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Abstract

We introduce a new toy model for the study of glasses: the hard-
matrix model (HMM). This may be viewed as a single particle moving
on SO(N), where there is a potential proportional to the 1-norm of the
matrix. The ground states of the model are “crystals” where all matrix
elements have the same magnitude. These are the Hadamard matrices
when N is divisible by four. Just as finding the latter has been a dif-
ficult challenge for mathematicians, our model fails to find them upon
cooling and instead shows all the behaviors that characterize physical
glasses. With simulations we have located the first-order crystalliza-
tion temperature, the Kauzmann temperature where the glass has the
same entropy as the crystal, as well as the standard, measurement-time
dependent glass transition temperature. A new feature in this glass
model is a “disorder parameter” ρ0 that is zero for any of the crystal
phases and in the liquid/glass, where it is non-zero, corresponds to the
density of matrix elements at the maximum in their contribution to
the energy. We conclude with speculation on how a quantum exten-
sion of the HMM, with the backdrop of current work on many-body
localization, might advance the understanding of glassy dynamics.

Much of statistical mechanics is the study of “toy models,” minimalistic
distillations of physical systems that capture particular phenomena. The
simplest model of liquids, mono-disperse hard spheres, is also much used
as a model of glassy behavior. In three dimensions, and when compressed
rapidly, this system produces jammed structures with a reproducible packing
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fraction [9], but without any obvious order. However, the hard sphere model
falls short in exhibiting all facets of glass phenomenology. We describe these
shortcomings next, and introduce an even simpler model that might better
serve as a model of structural glasses.

The hard matrix model (HMM) is a system comprising a single orthog-
onal matrix U ∈ SO(N) with 1-norm energy:

Φ(U) = −
√
N

∑

ij

|Uij |. (1)

The matrix elements are not independent, but constrained much like the
bond lengths and angles in a network glass. Their number, N2, is the “vol-
ume” of the system. The constraints in the hard sphere model are consider-
ably weaker, and allow small clusters of spheres to act independently when
they occur within a low density fluctuation. In fact, it is precisely such finite
sized equilibrium fluctuations that make the hard sphere system unstable to
nucleating the crystal phase1. If analogous nucleation events/structures ex-
ist for network glasses, they are poorly understood. The hard matrix model
poses this same challenge, in a far simpler mathematical setting, because it
too is potentially unstable to “crystallization.”

By the generalized mean inequality we know

Φ(U) ≥ −
√
NN

√

∑

ij

|Uij |2 = −N2, (2)

where equality is attained only when the elements of U are equal in mag-
nitude. The ground states U∗ of Φ are therefore rescaled Hadamard ma-
trices [7] U∗ = H/

√
N , where H has only ±1 elements, for those N where

Hadamard matrices exist. By contrast, the rigorous ground state characteri-
zation of the hard sphere model, the proof of the Kepler conjecture, required
a massive amount of work [6]. There is also a Hadamard matrix conjecture,
which asserts that Hadamard matrices exist for all orders N divisible by
four. Empirically, from explicit enumeration up to N = 32 [11], the number
of Hadamard matrices #(N) [16] enjoys robust growth:

log#(N) ∼ 0.874N1.6. (3)

Ironically, for most (evenly-even) N we lack even a single example [3], the
smallest open case of the conjecture being N = 668. It is for this reason

1The same mechanism eliminates other packing systems, e.g. tetrahedra, as candidate

glass models.
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that the hard matrix model still deserves to be called “hard.” Simple physics-
inspired methods, such as gradient descent on Φ(U) from random starting
points, almost always fail at finding Hadamard matrices. The most success-
ful methods for constructing these matrices [7] are algebraic in nature and
require significant computation. However, because even the most productive
of these are based on finding sequences of size N1 with special properties, the
estimate (3) suggests that most Hadamard matrices are avoiding discovery.

Not only are the ground states of Φ known, so are the thermodynamic
equilibrium states in the limit of zero temperature. To see this, parameterize
the neighborhood of a ground state U∗ = H/

√
N with a skew-symmetric

matrix X:
U(X;H) = HeX/

√
N. (4)

Expanding (1) for small X we find

Φ(X;H) = −
∑

ij

sgn(Hij)(H(1 +X +
1

2
X2 + · · · ))ij

= −Tr (HTH(1 +X +
1

2
X2 + · · · ))

= −N2 +
N

2
Tr (XTX) + · · · , (5)

that is, the potential function reduces to a diagonal quadratic form indepen-
dent of the ground state Hadamard H. That the contributions to the free
energy are the same for all the ground states is in contrast to the analogous
situation for hard spheres, where the free energy dependence on the stacking
sequence of the close-packed triangular layers was discovered only recently
and required elaborate computations [13].

