{n, r}.

(b) If T (n,B + r) <∞ then T (n,B + r) =
∑min{n,r}

j=0

(

r
j

)

· T (n− j,B).

Proof. (a) Assume that T (n − j,B) = ∞ for some 0 6 j 6 min{n, r} and
let us show that T (n,B + r) = ∞ by showing that T (n,B + r) > t for
every t ∈ N. Fix a t ∈ N. Because T (n − j,B) = ∞ there is a coloring
χ : Emb(n− j,B)→ k for some k > t such that |χ(w ◦ Emb(n− j,B))| > t
for every w : B →֒ B. Define χ′ : Emb(n,B + r)→ k as follows:

χ′(f) =

{

χ(f↾n−j), |tp(f)| = j,

0, otherwise.

Take any g : B + r →֒ B + r. Clearly, g↾B : B →֒ B. Let us show that

χ′(g ◦ Emb(n,B + r)) ⊇ χ(g↾B ◦ Emb(n− j,B)).

Take any f ∈ Emb(n − j,B) and let h : j → r be the inclusion i 7→ i. Put
f ′ = f + h : n →֒ B + r. Since |tp(f ′)| = j we have that

χ′(g ◦ f ′) = χ((g ◦ f ′)↾n−j) = χ(g↾B ◦ f
′↾n−j) = χ(g↾B ◦ f).

Therefore, |χ′(g ◦ Emb(n,B + r))| > |χ(g↾B ◦ Emb(n− j,B))| > t.

(b) Fix an n ∈ N and assume that T (n,B+ r) <∞. Then T (n− j,B) <
∞ for all 0 6 j 6 min{n, r} (by (a)). Let Q = {τ ⊆ m : |τ | 6 n}
be the set of all the types realized by members of Emb(n,B + r). Let

Q = {τ0, τ1, . . . , τt−1} so that |Q| = t. Note that t =
∑min{n,r}

j=0

(

r
j

)

.
Fix a k > 2 and a coloring χ : Emb(n,B + r)→ k. By Lemma 3.5 there

is a U0 ⊆ B order-isomorphic to B such that

|χ(Embτ0(n,U0 + r))| 6 T (n− |τ0|, B).
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By the same lemma for each j ∈ {1, . . . , t− 1} we then inductively obtain a
Uj ⊆ Uj−1 order-isomorphic to Uj−1 (and hence to B) such that

|χ(Embτj (n,Uj + r))| 6 T (n− |τj |, B).

Then, using the fact that Ut−1 ⊆ Uj we have that

|χ(Emb(n,Ut−1 + r))| =
∑

j<t

|χ(Embτj (n,Ut−1 + r))|

6
∑

j<t

|χ(Embτj (n,Uj + r))|

6
∑

j<t

T (n− |τj|, B) 6

min{n,r}
∑

j=0

(

r

j

)

· T (n− j,B).

In order to conclude the proof we have to show that there exists a coloring

χ : Emb(n,B + r) → k where k >
∑min{n,r}

j=0

(

r
j

)

· T (n − j,B) such that

|χ(w ◦ Emb(n,B + r))| >
∑min{n,r}

j=0

(

r
j

)

· T (n − j,B) for every embedding
w : B + r →֒ B + r.

Since T (n − j,B) is the big Ramsey degree of n − j in B, for every
0 6 j 6 min{n, r} there is a coloring χj : Emb(n − j,B) → kj where
kj > T (n − j,B) such that |χj(v ◦ Emb(n − j,B))| > T (n − j,B) for every
embedding v : B →֒ B. Define

χ : Emb(n,B + r)→
⋃

τ∈Q

{τ} × k|τ |

as follows: for an f ∈ Emb(n,B+ r) let τ = tp(f) and j = |τ |, and then put

χ(f) = (τ, χj(f↾n−j)).

Take any embedding w : B + r →֒ B + r. By the assumption we know
that w↾r = idr. Clearly, χ(w◦Emb(n,B+r)) =

⋃

τ∈Q χ(w◦Embτ (n,B+r)).
Let us show that this is a disjoint union.

