Binary Compositions and Semi-Pell Compositions

William J. Keith ${ }^{1}$, Augustine O. Munagi ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, Michigan Technological University
${ }^{2}$ School of Mathematics, University of the Witwatersrand, Johannesburg
${ }^{1}$ wjkeith@mtu.edu, ${ }^{2}$ augustine.munagi@wits.ac.za

Abstract

In analogy with the semi-Fibonacci partitions studied recently by Andrews, we define semi-Pell compositions and semi-m-Pell compositions. We find that these are in bijection with certain weakly unimodal m-ary compositions. We give generating functions, bijective proofs, and a number of unexpected congruences for these objects.

1 Introduction

A composition of a positive integer n is an ordered partition of n, that is, any sequence of positive integers $\left(n_{1}, \ldots, n_{k}\right)$ such that $n_{1}+\ldots+n_{k}=n$. Compositions of n will be represented as vectors with positive-integer entries.

Inspired by a recent paper of Andrews on semi-Fibonacci partitions [2, we study the set $S P(n)$ of semi-Pell compositions, defined as follows:
$S P(1)=\{(1)\}, S P(2)=\{(2)\}$.
If $n>2$ and n is even then
$S P(n)=\left\{C \mid C\right.$ is a semi-Pell composition of $\frac{n}{2}$ with each part doubled $\}$.
If n is odd, then a member of $S P(n)$ is obtained by inserting 1 at the beginning or the end of each composition in $S P(n-1)$, and by adding 2 to the single odd part in a composition in $S P(n-2)$. (Indeed it follows by induction that every semi-Pell composition with odd weight contains exactly one part odd part).
As an illustration we have the following sets for small n :

```
\(S P(1)=\{(1)\}\)
\(S P(2)=\{(2)\}\)
\(S P(3)=\{(1,2),(2,1),(3)\}\)
\(S P(4)=\{(4)\}\)
\(S P(5)=\{(1,4),(4,1),(3,2),(2,3),(5)\}\)
\(S P(6)=\{(2,4),(4,2),(6)\}\)
\(S P(7)=\{(1,2,4),(2,4,1),(1,4,2),(4,2,1),(1,6),(6,1),(3,4),(4,3),(5,2),(2,5),(7)\}\)
```

Thus if we define $s p(n)=|S P(n)|$, we obtain that

$$
s p(1)=s p(2)=1, s p(3)=3, s p(4)=1, s p(5)=5, s p(6)=3, s p(7)=11, s p(8)=1,
$$

$$
s p(9)=13, s p(10)=5, \ldots
$$

Hence we see that $s p(n)=0$ if $n<0$ and $s p(0)=s p(1)=1$, and for $n>1$, the following
recurrence holds:

$$
s p(n)= \begin{cases}s p(n / 2) & \text { if } n \text { is even } \tag{1}\\ 2 \cdot s p(n-1)+s p(n-2) & \text { if } n \text { is odd }\end{cases}
$$

The semi-Pell sequence $\{s p(n)\}_{n>0}$ occurs as sequence number A129095 in the Online Encyclopedia of Integer Sequences [8]. However, there seems to be no connection of the sequence with compositions until now. The companion sequence A129096 records the fact that the bisection of the semi-Pell sequence $s p(2 n-1), n>0$ is monotonically increasing: $s p(2 n+3)=2 s p(2 n+2)+s p(2 n+1)>s p(2 n+1)$ for all $n \geq 0$.

A weakly unimodal composition (or stack) is defined to be any composition of the form $\left(a_{1}, a_{2}, \ldots, a_{r}, c, b_{s}, \ldots, b_{1}\right)$ such that

$$
1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{r} \leq c>b_{s} \geq \cdots \geq b_{2} \geq b_{1} .
$$

The set of the a_{i} or the b_{j} may be empty. The study of these compositions was pioneered by Auluck [5] and Wright [9] and continues to instigate research (see, for example [2, 3, 6]). The "concave" compositions studied by Andrews in [3] are weakly unimodal compositions with unique largest parts.

We will associate the set of semi-Pell compositions with a class of restricted unimodal compositions into powers of 2 .

Binary compositions are compositions into powers of 2 . Let $O C(n)$ be the set of weakly unimodal binary compositions of n such that each part size occurs together, or "in one place," an odd number of times. In other words every part size lies in a distinct 'colony' (see also Munagi-Sellers [7]). For example members of $O C(45)$ include, using the frequency notation, $\left(16,4^{3}, 2^{3}, 1^{11}\right),\left(2^{5}, 4,8^{3}, 1^{7}\right),\left(1^{7}, 8,16,2^{7}\right)$, but the following weakly unimodal binary compositions of 45 do not belong to $O C(45):\left(2^{3}, 4^{3}, 16,2,1^{9}\right),\left(1^{3}, 2^{5}, 4,8^{3}, 1^{4}\right)$.

Lemma 1. The enumeration function $o c(n)$ satisfies the recurrence:

$$
o c(n)= \begin{cases}o c(n / 2) & \text { if } n \text { is even } \tag{2}\\ 2 \cdot o c(n-1)+o c(n-2) & \text { if } n \text { is odd }\end{cases}
$$

Proof. The recurrence is obtained in a similar manner to that of $s p(n)$.
$O C(1)=\{(1)\}, O C(2)=\{(2)\}$.
If n is even and $n>2$, then $O C(n)$ is obtained by doubling each member of $O C(n / 2)$.
If n is odd, then $O C(n)$ is obtained from the union of the two sets: (i) set of compositions obtained by inserting 1 before or after each composition in $O C(n-1)$; and (ii) set of compositions obtained by inserting two 1's to the single cluster of 1's in each composition in $O C(n-2)$. Thus, for example we have
$O C(1):(1)$
$O C(2):(2)$
$O C(3):(1,2),(2,1),\left(1^{3}\right)$
$O C(4):(4)$
$O C(5):(1,4),(4,1),\left(1^{3}, 2\right),\left(2,1^{3}\right),\left(1^{5}\right)$
The result follows.

The equality of initial conditions and recurrences immediately gives the equality of $s p(n)$ and $o c(n)$ and raises the natural questions of a bijective proof, and of their common generating function.

