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Abstract

We define some generalizations of the classical descent and inversion statistics
on signed permutations that arise from the work of Sack and Ulfarsson [20] and
called after width-k descents and width-k inversions of type A in Davis’s work [8].
Using the aforementioned new statistics, we derive some new generalizations of Eu-
lerian polynomials of type A, B and D. It should also be noticed that we establish
the γ-positivity of the "width-k" Eulerian polynomials and we give a combinato-
rial interpretation of finite sequences associated to these new polynomials using
quasisymmetric functions and P -partition in Petersen’s work [18].

Keywords: Coxeter groups, Eulerian polynomials, Unimodality, permutations,
γ-positivity, (enriched) P -partition, quasisymmetric functions.

1 Introduction

The main purpose of this paper is to extend some fundamental aspects of the
theory of Eulerian polynomials on Coxeter groups and their unimodality, symmetry and
Gamma−positivity. Many polynomials with combinatorial meanings have been shown
to be unimodal (see [5] or [14] for example). Let A = {ai}

d
i=0 be a finite sequence of

nonnegative numbers. Recall that a polynomial g(x) =
∑d

i=0 aix
i of degree d is said

to be positive and unimodal, if the coefficients are increasing and then decreasing, i.e.,
there is a certain index 0 ≤ j ≤ d such that

0 ≤ a0 ≤ a1 ≤ . . . ≤ aj−1 ≤ aj ≥ aj+1 ≥ . . . ≥ ad ≥ 0.
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We will say that g(x) is palindromic ( or symmetric) with center of symmetry at ⌊d/2⌋,
if ai = ad−i for all 0 ≤ i ≤ d.
The polynomial g(x) is said to be Gamma-positive (or γ-positive) if

g(x) =

⌊d/2⌋
∑

i=0

γix
i(1 + x)d−2i,

for some d ∈ N and nonnegative reals γ0, γ1, . . . , γ⌊d/2⌋. So, both palindromic and uni-
modal are two necessary conditions for the Gamma-positivity of g(x). One of the most
important polynomials in combinatorics is the nth Eulerian polynomials, defined as

An(x) =
∑

σ∈Sn

xdesA(σ).

For example, A6(x) = x5+57x4+302x3+302x2+57x+1 is clearly symmetric, positive,
and unimodal.

Given a set of combinatorial objects τ , a combinatorial statistics is an integer given
to every element of the set. In other words, it is a function st : τ → N.
For a statistics st on symmetric group Sn, one may form the generating function :

F st
n (x) =

∑

π∈Sn

xst(π).

Macmahon [15] considered four different statistics for a permutation σ in the group
of all permutation Sn (it is also called type-A permutation) of the set [n] := {1, . . . , n}.
The number of descents (desA(σ)), the number of excedances (excA(σ)), the number
of inversions (invA(σ)), and the major index (majA(σ)). Given a permutation σ in Sn,
we say that the pair (i, j) ∈ [n]2 is an inversion of σ if i < j and σ(i) > σ(j), that
i ∈ {1, 2, . . . , n − 1} is a descent if σ(i) > σ(i + 1), and that i ∈ {1, . . . , n} is an exce-
dance if σ(i) > i. The major index is the sum of all the descents. These four statistics
have many generalization.

It is a well-known fact that the symmetric group Sn, is a Coxeter group with respect
to the above generating set τ := {τi; 1 ≤ i ≤ n− 1} where τi := [1, 2, . . . , i+ 1, i, . . . , n].
Therefore, the length of a permutation σ ∈ Sn is defined to be

ℓA(σ) := min{r ≥ 0; σ = τ1, . . . , τr τi ∈ τ}.

Note that, ℓA(σ) = invA(σ).

The paper is organized as follows : We start with some definitions which generalized
the width-k descents and width-k inversions statistics on classical permutations studied
by Davis [8] into signed permutations. In section 2, we will prove Proposition2.3, in which
we improve the combinatorial formulas of these last statistics in signed permutations
and give some examples. In section 3 and 4, we’ll show Theorem 3.2, Theorem 4.2 and
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Theorem 4.3, in which we define the width-k Eulerian polynomials of type A and B.
So, we give some recurrence relations concerning the coefficients of these polynomials.
Then, we will study the γ-positivity by specifying the combinatorial values of γ. Finally,
in section 5, which is the same as section 3 and 4, we will define the width-k Eulerian
polynomials of type D and we define two sets WDn,k,p and WD̄n,k,p in order to find the
recurrence relations for the coefficients of this polynomial. We will prove Theorem 5.4,
so that we study the necessary condition for this polynomial to be γ-positive.

2 Width-k descents and width-k inversions on signed

permutations

Recently, Sack and Ulfarsson [20] introduced a new natural generalizations of classical
descents and inversions statistics for any permutation in Sn, and called after width-k
descents and width-k inversions in Davis’s work [8]. For each 1 ≤ k < n, the cardinals
of these last statistics are defined as follows

desAk (σ) := |{i ∈ [n− k]; σ(i) > σ(i+ k)}|,

invAk (σ) := |{(i, j) ∈ [n]2; σ(i) > σ(j) and j − i = mk, m > 0}|.

In this work, we study same analogness of these statistics on signed permutations.
A signed permutation is a bijection of [−n, n] := {−n, . . . ,−1, 1, . . . , n} onto itself that
satisfies π(−i) = −π(i) for all i ∈ [n]. We denote by Bn the set of signed permutations
of length n, also known as the hyperoctahedral groups.

Let Dn ⊂ Bn be the subset consisting of the signed permutations with even number
of negative entries. We denote by neg(π) the number of negative entries in π ∈ Bn and
more precisely

Dn := {π ∈ Bn;neg(π) ≡ 0 (mod 2)}.

Adin, Brenti, and Roichman [1] defined a permutation statistics called the signed
descent number (or type-B descent number) and, the flag descent number. A signed
descent of π = (π(1), π(2), . . . , π(n)) ∈ Bn is an integer 0 ≤ i ≤ n − 1 satisfying
π(i) > π(i+1), where π(0) = 0 (a signed descent of π ∈ Dn has the same notion in Bn).
The signed descent number is defined by

desB(π) := |{0 ≤ i ≤ n− 1; π(i) > π(i+ 1)}|.

Whereas, the flag descent statistics of a signed permutation π denoted by fdesB(π),
counts a descent in position 0 once and all other descents twice. In other words,

fdesB(π) := desB(π) + desA(π).

For example, let π = (−2, 3,−1,−4) ∈ B4. Then the descents of π are 0, 2 and 3. So,
desB(π) = 3 and fdesB(π) = 5.
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The nth Eulerian polynomials of signed permutations defined by

Bn(x) =
∑

π∈Bn

xdesB(π),

and the nth flag descents polynomials defined by

Fn(x) =
∑

π∈Bn

xfdesB(π).

Definition 2.1. Let π ∈ Bn be a permutation, the following statistics have defined as
follows on π :

1. The inversion number of π : invA(π) := |{(i, j); 1 ≤ i < j ≤ n and π(i) > π(j)}|,

2. neg(π) := |{i ∈ [n]; π(i) < 0}|,

3. nsp(π) := |{(i, j) ∈ [n]2; i < j and π(i) + π(j) < 0}|, is the number of negative
sum pairs.

The Coxeter length ℓ for π in Bn has the following combinatorial interpretation (see,
for instance [6]) :

invB(π) := invA(π) + neg(π) + nsp(π).

Note that ℓB(π) = invB(π).

Now, we assume for each of the following definitions, let n ∈ N, k ∈ [n] and ∅ 6= K ⊆
[n]. We give the same analogues of the width-k statistics on Sn defined in [8].

