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Abstract

We propose a new way of defining and studying operads on multigraphs and similar ob-
jects. For this purpose, we use the combinatorial species setting. We study in particular two
operads obtained with our method. The former is a direct generalization of the Kontsevich-
Willwacher operad. This operad can be seen as a canonical operad on multigraphs, and has
many interesting suboperads. The latter operad is a natural extension of the pre-Lie operad
in a sense developed here and it is related to the multigraph operad. We also present various
results on some of the finitely generated suboperads of the multigraph operad and establish
links between them and the commutative operad and the commutative magmatic operad.

Introduction
Operads are mathematical structures which have been intensively studied in the context of topol-
ogy, algebra [11] but also of combinatorics [3] —see for example [6, 13] for general references on
symmetric and non-symmetric operads, set-operads through species, etc. In the last decades, sev-
eral interesting operads on trees have been defined. Amongst these tree operads, maybe the most
studied are the pre-Lie operad PLie [4] and the nonassociative permutative operad NAP [10].

However, it seems to us that a natural question to ask is what kind of operads can be defined
on graphs and what are their properties? The need for defining appropriate graph operads comes
from combinatorics, where graphs are, just like trees, natural objects to study. It comes also from
physics, where it was recently proposed to use graph operads in order to encode the combinatorics
of the renormalization of Feynman graphs in quantum field theory [9].

Other graph operads have been defined for example in [5, 8, 12, 13, 15]. In this paper, we go
further in this direction and we define, using the combinatorial species setting [1], new graph
operads. Moreover, we investigate several properties of these operads: we describe an explicit
link with the pre-Lie tree operad mentioned above, and we study interesting (finitely generated)
suboperads.

This paper is organized as follows. In Section 1 we give the definitions of species, operads and
graphs as well as classical results on these objects. Moreover, we introduce here different notations
used throughout the this paper. In Section 2 we propose new ways of constructing species and
operads. We use these new constructions in Section 3 to define and study the main operads of
interest of this paper. Section 4 is devoted to the study of some particularly interesting finitely
generated suboperads.
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1 Definitions and reminders
Most definitions, results and proofs of this section can be found with more details in [13]. We refer
the reader to [1] for the theory of species and to [11] for the theory of operads.

In all the following, K is a field of characteristic zero. For any positive integer n, [n] stands
for the set {1, . . . , n}. For V a vector space and A a non empty finite set, we denote by V × A
the vector space

⊕
a∈A V . We denote by (v, a) elements of V ×A we thus have (k1v1 + k2v2, a) =

k1(v1, a) + k2(v2, a).

1.1 Species
Definition 1. A (positive) set species S consists of the following data.

• For each finite set V , a set S[V ], such that S[∅] = ∅.

• For each bijection of finite sets σ : V → V ′, a map S[σ] : S[V ]→ S[V ′]. These maps should
be such that S[σ ◦ τ ] = S[σ] ◦ S[τ ] and S[id] = id.

A morphism of set species f : R → S is a collection of map fV : R[V ] → S[V ] such that for
each bijection σ : V → V ′, fV ′ ◦R[σ] = S[σ] ◦ fV .

A set species S is connected if |S[{v}]| = 1 for any singleton {v}.

In the previous definitions switching from sets to vector spaces, from maps to linear maps and
cardinality with dimension, we obtain the definition of (positive) linear species, morphism of linear
species and connected linear species.

We denote by L the functor from set species to linear species defined by L(S)[V ] = KS[V ],
where KS[V ] is the free K-vector space on S[V ], and L(f)V the linear extension of f . We also
denote by KS for L(S). For any set species S, and w =

∑
x∈S[V ] axx ∈ KS[V ] we call support of

w the set of x ∈ S[V ] such that ax 6= 0.

Example 2. • We denote by X the set species defined by X[V ] = {v} if V = {v} and
X[V ] = ∅ else.

• For V a non empty finite set, let Pol[V ] be the set (and not the module) of polynomials on
Z with variables in V . Then Pol is the set species of polynomials on Z. When considering
KPol one has to take into consideration the fact that we need to differentiate the plus of
polynomials and the addition of vectors. We will thus denote by ⊕ the former and keep +
for the latter and we will denote by 0V ∈ Pol[V ] the polynomial constant to 0 and keep the
notation 0 for the null vector. For example, ab⊕ c is an element of Pol[{a, b, c}], but a⊕ b+ c
is a vector in KPol[{a, b, c}] with support {a⊕ b, c}.

• For any linear species S, we denote by S∨ the linear species defined by S∨[V ] = S[V ]∗ and
S∨[σ]x = sign(σ)x◦S[σ−1]. If S is a set species such that S[V ] = {b1, . . . , bn}, we denote by
b∨i , for 1 ≤ i ≤ n, the element of KS∨[V ] defined by b∨i (bj) = 1 if i = j and b∨i (bj) = 0 else.

In all the following V denotes a non empty finite set.

Definition 3. Let R and S be two species. We can then construct new set species which are
defined as follows:

Sum (R+ S)[V ] = R[V ]⊕ S[V ], P roduct R · S[V ] =
⊕

V1tV2=V

R[V1]⊗ S[V2],

Hadamard product (R×S)[V ] = R[V ]⊗S[V ], Derivative R′[V ] = R[V+{∗}] where ∗ 6∈ V ,

n-th derivative R(n) = R[V+{∗1, . . . , ∗n}] where ∗1, . . . , ∗n 6∈ V , Pointing R•[V ] = R[V ]×V,
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Assembly E(R)[V ] =
⊕
∼=

⊗
W∈V/∼=

R[W ] where ∼= run over the set of equivalence relations on V.

We have the same definitions on set species by replacing sums by direct unions and tensor products
by Cartesian products.

Note that these definitions are compatible with L i. e L(R + S) = L(R) + L(S), L(R · S) =
L(R) · L(S) etc.

1.2 Operads
Definition 4. A (symmetric) set (resp linear) operad is a set (resp linear) species O together
with a unity e : (resp K)X → O and a set (resp linear) species morphism ◦∗ : O′ · O → O called
partial composition such that the following diagrams commute

O′′ · O2 O′ · O O′ · O′ · O O′ · O

O′ · O O O′ · O O

◦∗1

◦∗2◦id ·τ ◦∗2

◦∗1 ·id

id ·◦∗2 ◦∗2
◦∗1 ◦∗1

O′ ·KX O′ · O KX ′ · O

O

O′ ·e

p ◦∗

e′·O

∼=

where τV : x⊗y ∈ O2[V ] 7→ y⊗x ∈ O2[V ] and pV : x⊗v 7→ O[∗ 7→ v](x) with ∗ 7→ v the bijection
that sends ∗ on v and is the identity on V \ {v}.

An operad morphism is a species morphism compatible with unities and partial compositions.

Note also that if (S, e, ◦∗) is a set operad, then extending e and ◦∗ linearly turns (KS, e, ◦∗)
into a linear operad. In all the following, e will often be trivial and we will not mention it.

