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Abstract. It is known that the core of mathematics is natural numbers. And 

everything related to the natural number is interesting to mathematicians. In this 

paper, we draw parallels between natural numbers and elements of a non-numeric 

lexicographic sequence, Motzkin words (well-formed strings of parentheses and 

zeros). We will also talk about the decomposition of Motzkin words into pairs of 

parentheses (analogue of Prime Numbers). Finally, we will try to interest the 

reader in the elements of mathematical analysis on bracket expressions. The 

nesting procedure of parentheses is described by the author as the differentiation of 

the weight function. We will work a little with derivatives for bracket pairs and 

also give some differential equations.  
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1 Introduction  

In discrete mathematics, bracket sets are often studied. Of particular interest is 

the ordering of parentheses words, the analysis of disjoint and nested words, and 

the establishment of distances between words (for example, see [BP14] and 

[GZ14]). The goal of this paper is to construct a lexicographic series from Motzkin 

words, which will be as close as possible to a series of natural numbers. This 

allows you to enter arithmetic operations and even the basics of mathematical 

analysis on items of a sequence (a kind of derivatives and differential equations). 

This work is a continuation of [Ere19].  

First, let's analyze the sequence of natural numbers on a purely formal level.  

1.1. Natural numbers and bitwise arithmetic. Often zero is considered a natural 

number. This suits us, because among Motzkin words there is an identical element 

− the word "0". Let's write the set of natural numbers this way:  

ℕ = {0, 1, 2, …, 9, 10, 11, …, 99, 100, 101, …, 999, 1000, 1001 …}. 

We note several properties of set; it is these properties that interest us first of all.  

(i) The set is ordered in ascending order of numbers. Elements are indexed 

from zero; the index of each element is equal to its value: ni = i, i ≥ 0. Thus, 

natural numbers are self-indexing. 

(ii) Since indexes are not repeated, the elements of ℕ are unique. There are no 

repeats among natural numbers.  
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(iii) At first glance, natural numbers are listed in order of increasing code length. 

Integers are distributed over ranges. Single-digit numbers, 1-range, are 

listed first, followed by double-digit integers, 2-range, and so on. Let’s call 

it a primary order. 

(iv) In ranges, integers are sorted according to the following order of weight of 

the alphabet symbols: 0 < 1 < 2 < ...  < 9. The minimum weight is 0, the 

maximum is 9. It is logical to call such sorting an internal order.  

(v) A natural number can begin with an arbitrary digit except 0. The only first 

number 0 is an exception to the rule. In other cases, the symbol with the 

minimum weight is not written at the beginning of natural numbers.  

As for the latter property, at times for convenience when performing some 

operations, we temporarily write a zero (or several zeros) before the natural 

number. But such temporary leading zeros do not change the number itself. 

We will implement the considered properties of natural numbers on the elements 

of the lexicographic sequence. It remains for us to describe simple bitwise 

arithmetic, the analogue of which is used in brackets.  

Bitwise arithmetic is the preprocessing of operands before addition or 

subtraction. In particular, before summing multi-bit numbers, we can adjust the 

digits where there are no carries. For example, 27 + 59 = 77 + 9 (preprocessed 

digits are shown in red). Of course, for natural numbers, such bitwise procedures 

are not essential, but such processing of bracket sets is significant. 

1.2. Unique Motzkin Words. Any Motzkin word is made up of bricks (atoms) of 

three types: the left parenthesis, the right parenthesis, and zero. Balanced 

parentheses mean that each opening bracket has a corresponding closing bracket; 

the left parenthesis precedes the right one. Such matched pairs are properly nested. 

The matched pairs of parentheses are similar to molecules that are located among 

zeros to compose the Motzkin word. In this sense, paired parentheses resemble 

prime numbers into which natural numbers are decomposed. 

In combinatorics, we usually count the number of elements of some set. The set 

of Motzkin words of length n are enumerated by the Motzkin numbers Mn (see 

OEIS A001006). For example, there are two Motzkin words of size 2, 2-word: 00 

and ().The three-character Motzkin word, 3-word, can be obtained in four variants 

(M3 = 4): 000, 0(), (0), ()0. The first two 3-words are inherited from the 2-words by 

adding leading zero, while the last 3-words (0) and ()0 are unique. Next, we have 

four inherited 4-words and five unique 4-words: (00), (0)0, (()), ()00, ()().  