Definition 2.2. For any permutation π = (π(1), π(2), . . . , π(n)) ∈ Bn, the numbers
of all width-k descent, width-k flag descent, width-k negative descent, width-k inversion,
width-k negative, width-k negative sum pairs are defined respectively by :

1. desBk (π) := |{0 ≤ i ≤ n− k; π(i) > π(i+ k)}|, where π(0) = 0,

2. fdesBk := desAk (π) + desBk (π),

3. ndesBk (π) := |{1 ≤ i ≤ n− k; π(−i) > π(i+ k)}|,

4. invAk (π) := |{(i, j); 1 ≤ i < j ≤ n; π(i) > π(j) and j − i = mk,m > 0}|,

5. negk(π) := |{1 ≤ i ≤ ⌊n
k
⌋; π(ik) < 0}|,

6. nspk(π) := |{(i, j) ∈ [n]2; π(i) + π(j) < 0 and j − i = mk,m > 0}|.

The set of all width-k descents of π ∈ Dn has the same notion as above in Bn. We
let

desDk (π) := |{0 ≤ i ≤ n− k; π(i) > π(i+ k)}|, where π(0) = 0.

Taking k = 1, we obtain the classical statistics of a signed permutation π ∈ Bn. So,
the width-1 descent, the width-1 flag descent and the width-1 inversion are the usual
descent, flag descent and inversion of a signed permutation.

This gives rise to another natural statistics on Bn, the width-k length statistics :
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Definition 2.3. The Coxeter width-k length ℓ for π ∈ Bn has the following combina-
torial interpretation,

invBk (π) := invAk (π) + negk(π) + nspk(π). (1)

Note that ℓBk (π) = invBk (π).

Let ∅ 6= K ⊆ [n] denote the set of widths under consideration. These latter statistics
are also defined, respectively, by

DesBK(π) :=
⋃

k∈K

DesBk (π) and desBK(π) = |DesBK(π)|,

InvAK(π) :=
⋃

k∈K

InvAk (π) and invAK(π) = |InvAK(π)|,

ℓBK(π) :=
⋃

k∈K

ℓk(π).

Example 2.1. Let π = (4,−1,−3,−6, 5,−7, 2) ∈ B7 then :
DesB2 (π) = {0, 1, 2, 4, 5}, DesB3 (π) = {0, 1, 3}, fdesB2 = 9 and fdesB3 = 5.
InvA2 (π) = {(1, 7), (5, 7), (2, 6), (4, 6), (2, 4), (1, 3)},
InvA3 (π) = {((1, 7), (3, 6), (1, 4)}.
Thus, DesB{2,3}(π) = {0, 1, 2, 3, 4, 5} and,

InvA{2,3}(π) = {(1, 7), (5, 7), (2, 6), (4, 6), (2, 4), (1, 3), (3, 6), (1, 4)}.

Finally, desB{2,3}(π) = 6, invA{2,3}(π) = 8.

ℓB2 (π) = 13, ℓB3 (π) = 8 and ℓB{2,3}(π) = 19.

The objective of the present study is to generalize the previous study of Davis [8],
hence to analyse these new statistics and their relationships among each other. For
σ ∈ Sn, we show the following propositions, with K ⊆ [n], and these propositions
remains valid to signed permutations.

Proposition 2.1. For any nonempty K ⊆ [n], k ∈ [n], and j ∈ K. Let L = {mj ∈
K,m > 0} and for each π ∈ Bn, we have

ℓBk (π) =
∑

m≥1

(desBmk(π) + ndesBmk(π)), (2)

and
ℓBK(π) = ℓBK\L(π). (3)

Proof. Each element of ℓBk (π) is pairs of the form (i, i + mk) for 0 ≤ i ≤ n − 1 or
(−i, i +mk) for 1 ≤ i ≤ n − 1, for some m > 0. So, an element exists in ℓBk (π) if and
only if there is a width-mk descent of π at i or a width-mk ndescent of π at (−i). Thus,
ℓBk (π) just counts the number of descents of length mk for every m possible.
For any j ∈ K, ℓBj (π) contains all descents whose widths are multiple of j. Thus, mj is
already accounted for in ℓBj (π), for some positive integer m. ✷
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Proposition 2.2. For any nonempty K ⊆ [n], we have

ℓBK(π) =
∑

∅(K ′⊆K

(−1)|K
′|+1 ℓBlcm(K ′)(π), (4)

where we set ℓBlcm(K ′)(π) = 0 if lcm(K ′) ≥ n + 1.

P roof. This proof follows from the equations (2) and (3), since they are the same
result for the classical permutations.
The proof of this proposition for the classical permutations remains true for the signed
permutations. For more details see ([8],Proposition 1.2). �

Example 2.2. Let π = (4,−1,−3,−6, 5,−7, 2) ∈ B7 be the same permutation in the
previous example. If K = {2, 3, 4, 6} then ℓBK(π) = ℓBK\{4,6}(π).
if k = 2, we have

ℓB2 (π) =
∑

m≥1

(desB2m(π) + ndesB2m)

= (desB2 (π) + ndesB2 (π)) + (desB4 (π) + ndesB4 (π)) + (desB6 (π) + ndesB6 (π))

= (5 + 2) + (2 + 2) + (2 + 0) = 13.

We have ℓB{2,3}(π) = 19, where ℓB2 = 13 and ℓB3 = 8 but, (0, 6) and (1, 7) have the

width both 2 and 3, it must also have the width-lcm(2, 3). Thus, ℓB6 (π) = {(0, 6), (1, 7)}.
Finally, ℓB{2,3}(π) = ℓB2 (π) + ℓB3 (π)− ℓB6 (π).

In the following, we will generalize the search function described in [8], on the set
of signed permutations, which helps to demonstrate the interaction between width-k
statistics by changing its normalization map. This function is defined as follows :
Let n and k be positive integers for which n = dk + r for some (d, r) ∈ N2 with
0 ≤ r < k, and for every π in Bn, we may then associate the set of disjoint substrings
γn,k(π) = {γ1

n,k(π), γ
2
n,k(π), . . . , γ

k
n,k(π)} where

γi
n,k(π) =

{

(π(i), π(i+ k), π(i+ 2k), . . . , π(i+ dk)) if i ≤ r,

(π(i), π(i+ k), π(i+ 2k), . . . , π(i+ (d− 1)k)) if r < i ≤ k.

Now, we define the following correspondence ϕ by

ϕ : Bn → Br
d+1 × Bk−r

d

ϕ(π) = (stdγ1
n,k(π), stdγ

2
n,k(π), . . . , stdγ

k
n,k(π)),

where std is the standardization map such that, for all 1 ≤ i ≤ k, the permutation
stdγi

n,k(π) obtained by replacing the smallest integer in absolute value of γi
n,k(π) by 1,

the second smallest integer in absolute value by 2, etc. Then, for each element of γi
n,k(π),

add a sign (−) at each π(i+ jk) < 0, where 0 ≤ j ≤ d.
It gives that each stdγi

n,k(π) is a signed permutation of Bd or Bd+1.
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Example 2.3. If π = (4,−1,−3,−6, 5,−7, 2) ∈ B7, suppose k = 3. We then have

γ7,3(π) = (stdγ1
7,3(π), stdγ

2
7,3(π), stdγ

3
7,3(π))

= (std(4,−6, 2), std(−1, 5), std(−3,−7))

= ((2,−3, 1), (−1, 2), (−1,−2)).

