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Abstract

Recently Raayoni et al. announced various conjectures on continued fractions

of fundamental constants automatically generated with machine learning tech-

niques. In this paper we prove some of their stated conjectures for Euler number

e and show the equivalence of some of the listed conjectures. Moreover, we pro-

pose a simple method that can be used to generate other continued fractions

using their series representations.
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1. Introduction

Continued fraction theory is one of the old area of number theory that dates

back to Bombelli from 16th Century [1]. The infinite continued fractions were

first studied by Lord Brouncker who stated the well-known continued fraction for

4/π. All giants of number theory including Euler, Gauss, Lagrange, Legendre,

and Galois contributed to the field. For any given sequences (an) and (bn)

Email addresses: shirali.kadyrov@sdu.edu.kz (Shirali Kadyrov),
farukh.mashurov@sdu.edu.kz (Farukh Mashurov)

Preprint submitted to arXiv.org December 10, 2019

http://arxiv.org/abs/1912.03214v2


continued fraction is written as

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
.. .

, or b0 +
a1
b1 +

a2
b2 +

a3
b3 +

· · · . (1)

For any n, a natural number, n’th convergent of (1) is given by

An

Bn

:= b0 +
a1
b1 +

a2
b2 +

a3
b3 +

· · ·
+

an
bn

.

We say that a given number x has continued fraction expansion (1) provided

lim
n→∞

An

Bn

= x.

Inductively it is easy to verify that for n ≥ 1 the sequences (An) and (Bn)

satisfy the following difference equations

An = bnAn−1 + anAn−2 (2)

Bn = bnBn−1 + anBn−2 (3)

with initial conditions

A−1 = 1, A0 = b0, B−1 = 0, and B0 = 1. (4)

When an = 1 and bn ∈ N for all n ≥ 1, (1) is called the simple continued

fraction and it is a generalized continued fraction otherwise. Computing closed

form solutions to difference equations as in (2) and (3) with variable coefficients

an, bn is difficult in general [2]. An elementary approach is to guess the closed5

form of An and Bn from the first few terms and prove it using mathematical

induction. Recently, this approach was used in [3] to prove one of the many con-

jectures on generalized continued fraction expansion for Euler number e listed

in [4]. Machine learning techniques, namely Meet-In-The-Middle and Gradient

Descent, were implemented in [4] to obtain various conjectures for mathematical10

constants π and e listed in www.RamanujanMachine.com.

2

www.RamanujanMachine.com


In this note our aim is twofold: First, we prove some of the conjectures

from www.RamanujanMachine.com using similar approach to [3] or show the

equivalence of certain conjectures. Next, we describe a twisted approach to find

and prove new generalized continued fractions for mathematical constants.15

For the first objective we have the following, Throughout e = 2.7182 . . .

stands for the Euler number.

Theorem 1. We have

e

2
= 1 +

1

2 +

3

3 +

4

4 +

5

5 +
. . . .

Theorem 2. We have

e− 2 = 1 +
−1

1 +

2

1 +

−1

1 +

3

1 +

−1

1 +

4

1 +
· · · ,

Both were conjectured in www.RamanujanMachine.com. The following sim-

ple observations can be used to prove the equivalence of two continued fractions.

Theorem 3. We have

−

(

b0 +
a1
b1 +

a2
b2 +

a3
b3 +

a4
b4 +

· · ·

)

= −b0 +
a1
−b1 +

a2
−b2 +

a3
−b3

a4
−b4 ++

· · ·

b0 +
a1
b1 +

a2
b2 +

a3
b3 +

a4
b4 +

· · · = b0 +
−a1
−b1 +

−a2
b2 +

−a3
−b3 +

−a4
b4 +

· · ·

As a corollary, we prove another conjecture from www.RamanujanMachine.com20

Corollary 1. We have

−e = −3 +
−1

−4 +

−2

−5 +

−3

−6 +
. . . .

Theorem 3 applied to the second formula in [3] immediately gives the above

corollary. Using Theorem 1, Theorem 3, and a trivial manipulation gives proof

for another conjecture in www.RamanujanMachine.com.

Corollary 2. We have

−
e

2
= −1 +

2

−2 +

3

−3 +

4

−4 +
· · · .
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We note that using similar arguments as in the proof of Theorem 1, Zhaniya

Zhanabay provided another proof for Corollary 2. Theorem 2 together with25

Theorem 3 immediately give

Corollary 3. We have

2− e = −1 +
−1

−1 +

2

−1 +

−1

−1 +

3

−1 +

−1

−1 +

4

−1 +
· · ·

e− 2 = 1 +
1

−1 +

−2

1 +

1

−1 +

−3

1 +

1

−1 +

−4

1 +
· · ·

Both statements were conjectured in www.RamanujanMachine.com.