Take any f ∈ Emb(n,B + r). Note first that tp(w ◦ f) = tp(f) because
w↾r = idr. For j = |tp(f)| we then have

χ(w ◦ f) = (tp(f), χj((w ◦ f)↾n−j)) = (tp(f), χj(w↾B ◦ f↾n−j)).

The claim now follows immediately, because the first component of χ(w ◦f)
is tp(f).
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Consequently, |χ(w ◦ Emb(n,B + r))| =
∑

τ∈Q |χ(w ◦ Embτ (n,B + r))|.
Now, take any τ ∈ Q and let j = |τ |. Then

χ(w ◦ Embτ (n,B + r)) = {(τ, χj(w↾B ◦ f↾n−j)) : f ∈ Embτ (n,B + r)}

= {(τ, χj(w↾B ◦ f
′)) : f ′ ∈ Emb(n− j,B)}.

Therefore,

|χ(w ◦ Emb(n,B + r))| =
∑

τ∈Q

|χ(w ◦ Embτ (n,B + r))|

=
∑

τ∈Q

|χ|τ |(w↾B ◦ Emb(n− |τ |, B)))|

>
∑

τ∈Q

T (n− |τ |, B) [by the choice of χ|τ |]

=

min{n,r}
∑

j=0

(

r

j

)

T (n− j,B).

Theorem 3.7. Let A be a countable chain and m,n ∈ N. If m 6 n then
T (m,A) 6 T (n,A).

Proof. Case 1. If A is a non-scattered chain then spec(A) = (T1,T2,T3, . . .)
by Theorem 1.4, and it is a well known fact that T1 < T2 < T3 < . . ..

Case 2. If A has no maximal element then Lemma 3.2 applies.

Case 3. If A = B + ω∗ for some chain B then Lemma 3.3 applies.

Case 4. Assume that A is a scattered chain with the maximal element,
but A = B + ω∗ for no chain B.

Then A = B + r for some r ∈ N and some chain B with no maximal
element. Without loss of generality we can assume that B∩r = ∅. If there is
an embedding g : A →֒ A such that g(0) ∈ B Lemma 3.4 applies. Therefore,
for the rest of the proof assume that for every embedding g : A →֒ A we
have that g↾r = idr.

If T (n,A) =∞ the statement is trivially true.
If T (n,A) < ∞ then T (m,A) < ∞ either because m = 1 in which case

Theorem 1.5 applies, or m > 2 in which case Lemma 3.1 applies. Anyhow,
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both T (m,A) and T (n,A) are finite, so by Lemma 3.6 (recall that A = B+r),

T (m,B + r) =

min{m,r}
∑

j=0

(

r

j

)

· T (m− j,B) and

T (n,B + r) =

min{n,r}
∑

j=0

(

r

j

)

· T (n− j,B).

Since m 6 n and B is a chain with no maximal element, Lemma 3.2 ensures
that T (m − j,B) 6 T (n − j,B) for all 0 6 j 6 min{m, r}. Therefore,
T (m,B + r) 6 T (n,B + r). This completes the proof.

4 Countable scattered chains of finite rank

In this section we prove that countable scattered chains of finite rank have
finite big Ramsey spectra. The tool we rely on is a result from [16] that
we see as the infinite version of the Product Ramsey Theorem. The proof
presented in [16] is rather involved because one of our aims was to compute
the upper bound on the number of colors along the way and prove that
the bound is tight. For the sake of completeness we shall now give a less
ambitious, but much shorter proof.

Theorem 4.1 (cf. [16, Corollary 4.9]). For every choice of integers s > 1
and m0, m1, . . . , ms−1 > 1 there is an integer D = D(s;m0,m1, . . . ,ms−1)
such that for every k > 2 and every coloring χ :

(

ω
m0

)

× . . . ×
(

ω
ms−1

)

→ k

there is an infinite U ⊆ ω satisfying
∣

∣

∣
χ
(

(

U
m0

)

× . . .×
(

U
ms−1

)

)
∣

∣

∣
6 D.