Theorem 1. For integers $n \geq 0$,

$$
\begin{equation*}
s p(n)=o c(n) . \tag{3}
\end{equation*}
$$

Their common generating function is

$$
\sum_{n=0}^{\infty} s p(n) x^{n}=1+\sum_{i=0}^{\infty} \frac{x^{2^{i}}}{1-x^{2^{i+1}}} \prod_{t=0}^{i-1}\left(1+\frac{2 x^{2^{t}}}{1-x^{2^{t+1}}}\right)=\sum_{n=0}^{\infty} o c(n) x^{n} .
$$

Proof. We first prove the generating function claim and then give the bijective proof. First Proof (generating functions): Let $P(x)=\sum_{n \geq 0} s p(n) x^{n}$. Then

$$
\begin{aligned}
P(x) & =\sum_{n \geq 0} s p(2 n) x^{2 n}+\sum_{n \geq 0} s p(2 n+1) x^{2 n+1} \\
& =\sum_{n \geq 0} s p(2 n) x^{2 n}+2 \sum_{n \geq 1} s p(2 n) x^{2 n+1}+\sum_{n \geq 1} s p(2 n-1) x^{2 n+1}+x \\
& =\sum_{n \geq 0} s p(n) x^{2 n}+2 \sum_{n \geq 1} s p(n) x^{2 n+1}+\sum_{n \geq 0} s p(2 n+1) x^{2 n+3}+x \\
& =P\left(x^{2}\right)+2 x\left(P\left(x^{2}\right)-1\right)+x+x^{2} \sum_{n \geq 0} s p(2 n+1) x^{2 n+1} .
\end{aligned}
$$

Eliminating the last sum by the first equality,

$$
\begin{aligned}
P(x) & =P\left(x^{2}\right)+2 x P\left(x^{2}\right)-x+x^{2}\left(P(x)-P\left(x^{2}\right)\right) \\
& \Longrightarrow P(x)+\frac{x}{1-x^{2}}=\frac{1+2 x-x^{2}}{1-x^{2}} P\left(x^{2}\right) .
\end{aligned}
$$

To iterate the last equation, we begin by denoting both sides by $P_{1}(x)$ and obtain

$$
P_{1}(x)=\frac{1+2 x-x^{2}}{1-x^{2}}\left(P_{1}\left(x^{2}\right)-\frac{x^{2}}{1-x^{4}}\right),
$$

which gives

$$
P_{1}(x)+\frac{\left(1+2 x-x^{2}\right) x^{2}}{\left(1-x^{2}\right)\left(1-x^{4}\right)}=\frac{1+2 x-x^{2}}{1-x^{2}} P_{1}\left(x^{2}\right) .
$$

Denoting both sides of the last equation by $P_{2}(x)$ we obtain

$$
P_{2}(x)=\frac{1+2 x-x^{2}}{1-x^{2}}\left(P_{2}\left(x^{2}\right)-\frac{\left(1+2 x^{2}-x^{4}\right) x^{4}}{\left(1-x^{4}\right)\left(1-x^{8}\right)}\right)
$$

which gives

$$
P_{2}(x)+\frac{\left(1+2 x-x^{2}\right)\left(1+2 x^{2}-x^{4}\right) x^{4}}{\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{8}\right)}=\frac{1+2 x-x^{2}}{1-x^{2}} P_{2}\left(x^{2}\right) .
$$

Similarly,

$$
P_{3}(x)+\frac{\left(1+2 x-x^{2}\right)\left(1+2 x^{2}-x^{4}\right)\left(1+2 x^{4}-x^{8}\right) x^{8}}{\left(1-x^{2}\right)\left(1-x^{4}\right)\left(1-x^{8}\right)\left(1-x^{16}\right)}=\frac{1+2 x-x^{2}}{1-x^{2}} P_{3}\left(x^{2}\right) .
$$

In general we have,

$$
P_{i}(x)+\frac{x^{2^{i}}}{1-x^{2^{i+1}}} \prod_{r=0}^{i-1} \frac{\left(1+2 x^{2^{r}}-x^{2^{r+1}}\right)}{\left(1-x^{2^{r+1}}\right)}=\frac{1+2 x-x^{2}}{1-x^{2}} P_{i}\left(x^{2}\right), i>0 .
$$

This suggests that $P(x)$ is given by the limiting value of $P_{i}(x)$ as i tends to infinity, plus a constant 1 to suit our initial conditions:

$$
P(x)=1+\lim _{i \rightarrow \infty} P_{i}(x)=1+\sum_{i=0}^{\infty} \frac{x^{2^{i}}}{1-x^{2^{i+1}}} \prod_{t=0}^{i-1}\left(1+\frac{2 x^{2^{t}}}{1-x^{2^{t+1}}}\right)=\sum_{n=0}^{\infty} o c(n) x^{n} .
$$

That this is the generating function for $o c(n)$ is immediate, as the i term counts $O C$ compositions with largest part 2^{i}.

Additionally, it may be verified algebraically that the generating function $P(x)$ satisfies the functional equation

$$
P(x)+\frac{x}{1-x^{2}}=\frac{1+2 x-x^{2}}{1-x^{2}} P\left(x^{2}\right)
$$

that was constructed for $s p(n)$ as well.
Second Proof (combinatorial bijection). Each part t of $\lambda \in S P(n)$ can be expressed as $t=2^{i} \cdot h, i \geq 0$, where h is odd. Now transform t as follows:
if $i>0$, i.e., t is even, then $t=2^{i} \cdot h \longmapsto 2^{i}, 2^{i}, \ldots, 2^{i}(h$ times $)$;
if $i=0$, i.e., t is odd and occurs as a first or last part of λ, then $t=h \longmapsto 1,1, \ldots, 1$ (h times).
This gives a unique binary composition in $O C(n)$ provided we retain the cluster of 2^{i} 's or 1's corresponding to each t in consecutive positions, and we do not re-order the parts of the resulting binary composition. (In other words, each (possibly repeated) part-size appears in exactly one place in the image).

For the inverse map we simply write each $\beta \in O C(n)$ in the one-place exponent notation, by replacing every r consecutive equal parts x with x^{r}, to get $\beta=\left(\beta_{1}^{u_{1}}, \ldots, \beta_{s}^{u_{s}}\right)$, with the u_{i} odd and positive, and containing at most one instance of a 1 -cluster which may be $\beta_{1}^{u_{1}}$ or $\beta_{s}^{u_{s}}$. Since each $\beta_{i}^{u_{i}}$ has the form $\left(2^{j_{i}}\right)^{u_{i}}, j_{i} \geq 0$, we apply the transformation:

$$
\beta_{i}^{u_{i}}=\left(2^{j_{i}}\right)^{u_{i}} \longmapsto 2^{j_{i}} u_{i} .
$$

This gives a unique composition in $S P(n)$ provided that the resulting parts retain their relative positions. Indeed the image may contain at most one odd part which occurs precisely when $j_{i}=0$.

