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Abstract

We show that the coefficient array of a family of Chebyshev moments defines an

involution in the group of Riordan arrays. We then extend this result to certain families

of d-orthogonal polynomials.

1 Introduction

In this note, we exhibit two families of parameterized generalized Chebyshev polynomials
[16] whose moments have coefficient arrays that are involutions in the Riordan group of
lower-triangular matrices. The structure of the paper is as follows.

• This introduction

• Preliminaries on Riordan arrays

• Riordan involutions

• Riordan arrays and orthogonal polynomials

• The main results

• A general result

• A factorization theorem

• Further results

• Conclusions

• Appendix - a look at the case of the Chebyshev polynomials of the first kind

Readers who are familiar with any of the above introductory topics may safely skip the
relevant section.
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2 Preliminaries on Riordan arrays

We recall some facts about Riordan arrays in this introductory section. A Riordan array
[3, 20] is defined by a pair of power series

g(x) = g0 + g1x+ g2x
2 + · · · =

∞
∑

n=0

gnx
n,

and

f(x) = f1x+ f2x
2 + f3x

3 + · · · =
∞
∑

n=1

fnx
n.

We require that g0 6= 0 (and hence g(x) is invertible, with inverse 1
g(x)

), while we also require

that f0 = 0 and f1 6= 0 (hence f(x) has a compositional inverse f̄(x) = Rev(f)(x) defined
by f(f̄(x)) = x). The set of such pairs (g(x), f(x)) forms a group (called the Riordan group
[20]) with multiplication

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x)),

and with inverses given by

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄(x)

)

.

The coefficients of the power series may be drawn from any ring (for example, the integers Z)
where these operations make sense. To each such ring there exists a corresponding Riordan
group.

There is a matrix representation of this group, where, to the element (g(x), f(x)), we
associate the matrix (an,k)0≤n,k≤∞ with general element

tn,k = [xn]g(x)f(x)k.

Here, [xn] is the functional that extracts the coefficient of xn in a power series [17]. In this
representation, the group law corresponds to ordinary matrix multiplication, and the inverse
of (g(x), f(x)) is represented by the inverse of (tn,k)0≤n,k≤∞.

The Fundamental Theorem of Riordan arrays is the rule

(g(x), f(x)) · h(x) = g(x)h(f(x)),

detailing how an array (g(x), f(x)) can act on a power series. This corresponds to the matrix
(tn,k) multiplying the column vector (h0, h1, h2, . . .)

T .

Example 1. Pascal’s triangle, also known as the binomial matrix, is defined by the Riordan
group element

B =

(

1

1− x
,

x

1− x

)

.
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This means that we have
(

n

k

)

= [xn]
1

1− x

(

x

1− x

)k

.

To see that this is so, we need to be familiar with the rules of operation of the functional
[xn] [17]. We have

[xn]
1

1− x

(

x

1− x

)k

= [xn]
xk

(1− x)k+1

= [xn−k](1− x)−(k+1)

= [xn−k]
∞
∑

j=0

(−(k + 1)

j

)

(−1)jxj

= [xn−k]

∞
∑

j=0

(

k + 1 + j − 1

j

)

xj

= [xn−k]
∞
∑

j=0

(

k + j

j

)

xj

=

(

k + n− k

n− k

)

=

(

n

n− k

)

=

(

n

k

)

.

The binomial matrix is an element of the Bell subgroup of the Riordan group, consisting
of arrays of the form (g(x), xg(x)). It is also an element of the hitting time subgroup, which

consists of arrays of the form
(

xf ′(x)
f(x)

, f(x)
)

. Arrays of the form (1, f(x)) belong to the

associated or Lagrange subgroup of the Riordan group.
Note that all the arrays in this note are lower triangular matrices of infinite extent. We

show appropriate truncations.
Many examples of sequences and Riordan arrays are documented in the On-Line Ency-

clopedia of Integer Sequences (OEIS) [21, 22]. Sequences are frequently referred to by their
OEIS number. For instance, the binomial matrix B =

(

1
1−x

, x
1−x

)

(“Pascal’s triangle”) is
A007318. The diagonal sums of this matrix are the Fibonacci numbers Fn+1. The sequence
Fn is A000045. In the sequel we will not distinguish between an array pair (g(x), f(x)) and
its matrix representation.