Proof. For notational convenience let m = (m0,m1, . . . ,ms−1), let ‖m‖ =
m0 +m1 + . . .+ms−1, and for a set X let

E(m,X) =

(

X

m0

)

×

(

X

m1

)

× . . .×

(

X

ms−1

)

.

For a tuple A = (A0, A1, . . . , As−1) ∈ E(m,ω) let

V (A) = A0 ∪A1 ∪ . . . ∪As−1 = {v0 < v1 < . . . < vq−1} ⊆ ω,

and for i < q let Si = {j < s : vi ∈ Aj}. Then we refer to (S0, S1, . . . , Sq−1) ∈
P(s)q as the type of A and denote it by tp(A). Clearly, A is uniquely
determined by tp(A) and V (A). We say that a tuple σ ∈ P(s)q is a type if

12



there exists a tuple A ∈ E(m,ω) such that σ = tp(A). Note that q 6 ‖m‖,

so there are at most
∑‖m‖

q=1 2
s·q types.

For X ⊆ ω and a type σ let

Eσ(m,X) = {A ∈ E(m,X) : tp(A) = σ}.

Claim. For any infinite X ⊆ ω, any type σ, any k > 2 and any coloring
χ : Eσ(m,X)→ k there is an infinite Y ⊆ X such that |χ(Eσ(m,Y ))| = 1.

Proof. Let q be the length of the tuple σ. As we have already seen,
any A ∈ Eσ(m,X) is uniquely determined by V (A), which is a q-element
subset of X. Conversely, every q-element subset of X is V (A) for some
A ∈ Eσ(m,X). So, V : Eσ(m,X)→

(

X
q

)

is a bijection. Define χ′ :
(

X
q

)

→ k

by χ′(B) = χ(V −1(B)). By Ramsey’s Theorem there is an infinite Y ⊆ X
such that χ′ takes only one color on

(

Y
q

)

. Therefore, χ takes only one color
on Eσ(m,Y ). This concludes the proof of the claim.

Let us now resume with the proof of the theorem. Let σ0, σ1, . . . , σD−1

be all the types of tuples from E(m,ω). Take any k > 2 and any coloring
χ : E(m,ω)→ k. The Claim implies there is an infinite U0 ⊆ ω such that

|χ(Eσ0
(m,ω))| = 1.

By the same argument for each j ∈ {1, . . . ,D − 1} we can inductively con-
struct an infinite Uj ⊆ Uj−1 such that

|χ(Eσj
(m,Uj))| = 1.

Then, having in mind that UD−1 ⊆ Uj,

|χ(E(m,UD−1))| 6
∑

j<D

|χ(Eσj
(m,UD−1))|

6
∑

j<D

|χ(Eτj (m,Uj))| 6 D.

The discussion that follows is based on the syntactic representation of
chains in terms of chain terms, which are trees that capture the way the
chain can be constructed from simpler chains. Let us, therefore, fix some
basic notions.

A rooted tree is a pair τ = (T, v0) where T is partially ordered, v0 ∈ T
is the root of T and [v0, x]T is well-ordered for every x ∈ T . Maximal
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chains in T are called the branches of τ . The height of a rooted tree is the
supremum of order-types of branches in T :

ht(τ) = sup{tp(b) : b is a branch in τ}.

For a vertex x ∈ T let succτ (x) be the set of all the immediate successors of
x and let outτ (x) = {(x, y) : y ∈ succτ (x)} be the set of the outgoing edges.
A vertex x ∈ T is a leaf of τ if succτ (x) = ∅.