As an illustration of this bijection note that the 13 members of $S P(9)$ and the 13 members of $O C(9)$ listed below correspond one-to-one under the bijection.
Members of $S P(9)$:
$(1,8),(8,1),(3,2,4),(2,4,3),(3,4,2),(4,2,3),(3,6),(6,3),(5,4),(4,5),(7,2),(2,7),(9)$
Members of $O C(9)$:
$(1,8),(8,1),\left(1^{3}, 2,4\right),\left(2,4,1^{3}\right),\left(1^{3}, 4,2\right),\left(4,2,1^{3}\right),\left(1^{3}, 2^{3}\right),\left(2^{3}, 1^{3}\right),\left(1^{5}, 4\right),\left(4,1^{5}\right),\left(1^{7}, 2\right)$, $\left(2,1^{7}\right),\left(1^{9}\right)$.

The following result is easily deduced from the first part of the relation (11).
Corollary 1. Given any positive nonnegative integer v, then

$$
s p\left(2^{j}(2 v+1)\right)=s p(2 v+1) \forall j \geq 0
$$

In particular $\operatorname{sp}\left(2^{j}\right)=1 \forall j \geq 0$.
Parities of $\operatorname{sp}(n)$ and n agree at odd values of n modulo 4 .
Theorem 2. Given any nonnegative integer n, then

$$
s p(2 n+1) \equiv 2 n+1 \quad(\bmod 4)
$$

This theorem implies that

$$
s p(4 n+1) \equiv 1(\bmod 4), n \geq 0
$$

and

$$
\operatorname{sp}(4 n+3) \equiv 3(\bmod 4), n \geq 0 .
$$

The proof requires the following lemma which may be established by an easy induction argument, or by observing that any n has exactly one OC composition into exactly one size of power of 2 , and all other OC compositions may be paired by whether they have their smallest part on the left or right.

Lemma 2. $s p(n)$ is odd for all integers $n \geq 0$.
Proof of Theorem 图. By induction on n. Note that $s p(1)=1$ and $s p(3)=|\{(1,2),(2,1),(3)\}|=$ 3. So the assertion holds for $n=0,1$. Assume that $s p(2 j+1) \equiv 2 j+1(\bmod 4)$ for all $j<n$. Then
$s p(2 n+1)=2 s p(2 n)+s p(2 n-1)=2 s p(n)+s p(2 n-1)$.
Then by Lemma $2 \operatorname{sp}(n)$ is odd, say $2 u+1$, and the inductive hypothesis shows that $s p(2 n-$ $1) \equiv 2 n-1(\bmod 4)$. Hence

$$
s p(2 n+1)=2(2 u+1)+2 n-1+4 t=4(u+t)+2 n+1 \equiv 2 n+1(\bmod 4) .
$$

Andrews in [2] denotes by $o b(n)$ the number of partitions of n into powers of 2, in which each part size appears an odd number of times. Theorem2has the corollary that, for $n \equiv 2 i+1$ $(\bmod 4)$, the number of these in which exactly 2 part sizes appear is congruent to $i \bmod 2$, for each of these correspond to exactly two compositions enumerated by oc(n) by reordering, while every n has 1 additional such partition (and composition) into exactly 1 part size, and those into three or more part sizes correspond to a multiple of four such compositions.

In Section 2 we obtain extensions of semi-Pell compositions to semi- m-Pell compositions and establish the corresponding extension of Theorem 1. We also give an alternative characterization of semi-m-Pell compositions in Section 3, Then in Section 4 we prove some congruences satisfied by the enumeration function of these compositions.

2 The Semi-m-Pell Compositions

We generalize the set of semi-Pell compositions to the set $S P(n, m)$ of semi- m-Pell compositions as follows:
$S P(n, m)=\{(n)\}, n=1,2, \ldots, m$.
If $n>m$ and n is a multiple of m, then
$S P(n, m)=\left\{\lambda \mid \lambda\right.$ is a composition of $\frac{n}{m}$ with each part multiplied by $\left.m\right\}$.
If n is not a multiple of m, that is, $n \equiv r(\bmod m), 1 \leq r \leq m-1$, then $S P(n, m)$ arises from two sources: first, compositions obtained by inserting r at the beginning or at the end of each composition in $S P(n-r, m)$, and second, compositions obtained by adding m to the single part of each composition $\lambda \in S P(n-m, m)$ which is congruent to $r(\bmod m)$. (Note that λ contains exactly one part which is congruent to r modulo m, see Lemma 3 below).

Lemma 3. Let $\lambda \in S P(n, m)$.
If $m \mid n$, then every part of λ is a multiple of m.
If $n \equiv r(\bmod m), 1 \leq r<m$, then λ contains exactly one part $\equiv r(\bmod m)$.
Proof. If $m \mid n$, the parts of a composition in $S P(n, n)$ are clearly divisible by m by construction.

For induction note that $S P(r, m)=\{(r)\}, r=1, \ldots, m-1$, so the assertion holds trivially. Assume that the assertion holds for the compositions of all integers $<n$ and consider $\lambda \in$ $S P(n, m)$ with $1 \leq r<m$. Then λ may be obtained by inserting r at the beginning or end of a composition $\alpha \in S P(n-r, m)$. Since α consists of multiples of m (as $m \mid(n-r)), \lambda$ contains exactly one part $\equiv r(\bmod m)$. Alternatively λ is obtained by adding m to the single part of a composition $\beta \in S P(n-m, m)$ which is $\equiv r(\bmod m)$. Indeed β contains exactly one such part by the inductive hypothesis. Hence the assertion is proved.