Obviously, among the n-words, Mn–1 are inherited, and the remaining Mn – Mn–1 

= Un, n > 1, are unique. The numbers Un for n = 1, 2, … form the sequence  

1, 1, 2, 5, 12, 30, 76, 196, 512, 1353, 3610, 9713, 26324, 71799 … 

We need to order Motzkin words like natural numbers. But we are hindered by 

items with leading zeros, inherited words.  These words do not satisfy the last 

property of natural numbers. Therefore, it was decided not to consider words with 

leading zeros (the exception is the initial word "0"). 

https://oeis.org/A001006
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Finally, we need a total alphabetical order; this order is logical: 0 < ( < ). In the 

Motzkin word, any matched pair starts with the left parenthesis, so it’s logical to 

take the weight of the left parenthesis less than the right one. The symbol "0" 

resembles zero in integers (it has a minimum weight and it is free).  

As a result, we get the set of the Unique Motzkin Words, UMWs (see the first 

800 items in [Ere19]):  

𝔐 = {0, (), (0), ()0, (00), (0)0, (()), ()00, ()(), (000), (00)0, (0()), (0)00 …} 

In 𝔐, UMWs are indexed from zero; let’s denote them like this: w0 ≡ 0, w1 ≡ (), 

w2 ≡ (0), and so on. We identify wi (i is a specific index) and the i-th item in 𝔐.  

In both sets 𝔐 and ℕ, initial items are identical, w0 = n0. These two elements have 

similar properties.  

In 𝔐, all elements are distributed over ranges along the code length: 𝔐1 = {0}, 

𝔐2 = {( )}, 𝔐3 = {(0), ()0}, and so on.  The cardinality of the n-range is # 𝔐n = Un, 

n >1.  In the n-range, n >1, we have the minimum (shown in red)  min 𝔐n = (0
n–2

)  

and the maximum max 𝔐n = ()
n/2 [0]. The superscript indicates the repetition of 

zero or a matched pair. The maximum n-word ends with 0 if n is odd.  

Let's call the index of  x  𝔐  weight and denote wt x.  So, wt (min 𝔐n) = Mn–1, 

wt (max 𝔐n) = Mn –1, wt wi = i, and so on. In general, the weight of an item does 

not always match its index. For example, 5-word  w11 ≡ (0()) is made up of two 

components w9 ≡ (000) and w3 ≡ ()0. When we put w3 inside w9, the nest-weight 

of w3 changes, namely wt' w3 = 2. We will talk about nesting below. 

2 Maths of prime words 

A matched pair of parentheses and everything inside is called a block. A block 

that is not contained within another block is called a prime word. A prime word 

can have ending zeros. Let’s solve the task of decomposition of any UMW into 

prime words. Below we describe partial addition ⊕ and partial subtraction ⊖. 

Let the 9-word  w736 ≡ ()0(0())0  be given. In w736, there are two prime words:  

9-word ()0
7
 ≡ w708 and 6-word (0())0 ≡ w28. At once we get the weight expression 

708 + 28 = 736.  For Motzkin words we get the equality w736 = w708 ⊕ w28.  Also 

we can write down corresponding subtraction operations: w708 = w736 ⊖ w28 and 

w28 = w736 ⊖ w708.  

When performing arithmetic operations, zero in Motzkin words is processed like 

numerical zero. Let’s write down it in the form of the following rules: 

 0 ⊕ 0 = 0,  0 ⊕ ( = ( ⊕ 0 = (,   0 ⊕ ) = ) ⊕ 0 = ),   

  0 ⊖ 0 = 0,   ( ⊖ 0 = (,  ) ⊖ 0 = ),  ( ⊖ ( = 0,  ) ⊖ ) = 0.  

Obviously, for x  𝔐   x ⊕ 0 = 0 ⊕ x = x,  x ⊖ 0 = x,  x ⊖ x = 0 . Operation ⊕ 

occur if the operands do not intersect. Let’s check the weight of the 9-word ()0
7
. 

Since ()0
7
 ⊕ max 𝔐7 = max 𝔐9, the following weight expression is true: 

wt ()0
7
 = wt (max 𝔐9 ⊖ max 𝔐7) = (M9 –1) – (M7 –1) = 834 – 126 = 708. 

https://arxiv.org/abs/1911.01673
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The considered operations allow concatenating prime words. Above we met the 6-

word (0())0;  to receive such codes you need to be able to nest brackets.  

3  Prime pairs  

Let's call a prime word with a single pair of parentheses a prime pair. Using prime 

pairs we can compose any Motzkin word. Let’s write the corresponding set: 

P  = { (), (0), ()0, (00), (0)0, ()00, (000), (00)0, (0)00, ()000, (0000), (000)0 …} 

In P ⊂ 𝔐, elements are indexed from one: p1 = (), p2 = (0), p11 = (0000), and so 

on. Items are distributed over ranges; the cardinality of the n-range is  #Pn = n–1. 