From now on we use species and operad for linear species and linear operad and only specify
when we work with their set counterparts.

Example 5. • The singleton set species E defined by E[V ] = {V } naturally has a set operad
structure given by {V1 + {∗}} ◦∗ {V2} = {V1 + V2}.

• The identity set species Id given by Id[V ] = V has a set operad structure given by v ◦∗ w =
v|∗←w which is equal to v if v 6= ∗ and equal to w else.

• Let us recall the following operad structure on rooted trees: the units are the one vertex
trees and for a rooted tree t1 with vertex set V1 + {∗} and a rooted tree t2 with vertex set
V2 the partial composition t1 ◦∗ t2 is the sum over all tree obtained as follows.

1. Consider the forest obtained by removing ∗ from t1 and take the union with t2.

2. Add an edge between the parent of ∗ in t1 and the root of t2.

3. For each child of ∗ in t1, add an edge between this vertex and any vertex of t2.

This operad is called the PreLie operad [4] and we will denote it by PLie.

• The set species of polynomials Pol has a natural partial composition given by the com-
position of polynomials: for V1 = {v1, . . . , vk} and V2 = {v′1, . . . , v′l} disjoint sets and
p1(v1, . . . , vk, ∗) ∈ Pol′[V1] and p2(v′1, . . . , v′l) ∈ Pol[V2] define

(p1 ◦∗ p2)(v1, . . . , vk, v′1, . . . , v′l) = p1|∗←p2 = p1(v1, . . . , vk, p2(v
′
1, . . . , v

′
l)) ∈ Pol[V1+V2]. (1)
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One can directly check that this partial composition satisfies the commutative diagrams of
Definition 4. This turns Pol into a set operad where the units are the singleton polynomials
v ∈ Pol[{v}]. As mentioned previously, the linear extension of ◦∗ then turns KPol into a
linear operad.

Both the set operads E and Id can be seen as set sub-operads of Pol respectively by the
monomorphisms {V } 7→ ⊕v∈V v and v 7→ v. The operad KE can also be seen as a sub-
operad of KPol by the monomorphism {V } 7→

∑
v∈V v (which is not the linear extension of

the previous monomorphism).

An ideal of an operad O is a subspecies S such that the image of the products O′ · S and
S′ ·O by the partial composition maps are in S. The quotient species O/S defined by (O/S)[V ] =
O[V ]/S[V ] is then an operad with the natural partial composition and unit.

We now need to recall the notion of free operad [13]. For S a set species define the free set
operad FreeS over S by FreeS [V ] being the set of trees on V enriched with elements in S. Such
a tree T ∈ FreeS [V ] is defined as follows.

• The leaves of T are the elements of V .

• Each internal vertex u of T is labelled with the set Bu of leaves that are descendants of u
in T .

• There is an element of S[πu] attached to each fiber (set of sons) of each internal vertex u.

The set πu in the third item is defined as follows. To each leaf v we associate the set Bv = {v}.
Then πu is the set {Bw , w ∈ c(u)} with c(u) is the set of children of u.

The partial composition of FreeG, which we denote by ◦ξ∗ in order to not confuse it with an
already existing operad structure on G, is the grafting of trees: for any disjoint sets V1 and V2
with ∗ ∈ V1, and T1 ∈ FreeG[V1] and T2 ∈ FreeG[V2], T1 ◦ξ ∗T2 is the tree obtained by grafting
T2 on the leaf ∗ of T1 and updating the labels accordingly, i. e for each vertex u of T1 with ∗ as
descendant, update Bu to Bu − {∗}+ V2.

In the linear case, for S a species, define the free operad FreeS over S by FreeS being the
linear span of the set of trees on V enriched with elements in S. Such trees are defined in the
same way as in the set species case and the partial composition ◦ξ∗ is also the grafting of trees.
Remark that for S a set species we have that KFreeS = FreeKS .

For any k ≥ 0, we denote by Free
(k)
S the subspecies of FreeS of trees with k exactly internal

nodes.
If R is a subspecies of FreeS , we denote by (R) the smallest ideal containing R and write that

(R) is generated by R.

Definition 6. Let G be a species and R be a subspecies of FreeG. Let Ope(G,R) = FreeG/(R).
The operad Ope(G,R) is binary if the species G of generators is concentrated in cardinality 2 (i.
e., for all n 6= 2, G[[n]] = {0}). This operad is quadratic if R is a subspecies of Free(2)G .

Definition 7. Let O = Ope(G,R) be a binary quadratic operad. Define the linear form 〈−,−〉
on Free

(2)
G∨ × Free

(2)
G by

〈f1 ◦∗ f2, x1 ◦∗ x2〉 = f1(x1)f2(x2), (2)

The Koszul dual of O is then the operad O! = Ope(G∨, R⊥) where R⊥ is the orthogonal of R for
〈−,−〉.

When O is quadratic and its Koszul complex is acyclic, O is a Koszul operad [11]. In this case,
the Hilbert series of O and of its Koszul dual are related by the identity

HO(−HO!(−t)) = t. (3)
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1.3 Graphs and hypergraphs
In this subsection we present a formalism to define graphs and hypergraphs and their “multi”
variants.

A multiset m over V is a set of couples {(v,m(v)) | v ∈ V } in V ×N∗. We denote by D(m) = V
the domain of m. We say that v is in m and denote by v ∈ m if v ∈ D(m). For any element v not
in the domain of m, we have m(v) = 0.

We denote byM(V ) the set of multisets with domain in P(V ),Mk(V ) the set of elements of
M(V ) of cardinality k (the cardinality of a multiset m over V being

∑
v∈V m(v)) andM(V )∗ the

set of multisets with domain in P(V )∗ = P(V ) \ {∅}. We identify non empty sets with multisets
constant equal to 1.

For m a multiset and V a set, we denote by m ∩ V = m ∩ V × N∗. If m′ is another multiset,
we call the union of m and m′ the multiset {(v,m(v) +m′(v)) | v ∈ D(m) ∪D(m′)}.

Definition 8. Let V be a set. A multi-hypergraph over V is a multiset with domain inM(V )∗.
In this context the elements of V are called vertices, the elements of a multi-hypergraph are called
edges and the elements of an edge are called its ends. A vertex contained in the domain of no
edge is called an isolated vertex. We denote by MHG the set species of multi-hypergraphs.

A hypergraph is a multi-hypergraph whose edges are sets. A multigraph is a multi-hypergraph
whose edges have cardinality 2. A graph is a multi-hypergraph which is a hypergraph and a
multigraph at the same time as well as a set. Denote by HG, MG and G the set species
corresponding to these structures.

We also denote by F the species of forests, which is the subspecies of G such that for every
f ∈ F[V ] there are no sequences e1, . . . , ek of distinct edges such that ei ∩ ei+1 6= ∅ for 1 ≤ i < k
and ek ∩ e1 6= ∅.