A rooted tree τ = (T, v0) is ordered if outτ (x) is a chain for every x ∈ T .
If ht(τ) 6 ω then the linear orders on outτ (x), x ∈ T , uniquely determine a
linear ordering on the vertices of T : just traverse the tree using the breadth-
first-search strategy. This means that we start with the root v0, then list
the immediate successors of v0 according to the ordering of outτ (v0), and so
on. We refer to this ordering as the BFS-ordering of τ .

A labelled ordered rooted tree is an ordered rooted tree where some (but
not necessarily all) of the vertices are labelled by the elements of some set L1,
and some (but not necessarily all) of the edges are labelled by the elements
of some set L2.

In this section it will be convenient to ignore the empty chain 0 and to
restrict finite sums of chains to sums of pairs. Let X be a variable which
ranges over chains. Let us define a hierarchy of chain terms as follows. Let
T0(X) = {1} and S0(X) = {1}. For each ordinal α > 1 define Tα(X) and
Sα(X) by:

Tα(X) =
⋃

β<α Sβ(X)

Sα(X) =Tα(X) ∪ {
∑

i∈2 ϕi : ϕ0, ϕ1 ∈ Tα(X)}

∪ {
∑

i∈X ϕi : ϕ0, ϕ1, . . . ∈ Tα(X)}

∪ {
∑

i∈X∗ ϕi : ϕ0, ϕ1, . . . ∈ Tα(X)}.

For a chain term ψ(X) ∈ Sα(X) and a chain C, by ψ(C) we denote the chain
that is obtained by substituting C for the variable X in the term ψ(X), and
by Tα(C) and Sα(C) we denote the corresponding classes of chains.

Clearly, elements of each Sα(ω) are nonempty scattered chains and every
nonempty scattered chain appears in some Sα(ω). For a nonempty scattered
chain S let r(S) denote the rank of S in this hierarchy, which is the smallest
ordinal α such that S ∈ Sα(ω). A scattered chain S is of finite rank if
r(S) < ω.

Note that r(S) and rH(S) need not coincide. For example, for n ∈ N

we have that rH(n) = 1 while r(n) = ⌈log2 n⌉. Nevertheless, for every
nonempty scattered chain S we have that r(S) is finite if and only if rH(S)
is finite.
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Every chain term ψ ∈ Sα(X) can be represented as a labelled ordered
rooted tree 〈ψ〉 of height α. The leaves of 〈ψ〉 will not be labelled while all
other vertices will be labelled by 2, X or X∗. The labels on the edges going
out of vertices labelled by 2 will be referred as hard labels and labels on all
other edges will be referred to as soft labels.

• In case ψ = 1 the corresponding tree is an unlabelled one-vertex tree
〈ψ〉 = •.

• If ψ =
∑

i∈2 ϕi then 〈ψ〉 has the root labelled by 2, the edges going
out of the root are labelled by 0 and 1, respectively, ordered that way,
and lead to the subtrees 〈ϕ0〉 and 〈ϕ1〉:

2

0 1

〈ϕ0〉 〈ϕ1〉

〈ψ〉 =

← hard labels

• If ψ =
∑

i∈X ϕi then 〈ψ〉 has the root labelled by X, the edges going
out of the root are labelled by elements of X, ordered that way, and
lead to the subtrees 〈ϕi〉, i ∈ X:

X

〈ϕi〉 〈ϕj〉

〈ψ〉 =
· · · · · ·· · · i

j ← soft labels

• If ψ =
∑

i∈X∗ ϕi then 〈ψ〉 has the root labelled by X∗, the edges going
out of the root are labelled by elements of X∗, ordered that way, and
lead to the subtrees 〈ϕi〉, i ∈ X

∗:

X∗

〈ϕj〉 〈ϕi〉

〈ψ〉 =
· · · · · ·· · ·

j i ← soft labels
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Let ψ(ω) ∈ Sr(ω) be a nonempty scattered chain of finite rank r ∈ N.
Every embedding f : n →֒ ψ(ω) corresponds to a subtree of 〈ψ〉 induced by
n branches. Let us denote this tree by 〈f〉. Clearly, 〈f〉 has n leaves and
has height 6 r.