Thanks to the simplicity of the local potentials (5), the limit β → ∞ of
the HMM partition function

Z(β) =

∫

dU e−β Φ(U), (6)

can be evaluated explicitly. With the standard scale convention, the group
invariant measure for small X of the parameterization (4) is

dU =
∏

1≤i<j≤N

√
2 dXij . (7)

Since for β → ∞ exactly the same Gaussian integral arises around each
Hadamard point of SO(N), we obtain

Z(β) ∼
β→∞

#(N) eβN
2

(

2π

βN

)N(N−1)/4

(8)
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for those N where #(N) > 0.
In the absence of quantum mechanics the entropy has an arbitrary addi-

tive constant and we are free to set S(0) = 0. This is equivalent to working
with the rescaled partition function Z(β) = Z(β)/Z(0) and defining the en-
tropy by S = logZ+β〈Φ〉, where 〈·〉 is the Gibbs average. Using the known
volume of SO(N) [12],

Z(0) =

∫

dU = 2(N−1)(N/4+1)
N
∏

k=2

πk/2

Γ(k/2)
, (9)

we then have an explicit expression for the HMM entropy in the low tem-
perature limit. Taking additionally N large, as in a thermodynamic limit,
we obtain the entropy per volume

s =
1

N2
S ∼

N→∞
−1

4
log

(

2β
√
e
)

+
1

N2
log#(N). (10)

This result looks like it might be used to address the Hadamard matrix
conjecture. By integrating the HMM specific heat c(β) in a Markov chain
Monte Carlo (MCMC) simulation, starting at β = 0, it should be possible
to obtain reasonable estimates of s(β) − s(0) = s(β). A comparison with
(10), while lacking the precision to determine #(N) outright, might still
give information about its growth. As we show next, this works for small
N . However, large N is inaccessible, and the Hadamard matrix conjecture
remains safe, for the same reasons that make the HMM compelling as a
model for glass.

Among glass models the HMM is relatively easy to simulate. We sampled
the Gibbs ensemble using MCMC, with elementary transitions generated by
Givens rotations applied to pairs of rows and columns of U . The range of
the Givens angle is tuned, at each temperature, so the resulting acceptance
rate is 50%. By defining a “sweep” of the system to be rotations attempted
on all pairs of rows and columns, a single MCMC sweep is a reasonable
proxy for a time step of true dynamics, since the number of actual moves
per sweep scales with the number of continuous degrees of freedom.

Figure 1 shows the MCMC heat capacity per unit volume, c = C/N2, for
N = 12, 16, 20. The evidence for a first-order phase transition in the infinite
system is strong. We will say the system at high temperatures is in the liquid
phase, and at low temperatures in the Hadamard phase. The latter is in
fact a collection of #(N) phases, each associated with a different Hadamard
“crystal” ground state. AtN = 20 we are already at the limit of being able to
maintain thermal equilibrium with Givens rotations. Near the heat capacity
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Figure 1: Equilibrium heat capacity (left) and transition state density (right)
for system sizes N = 12, 16, 20. Narrowing of the heat capacity peak and
abruptness in the drop of the associated order parameter, with increasing
N , indicate a first order transition.

peak this simulation required 2× 109 sweeps per measurement. A good test
of the accuracy of the c(β) curve is the corresponding entropy integral.
When compared against (10), this reproduced the known Hadamard count
#(20) ≈ 2 × 1045 [16] to within a factor of three2. The low temperature
limit c = 1/4 is simply the equipartition value 1/2 for quadratic potentials
combined with the number of continuous modes being only half the system
volume.