Finally, for a subspecies S of MHG we denote by Sc its sub-species of connected components
that is to say elements such that for every pair of vertices v, v′, there is a sequence of edge e1, . . . , ek
such that v ∈ e1, v′ ∈ ek and ei ∪ ei+1 6= ∅. We denote by T = Fc the species of trees.

Note that for any sub-species S of MHG we have that E(Sc) = S.

1

2 3 2

1

1

Figure 1: Three edges of cardinality 3.

a

b

c

d

e

f

g

Figure 2: A multi-hypergraph over {a, b, c, d, e, f, g}.

Example 9. We represent the three edges {(1, 1), (2, 1), (3, 1)}, {(1, 2), (2, 1)} and {(1, 3)} in
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Figure 1 and the multi-hypergraph

{({(a, 2), (b, 1), (d, 1)}, 1), ({(b, 1), (c, 1), (e, 1)}, 1), ({e, 4}, 1), ({(e, 1), (f, 1)}, 1), ({(d, 1), (f, 1)}, 2)}
(4)

over {a, b, c, d, e, f, g} in Figure 2.

Remark 10. The set species MHG is isomorphic to the sub-species of Pol of polynomials with
constant term equal to 0. This isomorphism is defined as follows. For V a finite set:

• the empty graph ∅V ∈MHG[V ] is sent on the null polynomial 0V ,

• an edge e is sent on the monomial
∏
v∈e v

e(v),

• an element h ∈MHG[V ] is sent on the polynomial
⊕

e∈h e.

We often identify MHG with this sub-species. This identification is very useful to do compu-
tations since it is easier to formally write operations on polynomials than on graphs. With this
identification, hypergraphs can be seen as polynomials where each variable appears at most once
in each monomial and multigraphs as homogeneous polynomials of degree 2.

Example 11. With this identification, the multi-hypergraph in Example 2 writes a2bd ⊕ bce ⊕
e4 ⊕ ef ⊕ df ⊕ df .

2 Species and operad construction
The goal of this section is to define new constructions of species and operads from already existing
structures.

Definition 12. Let A be a set and S be a (resp set) species. An A-augmentation of S is a (resp
set) species A-S such that A-S[V ] ∼= S[V ×A] for every finite set V .

Example 13. Let A be a set. Instead of considering an A-augmented multi-hypergraph on V as
a multi-hypergraph on V ×A, we consider them as multi-hypergraphs on V where the ends of the
edges are labelled with elements of A. This is illustrated in Figure 5. In particular, the set species
of oriented multigraphs MGor is the set species {_, >} −MG of multigraphs where each end of
each edge is non a labelled end (i. e labeled by _) or labelled with an arrow head >.

Instead of seeing the variables of a polynomial in A-Pol[V ] as couples (v, a) ∈ V × A, we
consider them as elements of V indexed by elements of A: va.

Note that the identification presented in subsection 1.3 also holds between augmented multi-
hypergraphs and augmented polynomials.

1
1

2

3

3

3

22

1

1

1
(5)

Proposition 14. Let S be a (resp set) species and O a set operad. Let ϕ be a collection of linear
maps (resp maps) ϕV1+{∗},V2

: (S[V1+{∗}]⊗S[V2])×O[V2]→ S[V1+V2] (resp S[V1+{∗}]×S[V2]),
where V1 and V2 are disjoint, such that:

• for x ∈ S[V1 + {∗1}], (y, f) ∈ S ×O[V2 + {∗2}] and (z, g) ∈ S ×O[V3]:

ϕV1+{∗1},V2+V3
(x, ϕV2+{∗2},V3

(y, z, g), f◦∗2g) = ϕV1+V2+{∗2},V3
(ϕV1+{∗1},V2+{∗2}(x, y, f), z, g)

(6)
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• for x ∈ S[V1 + {∗1, ∗2}], (y, f) ∈ S ×O[V2] and (z, g) ∈ S ×O[V3]:

ϕV1+V2+{∗2},V3
(ϕV1+{∗1,∗2},V2

(x, y, f), z, g) = ϕV1+V3+{∗1},V2
(ϕV1+{∗1,∗2},V3

(x, z, g), y, f)
(7)

• there exists a map e : X → S such that for (x, f) ∈ S×O[V ] and (y, g) ∈ S×O[V +{∗}] we
have ϕ{∗},V (e(∗), x, f) = x and ϕV+{∗},{v}(x, e(v), eO(v)) = S[τ∗,v](x) where eO is the unit
of O and τ∗,v is the permutation which switches ∗ and v.

Then the partial composition ◦ϕ∗ defined by

◦ϕ∗ : S ×O[V1 + {∗}]⊗ S ×O[V2]→ S ×O[V1 + V2]

(x, f)⊗ (y, g) 7→ (ϕ(x, y, g), f ◦∗ g)
(8)

makes S × O an (resp set) operad with unit e. We call this operad the semidirect product of S
and O over ϕ and we denote it by S nϕ O.

Proof. This a rewriting of the axioms of Definition 4.

When it is clear in the context we will not mention ϕ and just write semidirect product of S
and O and denote by S n O. The goal of this construction is to give an operad structure to S
using the already known set operad structure on O.

Example 15. Let C be a finite set and denote by C2+ the set species defined by C2+[V ] = C if
|V | > 1 and C2+[V ] = ∅ else. The species C = X + C2+ has a set operad structure with partial
composition defined by, for x ∈ C′[V1] and y ∈ C[V2]: x ◦∗ y = x if V1 6= ∅ and x ◦∗ y = y else. Let
FC = X + FC2+ be the set species of maps with codomain C: FC [V ] = {f : V → C} for |V | > 1.
Then we have the semidirect product KFCnϕC given by, for V1 6= ∅, |V2| > 1 and f ∈ FC [V1+{∗}]

and (g, x) ∈ FC × C[V2]: ϕ(f, g, c) = 0 if f(∗) 6= c and ϕ(f, g, c)(v) =

{
f(v) if v ∈ V1
g(v) if v ∈ V2

else.

When V1 = ∅ or |V2| = 1 the partial composition is implied by the definition of the unit. We
call this operad the C-coloration operad. Alone, one can see an element of (f, c)FC nC[V ] (with
|V | > 1) as a corolla on V with its root colored by c and its leaves v ∈ V colored by f(v). The
partial composition consists then in grafting two corollas if the root and the leaf on which it must
be grafted share the same colors. However this operad is used more frequently in a Hadamard
product with another operad as a way to color it.

Definition 16. Let A be a set and O be an (resp set) operad with unit e. The set species of
functions from A to O is defined by FOA [V ] = {f : A→ O[V ]}. This set species has a set operad
structure with the elements f : A → {e(v)} in FOA [{v}] as units and partial composition defined
by f1 ◦∗ f2(a) = f1(a) ◦∗ f2(a).