As an illustration we have the following sets for small n when $m=3$:

$$
\begin{aligned}
& S P(1,3)=\{(1)\} \\
& S P(2,3)=\{(2)\} \\
& S P(3,3)=\{(3)\} \\
& S P(4,3)=\{(1,3),(3,1),(4)\} \\
& S P(5,3)=\{(2,3),(3,2),(5)\} \\
& S P(6,3)=\{(6)\} \\
& S P(7,3)=\{(1,6),(6,1),(4,3),(3,4),(7)\} \\
& S P(8,3)=\{(2,6),(6,2),(5,3),(3,5),(8)\} \\
& S P(9,3)=\{(9)\} \\
& S P(10,3)=\{(1,9),(9,1),(4,6),(6,4),(7,3),(3,7),(10)\}
\end{aligned}
$$

Thus if we define $s p(n, m)=|S P(n, m)|$, we see that the following recurrence relation holds: $s p(n, m)=0$ if $n<0, s p(0, m)=1$ and $s p(n, m)=1,1 \leq n \leq m-1$. Then for $n \geq m$,

$$
s p(n, m)= \begin{cases}s p(n / m, m) & \text { if } n \equiv 0 \quad(\bmod m), \tag{4}\\ 2 \cdot s p(n-r, m)+s p(n-m, m) & \text { if } n \equiv r \quad(\bmod m), 0<r<m\end{cases}
$$

The case $m=2$ gives the function considered earlier: $s p(n, 2)=s p(n)$.
We will associate the set of semi-m-Pell compositions with a class of restricted unimodal compositions into powers of m.

Let $o c(n, m)$ denote the number weakly unimodal m-power compositions of n in which every part size occurs in one place with multiplicity not divisible by m. Thus for example, the following are some objects enumerated by oc(92,3): $\left(27^{2}, 9^{2}, 3^{2}, 1^{14}\right),\left(1^{8}, 3^{13}, 9^{2}, 27\right)$ and $\left(3^{14}, 9,27,1^{14}\right)$.

Theorem 3. For integers $n \geq 0, m>1$,

$$
\begin{equation*}
s p(n, m)=o c(n, m), \tag{5}
\end{equation*}
$$

Proof. First Proof (generating functions): Let $Q_{m}(x)=\sum_{n \geq 0} s p(n, m) x^{n}$. Then

$$
\begin{aligned}
Q_{m}(x) & =\sum_{n \geq 0} s p(n, m) x^{n m}+\sum_{r=1}^{m-1} \sum_{n \geq 0} s p(n m+r, m) x^{n m+r} \\
& =\sum_{n \geq 0} s p(n, m) x^{n m}+\sum_{r=1}^{m-1} \sum_{n \geq 1} s p(n m+r, m) x^{n m+r}+\sum_{r=1}^{m-1} s p(r, m) x^{r} \\
& =Q_{m}\left(x^{m}\right)+\sum_{r=1}^{m-1} \sum_{n \geq 1}(2 s p(n m, m)+s p(n m+r-m, m)) x^{n m+r}+\sum_{r=1}^{m-1} x^{r} \\
& =Q_{m}\left(x^{m}\right)+2 \sum_{r=1}^{m-1} x^{r} \sum_{n \geq 1} s p(n m, m) x^{n m}+\sum_{r=1}^{m-1} \sum_{n \geq 0} s p(n m+r, m) x^{n m+r+m}+\sum_{r=1}^{m-1} x^{r} \\
& =Q_{m}\left(x^{m}\right)+2\left(Q_{m}\left(x^{m}\right)-1\right) \sum_{r=1}^{m-1} x^{r}+\sum_{r=1}^{m-1} x^{r}+\sum_{r=1}^{m-1} \sum_{n \geq 0} s p(n m+r, m) x^{n m+r+m} .
\end{aligned}
$$

Eliminating the last sum by means of the first equality, we obtain

$$
\begin{gathered}
Q_{m}(x)=Q_{m}\left(x^{m}\right)+2\left(Q_{m}\left(x^{m}\right)-1\right) \sum_{r=1}^{m-1} x^{r}+\sum_{r=1}^{m-1} x^{r}+x^{m}\left(Q_{m}(x)-Q_{m}\left(x^{m}\right)\right) \\
\left(1-x^{m}\right) Q_{m}(x)=Q_{m}\left(x^{m}\right)+2 Q_{m}\left(x^{m}\right) \sum_{r=1}^{m-1} x^{r}-\sum_{r=1}^{m-1} x^{r}-x^{m} Q_{m}\left(x^{m}\right)
\end{gathered}
$$

which gives

$$
Q_{m}(x)+\frac{\sum_{r=1}^{m-1} x^{r}}{1-x^{m}}=\frac{1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}}{1-x^{m}} Q_{m}\left(x^{m}\right)
$$

To iterate the last equation, we begin by denoting both sides by $Q_{m, 1}(x)$ and obtain

$$
Q_{m, 1}(x)=\frac{1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}}{1-x^{m}}\left(Q_{m, 1}\left(x^{m}\right)-\frac{\sum_{r=1}^{m-1} x^{m r}}{1-x^{m^{2}}}\right)
$$

which gives

$$
Q_{m, 1}(x)+\frac{\left(1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}\right) \sum_{r=1}^{m-1} x^{m r}}{\left(1-x^{m}\right)\left(1-x^{m^{2}}\right)}=\frac{1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}}{1-x^{m}} Q_{m, 1}\left(x^{m}\right)
$$

Denoting both sides of the last equation by $Q_{m, 2}(x)$ we obtain

$$
Q_{m, 2}(x)=\frac{1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}}{1-x^{m}}\left(Q_{m, 2}\left(x^{m}\right)-\frac{\left(1+2 \sum_{r=1}^{m-1} x^{m r}-x^{m^{2}}\right) \sum_{r=1}^{m-1} x^{m^{2} r}}{\left(1-x^{m^{2}}\right)\left(1-x^{m^{3}}\right)}\right)
$$

which gives

$$
\begin{gathered}
Q_{m, 2}(x)+\frac{\left(1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}\right)\left(1+2 \sum_{r=1}^{m-1} x^{m r}-x^{m^{2}}\right) \sum_{r=1}^{m-1} x^{m^{2} r}}{\left(1-x^{m}\right)\left(1-x^{m^{2}}\right)\left(1-x^{m^{3}}\right)} \\
=\frac{1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}}{1-x^{m}} Q_{m, 2}\left(x^{m}\right) .
\end{gathered}
$$

In general we obtain, for any $i>0$,

$$
Q_{m, i}(x)+\frac{x^{m^{i} r}}{1-x^{m^{i+1}}} \prod_{t=0}^{i-1} \frac{1+2 \sum_{r=1}^{m-1} x^{m^{t} r}-x^{m^{t+1}}}{1-x^{m^{t+1}}}=\frac{1+2 \sum_{r=1}^{m-1} x^{r}-x^{m}}{1-x^{m}} Q_{m, i}\left(x^{m}\right) .
$$

