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Abstract. In this article, we study the structure, and in particular the Grundy values, of
a family of games known as memgames.

1. Introduction

Let P(N) denote the power set of the positive integers. For each function F : N→P(N),
we define an impartial game, known as a memgame, as follows. The game is played with a
single pile of stones, initially containing n stones. On the first move, the first player may
remove any positive number of stones. On future moves, if the previous player removed k
stones, then the next player may remove m stones if and only if m ∈ F (k). (Of course, one
may not remove more stones than are in the pile.) We represent the position with n stones
where the last move was to remove k, by nk. We use the term memgame, for the position
reMEMbers a small part of its history. We call the function F the memfunction.

There are several classical memgames. For instance, if F (k) = {1, 2, . . . , 2k}, then we
recover the game of Fibonacci nim [Whi63], with the exception that in Fibonacci nim,
the first player may not remove all the stones. More generally, if, for some α ≥ 1, we have
F (k) = {1, 2, . . . , bαkc}, then we recover a class of take-away games studied for instance
in [Sch70] and [RS18]. A more general class of memgames was studied in [HRR03]. In all
these papers, the memfunction F has the form F (k) = {1, 2, . . . , g(k)} for some g(k). In
this paper, we focus on certain memfunctions of different forms.

In this article, we study the Grundy values [Gru39,Spr35] of certain memgames. We find
that these Grundy values enjoy a rich structure, and we hope that this will be an avenue for
much future work. The Grundy values for Fibonacci nim have already been investigated
by the first two authors in [LR16].

In this article, if H is an impartial game, we denote its Grundy number by G(H). When
the ruleset of a memgame (i.e. the memfunction F : N → P(N)) is clear, we will write
G(nk).

2. Mem, Mem+, and Mem0

We highlight three specific memgames. A memgame is determined entirely by its memfunc-
tion F : N→P(N). The game Mem is defined by the memfunction F (k) = {k, k + 1, . . .}.
In other words, in Mem, one must remove at least as many stones as the previous player
did. The game Mem+ is defined by the memfunction F+(k) = {k + 1, k + 2, . . .}. In other
words, in Mem+, one must remove strictly more stones than the previous player did. The
game Mem0 is defined by the memfunction F 0(k) = N \ {k}. In other words, in Mem0, one
may not remove exactly the same number of stones as the previous player did.
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
9 3 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
10 3 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
11 3 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
12 3 3 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
13 3 3 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
14 4 3 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
15 4 3 3 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0
16 4 3 3 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0
17 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0
18 4 4 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0
19 4 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0
20 5 4 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 0

Table 1. Grundy values of Mem+

A substantial amount of work has been done on games very closely related to Mem0. For
instance, Chapter 15 in Volume 3 of Winning Ways for your Mathematical Plays [BCG03]
contains a discussion of the game D.U.D.E.N.E.Y., which is short for Deductions Un-
falling, Disallowing Echoes, Not Exceeding Y. For a fixed value of Y , moves in
D.U.D.E.N.E.Y. are the same as those of Mem0, except that no more than Y stones may
ever be removed on a single turn. The discussion in [BCG03] refers back to earlier work
by Schuh, who discusses the game in [Sch68, Chapter XII, §217–224] and describes winning
strategies when Y = 3, 5, 7, 9 (the case where Y is even is trivial, since the usual strategy for
subtraction games still works).

3. Grundy values of Mem+

The simplest of the three games to understand is Mem+. See Table 1 and Figure 1 for
the first few Grundy values.

Theorem 3.1. In the game of Mem+, G(nk) is the largest integer m for which

mk +
m(m+ 1)

2
≤ n(3.1)

Proof. Let the mth triangular number be Tm = m(m+1)
2

. We define the m-front to be the set of
positions Fm = {Fm(k)}, where Fm(k) = (km+Tm)k. We define the m-sector to be the space
between the m-front (including the m-front) and the (m + 1)-front, i.e. ∆m =

⋃
k ∆m(k),

where

∆m(k) = {(km+ Tm)k, (km+ Tm + 1)k, . . . , (k(m+ 1) + Tm+1 − 1)k}.
For example, the region named ‘2’s in Figure 1 is ∆2. Observe that |∆m(k)| = k +m+ 1.
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Figure 1. The Grundy values of the game Mem+; the columns removal
numbers k and the rows heap sizes n, with the upper left corner nk = 11.
Note that there is no move from this position, so G(11) = 0, expanding into
the black region, and the lighter shades symbolize increasing Grundy
numbers.