Assume, now, that 〈f〉 has p vertices. If we replace the vertex set of 〈f〉
by {0, 1, . . . , p−1} so that the usual ordering of the integers agrees with the
BFS-ordering of the new tree, and then erase the soft labels, the resulting
labelled ordered rooted tree on the set of vertices {0, 1, . . . , p − 1} will be
referred to as the type of f and will be denoted by tp(f). A finite labelled
ordered rooted tree τ is an (n,ψ(ω))-type if τ = tp(g) for some embedding
g : n →֒ ψ(ω).

Therefore, for all n, r ∈ N and all ψ(ω) ∈ Sr(ω) each (n,ψ(ω))-type is a
labelled ordered rooted tree with the following properties:

• its set of vertices is {0, 1, . . . , p−1} for some p ∈ N and the BFS-order
of the tree coincides with the usual ordering of the integers (hence 0
is the root of the tree);

• it has n leaves and its height is 6 r;

• its leaves are not labelled while other vertices are labelled by 2, ω
or ω∗; and

• its edges going out of vertices labelled by 2 are labelled by 0, 1 or both
while other edges are not labelled.

(Note that a labelled ordered rooted tree with the above properties need not
be an (n,ψ(ω))-type.) Clearly, given n, r ∈ N and a ψ(ω) ∈ Sr(ω) there are
only finitely many (n,ψ(ω))-types. For an (n,ψ(ω))-type τ let

Embτ (n,ψ(ω)) = {f ∈ Emb(n,ψ(ω)) : tp(f) = τ}.

Lemma 4.2. Let S ⊆ ω be an infinite subset of ω, let n, r ∈ N and let
ψ(X) ∈ Sr(X). For every (n,ψ(S))-type τ there is a Dτ ∈ N such that for
every k > 2 and every coloring χ : Embτ (n,ψ(S)) → k there is an infinite
U ⊆ S satisfying

|χ(Embτ (n,ψ(U)))| 6 Dτ .

Proof. Without loss of generality we can take S = ω. Let ℓ0 < ℓ1 < . . . <
ℓs−1 be all the vertices of τ labelled by ω or ω∗. Let mi = |outτ (ℓi)|,
i < s, and let Dτ = D(s;m0,m1, . . . ,ms−1) be the number provided by
Theorem 4.1.
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Take any f ∈ Embτ (n,ψ(ω)) and let (v0, v1, . . . , vp−1) be the vertex set
of 〈f〉 ordered by the BFS-order of 〈f〉. Since tp(f) = τ , the only vertices in
〈f〉 labelled by ω or ω∗ are vℓ0 , vℓ1 , . . . , vℓs−1

. Let Lf (i) ⊆ ω be the set of all
the labels used to label the edges in out(vℓi), i < s. Clearly, |Lf (i)| = mi,
i < s.

By construction, each embedding f ∈ Embτ (n,ψ(ω)) is uniquely deter-
mined by the sequence (Lf (0), Lf (1), . . . , Lf (s− 1)) of subsets of ω of sizes
m0, m1, . . . , ms−1, respectively. Therefore,

Φ : Embτ (n,ψ(ω))→

(

ω

m0

)

×

(

ω

m1

)

× . . .×

(

ω

ms−1

)

given by
Φ(f) = (Lf (0), Lf (1), . . . , Lf (s− 1))

is an injective mapping.
Now, take any k > 2 and any coloring χ : Embτ (n,ψ(ω)) → k, and

define

χ′ :

(

ω

m1

)

× . . .×

(

ω

ms−1

)

→ k

by

χ′(A0, A1, . . . , As−1) =

{

χ(f), Φ(f) = (A0, A1, . . . , As−1),

0, otherwise.