We come now to one of the main results in this work. Firstly, let n and k be positive
integers such that n = dk + r, where 0 ≤ r < k and d > 0.
Let Mn,k, denote the multinomial coefficient defined by,

Mn,k =

(
n

(d+ 1)r, dk−r

)

,

where im indicates i repeated m times.
Also let the x-analogue of the integer n ≥ 1 be :

[n]x :=
1− xn

1− x
= 1 + x+ x2 + . . .+ xn−1,

the x-analogue of the factorial n ≥ 1 is then :

[n]x! := [1]x . . . [n− 1]x[n]x, [0]! := 1,

and

[2n]x!! :=

n∏

i=1

[2i]x, [0]!! := 1.

Proposition 2.3. For n ≥ 1, we have

∑

π∈Bn

xinvA(π)+nsp(π)tneg(π) = [n]x!

n−1∏

i=0

(1 + txi). (5)

Proof. Our proof will be by induction on n. Notice that the result is obvious for n = 1.
So, suppose that the result holds for all natural numbers less than n ≥ 2,

i.e,
∑

π∈Bn−1

xinvA(π)+nsp(π)tneg(π) = [n− 1]x!
n−2∏

i=0

(1 + txi). (6)

For this, it is enough to account for the number of inversions, nsp and negatives for
every integer π(n) in π = (π(1), π(2), . . . , π(n− 1), π(n)) ∈ Bn.
Therefore, if π(n) = l, for 1 ≤ l ≤ n and for any j ∈ [−n, n], such that π(j) = k where
l < k ≤ n, we have exactly an inversion or an nsp .
Then, π(n) makes (n − l) choices of inversions and nsp. It implies that identity (6) is
multiplied by xn−l, for all π(n) = l.
If π(n) = −l, 1 ≤ l ≤ n, then for any −l < k < l there exists j ∈ [−n, n], such that
π(j) = k. In that case, we have exactly (2l − 2) inversions and nsp.
And for any l < k ≤ n if k > l, we have exactly (n − l) inversions or nsp. So, π(n)
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makes (n−2+ l) choices of inversions and nsp. That gives the identity (6) is multiplied
by txn−2+l. Finally, identity (6) is multiplied by [n]x(1 + txn−1). This completes the
induction step. ✷

An immediate consequence of the above result if t = 1, the identity (5) becomes
equal to :

∑

π∈Bn

xinvA(π)+nsp(π) = 2[n]x![2(n− 1)]x!!. (7)

We note that the sequences of coefficients of 1
2

∑

π∈Bn

xinvA(π)+nsp(π) appear in the OEIS

(sequence A162206).

3 Width-k Eulerian polynomials of type A

In this section, we will first present Davis’s width-k Eulerian polynomials of type A.
This description is very general, so we give its Gamma-positivity afterwards.

The concept of Gamma-positivity appeared first in the work of Foata and Schützen-
berger [9] and thereafter of Foata and Strehl ([11], [10]), on the classical Eulerian poly-
nomials, one of the most important polynomials in combinatorics. Gamma-positivity is
an elementary property that polynomials with symmetric coefficients may have, which
directly implies their unimodality.

Working with Eulerian descent statistics is in a sense a generalization of the study of
the Eulerian numbers. Just as there are Eulerian numbers, there is counting the number
of permutations with the same descent number. For a permutation σ ∈ Sn, an index
i ∈ [n] is a double descent of σ if σ(i−1) > σ(i) > σ(i+1), where σ(0) = σ(n+1) = ∞.
We also have a left peak (resp. peak) of σ ∈ Sn is any index i ∈ [n−1] (resp. 2 ≤ i ≤ n−1)
such that σ(i− 1) < σ(i) > σ(i+ 1), where σ(0) := 0.

In the following, we need to define these statistics :

Definition 3.1. For any permutation σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn and 1 ≤ k ≤ n−1,
the numbers of all double width-k descents, width-k peaks (also, we say that a interior
width-k peaks) and width-k left peaks are defined as follow :

DdesAk (σ) := {i ∈ [n]; σ(i− k) > σ(i) > σ(i+ k)} and σ(j) = ∞, ∀j > n or j ≤ 0,

ddesAk (σ) := |DdesAk (σ)|.

P eakk(σ) := {k + 1 ≤ i ≤ n− k; σ(i− k) < σ(i) > σ(i+ k)},

peakk(σ) := |Peakk(σ)|.

Lpeakk(σ) := {k ≤ i ≤ n− k; σ(i− k) < σ(i) > σ(i+ k)} and σ(0) := 0,

lpeakk(σ) := |Lpeakk(σ)|.
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Now, we define the width-k Eulerian polynomials of type A by :

WAn,k(x) = F
desA

k
n (x) =

∑

σ∈Sn

xdesA
k
(σ). (8)

We denote by WAn,k,p the set {σ ∈ Sn; des
A
k (σ) = p}, and its cardinal by a(n, k, p).

For k = 1, we find the classical Eulerian polynomials, and its nth γ-positivity, An(x) =
WAn,1(x), is given in ([9], Theorem 5.6) is defined by :

WAn,1(x) =

⌊n−1/2⌋
∑

p=0

γn,p xp(1 + x)n−1−2p, (9)

where γn,p = |Γn,p| and Γn,p is the set of permutations σ ∈ Sn with :

⊲ desA1 (σ) = p,

⊲ ddesA1 (σ) = 0.

The following identity was originally established in [20], but with a slightly different
notation. Thereafter, Davis showed another proof ([8], Theorem 2.3).

Proposition 3.1. [8]

WAn,k(x) = F
desA

k
n (x) = Mn,kA

r
d+1(x)A

k−r
d (x). (10)

Let α(n, k, p) be the coefficients of the polynomials WAn,k(x) such that a(n, k, p) =
Mn,kα(n, k, p). For a clearer observation, we put, in the table below, a few coefficients
of α(n, k, p), for 1 ≤ n ≤ 6, 1 ≤ k ≤ n− 1 and 0 ≤ p ≤ n− k.

n k p

0 1 2 3 4 5

1 1 1

2 1 1 1

3 1 1 4 1

2 1 1

4 1 1 11 11 1

2 1 2 1

3 1 1

5 1 1 26 66 26 1

2 1 5 5 1

3 1 2 1

4 1 1

6 1 1 57 302 302 57 1

2 1 8 18 8 1

3 1 3 3 1

4 1 2 1

5 1 1

Table 1 – A few values of α(n, k, p).

The polynomial WAn,k(x) is unimodal, symmetric with nonnegative coefficients and
γ-positive with center of symmetry ⌊n−k

2
⌋ and deg(WAn,k(x)) = n − k. Because, it is
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the product of k unimodal, symmetric and γ-positive polynomials.
For example, WA6,2(x) = M6,2(1 + 8x+ 18x2 + 8x3 + x4) is γ-positive since

WA6,2(x) = 20x0(1 + x)4 + 80x(1 + x)2 + 80x2(1 + x)0.

α(n, k, p) is a new sequence integers on the Coxeter group of type A. So, it is natural
to make the following problem on the recurrence relation of this sequence which has
been by confirmed the fact that any n ≥ 4, k be the smallest positive integer such that
n = 2k + r with 0 ≤ r < k and 0 ≤ p ≤ n− k, we have

α(n, k, p) = α(n− 2, k − 1, p− 1) + α(n− 2, k − 1, p),

with α(n, k, 0) = α(n, k, n− k) = 1 and α(n, k,−1) = 0.

Problem 3.1. It is possible to find the recurrence relation of α(n, k, p), for all 1 ≤ k ≤
n ?