Corollary 4. The following conjectures are equivalent:

−
1

2
(π + 2) = −3 · 1 +

−2 · 1

−3 · 2 +

−3 · 3

−3 · 3 +

−4 · 5

−3 · 4 +

−5 · 7

−3 · 5 +
· · ·

1

2
(π + 2) = 3 · 1 +

−2 · 1

3 · 2 +

3 · 3

3 · 3 +

−4 · 5

3 · 4 +

−5 · 7

3 · 5 +
· · ·

−
1

2
(π + 2) = −3 · 1 +

2 · 1

3 · 2 +

3 · 3

−3 · 3 +

4 · 5

3 · 4 +

5 · 7

−3 · 5 +
· · ·

1

2
(π + 2) = 3 · 1 +

2 · 1

−3 · 2 +

−3 · 3

3 · 3 +

4 · 5

−3 · 4 +

5 · 7

3 · 5 +
· · ·

The first two conjectures appear in www.RamanujanMachine.com and the

remaining two are new. The equivalence of the four conjectures are trivial from

Theorem 3. Attempt to prove the conjectures related to continued fractions for30

π using similar ideas as in the above theorems are not yet successful.

For the second objective we obtain the following.

Theorem 4. Let
∑∞

k=1 ck be a convergent series with nonzero terms. Define

b1 = 2, a1 = 2c1, and

bn =
2(cn + cn−1)

cn−1

and an =
−4cn
cn−1

, for n ≥ 2.

Then, we have
∞
∑

k=1

ck =
a1
b1 +

a2
b2 +

a3
b3 +

a4
b4 +

· · · .

If we one considers the well-known series representation for π/4, namely,

π/4 =
∑∞

k=1(−1)k+1/(2k − 1), then Theorem 4 gives

π

4
=

1

1 +

12

2 +

32

2 +

52

2 +

72

2 +
· · · ,
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which is well-known (goes back to Lord Brouncker, 17th century), except the

first three terms needs to be simplified.

For (π− 3)/4 =
∑∞

k=1(−1)k+1/[2k(2k+1)(2k+2)], another series represen-

tation of π, we obtain

π − 3

4
=

1

24 +

36

6 +

52

6 +

72

6 +

92

6 +
· · · ,

yet another well-known representation [5]. We have the following new continued35

fraction for π/3:

Corollary 5. We have

π

3
=

−6

−5 +

−75

63 +

29645

278 +

a4
b4 +

a5
b5 +

· · · ,

where an, bn are given by

bn = 2(36n2 − 72n+ 31) and an = (2n− 1)(2n− 5)(6n− 11)2(6n− 7)2,

for any n ≥ 2.

In the next section we prove Theorem 1. Then, in § 3 we introduce the

twisted method to prove Theorem 4.

2. Proofs of conjectures40

Proof of Theorem 1. We note that bn = n + 1 for n ≥ 0 and a1 = 1, an =

n + 1 for n ≥ 1. Substituting into (2) and (3) we see that (An)n≥−1 =

(1, 1, 3, 12, 60, 360, 2520, . . .) and (Bn)≥−1 = (0, 1, 2, 9, 44, 265, 1854, . . .). From

[6], https://oeis.org/ we see that An is eventually the sequence A001710,

the number of even permutations of n letters, which is given by n!/2. So, we

derive that An = (n + 2)!/2 for n ≥ 0. Similarly, we see that Bn is the shifted

sequence A182386 from [6]. This gives Bn = (n+ 2)!
∑n+2

k=0 (−1)k/k! for n ≥ 1.

It is straightforward to verify bu induction these formulas, then

lim
n→∞

An

Bn

= lim
n→∞

1/2
∑n+2

k=0 (−1)k/k!
=

2−1

e−1
= e/2.

5
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Proof of Theorem 3. Note that

−

(

b0 +
a1
b1 +

a2
b2 +

a3
b3 +

· · ·

)

= −b0 +
−a1
b1 +

a2
b2 +

a3
b3 +

· · ·

= −b0 +
a1

−
(

b1 +
a2

b2 +
a3

b3 +
· · ·
) .

Hence, the assertion follows by induction. For the second claim, we notice that

b0 +
a1
b1 +

a2
b2 +

a3
b3 +

a4
b4 +

· · · = b0 +
−a1

−b1 +
(

−a2

b2 +
a3

b3 +
a4

b4 +
· · ·
) .

Again inductively we deduce the claim.

Proof of Theorem 2. For bn = 1,≥ 0 and (an)≥1 = (−1, 2,−1, 3,−1, 4,−1, . . .)

we get

(An)≥−1 = (1, 1, 0, 2, 2, 8, 6, 38, 32, 222, 190, · · ·),

(Bn)≥−1 = (0, 1, 1, 3, 2, 11, 9, 53, 44, 309, 265, . . .).

These sequences are not recognized in [6]. However, if we consider subsequences

with odd and even indices separately then we see for n ≥ 1 that

A2n−1 = −n!

(

1 + 2

n
∑

k=1

(−1)k
1

k
!

)

= −n!

(

2

n
∑

k=0

(−1)k
1

k
!− 1

)

A2n = (n+ 1)! + (n+ 2)!− 2(A000166(n+ 1) +A000166(n+ 2))

B2n−1 = n!

n
∑

k=0

(−1)k
1

k
!