Then by Theorem 4.1 there exists an infinite U ⊆ ω such that

∣

∣

∣

∣

χ′

((

U

m0

)

× . . .×

(

U

ms−1

))∣

∣

∣

∣

6 Dτ .

The construction of χ′ ensures that

χ(Embτ (n,ψ(U))) ⊆ χ′

((

U

m0

)

× . . .×

(

U

ms−1

))

,

whence |χ(Embτ (n,ψ(U)))| 6 Dτ . This completes the proof, having in mind
that ψ(U) is order-isomorphic to ψ(ω).

Theorem 4.3. Let S be a countable scattered chain such that rH(S) < ω.
Then spec(S) is finite.

Proof. Let r(S) = r. Note that r(S) < ω because rH(S) < ω. Then S is
isomorphic to some ψ(ω) ∈ Sr(ω). Take any n ∈ N and let us show that
T (n,ψ(ω)) is finite. Let τ0, τ1, . . . , τs−1 be all the (n,ψ(ω))-types and let
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Dτ0 , Dτ1 , . . . , Dτs−1
be the integers provided by Lemma 4.2. We are going

to show that T (n,ψ(ω)) 6
∑

j<sDτj <∞.
Take any k > 2 and any coloring χ : Emb(n,ψ(ω))→ k. By Lemma 4.2

there is an infinite U0 ⊆ ω such that

|χ(Embτ0(n,ψ(U0)))| 6 Dτ0 .

By the same lemma for each j ∈ {1, . . . , s− 1} we can inductively construct
an infinite Uj ⊆ Uj−1 such that

|χ(Embτj (n,ψ(Uj)))| 6 Dτj .

Then, having in mind that Us−1 ⊆ Uj ,

|χ(Emb(n,ψ(Us−1)))| =
∑

j<t

|χ(Embτj (n,ψ(Us−1)))|

6
∑

j<t

|χ(Embτj (n,ψ(Uj)))| 6
∑

j<t

Dτj .

5 Countable scattered chains of infinite rank

In this section we prove that countable scattered chains of infinite Hausdorff
rank do not have finite big Ramsey spectra. In contrast to the previous sec-
tion where we worked top-down using a syntactical representation of scat-
tered chains based on chain terms, in this section we work bottom-up using
a “semantical representation” of scattered chains based on condensations.

A map f : A → B between two chains is a homomorphism if x 6

y ⇒ f(x) 6 (y) for all x, y ∈ A. A condensation of A [19] is a surjective
homomorphism c : A→ B. Note that any condensation of a scattered chain
is scattered.

If c : A → B is a condensation then θ = ker c is an equivalence relation
whose classes are intervals of A. Conversely, for every equivalence relation
θ whose classes are intervals of A the linear order carries from A to A/θ in
the obvious way and the quotient map c : A → A/θ given by c(a) = [a]θ is
a condensation.

A condensation c : A → B is referred to as finite if the following holds:
c(x) = c(y) if and only if [x, y]A ∪ [y, x]A is finite [19]. It is easy to see
that if c1 : A → B1 and c2 : A → B2 are finite condensations of A then
B1
∼= B2. Hence, up to isomorphism of codomains, there is a unique finite

condensation of A that we refer to as the finite condensation of A and denote
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by cfin. For each finite condensation cfin : A→ B and each y ∈ B the order-
type of c−1

fin (y) is either n for some n ∈ N, or ω, or ω∗ or ζ. We say that y ∈ B
is a finitary point if c−1

fin (y) is finite; otherwise we say that y is an infinitary

point. Clearly, there do not exist x, y ∈ B such that [x, y]B = {x, y} and
both x and y are finitary points.

Let A be a chain. For each ordinal α let us define cαfin : A → A/θα
inductively as follows. Let θ0 = {(a, a) : a ∈ A} and define c0fin : A → A/θ0
by c0fin(a) = {a}. For a successor ordinal α = β + 1 let cαfin = cfin ◦ c

β
fin

and θα = ker cαfin, while for a limit ordinal λ let θλ =
⋃

α<λ θα and define
cλfin : A→ A/θλ by cλfin(a) = [a]θλ .