While all of our numerical experiments used MCMC, true dynamics
could be simulated by time-evolving the unconstrained system

µN(Ü + U̇ U̇TU) = −1

2

(

∇Φ− U(∇Φ)TU
)

(11)

=

√
N

2

(

sgn(U)− Usgn(U)TU
)

, (12)

with initial constraints

U(0)UT (0) = 1, U̇(0)UT (0) + U(0)U̇T (0) = 0. (13)

The left-hand side of (11) generates free motion on SO(N), and the scaling
of the mass with N was chosen so the equations for small oscillation about
the Hadamard minima,

µẌ = −X, (14)

2This is before making large N approximations, as the Hadamard count makes a subex-

tensive contribution. The counts in OEIS A206711, which include Hadamards of negative

determinant, were divided by two.
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Figure 2: Detail of the distribution of matrix elements, near U = 0, of
equilibrium points generated by gradient descent. All equilibria are fragile
in the sense that some fraction of the matrix elements are near the transition
point of their contribution to the energy.

are independent of N . From (12) we see that the mechanical equilibrium
points of Φ(U) correspond to orthogonal matrices with the following sym-
metry property:

UT sgn(U) = sgn(U)TU. (15)

These are a superset of the Hadamard matrices and it is their high abun-
dance that defeats the prospect of finding Hadamard matrices by gradient
descent on Φ(U). It is tempting to look at property (15) as a set of ge-
ometrical constraints of exactly the right number to fix all the continuous
variables of an orthogonal matrix, in analogy with isostaticity in sphere pack-
ings or rigidity of ball-and-stick network models. While this perspective can
be useful for identifying good glass formers when constituents are modeled
geometrically [15], in our case it is simply an automatic consequence of a
sufficiently well-behaved potential function.

The equilibrium points are relevant for the dynamics at low temperature.
Figure 2 shows a detail of ρ(U), the distribution of the individual matrix
elements, near U = 0 where their contribution to the energy is highest.
This distribution was generated by gradient descent from random points on
SO(32). The property ρ(0) > 0, which seems to hold in the thermodynamic
limit, confers a fragility to the mechanical equilibria. Consider the set of
matrix elements whose values are within some fixed, small distance of zero.
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Figure 3: Probability distribution of the matrix elements at β = 3, from a
N = 32 simulation, shows the liquid is strongly correlated well above the
phase transition.

For each of these there is a small geodesic motion that brings the matrix
element to the transition state point of its energy, the cusp at U = 0.
These single-element transition states are likely also transition states for the
system as a whole because the regular contribution to Φ (from the other
matrix elements) only changes quadratically and the motion is small. In
this restricted dynamics, called channel flow, the system has access to much
of the low energy landscape without ever having to hop over significant
barriers. On the other hand, the mixing provided by channel flow is slow
because the number of continuous modes, proportional to ρ(0), is small. As
ρ(0) decreases with temperature, equilibration becomes slower not because
of rising barriers but because fewer modes are stirring the system.

The transition state density ρ0 = ρ(0) also serves as a (symmetry unaffil-
iated) “disorder parameter” of the model. As in physical glass formers, the
liquid phase of the HMM is strongly correlated at temperatures well above
crystallization. Whereas ρ(U) is normally distributed at β = 0, we see in
Figure 3 it is strongly bimodal already at β = 3. The first-order nature of
the liquid/Hadamard phase transition is seen in the discontinuity-tending
behavior of ρ0, with increasing N , shown in Figure 1 for the same system
sizes discussed earlier. As a disorder parameter, ρ0 asserts a property in-
herent to the liquid. In being linked to dynamics via fragile equilibria and
channel flow, it will also be relevant in the discussion of glasses to which we
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Figure 4: Top: Heat capacity of the N = 32 system with increasing number
of MCMC sweeps per measurement. Bottom: Heat capacities replotted as
a function of their reduced inverse temperature (16).

turn next.
Much of glass phenomenology [5, 4] is captured in the series of heat

capacity curves shown in Figure 4 for the N = 32 system. These were ini-
tialized in the liquid phase and show no sign of an anomaly at the expected
crystallization temperature, even at the slowest cooling rate. We estimated
βH by measuring the free energies of the metastable liquid and Hadamard
phases by cooling the former and heating the latter. The free energy cross-
ing is shown in Figure 5 and locates the transition at βH = 7.9. Instead of a
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Figure 5: MCMC free energies of the N = 32 system cooled from the liquid
and heated from one of the crystal phases.

heat capacity peak at βH , the cooled N = 32 liquid exhibits a gently rising
c(β), with each reduction in cooling rate revealing slightly more of an equi-
librated, metastable phase: the HMM glass. The equilibrium c(β) appears
to saturate at a value cg ≈ 0.46, about double the crystalline value of 1/4.
When the heat capacity eventually drops, close to the crystalline value, the
simulation had insufficient time to sample the full range of excitations in the
glass. The drop becomes more abrupt when it moves to lower temperatures
with decreasing cooling rate, and the location of the drop defines βg, the
measurement-time-dependent glass transition temperature.