The Hankel transform of a sequence an is the sequence of determinants hn = |ai+j |i≤i,j≤n

[13, 15].
The Catalan numbers Cn = 1

n+1

(

2n
n

)

A000108 have generating function

c(x) =
1−

√
1− 4x

2x
.

We note that
Rev(xc(x)) = x(1− x).

The Catalan numbers Cn are the unique numbers such that the sequences Cn and Cn+1 both
have their Hankel transforms given by hn = 1 for all n ≥ 0.

3

http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A007318
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000045
http://www.research.att.com/cgi-bin/access.cgi/as/~njas/sequences/eisA.cgi?Anum=A000108


There are a number of combinatorially important Riordan arrays that are closely related
to the Catalan numbers. The principal ones are (1, xc(x)) A106566, (1, c(x)−1) = (1, xc(x)2)
A128899, (c(x), xc(x)) A033184 and (c(x)2, xc(x)2) A039598. These, and their reverse trian-
gles, are collectively known as Catalan matrices. For instance, the matrix (1, xc(x)) begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 2 2 1 0 0 0
0 5 5 3 1 0 0
0 14 14 9 4 1 0
0 42 42 28 14 5 1





















.

This is A106566.

3 Riordan involutions

An involution in the group of Riordan arrays is a Riordan array A such that A2 = I, that
is, A is an element of order 2 [7, 8, 19]. For instance, the arrays I = (1, x) and (1,−x) are
involutions. The result is trivial for I, and for (1,−x) we have

(1,−x) · (1,−x) = (1,−x(−x)) = (1,−(−x)) = (1, x).

A less trivial example is the Riordan array
(

1
1−x

, −x
1−x

)

which is a signed version of Pascal’s
triangle (the binomial matrix) which begins





















1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −2 1 0 0 0 0
1 −3 3 −1 0 0 0
1 −4 6 −4 1 0 0
1 −5 10 −10 5 −1 0
1 −6 15 −20 15 −6 1





















.

We have

(

1

1− x
,

−x

1− x

)

·
(

1

1− x
,

−x

1− x

)

=

(

1

1− x

1

1− −x
1−x

,
− −x

1−x

1− −x
1−x

)

=

(

1

1− x
(1− x),

x
1−x

1
1−x

)

= (1, x).

Thus the Riordan array
(

1
1−x

, −x
1−x

)

is a Riordan involution. The next result follows from a
general principal to be found in [19]. Here we give a direct proof.
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Proposition 2. The Riordan array (c(x),−xc(x)3) is a Riordan involution.

Proof. Wemust show that (c(x),−xc(x)3)−1 = (c(x),−xc(x)3). Thus we calculate (c(x),−xc(x)3)−1.
We have

−xc(x)3 = −1− 3x+ (x− 1)
√
1− 4x

2x2
.

Thus we must solve the equation

−1− 3u+ (u− 1)
√
1− 4u

2u2
= x

to solve for the reversion of −xc(x)3. Equivalently, we must solve

1− 4u =

(−2xu2 − 1 + 3u

u− 1

)2

for u = u(x). The solution of this equation that satisfies u(0) = 0 is given by

u(x) = −1− 3x+ (x− 1)
√
1− 4x

2x2
= −xc(x)3.

We wish now to show that
1

c(−xc(x)3)
= c(x).

In order to verify this, we substitute x(1− x) = xc(x) for x. We find that

1

c(−x(1 − x)c(x(1− x))3)
=

1

1− x
.

Similarly,

c(x(1 − x)) =
1

1− x
.

By the uniqueness of the reversion process, we conclude that

1

c(−xc(x)3)
= c(x).

Thus we have (c(x),−xc(x)3)−1 = (c(x),−xc(x)3) and hence (c(x),−xc(x)3) is a Riordan
involution.

The Riordan array (c(x),−xc(x)3) begins





















1 0 0 0 0 0 0
1 −1 0 0 0 0 0
2 −4 1 0 0 0 0
5 −14 7 −1 0 0 0
14 −48 35 −10 1 0 0
42 −165 154 −65 13 −1 0
132 −572 637 −350 104 −16 1





















.
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The general term of the unsigned matrix is 3k+1
n+2k+1

(

2n+k

n−k

)

. We note that the diagonal sums
of this unsigned number triangle (c(x), xc(x)3) are the moment sequence an that begins

1, 1, 3, 9, 29, 97, 333, 1165, 4135, 14845, . . . ,

or A081696. We have the integral representation [2]

an =
1

π

∫ 4

0

( −
√
4− x

x2 − 4x− 1

)

dx+
1√
5
(2−

√
5)n.