We will prove by induction on n that nk ∈ ∆j if and only if G(nk) = j, for all 0 ≤ j < m;
the base case n = 0 is obvious. In order to prove this, it suffices to justify the following
claim.

Claim. For n ∈ ∆m(k), then the set {G((n− k − i)k+i) | 1 ≤ i ≤ n− k} = {0, . . . ,m− 1}.

First we prove that, for all i, (n− k − i)k+i 6∈ ∆m(k + i). This follows because

min ∆m(k + i) = min ∆m(k + 1) = max ∆m(k)− k,
so whenever a player removes more than the column number (here k+ i) from the m-sector,
then the resulting position is in an m′-sector with m′ < m. Now we must prove that each
such m′-sector appears. Firstly, note that (n− k − 1)k+1 ∈ ∆m−1(k + 1), whenever n ∈ ∆m.
Thus, it suffices to show that, for all 0 ≤ j < m− 1,

{(n− k − 1− i)k+1+i | 1 ≤ i < n− k − 1} ∩∆j 6= ∅.
But this holds, because, for any front position xy ∈ Fj+1, we have (x − 1)y+1 ∈ ∆j, and
clearly, for each j, exactly one such pair of positions will be obtained as i ranges in the given
interval. �

4. Grundy values of Mem

The ruleset of Mem is very similar to that of Mem+. This might lead us to believe that
its Grundy values should be closely related. Indeed, this is true, although there are also
some surprises. See Table 2 as well as Figure 2 for some Grundy values of Mem.

Evidently, there is a lot of structure here. Most of the Grundy values are indeed very
similar to those of Mem+, but there is a small parabolic region with some more fractal-
like behavior. We have written the numbers in this parabolic region as old style numbers
 to distinguish them from those in the main region.
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3  1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4  2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5   1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6   2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7   2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8   2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
9   3 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
10    2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
11    2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
12    3 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0
13    3 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0
14    3 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0
15    3 3 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0
16    4 3 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0
17     3 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0
18     3 3 2 2 2 1 1 1 1 1 1 1 1 1 0 0
19     3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 0
20     4 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1

Table 2. Grundy values of Mem

Figure 2. These pictures show some further Grundy values of the game
Mem. In the middle picture, on the left, we note the emergence of a
parabolic region with high Grundy values. In the rightmost picture, we have
zoomed in on the fractal type behavior inside this region. Each number is a
different shade, with lighter shades denoting larger Grundy values, so black
cells are 0, dark blue cells are 1, and so forth.

Theorem 4.1. In the game of Mem, if k2 ≥ n, then G(nk) = bn
k
c.

Proof. First, note that if k2 ≥ n, then any move, say to n′k′ , from nk we have k′2 ≥ n′. This
is clear, because k′ ≥ k and n′ < n, so k′2 ≥ k2 ≥ n ≥ n′. Next, we must show, if k2 ≥ n
and bn

k
c = q, then for any a with k ≤ a ≤ n, bn−a

a
c < q. This is true because

n− a
a
≤ n− a

k
≤ n− k

k
≤ n

k
− 1 <

⌊n
k

⌋
= q.
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n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 3 3 3 3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4
8 4 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 5 0 5 5 5 5 5 5 5 5 5 5 5
10 6 6 4 6 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6
11 6 5 7 4 7 7 7 7 7 7 0 7 7 7 7 7 7 7 7 7
12 7 7 7 7 4 7 7 7 7 7 7 0 7 7 7 7 7 7 7 7
13 6 6 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 6 6
14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
15 8 8 7 8 8 8 8 8 8 8 8 8 8 8 0 8 8 8 8 8
16 8 9 6 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9
17 9 9 9 9 9 7 9 9 9 9 9 9 9 9 9 9 0 9 9 9
18 8 8 8 8 8 8 8 8 8 5 8 8 8 8 8 8 8 8 8 8
19 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 10
20 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 0

Table 3. Grundy values of Mem0

Next, we must show that for every t with 0 ≤ t < q, there is some integer a with k ≤ a ≤ n
such that

⌊
n−a
a

⌋
= t. Let us temporarily omit the requirement that a be an integer. The

value of a making n−a
a

= t is a = n
t+1

, whereas the value of a making n−a
a

= t+ 1 is a = n
t+2

.
It thus suffices to show that there is some integer a with

n

t+ 2
< a ≤ n

t+ 1
.