We will use the channel flow model, for dynamics in the glass phase,
to motivate the following asymptotic form for the inverse glass transition
temperature:

βg(τ) ∼ a log (b log τ). (16)

The measurement time τ in our case is the number of MCMC sweeps (via
Givens rotations tuned to have 50% acceptance rate at each temperature).
When the heat capacity curves in the transition region are replotted (Fig-
ure 4, right panel) against the reduced inverse temperature, β/βg(τ), they
appear to collapse to a single curve for parameters a = 2.3, b = 25.

Our derivation of (16) hinges on the density ρ0 of transition state matrix
elements. Simulation results in the glass phase, shown in Figure 6, support
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Figure 6: Density of transition state matrix elements in the glass phase of the
N = 32 system at four cooling rates. Unlike the heat capacity (Figure 4), ρ0
is equilibrated all the way to β = 20 with only 106 sweeps per measurement.

the simple thermal behavior

ρ0(β) ∝ e−βe0 , (17)

with e0 ≈ 0.43. Assuming diffusive motion for the free modes in channel
flow, the characteristic distance ξ at inverse temperature β is related to the
time τ by

ξ(β) ∝ τ2. (18)

Diffusion occurs in channels havingD(β) dimensions, and in the naive model
D(β) is simply proportional to the number of transition state matrix ele-
ments, ρ0(β)N

2. We allow the generalization

D(β) ∝
(

ρ0(β)N
2
)z

, (19)

where z > 0. For closure we assume that sampling by channel flow is
not representative of the energy landscape, and thermal equilibrium is not
realized, when the following volume condition holds:

ξ(β)D(β) ≪ eS0 . (20)

Here S0 is temperature independent and represents the entropy of the space
that is sampled by channel flow. This is not the same as the thermodynamic
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entropy of the glass phase, which is dominated by an extensive vibrational
contribution. If we interpret S0 instead as “configurational,” by (20) it
would have to be sub-extensive in the case z < 1. For inverse temperatures
below βg, where

ξ(βg)
D(βg) ∼ eS0 , (21)

the energy landscape is adequately sampled and channel flow manages to
maintain thermodynamic equilibrium. Combining (17), (18), (19) and (21)
results in the form (16) with a = (ze0)

−1. Note that the quality of the
data collapse only depends on the parameter b, while a determines which
part of the collapsed curve corresponds to β/βg(τ) = 1. By the logic that
time τ is required to sample the full range of energy fluctuations at inverse
temperature βg(τ), we determined a ≈ 2.3 by the criterion that β/βg(τ) =
1 should correspond to the “peak” in the heat capacity for time τ . The
corresponding exponent z ≈ 1 suggests the configurational entropy of the
glass is extensive. However, we stress that due to the very slow growth of
βg(τ) we cannot count on experiments to provide definitive evidence in favor
of the form (16).

The fact that the equilibrium glass has a higher heat capacity than the
crystal means that the glass entropy decreases at a higher rate with decreas-
ing temperature [17], becoming eventually less than that of a Hadamard
crystal, or even the combined entropies of all the crystals (because log#(N)
is non-extensive). From the simulated heat capacity of the slowest cooled
N = 32 system, and assuming this stays constant at cg at arbitrarily large
β, the entropy of the glass at low temperatures is

sg(β) = −cg log(β/β0), (22)

where β0 ≈ 3.63 comes from integrating the non-constant part of the heat
capacity. Comparing (22) with (10) we find that the crystal entropy will
exceed the glass entropy for β > βK ≈ 26.