The Hankel transform of an is 2n and that of the once shifted sequence an+1 is 2n(1− n).

Corollary 3. The Riordan array (c(x)2,−xc(x)3) is a Riordan involution.

Proof. This follows by the general result that if (g(x), f(x)) is an involution then so is
(g(x)n, f(x)) for all n ∈ Z.

The Riordan array (c(x)2,−xc(x)3) begins





















1 0 0 0 0 0 0
2 −1 0 0 0 0 0
5 −5 1 0 0 0 0
14 −20 8 −1 0 0 0
42 −75 44 −11 1 0 0
132 −275 208 −77 14 −1 0
429 −1001 910 −440 119 −17 1





















.

The unsigned matrix is A107842, with general term 3k+2
n+2k+2

(

2n+k+1
n−k

)

. The diagonal sums of
the unsigned matrix (c(x)2, xc(x)3) begin

1, 2, 6, 19, 63, 215, 749, 2650, 9490, 34318, 125104, 459152, . . . .

This is A109262. The Hankel transform of this sequence is given by

hn = F2n+1.

We note further that these two diagonal sum sequences appear respectively as the first and
second column in the inverse of the Riordan array (1− x− x2, x(1− x)) A109267.

4 Riordan arrays and orthogonal polynomials

We recall the following well-known results (the first is known as “Favard’s Theorem”), which
we essentially reproduce from [13], to specify the links between orthogonal polynomials
[9, 12, 23], three term recurrences, and the recurrence coefficients and the generating function
of the moment sequence of the orthogonal polynomials.
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Theorem 4. [13] (Cf. [24], Théorème 9 on p.I-4, or [25], Theorem 50.1). Let (pn(x))n≥0

be a sequence of monic polynomials, the polynomial pn(x) having degree n = 0, 1, . . . Then
the sequence (pn(x)) is (formally) orthogonal if and only if there exist sequences (αn)n≥0 and
(βn)n≥1 with βn 6= 0 for all n ≥ 1, such that the three-term recurrence

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

holds, with initial conditions p0(x) = 1 and p1(x) = x− α0.

Theorem 5. [13] (Cf. [24], Proposition 1, (7), on p. V-5, or [25], Theorem 51.1). Let
(pn(x))n≥0 be a sequence of monic polynomials, which is orthogonal with respect to some
functional L. Let

pn+1 = (x− αn)pn(x)− βnpn−1(x), for n ≥ 1,

be the corresponding three-term recurrence which is guaranteed by Favard’s theorem. Then
the generating function

g(x) =

∞
∑

k=0

µkx
k

for the moments µk = L(xk) satisfies

g(x) =
µ0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·

.

The Hankel transform of a given sequence A = {a0, a1, a2, ...} is the sequence of Hankel
determinants {h0, h1, h2, . . . } where hn = |ai+j|ni,j=0, i.e

A = {an}n∈N0 → h = {hn}n∈N0 : hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 · · · an
a1 a2 an+1
...

. . .

an an+1 a2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1)

The Hankel transform of a sequence an and its binomial transform are equal.
In the case that an has a generating function g(x) expressible in the form

g(x) =
a0

1− α0x−
β1x

2

1− α1x−
β2x

2

1− α2x−
β3x

2

1− α3x− · · ·
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then we have [13] Heilermann’s formula

hn = an+1
0 βn

1 β
n−1
2 · · ·β2

n−1βn = an+1
0

n
∏

k=1

βn+1−k
k . (2)

Note that this is independent of αn.
Along with the two power series g(x) and f(x), we can define two associated power series

A(x) =
x

f̄(x)
,

and

Z(x) =
1

f̄(x)

(

1− 1

g(f̄(x))

)

.

Note that the notation f̄(x) denotes the compositional inverse of the power series f . Thus
we have

f̄(f(x)) = x, and f(f̄(x)) = x.