We say that an ordinal α is the finite condensation rank of a chain A
and write rF (A) = α if α is the least ordinal such that cαfin(A)

∼= 1. For
every countable scattered chain S the finite condensation rank rF (S) exists
and rF (S) = rH(S) [19].

The proof that we present in this section heavily relies on a powerful re-
sult of Galvin about square bracket partition relations which express strong
counterexamples to ordinary partition relations. For chains C, B0, B1, B2,
. . . , and n < ω write

C −→ [B0, B1, B2, . . .]
n

to denote that for every coloring χ : Emb(n,C) → ω there is an i < ω and
a subchain U ⊆ C such that U ∼= Bi and i /∈ χ(Emb(n,U)). Erdős and
Hajnal note in [5, p. 275] that in 1971 Galvin proved the following:

Theorem 5.1 (Galvin 1971). If S is a scattered chain that contains no
uncountable well-ordered subsets then S −→/ [ω, ω2, ω2, ω3, ω3, . . .]2.

A recent proof of Galvin’s result can be found in [21].

Lemma 5.2. Let S be a countable scattered chain, let cfin : S → cfin(S)
be the finite condensation of S and let I ⊆ cfin(S) be an infinite interval
of cfin(S). Then there are infinitely many infinitary points in I.

Proof. Let us show that for any finitary points a, b ∈ cfin(S) there is an
infinitary point x ∈ cfin(S) such that a < x < b. Suppose this is not the
case. Then there exist a, b ∈ c(S) such that a < b and every x ∈ [a, b]cfin(S)
is finitary. Since cfin(S) is scattered, there exist a′, b′ ∈ [a, b]cfin(S) such that
a′ < b′ and [a′, b′]cfin(S) = {a

′, b′} — contradiction with the fact that cfin is a
finite condensation.

Now, if I contains only finitely many finitary points we are done because
I is infinite. Suppose, therefore, that there are infinitely many finitary points
in I. Take any n > 1 and let b0 < b1 < . . . < bn be some finitary points
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from I. Then, as we have just seen, there are infinitary points a1, . . . , an ∈
cfin(S) such that b0 < a1 < b1 < a2 < . . . < an < bn. Note that a1, . . . , an ∈
I because I is an interval. This is true for any n > 1, so there are infinitely
many infinitary points in I.

For notational convenience let ω(+) = ω and ω(−) = ω∗. For a finite
sequence δ = (δ0, δ1, . . . , δn−1) ∈ {+,−}

n let

ω(δ) = ω(δ0) · ω(δ1) · . . . · ω(δn−1).

Let α be an odrinal. For an α-sequence δ = (δi)i<α ∈ {+,−}
α and n < α

we let δ↾n = (δ0, δ1, . . . , δn−1).

Lemma 5.3. Let S be a countable scattered chain such that rH(S) > ω.

There exists an ω-sequence δ ∈ {+,−}ω = (δ0, δ1, . . .) such that ω(δ↾k) →֒ S
for all k > 1.

Proof. Each of the chains S, cfin(S), c
2
fin(S), . . . , c

n
fin(S), . . . is a countably

infinite scattered chain. For each j ∈ N we shall label infinitary points of
cjfin(S) by elements of {+,−}j and along the way build a set T of finite
words over {+,−} as follows. To start the induction put the empty word
ε in T and label each infinitary point y ∈ cfin(S) by + if the order type of
c−1
fin (y) is ω or ζ; otherwise label the point by −. Add all the labels assigned
to infinitary points of cfin(S) to T . Note that ℓ ∈ T means that ω(ℓ) →֒ S.