Let's denote a prime pair of size n with the right parenthesis in the k-th position as 

pn, k = (0
 n–k–1

)0
k–1

,  n > k > 0.  The first n-word (shown in red) is  pn, 1 = (0
n–2

), the 

last n-word is pn, n–1 = ()0
n–2

. It is easy to find the index of any pair in P :  pn, k = pi,  

i  = k + 1 + 2 +… + (n–1) = k + (n–1)(n–2)/2.  

What is the index (or rather the weight) of pn, k  in 𝔐?  Looking through 𝔐, we 

get:  wt pn, 1 = Mn–1,  wt pn, n–1 = Mn – Mn–2.  Let's get the general formula starting 

with pk+1, k, and then we will increase the word length by moving the left bracket 

(see Corollary 3.1 in [Ere19]): 

pk+1, k = ( )0
k–1

,  wt pk+1, k = M k +1 – M k–1; 

pk+2, k = (0)0
k–1

,  wt pk+2, k  = Mk +1 – Mk–1 + (Mk +1 – Mk); 

pk+3, k = (00)0
k–1

,  wt pk+3, k  = Mk +1 – Mk–1 + (Mk +2 – Mk); 

…….. 

pn, k = (0
n–k–1

)0
k–1

,  wt pn, k = Mk +1 – Mk–1 + (Mn –1 – Mk). 

As a result, we get 

(3.1)  wt pn, k = Mn–1 + Uk +1 – Mk–1,  n > k > 0.  

In General, 

(3.1a)      wt pn, k = Mn–1 + δk,  δk = Uk +1 – Mk–1,  n > k > 0. 

The numbers  δk  for k = 1, 2 … form the sequence  

0, 1, 3, 8, 21, 55, 145, 385, 1030, 2775, 7525, 20526, 56288 … 

4  Nesting procedure 

Prime pairs can be nested, and we must be able to calculate the weight of the 

resulting Motzkin words. The procedure for including a prime pair into a Motzkin 

word and the corresponding processing of indices resemble the author the 

differentiation of a function. Below are a few steps.   

Let be a prime pair pn, k, n > k > 1 (in the case k = 1, the pair cannot be nested 

anywhere),  then  

wt pn, k = Mn–1 + Mk+1 – Mk – Mk–1. 

Next, we increase both n and k by 1   

https://arxiv.org/abs/1911.01673
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wt pn+1, k+1 = Mn + Mk+2 – Mk+1 – Mk, 

and calculate the change in weight:  

Δ wt pn, k = wt pn+1, k+1 – wt pn, k = Un + Mk +2 – 2Mk+1+ Mk–1. 

And finally, we reduce the obtained value by Mk and call it the derivative of 

function wt at point pn, k, that is,         

(4.1)  wt' pn, k = Δ wt pn, k – Mk  = Un + Mk +2 – 2Mk+1 – Uk, n > k > 1.  

What is interesting about (4.1)?  We constructed an expression that gives an 

increment in weight, a nest-weight with which pn, k is included in the Motzkin 

word. Note we are talking about the first level of nesting, since the first derivative 

is obtained.  

Let's test (4.1) for the 6-word  w28 ≡ (0())0  that we met before:         

wt (0())0  = wt (000)0 + wt' ()00  

         = wt p6,2 + wt' p4,3  

         = (M5 +1) + (U4 + M5 – 2M4 – U3)  

         = (21 + 1) + (5 + 21 – 2×9 – 2) = 28.  

It is not difficult to calculate the derivative for some values of k. For example, 

wt' pn, 2 = Un, wt' pn, 3 = Un +1, and so on. In General,  

(4.1a)      wt' pn, k = Un + δ'k,  δ'k = Mk +2 – 2Mk+1 – Uk,  n > k > 1. 

The numbers  δ'k  for k = 2, 3 … form the sequence 

0, 1, 4, 13, 39, 113, 322, 910, 2562, 7203, 20251, 56980, 160524 … 

5  Differential equations 

Let’s denote wt
(0)

 x = wt x, then (4.1) can be written as a first-order differential 

equation of the form   

(5.1)  wt' pn, k + wt
(0)

 pn, k + Mk  =  wt
(0)

 p n+1, k+1,  n > k > 1.  

Let's call the resulting differential equation three-in-one. There is a general form 

of the three-in-one equation. Here is the differential equation of the (s+1)-th order: 

(5.2)   wt
(s+1)

 pn, k + wt
(s)

 pn, k + wt
(s–1)

 pn, k  =  wt
(s)

 p n+1, k+1,  n > k > s +1. 