Theorem 3.2. For all n ≥ 1 and 1 ≤ k ≤ n− 1,

WAn,k(x) =
∑

σ∈Sn

xdesA
k
(σ) =

⌊n−k/2⌋
∑

p=0

γA
n,k,p xp(1 + x)n−k−2p,

where γA
n,k,p = |Γn,k,p| and Γn,k,p is the set of permutations σ ∈ Sn with :

⊲ desAk (σ) = p,

⊲ ddesAk (σ) = 0.

For 1 ≤ n ≤ 6, 1 ≤ k ≤ n− 1 and 0 ≤ p ≤ ⌊n−k
2
⌋, we record a few values of γA

n,k,p.

n k p

0 1 2

1 1 1

2 1 1

3 1 1 2

2 3

4 1 1 8

2 6 0

3 12

5 1 1 22 16

2 10 20

3 30 0

4 60

6 1 1 52 136

2 20 80 80

3 90 0

4 180 0

5 360

Table 2 – A few values of γA
n,k,p.
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Proof. By the standardization map defined on Sn in [8] and for all 1 ≤ k ≤ n− 1,

ϕ : Sn −→ Sr
d+1 × Sk−r

d

σ 7−→ ϕ(σ) = (stdγ1
n,k(σ), stdγ

2
n,k(σ), . . . , stdγ

k
n,k(σ)).

Let ϕ(σ) = (σ1, σ2, . . . , σk) such that stdγi
n,k(σ) = σi for all i. Thanks to this application,

we note that :

desAk =

k∑

i=1

desA(σi).

It is clear that each width-k descent and width-k double descent in σ are usual descent
and double descent in some unique σi. �

4 Width-k Eulerian polynomials of type B

In this section, we give a new generalized of type B Eulerian polynomials and its
γ-positivities which is inspired to type A. We define the width-k Eulerian polynomials
of type B by :

WBn,k(x) = F
desB

k
n (x) =

∑

π∈Bn

xdesB
k
(π).

We denote by WBn,k,p the set {π ∈ Bn; des
B
k (π) = p} and its cardinal by b(n, k, p).

For k = 1, we find the classical Eulerian polynomials of type B, and its nth γ-positive,
Bn(x) = WBn,1(x) in the following result.

Theorem 4.1. ([18],Proposition 4.15) For all n ≥ 1,

WBn,1(x) =

⌊n/2⌋
∑

p=0

γB
n,p xp(1 + x)n−2p,

where γB
n,p is equal to the number of permutations σ ∈ Sn with p left peaks, multiplied by

4p.

Now, we need to define the statistics descent of type A over the set of signed permu-
tations by, for all π ∈ Bn,

desA(π) := |{i ∈ [n− 1]; π(i) > π(i+ 1)}|.

We then have the following identities :

Theorem 4.2. For any n ≥ k ≥ 1 and d ≥ 0 such that n = dk+ r, 0 ≤ r < k, we have

F
desB

k
n (x) = 2n−dMn,kBd(x)A

k−r−1
d (x)Ar

d+1(x), (11)

F
fdesB

k
n (x) = 2n−dMn,k Fd(x) A

k−r−1
d (x2) Ar

d+1(x
2), (12)

F
ℓB
k

n (x) = 2k−1Mn,k [d]k−r−1
x [d+ 1]rx [2d]r+1

x !! [2(d− 1)]k−r−1
x !!. (13)
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Proof. We consider the correspondence ϕ defined in section 2 by :

ϕ : Bn → Br
d+1 × Bk−r

d

ϕ(π) = (stdγ1
n,k(π), stdγ

2
n,k(π), . . . , stdγ

k
n,k(π)).

We fix k in [n] and ϕ(π) = (π1, π2, . . . , πk) ∈ Br
d+1 ×Bk−r

d such that, stdγi
n,k(π) = πi for

all i. There exists Mn,k choice to partition [n] in the subsequences γi
n,k(π).

We define,

ε(πi) =

{

1 if πi(1) < 0,

0 otherwise.

It is also important to note that,

desBk (π) = desB(πk) +
k−1∑

i=1

(desB(πi)− ε(πi)),

then for all π ∈ Bn,
k−1∑

i=1

(desB(πi)− ε(πi)) =
k−1∑

i=1

desA(πi).

Thus,

F
desB

k
n (x) =

∑

π∈Bn

xdesB
k (π)

= Mn,k

∑

πk∈Bd, (π1,...,πk−1)∈B
k−r−1
d

×Br
d+1

xdesB(πk)xdesA(π1) . . . xdesA(πk−1)

= Mn,k Bd(x) (2
d)k−r−1Ak−r−1

d (x) (2d+1)r Ar
d+1(x)

= 2n−d Mn,k Bd(x) A
k−r−1
d (x) Ar

d+1(x).

This proves the first identity.

Using the definition of width-k descent, we get

fdesBk (π) = desAk (π) + desBk (π)

=

k∑

i=1

desA(πi) + desB(πk) +

k−1∑

i=1

desA(πi)

=
k−1∑

i=1

2desA(πi) + desA(πk) + desB(πk)

= fdesB(πk) +
k−1∑

i=1

2desA(πi).

On the other hand, we have
∑

π∈Bn

x2desA(π) = 2nAn(x
2).
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Thus,

F
fdesB

k
n (x) =

∑

π∈Bn

xfdesB
k
(π)

= Mn,k

∑

πk∈Bd ,(π1,...,πk−1)∈B
k−r−1
d

×Br
d+1

xfdesB(πk)x2desA(π1) . . . x2desA(πk−1)

= 2n−d Mn,k Fd(x) A
k−r−1
d (x2) Ar

d+1(x
2).

This proves the second identity.

Now, we observe that the Coxeter width-k length ℓ, is the sum of

ℓBk (π) = ℓB(πk) +

k−1∑

i=1

(invA(πi) + nsp(πi)).

On the other hand, the generating function of the Coxeter length ℓ can be presented in
the following manner (see, for instance in section 3.15 [13]).

∑

π∈Bn

xinvB(π) =
∑

π∈Bn

xℓB(π) = [2n]x!!.

F
ℓB
k

n (x) =
∑

π∈Bn

xℓB

k (π)

= Mn,k

∑

πk∈Bd, (π1,...,πk−1)∈B
k−r−1
d

×Br
d+1

xℓB(πk)x(invA(π1)+nsp(π1)) . . . x(invA(πk−1)+nsp(πk−1))

= 2k−1Mn,k[2d]
r+1
x !![2(d− 1)]k−r−1

x !![d]k−r−1
x [d+ 1]rx.

This proves the third identity. �

Using identity (11), we find that WBn,k(x) = 2n−dMn,kBd(x)A
k−r−1
d (x)Ar

d+1(x).
Let β(n, k, p) be the coefficient of the polynomial WBn,k(x) such that, b(n, k, p) =
2n−dMn,kβ(n, k, p). For a clearer observation, we put in the table below a few coeffi-
cients of β(n, k, p), for 1 ≤ n ≤ 6, 1 ≤ k ≤ n and 0 ≤ p ≤ n− k + 1.

As β(n, k, p) is a new sequence integers on the Coxeter group of type B, it natural
to make the following problem on the recurrence relation of this sequence. It has been
by confirmed the fact that any n ≥ 3, k be the smallest positive integer such that
n+ 1 = 2k + r with 0 ≤ r < k and 0 ≤ p ≤ n− k + 1, we have the following recurrence
relation

β(n, k, p) = β(n− 2, k − 1, p− 1) + β(n− 2, k − 1, p)

where,
β(n, k, 0) = β(n, k, n− k + 1) = 1, and β(n, k,−1) = 0.