The paradox attendant on a glass, hypothetically cooled in metastable
equilibrium to βK where it would have lower entropy than a crystal, was first
brought to light by Kauzmann [10]. Brushing aside for now the possibility
of diverging time scales on cooling, the paradox follows from the plausible
assumptions that (i) the entropy is a sum of vibrational and configurational
contributions, and (ii) the glass and crystal have nearly the same vibrational
contribution. That leaves only configurational states whereby the glass can
have lower entropy, but that is impossible because the crystal has zero, or
at most non-extensive, configurational entropy.
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Resolving the Kauzmann paradox need not hinge on exotic proposals,
such as a possible thermodynamic transition to an “ideal glass” phase [17].
Conceptually, the hard sphere model is helpful in this regard. The entropy of
that model, evaluated at fixed density just below the density of random close
packings, gets a much larger vibrational contribution in the crystal than in
the metastable random packing if “vibrational” states are estimated by the
average free-volume per sphere. In the classical limit (vanishing thermal
DeBroglie wavelength) the vibrational/free-volume entropy dominates any
fixed configurational entropy advantage that random packings may have
had. It is not paradoxical in this model that the disordered phase has the
lower entropy, and in fact it is this entropic property that stabilizes the
crystal, and the FCC variant in particular [13]. For the HMM, which has
no system variable such as volume, the resolution of the Kauzmann paradox
may be as simple as this. This model, with a continuous potential Φ, has
true vibrational modes and the existence of a Kauzmann point may simply
reflect the fact that the glass has stiffer phonons on average than the crystal.

To test the last hypothesis we studied the vibrations about equilibrium
points U∗ generated by gradient descent from low temperature Gibbs sam-
ples. Repeating the calculation (5) of the local energy, but for a general
equilibrium point, we obtain

Φ(X;U∗) = Φ(U∗) +
N

2
Tr(XTK∗X) + · · · , (23)

where

K∗ =
1√
N

U∗T sgn(U∗) (24)

is symmetric. Two numbers that characterize each equilibrium point are

ǫ = 1 + Φ(U∗)/N2 (25)

Svib = − log detK∗. (26)

Here ǫ is the energy above the Hadamard ground states and Svib is propor-
tional to the vibrational entropy, with the convention Svib = 0 at Hadamard
points because for these K∗ is the identity matrix. Figure 7 shows the scat-
ter in these numbers for three sets of 100 equilibrium points obtained by
starting from Gibbs samples at β = 10, 12, 14 in the N = 32 system. We
see that vibrational modes become stiffer at low temperature, thereby de-
creasing Svib. Extrapolating the very linear distribution to smaller ǫ, we
find Svib = 0 for ǫ ≈ 0.0007. This finding casts doubt on a vibrational
resolution of the Kauzmann paradox. The vibrational entropy of the glass
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Figure 7: Distribution of excitation energy and vibrational entropy of equi-
libria generated by gradient descent from Gibbs samples at three tempera-
tures.

at low temperatures should be well modeled by the vibrational entropy of
the low energy equilibrium points, and this is practically indistinguishable
from that of the Hadamard crystals.

To better address the Kauzmann conundrum in the HMM, while also
giving a rigorous definition of states and dynamics, we introduce a quan-
tum extension of the model. Whereas the HMM had no parameters, the
Hamiltonian of the quantum model now has one:

H = − 1

4Nµ
∆U +Φ(U). (27)

Here ∆U is the Laplace-Beltrami operator on SO(N) and the mass µ is the
sole parameter. Setting the scale factor of the Laplacian so that locally
(U = eX , X small)

∆U =
∑

1≤i<j≤N

∂2

∂X2
ij

, (28)

we see, using (5), that the frequency of harmonic oscillation about the
Hadamard minima is ω = 1/

√
µ. At fixed β, taking the limit µ → ∞

so that β(~ω) → 0, we recover the classical HMM which has a first-order,
thermal transition at β = βH . In the β-µ plane we expect this to become a
line of first-order transitions. Since µ → 0 corresponds to a free particle on
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Figure 8: Conjectured phase diagram of the quantum hard matrix model.

SO(N), a model with no thermal transition, the simplest scenario for the
interior of the phase diagram is that the line of first-order transitions termi-
nates on the zero-temperature axis as sketched in Figure 8. The endpoint
of the phase boundary, at µ = µc, would then be a quantum critical point.