Now, since t < q ≤
√
n, we have
n

t+ 1
− n

t+ 2
=

n

(t+ 1)(t+ 2)
≥ n√

n(
√
n− 1)

> 1,

so there is some integer in the range
(

n
t+2
, n
t+1

]
. This completes the proof. �

5. P positions in Mem0

The most complex of these three games is Mem0, and it is here that we see the richest
structure. See Table 3 and Figure 3 for the first few Grundy values.

In order to characterize the P positions (and higher Grundy values) of Mem0, we need to
introduce the dyadic valuation.

Definition 5.1. Let n be a positive integer. We may uniquely write n = 2em, where e,m
are nonnegative integers, and m is odd. We define its dyadic valuation to be v2(n) = e.

By convention, we will say that v2(0) is even, without specifying its value.

Theorem 5.2. The P positions of Mem0 are of the form nn, where v2(n) ≡ 0 (mod 2).

Proof. Consider first a position of the form nm, with m 6= n. Then there is a move to 00, so
nm is an N position. Therefore each P position must be of the form nn. Note that v2(0) ≡ 0
(mod 2) by convention and that 0 = v2(1) ≡ 0 (mod 2), but 1 = v2(2) ≡ 0 (mod 2).
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Figure 3. The pictures show the first few Grundy values of the game
Mem0. In the picture to the left, we see in particular the ‘0’s on the main
diagonal, and in the picture to the right, one can see the emergence of an
accompanying ‘left shifted’ diagonal of Grundy values 12.

Suppose the result holds for all n′ < n. Now, from nn, with n > 1 such that v2(n) 6≡ 0
(mod 2), clearly (n/2)(n/2) is the desired move option (because v2(n/2) ≡ 0 (mod 2)). On
the other hand, if v2(n) ≡ 0 (mod 2), then either a player must move away from the main
diagonal, or leave a position with odd dyadic valuation. �

6. Higher Grundy values of Mem0

Before computing any higher Grundy values, we introduce the notion of a frontier in
Mem0. Note that the positions nn+1, nn+2, nn+3, . . . all have the same moves available and
thus have the same Grundy values. Thus, we denote the position nn+1, nn+2, nn+3, . . . by n∞.
We call positions of the form n∞ frontier positions, and we call the Grundy value G(n∞) the
nth frontier value.

The first few frontier values are 0,1,1,2,3,3,2,4,5,5,6,7,7,6,4,8,9,9,8,10. We will prove the
following results:

Theorem 6.1. The frontier values are unbounded.

Theorem 6.2. Every integer appears at least once as a frontier value.

Theorem 6.3. If f(m) denotes the least n so that G(n∞) = m, then f(m) < f(m′) whenever
m < m′.

Observe that the positions nk for k ≤ n and n∞ are very similar: they have all the same
options, except for one: the position (n− k)k is an option from n∞, but not from nk. As a
result, we have the following important lemma:

Lemma 6.4. G(nk) is equal to G(n∞) or to G((n− k)k).

Definition 6.5. We call nk an exceptional position if G(nk) = G((n− k)k).

As a consequence, we immediately have the following proposition:
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Proposition 6.6. Suppose n is the smallest integer for which there exists some k with
G(nk) = m. Then G(n∞) = m.

Proof. By Lemma 6.4, either G(nk) = G(n∞) or G(nk) = G((n − k)k). By minimality of n,
we exclude the second possibility. �

Theorem 6.7 (The Final Frontier Theorem). If G(n∞) = m and a > 2n, then G(a∞) 6= m.

Proof. If a > 2n, then there is a move from a∞ to na−n = n∞. Thus m = G(n∞) 6=
G(a∞). �

Thus 2n is the final (possible) frontier for the Grundy value m.
Theorem 6.7 allows us to prove Theorem 6.1.

Proof of Theorem 6.1. By Theorem 6.7, each integer only appears finitely many times on
the frontier. Thus, there must be infinitely many (and hence unbounded) numbers on the
frontier. �

In conjunction with Proposition 6.6, we can also establish Theorem 6.2:

Proof of Theorem 6.2. Since the frontier values are unbounded, every integer must appear
as some Grundy value G(nk). By Proposition 6.6, the first time m appears as G(nk), it
establishes itself on the frontier. Thus every nonnegative integer appears on the frontier. �

Proof of Theorem 6.3. If m < m′, then the first instance of m must occur before the first
instance of m′. Thus by Proposition 6.6, the first frontier value equal to m must be less than
the first frontier value equal to m′. �

What happens to a Grundy value after the final frontier? It turns out that there is a
curious dichotomy here:

Theorem 6.8 (The Mortality Theorem). Suppose that m appears at least twice on the
frontier, say as G(n∞) = G(n′∞) = m with n < n′. Then if a > 2n′, we have G(ak) 6= m for
all k. Thus the value m dies out after row 2n′.