We suggest $Q_{m}(x)$ as the limiting value of the $Q_{m, i}(x)$ as i tends to infinity, plus a 1 for our initial condition: $Q_{m}(x)=1+\lim _{i \rightarrow \infty} Q_{m, i}(x)$.

$$
Q_{m}(x)=1+\sum_{i=0}^{\infty} \frac{\sum_{r=1}^{m-1} x^{m^{i} r}}{1-x^{m^{i+1}}} \prod_{t=0}^{i-1} \frac{1+2 \sum_{r=1}^{m-1} x^{m^{t} r}-x^{m^{t+1}}}{1-x^{m^{t+1}}}
$$

We see that

$$
Q_{m}(x)=1+\sum_{i=0}^{\infty} \frac{\sum_{r=1}^{m-1} x^{m^{i} r} r}{1-x^{m^{i+1}}} \prod_{t=0}^{i-1}\left(1+\frac{2 \sum_{r=1}^{m-1} x^{m^{t} r}}{1-x^{m^{t+1}}}\right)=\sum_{n=0}^{\infty} o c(n, m) x^{n} .
$$

As before, it is clear that this is the generating function for $o c(n, m)$, and it can be seen algebraically to satisfy the functional equation

$$
Q_{m}(x)=Q_{m}\left(x^{m}\right)+2\left(Q_{m}\left(x^{m}\right)-1\right) \sum_{r=1}^{m-1} x^{r}+\sum_{r=1}^{m-1} x^{r}+x^{m}\left(Q_{m}(x)-Q_{m}\left(x^{m}\right)\right)
$$

constructed earlier for $s p(n, m)$.
This completes the proof. Some coefficients in the expansion of $Q_{m}(x)$ are displayed in Table 1.

Second Proof: We give a combinatorial proof. Let the sets enumerated by $\operatorname{sp}(n, m)$ and $o c(n, m)$ be denoted by $S P(n, m)$ and $O C(n, m)$ respectively.

Each part t of $C \in S P(n, m)$ can be expressed as $t=m^{i} \cdot h, i \geq 0$, where m does not divide h. Now transform t as follows:

$$
t=m^{i} \cdot h \longmapsto m^{i}, m^{i}, \ldots, m^{i}(h \text { times }) .
$$

Note that the case $i=0$ may arise only as a first or last part of C (by Theorem (4). This gives a unique member of $O C(n, m)$ provided that we retain the clusters of the m^{i}, corresponding to each t, in consecutive positions, and maintain the order of the parts of the resulting m-power composition (as in the case of $m=2$).

To reverse the map we write each $\beta \in O C(n, m)$ in the on-place exponent notation, to get $\beta=\left(\beta_{1}^{u_{1}}, \ldots, \beta_{s}^{u_{s}}\right)$ with the $m \nmid u_{i}$, and containing at most one instance of a 1 -cluster which may be $\beta_{1}^{u_{1}}$ or $\beta_{s}^{u_{s}}$. Since each β_{i} has the form $2^{j_{i}}, j_{i} \geq 0$, we apply the transformation:

$$
\beta_{i}^{u_{i}}=\left(2^{j_{i}}\right)^{u_{i}} \longmapsto 2^{j_{i}} u_{i} .
$$

This gives a unique composition in $S P(n, m)$ provided that the resulting parts retain their relative positions. Indeed the image may contain at most one part $\equiv r(\bmod m)$ which occurs precisely when $j_{i}=0$.

We illustrate the bijection with $(14,3,18,27) \in S P(62,3)$:

$$
(14,3,18,27)=\left(3^{0} \cdot 14,3^{1} \cdot 1,3^{2} \cdot 2,3^{3} \cdot 1\right) \mapsto\left(1^{14}, 3,9^{2}, 27\right) \in O C(62,3) .
$$

We provide a full example with $n=13, m=3$, where $s p(13,3)=13=c(13,3)$. The following members of the respective sets correspond 1-to-1 under the bijective proof of Theorem 3:
$S P(13,3):(1,3,9),(3,9,1),(1,9,3),(9,3,1),(1,12),(12,1),(4,9),(9,4),(7,6),(6,7)$, $(10,3),(3,10),(13)$.

$$
\begin{aligned}
& C(13,3):(1,3,9),(3,9,1),(1,9,3),(9,3,1),\left(1,3^{4}\right),\left(3^{4}, 1\right),\left(1^{4}, 9\right),\left(9,1^{4}\right),\left(1^{7}, 3^{2}\right),\left(3^{2}, 1^{7}\right), \\
& \quad\left(1^{1} 0,3\right),\left(3,1^{10}\right),\left(1^{13}\right) .
\end{aligned}
$$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$m=2$	1	1	3	1	5	3	11	1	13	5	23	3	29	11	51
$m=3$	1	1	1	3	3	1	5	5	1	7	7	3	13	13	3
$m=4$	1	1	1	1	3	3	3	1	5	5	5	1	7	7	7
$m=5$	1	1	1	1	1	3	3	3	3	1	5	5	5	5	1
$m=6$	1	1	1	1	1	1	3	3	3	3	3	1	5	5	5

Table 1: Values of $\operatorname{sp}(n, m)$, for $2 \leq m \leq 6,1 \leq n \leq 15$

3 Structural Properties of Semi-m-Pell Compositions

Following [1] we define the max m-power of an integer N as the largest power of m that divides N (not just the exponent of the power). Thus using the notation $x_{m}(N)$, we find that $N=u \cdot m^{s}, s \geq 0$, where $m \nmid u$ and $x_{m}(N)=m^{s}$. So $x_{m}(N)>0$ for all N.

For example, $x_{2}(50)=2$ and $x_{5}(216)=1$.
We define three (reversible) operations on a composition $C=\left(c_{1}, \ldots, c_{k}\right)$ with any $m>1$:
(i) If the first or last part of C is less than m, delete it:
$c_{1}<m \Longrightarrow \tau_{1}(C)=\left(c_{2}, \ldots, c_{k}\right)$ or $c_{k}<m \Longrightarrow \tau_{1}(C)=\left(c_{1}, \ldots, c_{k-1}\right)$;
(ii) If $m \nmid c_{t}>m$, then $\tau_{2}(c)=\left(c_{1}, \ldots, c_{t-1}, c_{t}-m, c_{t+1}, \ldots, c_{k}\right)$.
(iii) If C consists of multiples of m, divide every part by $m: \tau_{3}(C)=\left(c_{1} / m, \ldots, c_{k} / m\right)$.