We shall also use the notation f̄(x) = Rev(f)(x).
The (infinite) matrix whose bivariate generating function is given by

Z(x) +
A(x)y

1− xy

is called the production matrix of M [10, 11, 18]. It is equal to the matrix

M−1M̄

where M̄ is the matrix M with its first row removed. It is an infinite lower Hessenberg
matrix.

If the Riordan array M has a production matrix P defined by A(x) and Z(x), then we
can show that

M−1 =

(

1− x
Z(x)

A(x)
,

x

A(x)

)

.

If Z(x) = γ + δx, and A(x) = 1 + αx + βx2 (where we assume that δ 6= 0 and β 6= 0),
then P will be tri-diagonal. The matrix P begins

























γ 1 0 0 0 0 0 0
δ α 1 0 0 0 0 0
0 β α 1 0 0 0 0
0 0 β α 1 0 0 0
0 0 0 β α 1 0 0
0 0 0 0 β α 1 0
0 0 0 0 0 β α 1
0 0 0 0 0 0 β α

























.
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In this case, we have

M−1 =

(

1− x
γ + δx

1 + αx+ βx2
,

x

1 + αx+ βx2

)

=

(

1 + (α− γ)x+ (β − δ)x2

1 + αx+ βx2
,

x

1 + αx+ βx2

)

,

and R = M−1 will be the coefficient array of a family of orthogonal polynomials Pn(x) [6]
where

Pn(x) =

n
∑

k=0

pn,kx
k,

where the general (n, k)-th term of R is pn,k. In this case, we call M the moment matrix
of the family of orthogonal polynomials Pn(x) [5]. More generally, if the matrix M has a
production matrix that has a k-diagonal form, we will continue to call the elements of the
first column of M “moments”.

Example 6. The Riordan array
(

1
1+x2 ,

x
1+x2

)

begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −2 0 1 0 0 0
1 0 −3 0 1 0 0
0 3 0 −4 0 1 0
−1 0 6 0 −5 0 1





















,

and defines the polynomial sequence Pn(x) that begins

1, x, x2 − 1, x3 − 2x, x4 − 3x2 + 1, x5 − 4x3 + 3x, x6 − 5x4 + 6x2 − 1, . . . .

These are the scaled Chebyshev polynomials of the second kind Un(x/2) where we have

Un(x) = [xn]
1

1− 2xt+ t2
,

or

Un(x) =

⌊n

2
⌋

∑

k=0

(

n− k

k

)

(−1)k(2x)n−2k.

More generally, we have the following result [6].

Proposition 7. The Riordan array
(

1−λx−µx2

1+rx+sx2 ,
x

1+rx+sx2

)

is the coefficient array of the gen-

eralized Chebyshev polynomials of the second kind given by

Qn(x) = (
√
s)nUn

(

x− r

2
√
s

)

−λ(
√
s)n−1Un−1

(

x− r

2
√
s

)

−µ(
√
s)n−2Un−2

(

x− r

2
√
s

)

, n = 0, 1, 2, . . .

9



Proof. We have

Un(x) = [xn]
1

1− 2xt+ t2
.

By the method of coefficients [17] we then have

[xn]
t

1− 2xt + t2
= [xn−1]

1

1− 2xt+ t2
= Un−1(x)

and similarly

[xn]
t2

1− 2xt+ t2
= [xn−2]

1

1− 2xt + t2
= Un−2(x).

5 The main results

Theorem 8. The coefficient array of the moments µ
(1)
n (y) of the generalized Chebyshev

orthogonal polynomials defined by
(

1 + yx+ yx2

1 + x
,

x

(1 + x)2

)

is the Riordan involution
(c(x),−xc(x)3).

The coefficient array of the moments µ
(2)
n (y) of the generalized Chebyshev orthogonal poly-

nomials defined by
(

1 + yx+ yx2

(1 + x)2
,

x

(1 + x)2

)

is the Riordan involution
(c(x)2,−xc(x)3).

Proof. The moments of the orthogonal polynomials whose coefficient array is given by
(

1+yx+yx2

1+x
, x
(1+x)2

)

are given by the elements of the first column of the inverse matrix

(

1 + yx+ yx2

1 + x
,

x

(1 + x)2

)−1

.

Letting g
(1)
y (x) = 1+yx+yx2

1+x
, we have

(

1 + yx+ yx2

1 + x
,

x

(1 + x)2

)−1

=

(

1

g
(1)
y (xc(x)2)

, xc(x)2

)

.