Note that if A is a singleton then FOA ∼= O. Let A,B,C,D four sets such that A and B are
disjoint and f : A → C and g : B → D two maps. We denote by f ] g the map from A t B to
C ∪D defined by f ] g(a) = f(a) for a ∈ A and f ] g(b) = g(b) for b ∈ B.

Proposition 17. Let A and B be two disjoint sets and O1 and O2 be two operads. Then the
set species FO1

A ] FO2

B defined by FO1

A ] FO2

B [V ] = {f ] g | f ∈ FO1

A , g ∈ FO2

B } is a sub-operad of
FO1 +O2

AtB .

Proof. Since A and B are disjoint, the partial composition is well defined and stable on FO1

A ]
FO2

B .

3 Graph operads
In this section we use the construction of the previous section to define operad structures on
KMHG and its sub-species.

7



3.1 Graph insertion operads
Recall from Example 2 that we denote by ⊕ the addition of polynomials and 0V the zero polyno-
mials in order to distinguish them from the addition of vectors and the null vector. As announced
in Remark 10, we identify the elements of MHG with polynomials with null constant term. We
also identify A-augmented elements with polynomials with variables indexed by A.

We now consider that the addition and multiplication of polynomials are distributive on the
addition of vectors.

Theorem 18. Let A be a set. Define the collection of maps ϕ = {ϕV1+{∗},V2
: (KA-MHG[V1 +

{∗}]⊗KA-MHG[V2])×FKMHG
A )[V2]→ KA-MHG[V1 + V2]}V1∩V2=∅ by

ϕ(h1, h2, f) = h1|{∗a←f(a)a} ⊕ h2, (9)

where for a sum of polynomials
∑
P , (

∑
P )a =

∑
Pa is the same sum of polynomials but with

all the variables indexed by a.
We can then do the semidirect product of KA-MHG and FKMHG

A over ϕ.

We call any operad isomorphic to a sub-operad of A-MHGnFMHG
A a graph insertion operad.

The idea is to give a general construction of operads on (multi-)(hyper)graphs where the partial
composition of two elements g1 ◦∗ g2 is given by:

1. take the disjoint union of g1 and g2,

2. remove the vertex ∗ from g1,

3. connect independently each loose ends of g1 to g2 in a certain way.

What we mean by independently is that the way of connecting one end does not depend on how
we connect the other ends. Note that the “certain way” in which an end can be connected may
include duplication of edges and augmentation of the number of vertices of edges. Examples are
given after the proof of Proposition 18.

Proof. The linearity of ϕ is given by the fact that the addition and multiplication of polynomials
are distributive on the addition of vectors. We need to verify that ϕ satisfies the three items of
Proposition 14. The first two items are direct polynomials computations over polynomials:

ϕV1+{∗1},V2+V3
(h1, ϕV2+{∗2},V3

(h2, h3, g), f ◦∗2 g) = h1|{∗1a←f◦∗2g(a)a} ⊕ h2|{∗2a←g(a)a} ⊕ h3
= h1|{∗1a←f(a)a◦∗2g(a)a} ⊕ h2|{∗2a←g(a)a} ⊕ h3
= h1|{∗1a←f(a)a}|{∗2a←g(a)a} ⊕ h2|{∗2a←g(a)a} ⊕ h3
= (h1|{∗1a←f(a)a} ⊕ h2)|{∗2a←g(a)a} ⊕ h3
= ϕV1+V2+{∗2},V3

(ϕV1+{∗1},V2+{∗2}(h1, h2, f), h3, g)

(10)

ϕV1+V2+{∗2},V3
(ϕV1+{∗1,∗2},V2

(h1, h2, f), h3, g) = (h1|{∗1a←f(a)a} ⊕ h2)|{∗2a←g(a)a} ⊕ h3
= h1|{∗1a←f(a)a}|{∗2a←g(a)a} ⊕ h2 ⊕ h3
= h1|{∗2a←g(a)a}|{∗1a←f(a)a} ⊕ h3 ⊕ h2
= (h1|{∗2a←g(a)a} ⊕ h3)|{∗1a←f(a)a} ⊕ h2
= ϕV1+V3+{∗1},V2

(ϕV1+{∗1,∗2},V3
(h1, h3, g), h2, f).

(11)

For the last item, let e : X → -MHG be defined by e(v) = ∅{v}. We then have, with eF the
unit of FMHG

A :
ϕ{∗},V (e(∗), h, f) = ∅{∗}|{∗a←f(a)a} ⊕ h = h. (12)

8



Moreover, we have:

ϕV+{∗},{v}(h, e(v), eF (v)) = h|{∗a←eF (v)(a)a} ⊕ ∅{v}
= h|{∗a←va} = A-MHG[τ(∗,v)](h).

(13)

This concludes the proof.

In all the following when considering a semidirect product of a sub-species of KA-MHG and
a sub-operad of FMHG

A , this product is over the map ϕ defined in the Proposition 18. We hence
will omit the ϕ index.

From now on we denote by
∑
V the sum

∑
v∈V v in order to slightly lighten the notations.

Recall from Example 5 that we have natural embeddings of E and Id in Pol and a natural
embedding of KE in KPol. Since the images of these embeddings have null constant term, these
embeddings are in MHG.

Example 19. G• has a natural set operad structure given by G• ∼= G× Id ∼= {0}-GnFId{0}. For
(g1, v1) and (g2, v2) two pointed graphs the partial composition (g1, v1) ◦∗ (g2, v2) is then equal to
(g3, v1|∗←v2) where g3 is the graph obtained by connecting all the ends on ∗ to v2. More formally:

(g1, v1) ◦∗ (g2, v2) = (g1|∗←v2 ⊕ g2, v1|∗←v2)
= (G[τ∗,v2 ](g1)⊕ g2, v1|∗←v2).

(14)

For instance, one has:

∗

a

b

◦∗ c a =

a

b

c d . (15)

Remark that the set operad NAP [10] is a set sub-operad of the operad above and hence is a
graph insertion set operad.

Example 20. G has a natural set operad structure given by G ∼= G×E ∼= {0}-GnFE{0}. For g1
and g2 two graphs the partial composition g1 ◦ g2 is then the graph obtained by adding an edge
between each neighbour of ∗ and each vertex of g2. More formally, for g1 ∈ G′[V1] and g2 ∈ G[V2]:

g1 ◦∗ g2 = g1|∗←⊕v∈V2
v ⊕ g2

= g1 ∩ V 2
1 ⊕

⊕
v∈n(∗)

v(
⊕
v′∈V2

v′)⊕ g2

= g1 ∩ V 2
1 ⊕

⊕
v∈n(∗)

⊕
v′∈V2

vv′ ⊕ g2,

(16)

where n(∗) is the set of neighbours of ∗. Note that we also consider g1 as a set of edges in order
to write g1 ∩ V 2

1 for the set of edges of g1 not containing ∗. For instance, one has:

∗

a

b

◦∗ c a =

a

b

c d . (17)

Let V1 and V2 be two disjoint sets. For any multigraphs g1 ∈MG′[V1] and g2 ∈MG[V2], define
a partial composition of g1 and g2 as the sum of all the multigraphs of MG[V1 \tV2] obtained by
the following:

1. Take the disjoint union of g1 and g2;

2. Remove the vertex ∗. We then have some edges with one (or two if ∗ has loops) loose end(s);
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3. Connect each loose end to any vertex in V2.