The liquid and Hadamard phases acquire new interpretations when we
restrict to the zero temperature axis. In the Hadamard phase the configu-
rations (U) are localized at one of the Hadamard points of SO(N). In the
limit µ → ∞ the ladder of excitations becomes more perfectly harmonic
and the wavefunctions have Gaussian decay away from these points. On
the other side of the quantum phase transition, µ < µc, the matrix U is
quantum delocalized. Extending what we know about ρ0 on the boundaries
of the phase diagram into the interior, we expect ρ0 > 0 everywhere in the
liquid phase and ρ0 = 0 everywhere under the line of first-order transitions.

We have sketched our conjectured phase diagram for the quantum model
mostly to make the point that there might be a scenario for thermal equi-
librium behavior without the need of an ideal glass transition. On the other
hand, we also believe this phase diagram has very little physical relevance
on account of glassy dynamics. We have already seen the dramatic on-
set of slow equilibration in MCMC simulations when using a Markov chain
that mimicks true dynamics. For β > βg these simulations are surely doing
something like channel flow, and with a diminishing number of freely flowing
modes as temperature decreases. If, as we argued above, these are tied to
the value of ρ0, then the exponential decay with β shown in Figure 6, in
the glass phase, easily explains the long mixing/equilibration times in the
context of classical dynamics.

The fact that the mass µ of the quantum model is a true parameter brings
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the model within the scope of a very modern line of research: many-body
localization (MBL) [14]. That the model has a quantum phase transition
at µ = µc does not seem to us as controversial. Still, asserting that for
µ > µc the matrices will be quantum-localized at a Hadamard point is a
strange statement of the fact that it seems to be very hard to nucleate (and
thereby generate) Hadamard matrices! More relevant for glassy dynamics is
the behavior of the excited state wave functions with µ. If these too undergo
a qualitative change, as has been observed in MBL studies on some other
models without quenched disorder [8], that could explain the slow dynamics.
In the channel flow picture, dynamics does not slow down because of acti-
vation over barriers, but by a diminishing number of freely flowing modes.
The old-fashioned single-particle model, Anderson localization [1], now for
an energy landscape on SO(N), may be more relevant than MBL in this
instance. There the degree of localization with energy/temperature plays a
larger role than it does in MBL. What is new about the quantum-HMM,
that puts it outside the scope of Anderson localization theory, is that there
is no explicit randomness in the potential Φ. We suspect the localization
transition, if indeed it exists, should not be sensitive to arithmetic properties
of N (e.g. divisibility by 4) just as this plays no role in the glass phase of
the classical model.

The hard matrix model also has an advantage over hard spheres for
simulations in the quantum regime. In the standard path-integral scheme,
updates for the quantum hard sphere model require complex world-line re-
connections [2] to impose the permutation symmetry of the spheres. Up-
dates in the quantum HMM, by contrast, can be implemented by the same
bounded-range Givens rotations we used for the classical model. The only
new feature in the quantum simulation is that there is a kinetic contribution,

Tr UT (β)U(β′), (29)

from adjacent imaginary “times.” The onset of localization, for µ → µ−
c ,

would be noticed by the behavior of the expectation value of (29), but for
|β − β′| that span the range of imaginary times in the simulation.

Study of the hard matrix model is also likely to advance the theory of
first order phase transitions. Consider the notion of phase coexistence. We
suspect that the HMM does not exhibit phase coexistence in the usual sense.
Suppose the system is prepared with energy halfway between the energies
of the pure phases at the transition, say by MCMC sampling at the tem-
perature of the heat capacity peak (in a modest sized system where this is
possible). What might such a system look like? We doubt that the con-
figuration will be mixed-phase in the usual sense, say a proper Hadamard
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submatrix within a “glass matrix.” If such configurations existed, with con-
tinuously variable composition, then it would also be possible to have critical
nuclei for crystallization, contrary to the extreme degree of metastability we
observe in simulations.

The hard matrix model offers many advantages over other toy models
that have been developed for the study of glasses. There are no random pa-
rameters, and the single mass parameter it does possess only sets the time
scale in the classical limit of the model. Unlike hard spheres, the HMM
has true vibrational modes and does not spontaneously crystallize, even for
relatively small sizes. In fact, we take the absence of Hadamard construc-
tions for most (evenly-even) N , after a century of research, as circumstantial
evidence of unusually strong metastability of the HMM glass. The HMM is
easy to simulate: mechanically, thermodynamically, and even quantum me-
chanically. Finally, the structure of the HMM glass and its dynamics is very
open to examination. One product of this transparency was our channel
flow model of glassy dynamics.
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