Problem 4.1. It is possible to find the recurrence relation of β(n, k, p), for all 1 ≤ k ≤
n ?
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n k p

0 1 2 3 4 5 6

1 1 1 1

2 1 1 6 1
2 1 1

3 1 1 23 23 1
2 1 2 1
3 1 1

4 1 1 76 230 76 1
2 1 7 7 1
3 1 2 1
4 1 1

5 1 1 237 1682 1682 237 1
2 1 10 26 10 1
3 1 3 3 1

4 1 2 1
5 1 1

6 1 1 722 10543 23548 10543 722 1
2 1 27 116 116 27 1

3 1 8 14 8 1
4 1 3 3 1
5 1 2 1
6 1 1

Table 3 – The first few values of β(n, k, p).

WBn,k(x) is unimodal and symmetric with nonnegative coefficients and it is γ-
positive (as the product of k γ-positive polynomials) with center of symmetry ⌊n−k+1

2
⌋

and deg(WBn,k(x)) = n− k + 1.
For example, WB6,2(x) = 23M6,2(1+27x+116x2+116x3+27x4+x5) is γ-positive since

WB6,2(x) = 160x0(1 + x)5 + 3520x(1 + x)3 + 6400x2(1 + x).

So, we have the following theorem,

Theorem 4.3. For any 1 ≤ k ≤ n,

WBn,k(x) =
∑

π∈Bn

xdesB
k
(π) =

⌊n−k+1/2⌋
∑

p=0

γB
n,k,p xp(1 + x)n−k+1−2p,

where γB
n,k,p = 22p+k−1|Γ

(ℓ)
n,k,p| and Γ

(ℓ)
n,k,p is the set of permutations σ ∈ Sn with p width-k

left peaks.

To prove this theorem, we need to generalize some results of the work of Petersen
[18] on P-partitions and enriched P-partitions.

In the theory of partition, there are two definitions of P-partition. The first one is due
to Stanley [22] which defines them as order reversing maps while the second definition
defined by Gessel [12] as order preserving maps. In the current paper, we will adopt the
second definition.

Definition 4.1. (P-Partition) Let X = {x1, x2, . . .} be a countable and totally ordered
set. For a given poset P with partial order <p, a P-partition is an order-preserving map
f : [n] → X such that :
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1. if i <p j then f(i) ≤ f(j),

2. if i <p j and i > j dans Z then f(i) < f(j).

We assume that X as a subset of the positive integers. We let L(P ) denote the set of
all permutations of [n] which extend P to a total order. When X has finite cardinality p,
the number of P-partitions must also be finite. In this case, define the order polynomial,
denoted Ω(P ; p), to be the number of P-partitions f : [n] → X. In our case, when
studying P-partitions it is enough to consider P is a permutation and ΩA(P, p) is the
type A order polynomial.
Notice that for any permutation π and any positive integer p, we can write :

ΩA(π, p) = |{f : [n] → [p]; 1 ≤ f(π(1)) ≤ f(π(2)) ≤ . . . ≤ f(π(n)) ≤ p,

and if s ∈ DesA(π) thenf(π(s)) < f(π(s+ 1))}|.

For the group of signed permutations, the only difference from the symmetric group is,
if π(1) < 0, then 0 is a descent of π. Let ΩB(π, p) be the order polynomial for any signed
permutation. For fixed n, the order polynomials prove to be : ΩA(i, x) = ΩB(i, x) =
(
x+n−i

n

)
, for any permutation of type A or type B with i− 1 descents.

Similarly of corollary 2.4 of [18], we will given the relation between the width-k order
polynomial of a poset P and the sum of the width-k order polynomials of its linear
extensions.

Corollary 4.4. The width-k order polynomial of a poset P is the sum of the width-k
order polynomials of its linear extensions :

Ω(P, k, p) =
∑

π∈L(P )

Ω(π, k, p),

where, for any permutation π, the width-k order polynomial

Ω(π, k, p) := |{f : [n− k + 1] → [p]/ (14)

1 ≤ f(π(1)) ≤ f(π(1 + k)) ≤ f(π(1 + 2k)) ≤ . . . f(π(1 + τdk)) <

f(π(2)) ≤ f(π(2 + k)) ≤ f(π(2 + 2k)) ≤ . . . f(π(2 + τdk)) < . . . <

f(π(k)) ≤ f(π(k + k)) ≤ f(π(k + 2k)) ≤ . . . ≤ f(π(k + τdk)) ≤ p,

and f(π(s)) < f(π(s+ k)), if s ∈ desBk (π)}|,

with

τd =

{

d if i ≤ r,

d− 1 if r < i ≤ k,

and n = dk + r is the Euclidean division of n by k.

The proof of the above corollary follows from the set of all P-partitions is the disjoint
union of all π-partitions for linear extensions π of P.
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We can think of any permutation π ∈ Bn as a poset with the total order π(s) <
π(s+k). In this case, P is an antichain of n−k+1 elements. So, we have |P | = n−k+1.
Now, we give the analog generating function of type B order polynomials in [19] in the
following in term of width-k.

Theorem 4.5. For a given permutation π ∈ Bn. The generating function for width-k
type B order polynomials is :

∑

p≥0

ΩB(π, k, p)x
p =

xdesB
k
(π)

(1− x)n−k+2
. (15)

Proof. Let L(P ) = {π}, where π has width-k descents counting an extra width-k
descent at the end (we assume π(k + τdk) > π(n+ 1)). Then, ΩB(π; k; p) is the number
of solutions of equation (14) :

1 ≤ f(π(1)) ≤ f(π(1 + k)) ≤ f(π(1 + 2k)) ≤ . . . f(π(1 + τdk)) <

f(π(2)) ≤ f(π(2 + k)) ≤ f(π(2 + 2k)) ≤ . . . f(π(2 + τdk)) < . . . <

f(π(k)) ≤ f(π(k + k)) ≤ f(π(k + 2k)) ≤ . . . ≤ f(π(k + τdk)) ≤ p− (desBk (π)− 1),

which is equal to the number of ways choosing n − k + 1 things from p − desBk (π) + 1

with repetitions. Therefore, the number is
(
p−desB

k
(π)+1+n−k

n−k+1

)
=

(
p−desB

k
(π)+n−k+1

n−k+1

)
. So the

result becomes :

∑

p≥0

ΩB(π, k, p)x
p =

∑

p≥0

(
p− desBk (π) + n− k + 1

n− k + 1

)

xp =
xdesB

k
(π)

(1− x)n−k+2
.

�

Petersen, in [18], make a relation between enriched P-partitions and quasisymmetric
functions. Hence, we can see this link in terms of width-k statistic consequently, this
connection helps us prove the theorem 4.3.
The basic theory of enriched P-partitions is due to Stembridge [24]. An enriched P-
partitions and a left enriched P-partitions of type A defined as follow :
Let P′ denote the set of nonzero integers, totally ordered so that :

−1 < +1 < −2 < +2 < −3 < +3 < . . . ,

and P(ℓ) to be the integers with the following total order :

0 < −1 < +1 < −2 < +2 < −3 < +3 < . . .

In general, for any totally ordered set X = {x1, x2, . . .}, we define X′ and X(ℓ) to be the
set :

{−x1, x1,−x2, . . .}

and
{x0,−x1, x1,−x2, . . .},

with total order
x0 < −x1 < x1 < −x2 < x2 < . . . .
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Definition 4.2. An enriched P-partition (resp. left enriched P-partition) is an order-
preserving map f : P → X′ (resp. X(ℓ)) such that for all i <P j in P ,

1. if i <P j in Z then f(i) ≤+ f(j),

2. if i <P j and i > j in Z then f(i) ≤− f(j).