For instance, one has:

a ∗ ◦∗ b c = a b c + a b c + 2 a b c

+ 2 a b c + 2 a b c + 4 a b c

+ a b c + a b c + 2 a b c .

(18)

Let us now state the main results of this subsection:

Theorem 21. The species KMG, endowed with the preceding partial composition, is an operad.

Proof. This is the operad structure on KMG implied by the isomorphism of species KMG →
{0}-MGn FKE

{0} .

One notes that the species KG and KMGc are suboperads of KMG, that KGc a suboperad
of KG, and that KT is a suboperad of KGc. In particular, this structure on KG is known as the
Kontsevich-Willwacher operad [12]. This partial composition can be formally written as follows.
For any g1 ∈MG[V1] and g2 ∈MG[V2] such that V1 and V2 are two disjoint sets and ∗ ∈ V1,

g1 ◦∗ g2 = g1|∗←∑
V2
⊕ g2

= g1 ∩ V1 ⊕
⊕
v∈n(∗)

v(
∑

V2)⊕ ((
∑

V2)
2)⊕g1(∗∗) ⊕ g2

=
∑

f :n(∗)→V2

∑
l:[g1(∗∗)]→V2V2

g1 ∩ V 2
1 ⊕

⊕
v∈n(∗)

vf(v)⊕
g1(∗∗)⊕
i=1

l(i)⊕ g2,

(19)

where n(∗) is the multiset of neighbours of ∗ in g1 and g1(∗∗) is the number of loops on ∗ in g1.
This partial composition reformulates in a simpler way on KG. For any g1 ∈ G[V1] and g2 ∈ G[V2]
such that V1 and V2 are two disjoint sets and ∗ ∈ V1,

g1 ◦∗ g2 = g1|∗←∑
V2
⊕ g2

= g1 ∩ V1 ⊕
⊕
v∈n(∗)

v(
∑

V2)⊕ g2

=
∑

f :n(∗)→V2

g1 ∩ V 2
1 ⊕

⊕
v∈n(∗)

vf(v)⊕ g2,

(20)

where n(∗) is now the set of neighbour of ∗ in g1. For instance, one has:

a

∗

b

◦∗ c d =

a

b

c d +

a

b

c d +

a

b

c d +

a

b

c d . (21)

We observe that all the graphs appearing in g1 ◦∗ g2 have 1 as coefficient.
Let us turn to the oriented case (cf Example 13). Let V1 and V2 be two disjoint sets such

that ∗ ∈ V1. For any rooted oriented multigraphs (g1, v1) ∈MG•or[V1] and (g2, v2) ∈MGor[V2]
•,

define a partial composition of (g1, v1) and (g2, v2) as the sum of all the rooted multigraphs of
MG•or[V1 \ {∗} t V2] obtained by the following:
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1. Take the disjoint union of g1 and g2;

2. Remove the vertex ∗. We then have some edges with a loose end;

3. Connect each non labelled loose end to v2;

4. Connect each labelled loose end to any vertex in V2;

5. The new root is v1 if v1 6= ∗ and is v2 otherwise.

For instance, by depicting by squares the roots of the multigraphs, one has:

∗

a

b

◦∗ c a =

a

b

c d +

a

b

c d . (22)

Theorem 22. The species KMG•orc, endowed with the preceding partial composition, is an
operad.

Proof. This is the operad structure on KMG•or implied by the monomorphism KG•or ↪→ {_, >
}-Gn FKId

_ ] FKE
> defined by:

KG•or[V ] ↪→ {_, >}-Gn FKId
_ ] FKE

> [V ]

(g, r) 7→ (g, f :

{
_ 7→ r_
> 7→ (

∑
V )>

).
(23)

This concludes the proof

It is straightforward to note that the subspecies of connected components KMG•orc and the
species KG•or are suboperads of KMG and that KG•orc is a suboperad of KG•or.

In a rooted tree, each edge has a parent end and a child end. Given a rooted tree t with root
r, denote by tr the oriented tree where each parent end of t is labelled and each child end is non
labelled. Then, the monomorphism T• ↪→ G•orc which sends each ordered pair (t, r), where t is a
tree and r is its root, on (tr, r) induces an operad structure on the species of rooted trees which
is exactly the operad PLie. Hence PLie is a graph insertion operad.

For the sake of completeness, let us end this section by mentioning that the notion of graph
insertion operad introduced here is different than the one mentioned in [9], in the context of
Feynman graph insertions in quantum field theory.

3.2 Canonical graph operad
We study here in more details the operad structure on KG implied by the one on KMG given
in Theorem 21. We will see that while KG itself has an involved operadic structure, it has many
interesting sub-operads.

Before explaining how KG has an involved operadic structure, let us first introduce some
notations. Let S be a species, I be a set, {Vi}i∈I be a family of finite sets, and xi ∈ S[Vi] for all
i ∈ I. We call subspecies of S generated by {xi}i∈I the smallest subspecies of S containing the
family {xi}i∈I . If S is furthermore an operad, we call suboperad of S generated by {xi}i∈I the
smallest suboperad of S containing the family {xi}i∈I . We write that x is generated by {xi}i∈I if
x is in the suboperad generated by {xi}i∈I .

These definitions given, it is natural to search for a smallest family of generators of KG. The
search of such a family is computationally hard. Using computer algebra, we obtain a family of
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generators of KG of arity less than 5:

, , , , , , ,

, , , , , , ,

, , , , , , , .

(24)

Due to the symmetric group action on KG, only the knowledge of the shapes of the graphs is
significant. While (24) does not provide to us any particular insight on a possible characterisation
of the generators, it does suggest that any graph with “enough” edges must be a generator. This
is confirmed by the following lemma.

Lemma 23. Let {Vi}i∈I be a family of non empty finite sets, {gi}i∈I be a family of graphs such
that gi ∈ G[Vi], and let g be a graph in G[V ] with at least

(
n−1
2

)
+ 1 edges, where n = |V |. Then

g is generated by {gi}i∈I if and only if g = gi for some i ∈ I.

Proof. Suppose that g 6∈ {gi}i∈I . It is sufficient to show that g can not appear in the support of
any vector of the form g1 ◦∗ g2 for any g1 and g2 different of g. Hence let V1 and V2 be two disjoint
finite sets such that V1 t V2 = V , g1 ∈ G′[V1] and g2 ∈ G[V2], and denote by e1 the number of
edges of g1 and by e2 the number of edges of g2. Then the graphs in the support of g1 ◦∗ g2 have
e1 + e2 edges. This is maximal when g1 and g2 are both complete graphs and is then equal to(
x
2

)
+
(
n−x
2

)
= x2 − nx+

(
n
2

)
where 0 ≤ x = |V1| ≤ n− 1.