Assume that all the infinitary points of cjfin(S) have been labelled by

elements of {+,−}j . Take any infinitary point y ∈ cj+1
fin (S). Since c−1

fin (y)

is an infinite interval of cjfin(S), it contains infinitely many infinitary points
(Lemma 5.2). Each of the infinitary points in c−1

fin (y) is labelled by one of
the 2j labels, so there is a label ℓ ∈ {+,−}j which occurs infinitely many
times in c−1

fin (y). If the order type of c
−1
fin (y) is ω or ζ label y by ℓ+; otherwise

label y by ℓ−. Add all the labels assigned to infinitary points of cj+1
fin (S)

to T . Note again that ℓ ∈ T means that ω(ℓ) →֒ S.
The prefix ordering turns T into an infinite (not necessarily full) binary

tree, so by the Kőnig’s Lemma there is an infinite branch δ ∈ {+,−}ω =

(δ0, δ1, . . .). Clearly, the construction ensures that ω(δ↾k) →֒ S for all k >

1.

Theorem 5.4. Let S be a countable scattered chain such that rH(S) > ω.
Then T (n, S) =∞ for every 2 6 n < ω.

Proof. Due to Lemma 3.1 it suffices to show that T (2, S) =∞.
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According to Lemma 5.3 there exists an ω-sequence δ ∈ {+,−}ω =

(δ0, δ1, . . .) such that ω(δ↾k) →֒ S for all k > 1.

Case 1: The symbol + occurs infinitely many times in δ.
Since S is a countable scattered chain Theorem 5.1 applies, so

S −→/ [ωn0 , ωn1 , ωn2 , ωn3 , ωn4 , . . .]2,

where n0 = 1, n1 = n2 = 2, n3 = n4 = 3, and so on. Therefore, there exists a
coloring γ : Emb(2, S)→ ω with the following property: for every i < ω and
every subchain H ⊆ S such that H ∼= ωni we have that i ∈ γ(Emb(2,H)).

Note that if + appears m times in δ↾k then, clearly, ωm →֒ ω(δ↾k).

Analogously, if − appears m times in δ↾k then (ω∗)m →֒ ω(δ↾k). Since +
occurs infinitely many times in δ it follows that ωi →֒ S for all i ∈ N.

Now, take any t > 2 and consider the coloring χt : Emb(2, S) → t
given by χt(f) = min{t − 1, γ(f)}. Let S′ be an arbitrary subchain of S
order-isomorphic to S. Since ωi →֒ S ∼= S′ for all i ∈ N, for every i < t
there is a subchain Hi ⊆ S′ order-isomorphic to ωni . By the construction
of χt it then follows that i ∈ χt(Emb(2,Hi)) ⊆ χt(Emb(2, S′)). Therefore,
|χt(Emb(2, S′))| > t. This concludes the proof that T (2, S) =∞ in Case 1.

Case 2: The symbol + occurs only finitely many times in δ.
Then the symbol − occurs infinitely many times in δ, so (ω∗)i →֒ S for

all i ∈ N. Therefore, ωi →֒ S∗ for all i ∈ N. This time we apply Theorem 5.1
to S∗ to conclude that S∗ −→/ [ωn0 , ωn1 , ωn2 , ωn3 , ωn4 , . . .]2, and as in Case 1
we conclude that T (2, S∗) =∞. But it is easy to see that T (2, S) = T (2, S∗)
for every chain S. Therefore, T (2, S) =∞.

Corollary 5.5. Let A be a countable chain.
(a) If A is a scattered chain of infinite Hausdorff rank then spec(A) =

(n,∞,∞, . . .) for some n ∈ N.
(b) In all other cases spec(A) is a non-decreasing chain of integers.

Proof. If A is a countable scattered chain of infinite Hausdorff rank then
T (n,A) = ∞ for all n > 2 (Theorem 5.4). On the other hand, if A is a
countable scattered chain of finite Hausdorff rank then T (n,A) <∞ for all
n > 2 (Theorem 4.3) and this sequence is non-decreasing by Theorem 3.7.
Finally, if A is a non-scattered countable chain then Theorem 1.4 applies.
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[4] P. Erdős, A. Hajnal. On a classification of denumerable order types and
an application to the partition calculus. Fundamenta Mathematicae 51
(1962), 117–129.
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