Thus the coefficient array of the moments has generating function given by 1

g
(1)
y (xc(x)2)

. We

calculate that
1

g
(1)
y (xc(x)2)

=
y + (1− 2y)x− (x− y)

√
1− 4x

2(x2 + xy(y − 3) + y)
.
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On the other hand, we have that the bivariate generating function of the Riordan involution
(c(x),−xc(x)3) is given by c(x)

1+yxc(x)3
. The result now follows since

c(x)

1 + yxc(x)3
=

y + (1− 2y)x− (x− y)
√
1− 4x

2(x2 + xy(y − 3) + y)
.

The moments of the orthogonal polynomials whose coefficient array is given by
(

1+yx+yx2

(1+x)2
, x
(1+x)2

)

are given by the elements of the first column of the inverse matrix
(

1 + yx+ yx2

(1 + x)2
,

x

(1 + x)2

)−1

.

Letting g
(2)
y (x) = 1+yx+yx2

(1+x)2
, we have

(

1 + yx+ yx2

(1 + x)2
,

x

(1 + x)2

)−1

=

(

1

g
(2)
y (xc(x)2)

, xc(x)2

)

.

Thus the coefficient array of the moments has generating function given by 1

g
(2)
y (xc(x)2)

. We

calculate that
1

g
(2)
y (xc(x)2)

=
1 + y − 2x− (1− y)

√
1− 4x

2(x2 + xy(y − 3) + y)
.

On the other hand, we have that the bivariate generating function of the Riordan involution

(c(x)2,−xc(x)3) is given by c(x)2

1+yxc(x)3
. The result now follows since

c(x)2

1 + yxc(x)3
=

1 + y − 2x− (1− y)
√
1− 4x

2(x2 + xy(y − 3) + y)
.

The generalized Chebyshev orthogonal polynomials defined by the array
(

1+yx+yx2

(1+x)2
, x
(1+x)2

)

are given by

Pn(x) = Un

(

x− 2

2

)

+ yUn−1

(

x− 2

2

)

+ yUn−2

(

x− 2

2

)

.

We may ask whether there are values of r and s such that
(

1+ryx+syx2

(1+x)2
, x
(1+x)2

)

leads to a

Riordan involution, other than r = s = 1. The answer is no. First, we require that r = 1 to
ensure that the diagonal of the square of the moment coefficient array be all 1s. Secondly,

if we take the case of
(

1+yx+syx2

(1+x)2
, x
(1+x)2

)

, we find that the square of the moment coefficient

matrix begins
















1 0 0 0 0 0
0 1 0 0 0 0

2− 2s 0 1 0 0 0
2(1− s) −2 (s2 + s− 2) 0 1 0 0

5s2 − 16s+ 11 −s3 − 2s2 − s+ 4 −4s2 − 2s+ 6 0 1 0
8 (s2 − 4s+ 3) 8s3 − 14s2 − 20s+ 26 −2 (s3 + 2s2 − 3) −6s2 − 2s+ 8 0 1

















.

11



Thus s = 1 is a necessary condition for there to be an involution. By the above, it is also a
sufficient condition.

6 The Hankel transform of the moments

We have the following result.

Proposition 9. The generating function g
(2)
y (x) of the moment sequence µ

(2)
n (y) can be

expressed as the continued fraction

1

1− (2− y)x−
(1− y)x2

1− 2x−
x2

1− 2x−
x2

1− 2x− · · ·

.

Proof. Let G(x, y) be the continued fraction above. Then

G(x, y) =
1

1− (2− y)x− (1− y)x2G1(x, y)
,

where G1(x, y) is defined by the continued fraction

1

1− 2x−
x2

1− 2x−
x2

1− 2x− · · ·

.

It is well known that G1(x, y) = c(x)2. Thus

G(x, y) =
1

1− (2− y)x− (1− y)x2c(x)2
=

2

1 + y − 2x+ (1− y)
√
1− 4x

.

A simple calculation now shows that G(x, y) = g
(2)
y (x).

Corollary 10. The Hankel transform h
(2)
n (y) of the moments µ

(2)
n (y) is given by

hn(y) = (1− y)n.