If x = 0 then necessarily g1 = ∅∗ and g ∈ Supp(g1 ◦∗ g2) = Supp(g2) if and only if g = g2. This
is impossible, hence x 6= 0. The expression x2 − nx+

(
n
2

)
is then maximal for x = 1 or x = n− 1

and is equal in both cases to
(
n−1
2

)
<
(
n−1
2

)
+ 1. This implies that g can not be in the support of

g1 ◦∗ g2. This concludes the proof.

Proposition 24. The operad KG is not free and has an infinite number of generators.

Proof. The fact that KG has an infinite number of generators is a direct consequence of Lemma 23.
Moreover, the relation

a ∗ ◦∗ b c + c ∗ ◦∗ b a − b ∗ ◦∗ a c − 2 a b c

= a b c + b c a + c b a + b a c

− b a c − a c b − 2 a b c

= 0

(25)

shows that KG is not free.

As a consequence of Proposition 24, it seems particularly involved to further investigate the
structure of KG. Let us then restrict further to its suboperad KT of trees. A family of generators
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of KT with arity less than 6 is:

, , , , , .

(26)

This operad KT has a non trivial link with the pre-Lie operad PLie [4]. This link is given by the
following result.

Recall that PLie can be seen as an operad structure on KT •.

Proposition 25. The monomorphism of species ψ : KT → KT• defined, for any tree t ∈ T[V ]
by

ψ(t) =
∑
r∈V

(t, r), (27)

is a monomorphism of operads from KT to PLie.

Proof. Let t ∈ T [V ] be a tree and r, v ∈ V . Denote by nt(v) the set of neighbours of v in t and
denote by ct,r(v) the set of children of v when t is rooted on r, i. e ct,r(v) = n>(v) in tr. If r 6= v,
further denote by pt,r(v) the parent of v in t when t is rooted on r i. e {pt,r(v)} = n_(v) in tr.

Let V1 and V2 be two disjoint sets and t1 ∈ T ′[V1] and t2 ∈ T [V2]. We have:

ψV1
(t1) ◦∗ ψV2

(t2) =
∑

r1∈V1+{∗}

(t1, r1) ◦∗
∑
r2∈V2

(t2, r2)

=
∑

r1∈V1+{∗}

∑
r2∈V2

(t1, r1) ◦∗ (t2, r2)

=
∑
r1∈V1

∑
r2∈V2

t1 ∩ V 2
1 ⊕ pt1,r1(∗)r2 ⊕ t2 ⊕

⊕
v∈ct1,r1 (∗)

(∑
V2

)
v, r1


+
∑
r2∈V2

t1 ∩ V 2
1 ⊕ t2 ⊕

⊕
v∈ct1,∗(∗)

(∑
V2

)
v, r2


=
∑
r1∈V1

t1 ∩ V 2
1 ⊕ pt1,r1(∗)

(∑
V2

)
⊕ t2 ⊕

⊕
v∈ct1,r1 (∗)

(∑
V2

)
v, r1


+
∑
r2∈V2

t1 ∩ V 2
1 ⊕ t2 ⊕

⊕
v∈ct1,∗(∗)

(∑
V2

)
v, r2


=

∑
r∈V1+V2

t1 ∩ V 2
1 ⊕

⊕
v∈nt1 (∗)

(∑
V2

)
v ⊕ t2, r


=

∑
r∈V1+V2

(
t1|∗←∑

V2
⊕ t2, r

)
= ψV1+V2

(t1 ◦∗ t2)

(28)

A natural question to ask is how to extend this morphism to KGc and KMGc. Let us introduce
some notations in order to answer this question. For g ∈MGc[V ], r ∈ V , and t ∈ T[V ] a spanning
tree of g, let −→g (t,r) ∈MGorc be the oriented multigraph obtained by labelling the edges of g in
t in the same way as the edges of tr, and by labelling both ends of the edges in g not in t. More
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formally, we have −→g (t,r) = tr ⊕ ιG(g \ t), where ι : KMG → KMGor sends a multigraph to the
oriented multigraph obtained by labelling all the edges ends.

Define KO2 ⊂ KO1 ⊂ KST three subspecies of KMG•orc by

ST[V ] =
{
(−→g (t,r), r) : g ∈MGc[V ], r ∈ V and t a spanning tree of g

}
, (29)

O1[V ] =

{∑
r∈V

(−→g (t(r),r), r) : g ∈MGc[V ] and for each r, t(r) a spanning tree of g

}
, (30)

O2[V ] =
{
(−→g (t1,r), r)− (−→g (t2,r), r) : g ∈MGc[V ], r ∈ V,

and t1 and t2 two spanning trees of g} . (31)

Lemma 26. The following properties hold:

(i) KST is a suboperad of KMG•orc isomorphic to KMG×PLie,

(ii) KO1 is a suboperad of KST,

(iii) KO2 is an ideal of KO1.

Proof. Proof of i. The species morphism KMG × PLie ↪→ KMG•orc given by (g, (t, r)) 7→
(−→g (t,r), r) is an operad morphism and hence its image ST is a suboperad of KMG•orc.

In order to prove the next two items we first give two equalities. Let U : KMGor → KMG
be the forgetful functor which sends an oriented graph on the graph obtained by forgetting the
orientation (i. e the labels). Let V1 and V2 be two disjoint sets, g1 ∈MG′c[V1] and g2 ∈MGc[V2]
be two connected multigraphs, t a spanning tree of g1 and for each v ∈ V2, t(v) a spanning tree of
g2. Then, for r ∈ V2

U × id
(
(−→g1(t,∗), ∗) ◦∗ (−→g2(t(r),r), r)

)
=

g1 ∩ V1 ⊕ ⊕
v∈n(∗)

v(
∑

V2)⊕ ((
∑

V2)
2)⊕g1(∗∗) ⊕ g2, r


= (g1 ◦∗ g2, r).

(32)

Let now r be a vertex in V1. Denote by p the parent of ∗ in tr, by c(∗) the children of ∗ in tr, by
ng1\t(∗) the multiset of neighbours of ∗ in g1 \ t and by n(∗) the multiset of neighbours of ∗ in g1,
so that n(∗) = ng1\t(∗) ∪ c(∗) ∪ {p}. Then

U × id

(
(−→g1(t,r), r) ◦∗

∑
v∈V2

(−→g2(t(v),v), v)

)

=
∑
v∈V2

U × id

(
(−→g1(t,r), r) ◦∗

∑
v∈V2

(−→g2(t(v),v), v)

)

=
∑
v∈V2

g1 ∩ V 2
1 ⊕ pv ⊕

⊕
v′∈c(∗)

v′
(∑

V2

)
⊕

⊕
v′∈ng1\t(∗)

v′
(∑

V2

)
⊕ ((

∑
V2)

2)⊕g1(∗∗) ⊕ g2, r


=

g1 ∩ V 2
1 ⊕ p

(∑
V2

)
⊕
⊕

v′∈c(∗)

v′
(∑

V2

)
⊕

⊕
v′∈ng1\t(∗)

v′
(∑

V2

)
⊕ ((

∑
V2)

2)⊕g1(∗∗) ⊕ g2, r


=

g1 ∩ V 2
1 ⊕

⊕
v∈n(∗)

v
(∑

V2

)
⊕ ((

∑
V2)

2)⊕g1(∗∗) ⊕ g2, r


= (g1 ◦∗ g2, r).