Let ε(P ), denote the set of all enriched P-partitions and ε(ℓ)(P ), denotes the set of
left enriched P-partitions. The number of (left) enriched P-partitions is finite if we as-
sume that |X| = p. In this case, define the enriched order polynomial, denoted Ω′(P, p),
to be the number of enriched P-partitions f : P → X ′ and, the left enriched order po-
lynomial, denoted Ω(ℓ)(P, p), to be the number of left enriched P-partitions f : P → X(ℓ).

Following Gessel [12], a quasisymmetric function is one for which the coefficient of
xα1
i1
xα2
i2

. . . x
αp

ip
is the same for all fixed tuples of integers (α1, α2, . . . , αp) and all i1 < i2 <

. . . < ip.
For any subset D = {d1 < d2 < . . . < dp−1} of [n], the quasisymmetric functions is
characterized by two common bases, defined by the monomial quasisymmetric functions,
MD, and the fundamental quasisymmetric functions FD :

MD =
∑

i1<i2<...<ip

xd1
i1
xd2−d1
i2

. . . x
n−dp−1

ip
=

∑

i1<i2<...<ip

xα1
i1
xα2
i2

. . . x
αp

ip
,

and

FD =
∑

D⊂T⊂[n−1]

MT =
∑

i1≤i2≤...≤ip
d∈D⇒id<id+1

n∏

d=1

xid = ΓA(π),

where ΓA(π) is the generating function for the type A P-partitions of a permutation
with descent set D. It is possible to recover the order polynomial of π by specializing :

ΩA(π, p) = ΓA(π)(1
p). (16)

For all D ⊂ [n − 1], the functions MD and FD span the quasisymmetric functions of
degree n, indicated Qsymn. The ring of quasisymmetric functions defined by : Qsym :=
⊕

n≥0

Qsymn.

Also, the generating function for enriched P-partitions f : P → P′ is defined by :

∆A(P ) :=
∑

f∈ε(P )

n∏

i=1

x|f(i)|.

Evidently, ∆A(P ) is a quasisymmetric function and we can specialize it as :

Ω′(P, p) = ∆A(P )(1p).

Chow [7] gave a connection between ordinary type B P-partitions and type B qua-
sisymmetric functions. Furthermore, Petersen [18] related the type B quasisymmetric
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functions to left enriched P-partitions and type B enriched P-partitions.
For fixed n and for any subset D = {d1 < d2 < . . . < dp−1} of [0, n], the monomial ND

and the fundamental quasisymmetric functions of typeB, LD, are defined by :

ND =
∑

0<i2<...<ip

xd1
0 xd2−d1

i2
. . . x

n−dp−1

ip =
∑

0<i2<...<ip

xα1
0 xα2

i2
. . . x

αp

ip ,

and

LD =
∑

D⊂T⊂[0,n−1]

NT =
∑

0≤i2≤...≤ip
d∈D⇒id<id+1

n∏

d=1

xid = ΓB(π),

where ΓB(π) is the generating function for the ordinary type B P-partitions of any signed
permutation with descent set D. Once more, we can particularize it as :

ΩB(π, p) = ΓB(π)(1
p+1). (17)

Similar of type A, these functions form a basis for the type B quasisymmetric functions
of degree n, defined by BQsym :=

⊕

n≥0

BQsymn.

The generating function for left enriched P-partitions f : P → P(ℓ), defined by :

∆(ℓ)(P ) :=
∑

f∈ε(ℓ)(P )

n∏

i=1

x|f(i)|.

It is also clear that ∆(ℓ)(P ) is a quasisymmetric function and we have :

Ω(ℓ)(P, p) = ∆(ℓ)(P )(1p+1).

Recalling the standardization map std φ defined in [7] on Sn by :
For any n− 1 ≥ k ≥ 1 and d > 0 such that n = dk + r and 0 ≤ r < k,

φ : Sn → Sr
d+1 × Sk−r

d

φ(π) = (stdγ1
n,k(π), stdγ

2
n,k(π), . . . , stdγ

k
n,k(π)).

Fix k ∈ [n− 1] and φ(π) = (π1, π2, . . . , πk) ∈ Sr
d+1 × Sk−r

d such that, stdγi
n,k(π) = πi for

all i. In the remainder of this paragraph, we define τd by :

τd =

{

d if i ≤ r ,

d− 1 if r < i ≤ k.

For any two subsets of the integers D ant T, define the set D+ k = {d+ k|d ∈ D} with,
1 ≤ k ≤ n and define the symmetric set difference by : D∆T = (D ∪ T )\(D ∩ T ).
As indicated in the second section that, we can write width-k descent as follows :

desBk (π) = desB(πk) +

k−1∑

i=1

(desB(πi) − ǫ(πi)). So, we count 0 as a descent just in πk,
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and all other permutations, we see it as a descent of type A. In addition, we can define
ΩB(D, k, p) by the ordinary type B order polynomial of any signed permutation with
width-k descent set D by :

ΩB(D, k, p) = ΩB(Dk, pk)
k−1∏

i=1

Ω
′

B(Di, pi), (18)

with ΩB(Dk, pk) is the ordinary type B order polynomial of signed permutation with
descent set Dk and Ω

′

B(Di, pi) is the ordinary type B order polynomial of signed permu-
tation with descent set Di\{0}, whereDi is the set of descents in each πi and pi = p−k+i,
for any 1 ≤ i ≤ k. Thus, ∪k

i=1Di = D.
In the following, to study the left enriched P-partitions it is sufficient to consider the
case where P is a permutation. So, it is possible to characterize the set of all left enriched
π-partition in term of descent set. Left peaks in Sn are a special case of type B peaks,
which are naturally related to type B descents. Thus, in terms of width-k descent sets,
we can define the set of all width-k left enriched π-permutation, but we consider 0 as a
descent only in πk. Then, for π ∈ Sn, we can describe :

Ω(ℓ)(π, k, p) = Ω(ℓ)(πk, pk)

k−1∏

i=1

Ω(ℓ)′(πi, pi), (19)

where Ω(ℓ)′(πi, pi) is the left enriched order polynomial with Des(πi) ⊂ [τd].
It is important to observe that,

Lpeakk(π) = Lpeak(πk)

k−1⋃

i=1

Peak(πi),

thus,

lpeakk(π) = lpeak(πk) +

k−1∑

i=1

peak(πi).

The generating function for enriched π-partitions depends on the set of peaks and the
generating function for left enriched π-partitions depends on the set of left peaks. As we
can write ∆(ℓ)(π) according to the monomial and fundamental quasisymmetric functions
of type B. In this case, if we using the application φ above, we can define the width-k
left enriched P-partitions by :

∆(ℓ)(π, k) = ∆(ℓ)(πk)
k−1∏

i=1

∆A(πi),

with nonnegative coefficients.
This coefficient is equal to the number of product of enriched and left enriched π-
partitions f such that :

(|f(π1(1))|, |f(π1(2))|, . . . , |f(π1(1 + τdk))|) = (1, . . . 1, . . . , p1, . . . p1),
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(|f(π2(1))|, |f(π2(2))|, . . . , |f(π2(1 + τdk))|) = (1, . . . 1, . . . , p2, . . . p2),

...

(|f(πk(1))|, |f(πk(2))|, . . . , |f(πk(1 + dk))|) = (0, . . . , 0, 1, . . . 1, . . . , pk, . . . pk).