B2n = A000166(n+ 1) +A000166(n+ 2)

where A000166(n) = n!
∑n

k=0(−1)k 1
k!
. We see that

lim
n→∞

A2n−1

B2n−1

= −2 + lim
n→∞

1
∑n

k=0(−1)k 1
k
!
= e− 2.

Similarly,

lim
n→∞

A2n

B2n

= lim
n→∞

(n+ 1)! + (n+ 2)!

(n+ 1)!
∑n+1

k=0(−1)k 1
k!

+ (n+ 2)!
∑n+2

k=0 (−1)k 1
k!

− 2

= lim
n→∞

(n+ 1)! + (n+ 2)!

[(n+ 1)! + (n+ 2)!]
∑n+1

k=0(−1)k 1
k!
+ (−1)n+2/(n+ 2)!

− 2

=
1

∑∞

k=0(−1)k 1
k!

− 2 = e− 2.
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3. Generating new continued fractions

In this section we explain a general method to obtain various generalized45

continued fraction formulas for a given number. It is based on the following

very simple idea:

1. For a given number x, find sequences An, Bn such that limn→∞
An

Bn

= x

2. Find an, bn satisfying the difference equations (2) and (3) with initial

conditions (4).50

Then, obviously (1) converges to x. To this end, we need to find formulas for

an, bn in terms of An, Bn and pay special attention to initial conditions as we

study now. We may write (2) and (3) as a matrix equation:





An−1 An−2

Bn−1 Bn−2









bn

an



 =





An

Bn



 (5)

Assuming invertibility (An−1Bn−2 −An−2Bn−1 6= 0) we obtain





bn

an



 =
1

An−1Bn−2 −An−2Bn−1





Bn−2 −An−2

−Bn−1 An−1









An

Bn



 ,

which summarizing gives

Theorem 5. Let x be a number. Let (An)≥−1 and (Bn)≥−1 be two sequences

of numbers satisfying

1. limn→∞ An/Bn = x,55

2. A−1 = 1, B−1 = 0, B0 = 1,

3. An−1Bn−2 −An−2Bn−1 6= 0 for n ≥ 2.

Then, for the sequences (an)≥1 and (bn)≥0 given by

bn :=
AnBn−2 −An−2Bn

An−1Bn−2 −An−2Bn−1

, an :=
−AnBn−1 +An−1Bn

An−1Bn−2 −An−2Bn−1

for n ≥ 1, (6)

and b0 = A0 we have

x = b0 +
a1
b1 +

a2
b2 +

a3
b3 +

a4
b4 +

· · · .

7



We now apply Theorem 5 to prove Theorem 4.

Proof of Theorem 4. Let
∑∞

k=1 ck converge to some x. We let

An = 2n
n
∑

k=1

ck, Bn = 2n, n ≥ 1 and A−1 = 1, A0 = 0, B−1 = 0, B0 = 1. (7)

Then, limn→∞ An/Bn = x and An, Bn satisfy the conditions of Theorem 4. We

may rewrite (6) as

bn =

An

Bn

−
An−2

Bn−2

An−1

Bn−1

−
An−2

Bn−2

·
Bn

Bn−1

and an =
−An

Bn

+ An−1

Bn−1

An−1

Bn−1

−
An−2

Bn−2

·
Bn

Bn−2

, n ≥ 2. (8)

Using (7) we see that (8) simplifies to

bn =
2(cn + cn−1)

cn−1

and an =
−4cn
cn−1

, for n ≥ 3. (9)

The remaining cases n = 1, 2 require special attention due to initial conditions.

For n = 2, we have

b2 =
2(c1 + c2)

c1
and a2 =

−4c2
c1

For n = 1, we have Bn−2 = B−1 = 0, hence we cannot use (8). Instead we use

(6) to obtain b1 = 2 and a1 = 2c1. Applying Theorem 5 finishes the proof.60

Proof of Corollary 5. Let us apply Theorem 4 to

π

3
=

∞
∑

k=1

(−1)k+1

(

1

6k − 5
+

1

6k − 1

)

.

This leads to

bn =
4(36n2 − 72n+ 31)

(6n− 5)(6n− 1)(2n− 3)
and an =

(2n− 1)(6n− 11)(6n− 7)

(6n− 5)(6n− 1)(2n− 3)
, n ≥ 2,

and b1 = 2, a1 = 6/5. Note that for any nonzero scalar c we have a1

b1 +
a2

b2 +
a3

b3 +
· · · = ca1

cb1 +
ca2

b2 +
a3

b3 +
· · · . Repeatedly using this fact to clear the denominators

we arrive at

π/3 =
−6

−5 +

−75

63 +

29645

278 +

a′4
b′4 +

a′5
b′5 +

· · · ,

with a′n and b′n given by

b′n = 2(36n2 − 72n+ 31) and a′n = (2n− 1)(2n− 5)(6n− 11)2(6n− 7)2,

for any n ≥ 2.
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