These operations are consistent with the recursive construction of the set $S F(n, m)$, where $\tau_{3}^{-1}, \tau_{1}^{-1}$ and τ_{2}^{-1} correspond, respectively, to the three quantities in the recurrence (4).

Lemma 4. Let $n>0, m>1$ be integers with $n \equiv r(\bmod m), 1 \leq r<m$.
If $C=\left(c_{1}, \ldots, c_{k}\right) \in S P(n, m)$, then $c_{1} \equiv r(\bmod m)$ or $c_{k} \equiv r(\bmod m)$.
Proof. If $k \leq 2$, the assertion is clear. So assume that $k>2$ such that $c_{i} \equiv r(\bmod m)$ for a certain index $i \notin\{1, k\}$. Then we can apply τ_{2} several times to obtain the composition $\beta=\tau_{2}^{s}(C), s=\left\lfloor\frac{c_{i}}{m}\right\rfloor$, that contains r which is neither in the first nor last position. But this contradicts the recursive construction of β. Hence the assertion holds for all $C \in S P(n, m)$.

Remark 1. If Lemma 4 is violated when $k>2$, then the sequence of max m-powers of the parts of C cannot be unimodal: if $m \nmid c_{j}$ with $c_{j} \notin\left\{c_{1}, c_{k}\right\}$, then $x_{m}\left(c_{j}\right)=1$.

Lemma 5. Let $H(n, m)$ denote the set of compositions C of n such that the sequence of max m-powers of the parts of C are distinct and unimodal. Then if $C \in H(n, m)$ and $\tau_{i}(C) \neq \emptyset$, then $\tau_{i}(C) \in H(N, m), i=1,2,3$, for some N.

Proof. Let $C=\left(c_{1}, \ldots, c_{k}\right) \in H(n, m)$. If C contains a part r less than m, then $r=c_{1}$ or $r=c_{k}$ (by Lemma 4). So $\tau_{1}(C) \in H(n-r, m)$ since the max m-powers remain distinct and unimodal. If C contains a non-multiple of m, say $c_{t}>m$, then by Lemma 4, $t \in$ $\{1, k\}$. Therefore $\tau_{2}(C)$, i.e., replacing c_{t} with $c_{t}-m$, preserves the unimodality of C. So $\tau_{2}(C) \in H(n-m, m)$. Lastly, since the parts of C have distinct max m-powers $\tau_{3}(C)=$ $\left(c_{1} / m, \ldots, c_{k} / m\right)$ contains at most one non-multiple of m. Hence $\tau_{3}(C) \in H(n / m, m)$.

We state an independent characterization of the Semi-m-Pell compositions.
Theorem 4. A composition C of n is a semi-m-Pell composition if and only if the sequence of max m-powers of the parts of C are distinct and unimodal.

Proof. We show that $S P(n, m)=H(n, m)$. Let $C=\left(c_{1}, \ldots, c_{k}\right) \in S P(n, m)$ such that $C \notin H(n, m)$. Denote the properties,

P1: sequence of max m-powers of the parts of C are distinct.
P2: sequence of max m-powers of the parts of C is unimodal.
First assume that C satisfies P 2 but not P 1 . So there are $c_{i}>c_{j}$ such that $x_{m}\left(c_{i}\right)=x_{m}\left(c_{j}\right)$, and let $c_{i}=u_{i} m^{s}, c_{j}=u_{j} m^{s}$ with $m \nmid u_{i}, u_{j}$. Observe that τ_{1} deletes a part less than m, if it exists, from a member of $H(v, m)$. So we can use repeated applications of τ_{2} to reduce a non-multiple modulo m, followed by τ_{1}. This is tantamount to simply deleting the nonmultiple of m, say c_{t}, to obtain a member of $H(N, m), N<v$, from Lemma 5. By thus successively deleting non-multiples from C, and applying $\tau_{3}^{c}, c>0$, we obtain a composition $E=\left(e_{1}, e_{2}, \ldots\right)$ with $e_{i}=v_{i} m^{w}>e_{j}=v_{j} m^{w}$, where $m \nmid v_{i}, v_{j}$ and $w \leq s$. Then apply τ_{3}^{w} to obtain a composition G with two non-multiples of m. Then by Lemma 3, $G \notin S P(n, m)$. Secondly assume that C satisfies P1 but not P2. Then by the proof of Lemma 4 and Remark 1 $\tau_{2}^{u}(C) \notin S P(N, m)$ for some u. Therefore $C \in S P(n, m) \Longrightarrow C \in H(n, m)$.

Conversely let $C=\left(c_{1}, \ldots, c_{k}\right) \in H(n, m)$. If $C=(t), 1 \leq t \leq m$, then $C \in S P(t, m)$. If $m \mid c_{i}$ for all i, then $\tau_{3}(C)=\left(c_{1} / m, \ldots, c_{k} / m\right) \in H(n / m, m)$ contains at most one part $\not \equiv 0(\bmod m)$, so $C \in S P(n, m)$. Lastly assume that $n \equiv r \not \equiv 0(\bmod m)$. Then $r \in C$ or $m<c_{t} \equiv r(\bmod m)$ for exactly one index $t \in\{1, k\}$. Thus $\tau_{1}(C)$ consists of multiples of m while $\tau_{2}(C)$ still contains one part $\not \equiv 0(\bmod m)$. In either case $C \in S P(n, m)$. Hence $H(n, m) \subseteq S P(n, m)$. The the two sets are identical.

As an illustration of Theorem 4 note, for example, that $(2,9,4),(1,4,2,8) \notin S P(15,2)$ because the sequence of max m-powers of the parts are not unimodal, and $(2,10,3),(3,4,6,2) \notin$ $S P(15,2)$ because the max m-powers are not distinct.

Theorem 5. Let n, m be integers with $n \geq 0, m>1$. Then

$$
s p(n m+1, m)=s p(n m+2, m)=\cdots=s p(n m+m-1, m)=1+2 \sum_{j=1}^{n} s p(j, m)
$$

Proof. We first establish all but the last equality. By definition, $s p(1, m)=s p(2, m)=$ $\cdots s p(m-1, m)=1$, and since $s p(m, m)=1$, we have $s p(m+1, m)=2 s p(m, m)+s p(1, m)=3$. Similarly $s p(m+2, m)=3=s p(m+3, m)=\cdots=s p(2 m-1, m)$. Assume that the result holds for all integers $<n m$. Then with $1 \leq r \leq m-1$ we have $s p(n m+r, m)=$ $2 s p(n m, m)+s p(n m-(m-r), m)$. But $1 \leq r \leq m-1 \Longrightarrow m-1 \geq m-r \geq 1$ and $s p(n m-(m-r), m)$ is constant by the inductive hypothesis. Hence the result.