Applying the results of (Stembridge[24], Proposition 3.5), (Petersen [18], Theorem 6.6)
and the Eq. (18), we find :

∆(ℓ)(π, k) = 2lpeak(πk)
∑

Dk⊂[0,d−1]

Lpeak(πk)⊂Dk∆(Dk+1)

LDk

k−1∏

i=1

2peak(πi)+1
∑

Di⊂[τd]

Peak(πi)⊂Di∆(Di+1)

FDi
.

We can also write,

Ω(ℓ)(π, k, p) = 2lpeak(πk)
∑

Dk⊂[0,d−1]

Lpeak(πk)⊂Dk∆(Dk+1)

ΩB(Dk, pk)
k−1∏

i=1

2peak(πi)+1
∑

Di⊂[τd]

Peak(πi)⊂Di∆(Di+1)

Ω′
B(Di, pi),

= 2lpeakk(π)+k−1
∑

D⊂[0,n−k]
Lpeakk(π)⊂D∆(D+k)

ΩB(D, k, p).

From this result, we can find the following Theorem.

Theorem 4.6. We have the following generating function for width-k left enriched order
polynomials,

∑

p≥0

Ω(ℓ)(π; k; p)xp = 2k−1 (1 + x)n−k+1

(1− x)n−k+2

(
4x

(1 + x)2

)lpeakk(π)

.

P roof. For any permutation π in Sn, we have
∑

p≥0

Ω(ℓ)(π, k, p)xp =
∑

p≥0

2lpeakk(π)+k−1
∑

D⊂[0,n−k]
Lpeakk(π)⊂D∆(D+k)

ΩB(D, k, p)xp.

Applying the generating function for width-k type B order polynomials defined in Theo-
rem (4.5), we obtain also :

∑

p≥0

Ω(ℓ)(π, k, p)xp =
2lpeakk(π)+k−1

(1− x)n−k+2

∑

D⊂[0,n−k]
Lpeakk(π)⊂D∆(D+k)

x|D|.

It is not complicated to specify the generation function for D sets by size. For all s ∈
Lpeakk(π), we have precisely s or s− k is in D. So, there is still n− k + 1− 2lpeakk(π)
elements in [0, n− k] can be contained in D or not. Thus, we obtain

∑

D⊂[0,n−k]
Lpeakk(π)⊂D∆(D+k)

x|D| = (x+ x)(x+ x) . . . (x+ x)
︸ ︷︷ ︸

lpeakk(π)

(1 + x)(1 + x) . . . (1 + x)
︸ ︷︷ ︸

n−k+1−2lpeakk(π)

= (2x)lpeakk(π)(1 + x)n−k+1−2lpeakk(π).
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By combining them all together, we deduce the desired result

∑

p≥0

Ω(ℓ)(π; k; p)xp =
2lpeakk(π)+k−1

(1− x)n−k+2
(2x)lpeakk(π)(1 + x)n−k+1−2lpeakk(π)

= 2k−1 (1 + x)n−k+1

(1− x)n−k+2

(
4x

(1 + x)2

)lpeakk(π)

.

�

Recalling that the number of permutations of n with p width-k left peaks is |Γ(ℓ)
n,k,p|.

Then, the width-k left peak polynomial is defined as :

W
(ℓ)
n,k(x) =

∑

π∈Sn

xlpeakk(π) =

⌊n−k+1
2

⌋
∑

p=0

|Γ
(ℓ)
n,k,p|x

p. (20)

We need also the following identity for the type B Eulerian polynomials given by Stem-
bridge ([23], Prop 7.1 b) :

∑

p≥0

(2p+ 1)nxp =
Bn(x)

(1− x)n+1
.

Proposition 4.7. We have the following relation between the width-k left peak polyno-
mials and the width-k Eulerian polynomials of type B :

W
(ℓ)
n,k

(
4x

(1 + x)2

)

=
WBn,k(x)

2k−1(1 + x)n−k+1
. (21)

Proof. Using the relation of identity (19), the number of width-k left enriched P-
partitions f is

(2p+ 1)d
(
(2p+ 1)(d−1)

)r (
(2p+ 1)d

)k−r−1
.

Since, πk ∈ Sd and (π1, . . . , πk−1) ∈ Sr
d+1 × Sk−r−1

d . In fact, the number in total of
f : [n− k + 1] → [p](ℓ) is (2p+ 1)n−k+1. Consequently, Ω(ℓ)(π, k, p) = (2p+ 1)n−k+1.
A type B poset is a poset PB whose elements are ±[n]. In the present case, PB is an
antichain of ±[n− k + 1] elements. Thus, the order polynomial ΩB(π, k, p) is the same
of Ω(ℓ)(π, k, p).
By reason of L(PB) = WBn,k, we have,

∑

p≥0

(2p+ 1)n−k+1xp =
WBn,k(x)

(1− x)n−k+2
.

Using Theorem 4.6, we have

2k−1 (1 + x)n−k+1

(1− x)n−k+2
W

(ℓ)
n,k

(
4x

(1 + x)2

)

=
∑

p≥0

(2p+ 1)n−k+1xp

=
WBn,k(x)

(1− x)n−k+2
.
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The reorganization of the terms gives the desired result :

2k−1W
(ℓ)
n,k

(
4x

(1 + x)2

)

=
WBn,k(x)

(1 + x)n−k+1
.

�

Now, we can prove Theorem 4.3.
Proof of Theorem 4.3. Substituting x by 4x

(1+x)2
in Eq. (20) and using Eq. (4), we

obtain

⌊n−k+1/2⌋
∑

p=0

γB
n,k,p x

p(1 + x)n−k+1−2p =

⌊n−k+1
2

⌋
∑

p=0

22p+k−1|Γ
(ℓ)
n,k,p|x

p(1 + x)n−k+1−2p

the desired result. �

For 1 ≤ n ≤ 6, 1 ≤ k ≤ n and 0 ≤ p ≤ ⌊n−k+1
2

⌋, we record a few values of γB
n,k,p in

the following table.

n k p

0 1 2 3

1 1 1

2 1 1 4
2 4

3 1 1 20
2 12 0
3 24

4 1 1 72 0
2 24 96
3 96 0
4 192

5 1 1 232 976
2 80 480 640
3 480 0
4 960 0

5 1920

6 1 1 716 7664 3904
2 160 3520 6400
3 1440 5760 0
4 5760 0
5 11520 0
6 23040

Table 4 – The first few values of γB
n,k,p.

5 Width-k Eulerian polynomials of type D

Now we will study the Gamma-positivity of the width-k Eulerian polynomials on the
set Dn. Borowiec and Mlotkowski [4] have introduced a new array of type D Eulerian
numbers. They found in particular a recurrence relation for this array. In this section,
we will generalize these numbers and we give a new generalization of the Eulerian poly-
nomials of type D, Dn(x), and its Gamma-positivity with the statistics width-k descent.
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The case k = 1 corresponds to the classical Euleurian polynomials Dn(x).
We start by defining the width-k Eulerian polynomials of type D by :

WDn,k(x) = F
desD

k
n (x) =

∑

π∈Dn

xdesD
k
(π).

In the following theorem, we give the mean result of this section on the set Dn.

Theorem 5.1. For any n ≥ 1, we have
if k = 1 then

F desD1
n (x) = F desD

n (x) = Dn(x),

and if 2 ≤ k ≤ n then

F
desD

k
n (x) = 2n−d−1Mn,kBd(x)A

k−r−1
d (x)Ar

d+1(x). (22)

Proof. This identity follows completely in the same way as the identity (11) of Theo-
rem4.2, with the same reasoning except the fact that |Dn| =

|Bn|
2

. �

Denote D̄n = Bn\Dn and,

WDn,k,p = {π ∈ Dn; des
D
k (π) = p},

WD̄n,k,p = {π ∈ D̄n; des
D̄
k (π) = p}.