Proof. If a > 2n′, then from a∞, there are moves to both na−n = n∞ and to n′a−n′ = n′∞.
From ak, at least one of these is a legal move: the legal moves are to (a − i)i for i 6= k,
and k cannot be equal to both n and n′ simultaneously. Thus m is an excludant for ak, so
G(ak) 6= m. �

Example. Let m = 11. The first frontier value for m is n = 20, so that G(20∞) = 11. There
is also a second frontier value of 11, namely G(21∞) = 11. Thus Theorem 6.8 implies that
11 never appears as a Grundy value of ak for a > 42. It turns out that there are several
Grundy values equal to 11 with a > 21, namely G(222) = G(4019) = G(4222) = 11.

The Mortality Theorem allows for the possibility that a number can appear exactly once
along the frontier. Indeed, this happens with m = 0: we have G(0∞) = 0, but 0 does not
occur again along the frontier. When a number occurs only once on a frontier, then it does
not die out at any point. Indeed, there are arbitrarily large values of n for which G(nn) = 0.

It turns out that whenever a number occurs exactly once along the frontier, it exhibits a
very similar pattern to that of 0. The first instance of this is m = 12.
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Example. m = 12 occurs exactly once along the frontier, with G(22∞) = 12. However, it also
appears along a diagonal. There are infinitely many values of a for which G((a+ 22)a) = 12.
First, if 12 reestablishes itself a second time along the frontier, it must do so by row 2×22 =
44. By computation, we observe that it does not.

Now, suppose that n > 44. Then there is a move from nk to 22∞, unless k = n − 22.
So, if G(nk) is going to be equal to 12, we must have k = n − 22. By a finite check, we
also observe that there are several exceptional position: G(22k) = 12 for k 6= 2, 10, and
G(241) = G(325) = 12.

If k+ 22 > 88, there are moves from (k+ 22)k to a∞ for a = 0, 1, . . . , 21. Thus 0, 1, . . . , 11
are all excludents of (k + 22)k. Thus G((k + 22)k) = 12 iff 12 is not an excludent.

The options of (k + 22)k are ak+22−a for a 6= 22. If k is even, then we can stay on the
diagonal (k + 22)k by removing k/2 stones, to (k/2 + 22)k/2. The Grundy value here might
or might not be 12. The Grundy value of every other option is definitely not 12 though: for
a ≤ 44 the option is a∞ (since k + 22 > 88), and for a > 44 the option ak+22−a has a move
to 22∞.

Thus we have shown that for k + 22 > 88, G((k + 22)k) = 12 if and only if k is odd and
G((k/2 + 22)k/2) 6= 12. This leads to the following characterization: G((k+ 22)k) = 12 if and
only if v2(k) ≡ 0 (mod 2), with the following exceptions:

• k = 2e, e ≥ 4,
• k = 3× 2e, e ≥ 0,
• k = 15× 2e, e ≥ 0.

For these exceptional cases, G((k + 22)k) = 12 iff v2(k) ≡ 1 (mod 2).

7. Questions

Our analysis of memgames leaves many questions open.

(1) Mem0 has simple parameterless rules. So, why is m = 12 special?
(2) Are m = 0 and m = 12 the only immortal numbers in Mem0? (There are no others

up to m = 2000.) If there are others, are there infinitely many?
(3) How many times can a number m appear on the frontier? We have found numbers

that appear three times on the frontier; the smallest is 17, which appears on the
frontier as G(n∞) for n ∈ {29, 30, 35}. There are many others as well, the first few
of which are 24, 38, 42, and 50. We have not yet found any numbers that appear
more than three times on the frontier. Still, we conjecture that a number can appear
arbitrarily many times on the frontier.

(4) Are there other memgames with interesting Grundy structure? Specifically, in [Lar09],
the memory is extended to include the include k previous moves by the other player,
where k is a given game parameter. How do the Grundy values change, if we extend
the definition of Mem0 to allow up to k− 1 consecutive mimics of the other player’s
move, but not the kth one?

Remark 7.1. Mem0 has been considered previously. It appears as #22 in their 2002 list of
unsolved problems (see [GN02]), under the name of “short local nim.” The Grundy values of
the Frontier values appear on the Online Encyclopedia of Integer Sequences as A131469 [Slo].
Curiously, on OEIS, Mem0 is referred to as “short global nim.”
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