(33)
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Proof of ii. Let V1 and V2 be two disjoint sets, g1 ∈ MG′c[V1] and g2 ∈ MGc[V2] be two
connected multigraphs and for each v ∈ V1 + {∗}, t(v) a spanning tree of g1 and for each v ∈ V2,
t(v) a spanning tree of g2. We have∑

r1∈V1+{∗}

−→g1(t(r1),r1) ◦∗
∑
r2∈V2

−→g2(t(r2),r2) =
∑

r1∈V1+{∗}

∑
r2∈V2

−→g1(t(r1),r1) ◦∗ −→g2(t(r2),r2)

=
∑

r1∈V1+{∗}

∑
r2∈V2

(−→g1(t(r1),r1)|∗_←r2_, ∗>←(
∑
V2)> ⊕

−→g2(t(r2),r2), r1|∗←r2
)
.

(34)

Then from 32 and 33 we know that applying U × id to the preceding sum gives us:∑
r∈V1+V2

(g1 ◦∗ g2, r). (35)

To conclude remark that KO1[V ] can be defined as the reciprocal image of K{
∑
v∈V (g, v) | g ∈

MGc[V ]} by U × id : KST→ KMG•c .
Proof of iii. It is easy to see that KO2 is a left ideal of KST and hence of KO1. Let V1

and V2 be two disjoint finite sets, g1 ∈ MG′c[V1] and g2 ∈ MGc[V2], r ∈ V1, t a spanning
tree of g1 and for every v ∈ V2, t(v) a spanning tree of g2. Then from 32 and 33 we know that
U×id(−→g1(t,r)◦∗

∑
v∈V2

−→g2(t(v),v)) is of the form (g1◦∗g2, r) if r 6= ∗, and of the form
∑
v∈V2

(g1◦∗g2, v)
otherwise. In both cases it does not depend on t. This concludes this proof since KO2[V ] is the
kernel of (U × id)V : KST[V ]→ KG•c [V ].

We can see PLie as a suboperad of ST by the monomorphism (t, r) 7→ (tr, r). The image of
the operad morphism ψ of Proposition 25 is then KO1∩PLie and we have that KO2∩PLie = {0}
and hence KO1 ∩PLie/KO2 ∩PLie = KO1 ∩PLie.

Proposition 27. The operad isomorphism ψ : KT → PLie ∩ KO1 extends into an operad
isomorphism ψ : KMGc → KO1/KO2 satisfying, for any g ∈MGc[V ],

ψ(g) =
∑
r∈V

−→g (t(r),r), (36)

where for each r ∈ V , t(r) is a spanning tree of g. Furthermore, this isomorphism restricts itself
to an isomorphism KGc → KO1 ∩KG•orc/KO2 ∩KG•orc.

Proof. This statement is a direct consequence of Lemma 26 and its proof.

The last results are summarized in the following commutative diagram of operad morphisms.

KT PLie ∩KO1/KO2 PLie ∩KO1 PLie

KGc KO1 ∩KG•orc/KO2 ∩KG•orc KG•orc ∩KO1 KG•orc ∩KST

KMGc KO1/O2 KO1 KMG×PLie

∼

∼

∼

(37)

4 Finitely generated suboperads
Let us now focus on finitely generated suboperads of KMG. In particular we will study the
operads generated by:

1.
{
a b

}
which is isomorphic to Com,
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2.
{
a b

}
which is isomorphic to ComMag,

3.
{
a b , a b

}
which we will denote by SP,

4.

{
a

, a b

}
which we will denote by LP.

First remark that the suboperad of KG generated by
{
a b

}
is isomorphic to the commu-

tative operad Com. Indeed,

a ∗ ◦∗ b c = a b c = ∗ c ◦∗ a b . (38)

Now recall that the set operad ComMag is the free operad generated by one binary and
symmetric element [2]. More formally, ComMag[V ] is spanned by nonplanar binary trees with
set of leaves equal to V . Let s be the connected species defined by dim(s[V ]) = 1 if |V | = 2,
dim(s[V ]) = 0 otherwise. The action of transposition on the sole element of s[{a, b}] is trivial.
Then ComMag = Frees.

Proposition 28. The suboperad of KG generated by
{
a b

}
is isomorphic to ComMag.

Proof. We know from Proposition 25 that the operad of the statement is isomorphic to the sub-
operad of PLie generated by {

a

b

+
b

a

}
(39)

Then [2] gives us that this suboperad is isomorphic to ComMag. This concludes the proof

The fact that we can see both Com and ComMag as disjoint suboperads of KG gives us a
natural way to define the smallest operad containing these two as disjoint suboperads. Denote by
G the subspecies of KG generated by

{
a b , a b

}
and SP the suboperad generated by G.

This operad has some nice properties.

Proposition 29. The operad SP is isomorphic to the operad Ope(G,R) where R is the subspecies
of FreeG generated by

c ∗ ◦ξ∗ a b − a ∗ ◦ξ∗ b c , (40a)

and

a ∗ ◦ξ∗ b c − c ∗ ◦ξ∗ a b − b ∗ ◦ξ∗ a c . (40b)

Therefore, SP is binary and quadratic.

Proof. There is a natural epimorphism φ from FreeG to SP which is the identity on a b and
a b and which sends a partial composition g1 ◦ξ∗ g2 on the partial composition g1 ◦∗ g2. The
fact that (R) is included in the kernel of φ is straightforward. Let now be w ∈ FreeG/(R)[V ]. A
possible representant of w is of the form

∑l
i=1 aiwi where for each 1 ≤ i ≤ l ai ∈ K and there

is a partition V = Vi,1 t · · · t Vi,ki such that wi = (. . . (µi ◦∗i,1 ti,1) . . . ) ◦∗i,ki
ti,ki with µi the

sole element in ∈ Com[{∗i,1, . . . , ∗i,ki}] and ti,j is in the basis of ComMag[Vi,j ]. Here we use
the identification of ComMag and Com as suboperads of KG done previously. Without loss of
generality, we can suppose that all the wi are on the same partition of w i. e V = V1 t · · · t Vk
and for all i, j, ki = k and Vi,j = Vj .