So that WDn,k,p = WBn,k,p

⋂
Dn and WD̄n,k,p = WBn,k,p\Dn. The cardinalities of

these sets will be denoted by d(n, k, p) and d̄(n, k, p), respectively. Since WBn,k,p =
WDn,k,p

⋃
WD̄n,k,p, we have

b(n, k, p) = d(n, k, p) + d̄(n, k, p).

Now, we give the following symmetry which generalizes the Proposition 4.1 of Boro-
wiec and Mlotkowski in [4] for k = 1.

Proposition 5.2. For 0 ≤ p ≤ n we have
if n is even with 1 ≤ k ≤ n, if n is odd with 2 ≤ k ≤ n

δ(n, k, p) = δ(n, k, n− k + 1− p), δ̄(n, k, p) = δ̄(n, k, n− k + 1− p),

if n is odd with k = 1

δ(n, k, p) = δ̄(n, k, n− k + 1− p), δ̄(n, k, p) = δ(n, k, n− k + 1− p).

P roof. Let φ(k,p) : Bn → Bn, for π ∈ Bn define −π ∈ Bn by φ(k,p)(π) = −π. Since the
map φ(k,p) defined a bijection WDn,k,p → WDn,k,n−k+1−p, WD̄n,k,p → WD̄n,k,n−k+1−p if
n is even with 1 ≤ k ≤ n and if n is odd with 2 ≤ k ≤ n and WDn,k,p → WD̄n,k,n−k+1−p,
if n is odd with k = 1. �

For k = 1, Borowiec and Mlotkowski [4] showed the following recurrence relations :
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Proposition 5.3. ([4], Proposition 4.5) For 0 ≤ p ≤ n

d(n, 1, p) = (2p+ 1)d(n− 1, 1, p) + (2n− 2p+ 1)d(n− 1, 1, p− 1) + (−1)p
(
n− 1

p− 1

)

,

d̄(n, 1, p) = (2p+ 1)d̄(n− 1, 1, p) + (2n− 2p+ 1)d̄(n− 1, 1, p− 1)− (−1)p
(
n− 1

p− 1

)

.

Using identity (22), we find that WDn,k(x) = 2n−d−1Mn,kBd(x)A
k−r−1
d (x)Ar

d+1(x),
for 2 ≤ k ≤ n. Then, for a clearer observation we put in the table below the coefficients
of the product polynomials Bd(x)A

k−r−1
d (x)Ar

d+1(x), denoted by δ(n, k, p), for 1 ≤ n ≤
6, 1 < k ≤ n and 0 ≤ p ≤ n−k+1. We record also a few values of δ̄(n, k, p) of WD̄n,k,p.

We can remark that for 0 ≤ p ≤ n− k + 1, where k is the smallest positive integer
such that n+ 1 = 2k + r with 0 ≤ r < k, we have the following recurrence relations :
For any n ≥ 3,

δ(n, k, p) = δ(n− 2, k − 1, p− 1) + δ(n− 2, k − 1, p),

for any n ≥ 4,

δ̄(n, k, p) = δ̄(n− 2, k − 1, p− 1) + δ̄(n− 2, k − 1, p),

where,
δ(n, k,−1) = δ̄(n, k,−1) = 0,

if 2 ≤ k ≤ n

δ(n, k, 0) = δ̄(n, k, 0) = δ(n, k, n− k + 1) = δ̄(n, k, n− k + 1) = 1,

if k = 1
δ(n, 1, 0) = 1, δ̄(n, 1, 0) = 0,

and

δ(n, 1, n) =

{

1 if n is even,

0 if n is odd,

δ̄(n, 1, n) =

{

0 if n is even,

1 if n is odd.

Problem 5.1. Is it possible to find recurrence relations for δ(n, k, p) and δ(n, k, p) for
all 1 ≤ k ≤ n?

Remark 5.1. If n is even,

deg(WDn,k(x)) = n− k + 1 for all 1 ≤ k ≤ n.

If n is odd,

deg(WDn,k(x)) =

{

n− 1 if k = 1,

n− k + 1 if 2 ≤ k ≤ n.

In table 5, we observe that if n is odd and in the case where k = 1, the polynomial
WDn,k(x) is not unimodal and not symmetric. For example, WD5,1(x) = 1 + 116x +
846x2 + 836x3 + 121x4.
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n k p

0 1 2 3 4 5 6

1 1 1 1

2 1 1 2 1

2 1 1

3 1 1 10 13 0

2 1 2 1

3 1 1

4 1 1 36 118 36 1

2 1 7 7 1

3 1 2 1

4 1 1

5 1 1 116 846 836 121 0

2 1 10 26 10 1

3 1 3 3 1

4 1 2 1

5 1 1

6 1 1 358 5279 11764 5279 358 1

2 1 27 116 116 27 1

3 1 8 14 8 1

4 1 3 3 1

5 1 2 1

6 1 1

Table 5 – A few values of δ(n, k, p).
n k p

0 1 2 3 4 5 6

1 1 0 1

2 1 0 4 0

2 1 1

3 1 0 13 10 1

2 1 2 1

3 1 1

4 1 0 40 112 40 0

2 1 7 7 1

3 1 2 1

4 1 1

5 1 0 121 836 846 116 1

2 1 10 26 10 1

3 1 3 3 1

4 1 2 1

5 1 1

6 1 0 364 5264 11784 5264 364 0

2 1 27 116 116 27 1

3 1 8 14 8 1

4 1 3 3 1

5 1 2 1

6 1 1

Table 6 – A few values of δ̄(n, k, p).
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Theorem 5.4. For any 1 ≤ k ≤ n, ( unless if n is odd and k = 1), we have

WDn,k(x) =
∑

π∈Dn

xdesD
k
(π) =

⌊n−k+1/2⌋
∑

p=0

γD
n,k,p xp(1 + x)n−k+1−2p,

where for all 2 ≤ k ≤ n, γD
n,k,p =

γB
n,k,p

2
.

P roof. Firstly, if n is odd and for k = 1, there are no permutations π in Dn such
as desD1 (π) = n. Thus, WDn,1(x) is not symmetric and therefore WDn,1(x) is not γ-
positive.
If n is even and for all 1 ≤ k ≤ n, the number of permutations whose desDk (π) =
n − k + 1 − p is equivalent to the number of permutations of which desDk (π) = p with
0 ≤ p ≤ ⌊n−k+1

2
⌋. Thus, WDn,k(x) is symmetric with center of symmetry ⌊n−k+1

2
⌋.

Moreover, it is easy to see that WDn,k(x) is unimodal.
Therefore, since for all 2 ≤ k ≤ n the width-k Eulerian polynomials of type D is

γ-positive, and the cardinal of this group is equal to |Bn,k |

2
, thus γD

n,k,p =
γB
n,k,p

2
. �

For 2 ≤ n ≤ 6, 1 ≤ k ≤ n and 0 ≤ p ≤ ⌊n−k+1
2

⌋, we record a few values of γD
n,k,p.

n k p

0 1 2 3

2 1 1 0

2 2

3 1

2 6 0

3 12

4 1 1 32 48

2 12 48

3 48 0

4 96

5 1

2 40 240 320

3 240 0

4 480 0

5 960

6 1 1 352 3856 1920

2 80 1760 3200

3 720 2880 0

4 2880 0

5 5760 0

6 11520

Table 7 – A few values of γD
n,k,p.

Problem 5.2. Is it possible to find a recurrence relation for γD
n,1,p?, if n is even and

k = 1.
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