Let’s check 12-word  w9763 ≡ ((00)0(0())):  

wt ((00)0(0()))  = wt (0
10

) + wt' (00)0
7
 + wt' (000)0 + wt" ()00   

        = wt p12,1 + wt' p11,8 + wt' p6,2 + wt" p4,3.  

We calculate the summands using the equalities (3.1a), (4.1a) and (5.2): 

wt p12,1 = M11 = 5798, 

wt' p11,8 = U11 + δ'8 = 3610 + 322 = 3932,  

wt' p6,2 = U6 = 30, 
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wt" p4,3 = wt' p5,4 – wt' p4,3 – wt p4,3  

      = (U5 + δ'4) – (U4 + δ'3) – (M3 + δ3) = (12+4) – (5+1) – (4+3 ) = 3. 

As a result we get the desired result   

wt w9763 = 5798 + 3932 + 30 + 3 = 9763. 

Using equation (5.2), it is easy to calculate the nest-weight of pairs. Below in 

Appendix we have given a table of the initial nest-weights of prime pairs from ten 

ranges. An inquisitive reader can independently obtain additional equations by 

analyzing the information of Appendix. For example, here is the obvious equality  

wt
(n–2)

 pn, n–1 = n –1. 

Using the nest-weights we can easy decompose a Motzkin word into prime pairs 

(an analog of the factorization of natural numbers). In this case, the matched pair is 

characterized by three parameters: the positions of the left and right brackets, plus 

the depth of the nest. The outer brackets of prime words have zero nesting depth.  

The reverse procedure can generate an arbitrary Motzkin word in accordance 

with the given parameters of prime pairs. 
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Appendix.  Prime Pairs and their nest-weights (starting weights for ten ranges). 

№№ n/k  pn, k Mk wt wt' wt" wt"' wt
iv
 wt

v
 

1 2/1 ( ) 1 1 – – – – – 

2 3/1 (0) 1 2 – – – – – 

3 3/2 ( )0 2 3 2 – – – – 

4 4/1 (00) 1 4 – – – – – 

5 4/2 (0)0 2 5 5 – – – – 

6 4/3 ( )00 4 7 6 3 – – – 

7 5/1 (000) 1 9 – – – – – 

8 5/2 (00)0 2 10 12 – – – – 

9 5/3 (0)00 4 12 13 9 – – – 

10 5/4 ( )000 9 17 16 10 4 – – 

11 6/1 (0000) 1 21 – – – – – 

12 6/2 (000)0 2 22 30 – – – – 

13 6/3 (00)00 4 24 31 25 – – – 

14 6/4 (0)000 9 29 34 26 14 – – 

15 6/5 ( )0000 21 42 43 30 15 5 – 

16 7/1 (00000) 1 51 – – – – – 

17 7/2 (0000)0 2 52 76 – – – – 

18 7/3 (000)00 4 54 77 69 – – – 

19 7/4 (00)000 9 59 80 70 44 – – 

20 7/5 (0)0000 21 72 89 74 45 20 – 

21 7/6 ( )00000 51 106 115 88 50 21 6 

22 8/1 (000000) 1 127 – – – – – 

23 8/2 (00000)0 2 128 196 – – – – 

24 8/3 (0000)00 4 130 197 189 – – – 

25 8/4 (000)000 9 135 200 190 133 – – 

26 8/5 (00)0000 21 148 209 194 134 70 – 

27 8/6 (0)00000 51 182 235 208 139 71 27 

28 8/7 ( )000000 127 272 309 253 159 77 28 

29 9/1 (0000000) 1 323 – – – – – 

30 9/2 (000000)0 2 324 512 – – – – 

31 9/3 (00000)00 4 326 513 518 – – – 

32 9/4 (0000)000 9 331 516 519 392 – – 

33 9/5 (000)0000 21 344 525 523 393 230 – 

34 9/6 (00)00000 51 378 551 537 398 231 104 

35 9/7 (0)000000 127 468 625 582 418 237 105 

36 9/8 ( )0000000 323 708 834 721 489 264 112 

37 10/1 (00000000) 1 835 – – – – – 

38 10/2 (0000000)0 2 836 1353 – – – – 

39 10/3 (000000)00 4 838 1354 1422 – – – 

40 10/4 (00000)000 9 843 1357 1423 1140 – – 

41 10/5 (0000)0000 21 856 1366 1427 1141 726 – 

42 10/6 (000)00000 51 890 1392 1441 1146 727 369 

43 10/7 (00)000000 127 980 1466 1486 1166 733 370 

44 10/8 (0)0000000 323 1220 1675 1625 1237 760 377 

45 10/9 ( )00000000 835 1865 2263 2044 1474 865 412 

46 11/1 (000000000) 1 2188 – – – – – 

 