For the last equality, we iterate the recurrence (4). For each $r \in[1, m-1]$,

$$
\begin{aligned}
s p(m v+r, m) & =2 s p(m v, m)+s p(m(v-1)+r, m) \\
& =2 s p(v, m)+2 s p(v-1, m)+s p(m(v-2)+r, m) \\
& =\cdots \\
& =2 s p(v, m)+2 s p(v-1, m)+\cdots+2 s p(2, m)+s p(m+r, m)
\end{aligned}
$$

Since $s p(m+r, m)=2 s p(m, m)+s p(r, m)=2 s p(1, m)+s p(r, m)$, we obtain the desired result:

$$
s p(m v+r, m)=2 s p(v, m)+2 s p(v-1, m)+\cdots+2 s p(2, m)+2 s p(1, m)+1 .
$$

Corollary 2. Given integers $m \geq 2$, then for any $j \geq 0$ and a fixed $v \in\{0,1, \ldots, m\}$,

$$
s p\left(m^{j}(m v+r), m\right)=2 v+1,1 \leq r \leq m-1 .
$$

Proof. By applying the first part of the recurrence (44) $j \geq 0$ times we obtain $\operatorname{sp}\left(m^{j}(m v+\right.$ $r), m)=s p(m v+r, m)$. The last equality in Theorem 5 then gives

$$
s p(m v+r, m)=1+2 \sum_{i=1}^{v} s p(i, m), 0 \leq v \leq m, 1 \leq r<m .
$$

We know from (4) that $s p(i, m)=1$ when $1 \leq i \leq m-1$, and since $s p(m, m)=1$, we obtain $s p(m v+r, m)=1+2 \sum_{i=1}^{v} 1=1+2 v$. Lastly, when $v=0$, we have $s p(m v+r, m)=s p(r, m)=$ $1+2(0)=1$, as expected.

Corollary 2 is a stronger version of Theorem 5 since the restriction of v to the set $\{0,1, \ldots, m\}$ specifies a common value.

We note the interesting cases $v=0$ of Corollary 2 below.
Corollary 3. Given an integer $m \geq 2$, then

$$
s p\left(m^{i} h, m\right)=1,1 \leq h \leq m-1, i \geq 0 .
$$

Hence

$$
s p\left(m^{i}, m\right)=1, i \geq 0
$$

4 Arithmetic Properties

The following Lemma may be easily proved like Lemma 2;
Lemma 6. $s p(n, m)$ is odd for all integers $n \geq 0, m>1$.
We found that
(1a) $s p(6 j+1,3) \equiv 1(\bmod 4) \forall j>0$,
(1b) $s p(6 j+4,3) \equiv 3(\bmod 4) \forall j>0$;
(2a) $s p(8 j+1,4) \equiv 1(\bmod 4) \forall j>0$,
(2b) $s p(8 j+5,4) \equiv 3(\bmod 4) \forall j>0$;

The congruences (1a) to (3b) are special cases of the following pairs of infinite modulo 4 congruences.

Theorem 6. Given any integer $m \geq 2$, then
(i) $s p(2 m j+1, m) \equiv 1(\bmod 4) \forall j \geq 0$
and
(ii) $s p(2 m j+m+1, m) \equiv 3(\bmod 4) \forall j \geq 0$.

Note that Theorem 6 implies Theorem 2,
Proof. By induction on j. Note that $s p(1, m)=1$ and $s p(m+1, m)=2 s p(m, m)+s p(1)=3$. So the assertion holds for $j=0$. Assume that (i) and (ii) hold for all $r<j$.

Then we first obtain

$$
\begin{aligned}
s p(2 m j+1, m) & =2 s p(2 m j, m)+s p(2 m j+1-m, m) \\
& =2 s p(2 j, m)+s p(2 m(j-1)+m+1, m) .
\end{aligned}
$$

Then by Lemma $6 s p(2 j, m)$ is odd, say $2 u+1$, and the inductive hypothesis gives $s p(2 m(j-$ $1)+m+1, m) \equiv 3(\bmod 4)$, say $4 t+3$. Hence

$$
s p(2 m j+1, m)=2(2 u+1)+(4 t+3)=4(u+t)+5 \equiv 1 \quad(\bmod 4)
$$

which proves part (i).
To prove part (ii) we have

$$
\begin{aligned}
s p(2 m j+m+1, m) & =2 s p(2 m j+m, m)+s p(2 m j+1, m) \\
& =2 s p(2 j+1, m)+s p(2 m j+1, m) .
\end{aligned}
$$

Then by Lemma $6 \operatorname{sp}(2 j+1, m)$ is odd, say $2 u+1$, and part (i) gives $s p(2 m j+1, m) \equiv 1$ $(\bmod 4)$, say $4 t+1$. Hence

$$
s p(2 m j+m+1, m)=2(2 u+1)+(4 t+1)=4(u+t)+3 \equiv 3 \quad(\bmod 4) .
$$

We also found:
(1) $s p(16 j+5,4) \equiv 0(\bmod 3) \forall j \geq 0$;
(2) $\operatorname{sp}(49 j+8,7) \equiv 0(\bmod 3) \forall j \geq 0$;
(3) $\operatorname{sp}(100 j+11,10) \equiv 0(\bmod 3) \forall j \geq 0$;

These three congruences are contained in the following infinite modulo 3 congruence.
Theorem 7. Given an integer $m \geq 4$ such that $m \equiv 1(\bmod 3), 1 \leq r<m$, then

$$
s p\left(m^{2} j+m+r, m\right) \equiv 0(\bmod 3) \forall j \geq 0 .
$$

We give two proofs below.
First Proof of Theorem 7. We attack the problem from the $o c(n, m)$ characterization as oneplace m-power compositions with multiplicities not divisible by m. For convenience we will denote these $O C_{m}$ compositions.

Begin by noting one group of $O C_{m}$ compositions: valid compositions include ($\left.1^{m^{2} j+m+r}\right)$, $\left(1^{r}, m^{m j+1}\right)$, and $\left(m^{m j+1}, 1^{r}\right)$, for three.

Next, consider all those compositions that include only m (and no higher powers of m), and 1 . The number of m in the composition determines the number of 1 s .