With these notations we now have

φ(w) =

l∑
i=1

ai

ki⊕
j=1

φ(ti,j). (41)

Denote by G[V1, . . . , Vk] = {g1 ⊕ · · · ⊕ gk , gi ∈ G[Vi]}. Then there is an isomorphism from
KG[V1, . . . , Vk] to KG[V1]⊗· · ·⊗KG[Vk] defined by g1⊕· · ·⊕gk 7→ g1⊗· · ·⊗gk. This isomorphism
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sends φ(w) on
∑l
i=1 ai

⊗ki
j=1 φ(ti,j). Since for all 1 ≤ i ≤ k the basis of ComMag[Vi] is a free

family, the family {v1⊗· · ·⊗vk , vi is in the basis of ComMag[Vi]} is also free and hence φ(w) = 0
implies ai = 0 for all 1 ≤ i ≤ k. This shows that the epimorphism φ is also a monomorphism and
hence an isomorphism, which concludes this proof.

Proposition 30. The operad SP admits as Koszul dual the operad SP! which is isomorphic to
the operad Ope(G∨, R) where R is the subspecies of FreeG∨ generated by

a ∗
∨ ◦ξ∗ b c

∨
, (42a)

a ∗
∨ ◦ξ∗ b c

∨
+ c ∗

∨ ◦ξ∗ a b
∨

+ b ∗
∨ ◦ξ∗ a c

∨
, (42b)

a ∗
∨ ◦ξ∗ b c

∨
+ c ∗

∨ ◦ξ∗ a b
∨
+ b ∗

∨ ◦ξ∗ c a
∨
. (42c)

Proof. Let us respectively denote by r1 and r2 and r′1, r′2, and r′3 the vectors (40a), (40b), (42a),
(42b), and (42c). Denote by I the operad ideal generated by r1 and r2. Then as a vector space,
I[[{a, b, c}]] is the linear span of the set

{r1, r1 · (ab), r2, r2 · (abc), r2 · (acb)}, (43)

where · is the action of the symmetric group, e.g r1 · (ab) = FreeG[(ab)](r1). This space is a
sub-space of dimension 5 of FreeG[{a, b, c}], which is of dimension 12. Hence, since as a vector
space

FreeG∨ [{a, b, c}] ∼= FreeG∗ [{a, b, c}] ∼= FreeG[{a, b, c}], (44)

I⊥[{a, b, c}] must be of dimension 7.
Denote by J the ideal generated by r′1, r′2 and r′3. Then as a vector space J [{a, b, c}] is the

linear span of the set

{r′1, r′1 · (ab), r′1 · (ac), r′2, r′2 · (abc), r′2 · (acb), r′3}. (45)

This space is of dimension 7. To conclude we need to show that for any f ∈ J [{a, b, c}] and
x ∈ I[{a, b, c}] we have < f, x >= 0. Denote by pa,b = a b and sa,b = a b . Among the 21
cases to check, we have for example:

< r′1, r1 > =< s∨a,∗ ◦ξ∗ s∨b,c , p∗,c ◦ξ∗ pa,b − pa,∗ ◦ξ∗ pb,c >
=< s∨a,∗ ◦ξ∗ s∨b,c , p∗,c ◦ξ∗ pa,b > − < s∨a,∗ ◦ξ∗ s∨b,c , pa,∗ ◦ξ∗ pb,c >
= s∨a,∗(p∗,c)s

∨
b,c(pa,b)− s∨a,∗(pa,∗)s∨b,c(pb,c) = 0,

(46)

and

< r′2 · (abc), r2 >=
< p∨b,∗ ◦ξ∗ s∨c,a + s∨a,∗ ◦ξ∗ p∨b,c + s∨c,∗ ◦ξ∗ p∨a,b, sa,∗ ◦∗ pb,c − pc,∗ ◦∗ sa,b − pb,∗ ◦∗ sc,a >
= p∨b,∗(sa,∗)s

∨
c,a(pb,c)− p∨b,∗(pc,∗)s∨c,a(sa,b)− p∨b,∗(pb,∗)s∨c,a(sc,a)

+ s∨a,∗(sa,∗)p
∨
b,c(pb,c)− s∨a,∗(pc,∗)p∨b,c(sa,b)− s∨a,∗(pb,∗)p∨b,c(sc,a)

+ s∨c,∗(sa,∗)p
∨
a,b(pb,c)− s∨c,∗(pc,∗)p∨a,b(sa,b)− s∨c,∗(pb,∗)p∨a,b(sc,a)

= −1 + 1 = 0.

(47)

We leave the verification of the 19 remaining cases to the interested reader.

In order to compute the Hilbert series of SP! we need to use identity (3) and hence to prove that
SP is Koszul. Providing the necessary background to define Koszul operads and their properties
is out of the scope of this article and the interested reader is referred to [11] and [13]. We use here
the characterisation given in [7].

Proposition 31. The operad SP is Koszul.
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Proof. The rooted trees in FreeG[n] are in bijection with planar tree following the process de-
scribed in [7]. Consider the trees of the form

p

· · ·

p

t1

tk−2

tk−1 tk , (48)

where p is the graph with two vertices and no edge, t the graph with two vertices and one edge
and, for 1 ≤ i ≤ k, ti is a tree with internal vertices labelled by t and set of leaves Vi ⊆ [n] such
that

⊔
Vi = [n]. Then choosing t < p and an order on planar trees similar to the suitable order

presented in section 3.4 of [7] makes the considered trees a PBW basis of the operad (over an
S-module)

⊕
n≥0 SP[n]. This concludes the proof.

Proposition 32. The Hilbert series of SP! is

HSP!(x) =
(1− log(1− x))2 − 1

2
. (49)

Proof. The Hilbert series of ComMag is HComMag(x) = 1 −
√
1− 2x hence the Hilbert series

of SP ∼= E(ComMag) is HSP(x) = e1−
√
1−2x − 1, where the −1 comes from the fact that we

consider positive species. We deduce the Hilbert series of SP! from HSP and the identity (3).

The first dimensions dimSP![[n]] for n ≥ 1 are

1, 2, 5, 17, 74, 394, 2484, 18108, 149904. (50)

This is sequence A000774 of [14]. This sequence is in particular linked to some pattern avoiding
signed permutations and mesh patterns.

Before ending this section let us mention the suboperad LP of KMG generated by{
a

, a b

}
. (51)

This operad presents a clear interest since its two generators can be considered as minimal elements
in the sense that a partial composition with the two isolated vertices adds exactly one vertex and
no edge, while a partial composition with the loop adds exactly one edge and no vertex. A natural
question to ask at this point concerns the description of the multigraphs generated by these two
minimal elements.

Proposition 33. The following properties hold:

• the operad SP is a suboperad of LP;

• the operad LP is a strict suboperad of KMG. In particular, the multigraph

a b c (52)

is in KMG but is not in LP.
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Proof. • The following shows that a b is in LP[{a, b}] and hence that SP is a suboperad
of LP:

∗
◦∗ a b −

a
−

b

= 2 a b . (53)

• Using computer algebra, we generated all vectors in LP[{a, b, c}] with three edges and showed
that the announced multigraph is not a linear combination of these.
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