Note that $m j$ is not a valid number of m in the composition, since it is divisible by m; however, $m j-1, m j-2, \ldots, m j-(m-1)$ are all valid numbers of m, and there is always a number of 1 congruent to $r \bmod m$ with such choices. Hence there are $2(m-1)$ such compositions, and since $m \equiv 1(\bmod 3)$, this collection numbers a multiple of 3 .

Since $m j-m$ is not a valid number of m in the composition, but $m j-m-1, \ldots$, $m j-(2 m-1)$ are, similar collections occur until we are down to one part of size m.

Thus compositions in which only parts of size 1 and m occur contribute a multiple of 3 to the total number of compositions.

Now consider any valid choice of numbers and orderings of powers m^{2}, m^{3}, etc. Suppose that these form a composition of $C m^{2}$. The remaining value to be composed is $m^{2}(j-C)+$ $m+r$. In particular, a number of 1 s congruent to $r \bmod m$ must be in the composition, and some number of m^{1} ranging from 1 up to $m(j-C)+1$ will be in the composition.

For any valid choice of numbers and arrangement of the powers m^{i} with $i \geq 2$, we now make a similar argument to the "empty" case before. Group the six partitions in which there are no m^{1} and the required 1s are on either side of composition, or the four possible arrangements in which there are $m(j-C)+1$ of m^{1} and exactly r of 1 . Of the other permissible numbers of m^{1} and 1 , there are four valid compositions for each, and there are a multiple of 3 such groups of compositions, as previously argued.

Thus the total number of $O C_{m}$ compositions of $m^{2} j+m+r$ is $0 \bmod 3$, as claimed.
This argument can likely be generalized to additional congruences.
In order to give a second proof of the theorem, we first prove a crucial lemma.
Lemma 7. If $m \equiv 1(\bmod 3)$, then for any integer $j \geq 0$,

$$
\sum_{i=1}^{m j+1} s p(i, m) \equiv 1 \quad(\bmod 3)
$$

Proof.

$$
\begin{aligned}
\sum_{i=1}^{m j+1} s p(i, m)= & \sum_{r=1}^{m-1} s p(r, m)+s p(m, m)+\sum_{r=1}^{m-1} s p(m+r, m)+s p(2 m, m) \\
& +\sum_{r=1}^{m-1} s p(2 m+r, m)+\cdots+\sum_{r=1}^{m-1} s p(m(j-1)+r, m) \\
& +s p(m j, m)+s p(m j+1, m) \\
= & \sum_{t=1}^{j} s p(m t, m)+s p(m j+1, m)+\sum_{t=0}^{j-1} \sum_{r=1}^{m-1} s p(m t+r, m)
\end{aligned}
$$

Then using Equation (4) and Theorem 5 we obtain

$$
\begin{align*}
\sum_{i=1}^{m j+1} s p(i, m) & =\frac{s p(m j+1, m)-1}{2}+s p(m j+1, m)+\sum_{t=0}^{j-1} \sum_{r=1}^{m-1} s p(m t+r, m) \\
& =\frac{1}{2}(3 s p(m j+1, m)-1)+\sum_{t=0}^{j-1} \sum_{r=1}^{m-1} s p(m t+r, m) \tag{6}
\end{align*}
$$

But

$$
\begin{aligned}
E_{j}(m): & =\sum_{t=0}^{j-1} \sum_{r=1}^{m-1} s p(m t+r, m)=m-1+\sum_{t=1}^{j-1} \sum_{r=1}^{m-1} s p(m t+r, m) \\
& =m-1+\sum_{t=1}^{j-1}\left(2 \sum_{r=1}^{m-1} s p(m t, m)+\sum_{r=1}^{m-1} s p(m t+r-m, m)\right)(\text { by Eq. (4) }) \\
& =m-1+2(m-1) \sum_{t=1}^{j-1} s p(t, m)+\sum_{t=0}^{j-2} \sum_{r=1}^{m-1} s p(m t+r, m) \\
& =(m-1) s p(m(j-1), m)+\sum_{t=0}^{j-2} \sum_{r=1}^{m-1} s p(m t+r, m) \text { (by Th. 55). }
\end{aligned}
$$

Therefore

$$
\begin{equation*}
E_{j}(m)=(m-1) \operatorname{sp}(m(j-1), m)+E_{j-1}(m) \tag{7}
\end{equation*}
$$

Iterating Equation (7) we obtain

$$
E_{j}(m)=(m-1) \sum_{h=1}^{u} s p(m(j-h), m)+E_{j-u}(m), 1 \leq u \leq j-1 .
$$

In particular, the case $u=j-1$ with $E_{1}(m)=m-1 \equiv 0(\bmod 3)$, implies

$$
E_{j}(m) \equiv 0 \quad(\bmod 3)
$$

Consequently, reducing Equation (6) modulo 3 gives

$$
\sum_{i=1}^{m j+1} s p(i, m) \equiv \frac{1}{2}(0-1)+0 \equiv 1 \quad(\bmod 3)
$$

which is the desired result.
Second Proof of Theorem [7. By Theorem [5,

$$
s p\left(m^{2} j+m+r, m\right)=s p(m(m j+1)+r, m)=1+2 \sum_{i=1}^{m j+1} s p(i, m) .
$$

From Lemma 7 the sum is congruent to 1 modulo 3 , say $3 v+1$ for some v. Hence

$$
s p\left(m^{2} j+m+r, m\right)=1+2(3 v+1) \equiv 0 \quad(\bmod 3) .
$$

This completes the proof.

Acknowledgment

This research was supported by the Number Theory Focus Area Grant of DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) - Wits University.

References

[1] A. Alanazi, A.O. Munagi, D. Nyirenda, Power Partitions and Semi-m-Fibonacci Partitions, Bulletin of Australian Math Soc. accepted.
[2] G.E. Andrews, Binary and semi-Fibonacci partitions, preprint
[3] G.E. Andrews, Concave and Convex Compositions, Ramanujan J. 31 (2013), no. 1-2, 67-82.
[4] G.E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998.
[5] F. Auluck, On Some New Types of Partitions Associated with Generalized Ferrers Graphs, Math. Proc. Cambridge Philos. Soc., 47 (1951) 679-686.
[6] R. Frnka, Asymptotic Formulae for Mixed Congruence Stacks, arXive:1705.03904v2, 30 Oct 2017.
[7] A.O. Munagi and J. A. Sellers, Some Inplace Identities for Integer Compositions, Quaest. Math. 38:4 (2015), 535-540.
[8] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2015.
[9] E.M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.