Thus the coefficient array of the polynomial sequence h
(2)
n (y) given by the Hankel trans-

form of µ
(2)
n (y) is given by the signed Pascal’s triangle

(

(−1)n
(

n

k

))

which begins




















1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −2 1 0 0 0 0
1 −3 3 −1 0 0 0
1 −4 6 −4 1 0 0
1 −5 10 −10 5 −1 0
1 −6 15 −20 15 −6 1





















.
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The coefficient array of the polynomial sequence h
(1)
n (y) given by the Hankel transform of

µ
(1)
n (y) begins

















1 0 0 0 0 0
1 −2 0 0 0 0
1 −4 3 0 0 0
1 −6 10 −4 0 0
1 −8 21 −20 5 0
1 −10 36 −56 35 −6

















,

with general term (−1)k
(

2n+1−k

2n+1−2k

)

. The reversal of this triangle, which begins

















1 0 0 0 0 0
−2 1 0 0 0 0
3 −4 1 0 0 0
−4 10 −6 1 0 0
5 −20 21 −8 1 0
−6 35 −56 36 −10 1

















,

is the Riordan array
(

1
(1+x)2

, x
(1+x)2

)

.

7 A general result

Using the same methods as above, we have the following more general result.

Proposition 11. The coefficient array of the moments of the paramaterized orthogonal
polynomials whose coefficient array is given by the Riordan array

(

1 + (2− a + y)x+ (−a + b+ 1 + y)x2

1 + ax+ bx2
,

x

1 + ax+ bx2

)

is given by the Riordan involution (g(x), f(x)) where we have

g(x) =
2b

1− a+ 2b+ (a− 1)(a− 4b)x+ (a− 1)
√

1− 2ax+ (a2 − 4b)x2
,

and

f(x) =

√

1− 2ax+ (a2 − 4b)x2 + (a− 2b)x− 1

1− a+ 2b+ (a− 1)(a− 4b)x+ (a− 1)
√

1− 2ax+ (a2 − 4b)x2
.

In this case, the moments will have a generating function expressible as the continued
fraction

1

1− (−y + 2a− 2)x+
(y − a+ 1)x2

1− ax−
bx2

1− ax−
bx2

1− ax− · · ·

.
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The moments thus have the Hankel transform

hn = (−1)n(y − a + 1)nb(
n

2).

In particular, the first column elements of the Riordan involution (the case y = 0) have their
generating function expressible as

1

1− (2a− 2)x−
(a− 1)x2

1− ax−
bx2

1− ax−
bx2

1− ax− · · ·

,

with Hankel transform
hn = (a− 1)nb(

n

2).

Example 12. We take the case of a = 3 and b = 2. Thus the coefficient matrix of the
orthogonal polynomials in question is given by

(

1 + (y − 1)x+ yx2

1 + 3x+ 2x2
,

x

1 + 3x+ 2x2

)

.

The moments then have generating function

µ(x) =
4

2 + y − (10− y)x− (y − 2)
√
1− 6x+ x2

.

This is then the bivariate generating function of the Riordan involution

(
√
1− 6x+ x2 + 5x− 1

2x(1− 6x)
,
(2x− 1)

√
1− 6x+ x2 − 2x2 − 5x+ 1

4x(1− 6x)

)

.

This matrix begins





















1 0 0 0 0 0 0
4 −1 0 0 0 0 0
18 −9 1 0 0 0 0
86 −63 14 −1 0 0 0
426 −403 133 −19 1 0 0
2162 −2469 1070 −228 24 −1 0
11166 −14769 7857 −2212 348 −29 1





















.

The first column of this involution matrix begins

1, 4, 18, 86, 426, 2162, 11166, 58438, 309042, 1648154, 8851206, . . .
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which is A225887. This counts the number of Schröder paths of semi-length n for which the
(2, 0)-steps that are on the horizontal axis come in 3 colors. This sequence has generating
function given by the continued fraction

1

1− 4x−
2x2

1− 3x−
2x2

1− 3x−
2x2

1− 3x− · · ·

.

The row sums of the involution matrix begin

1, 3, 10, 36, 138, 558, 2362, 10398, 47326, . . . .

These have their generating function given by the continued fraction

1

1− 3x−
x2

1− 3x−
2x2

1− 3x−
2x2

1− 3x− · · ·

.

The row sums of the matrix obtained by taking the absolute value of the entries of the
involution matrix begin

1, 5, 28, 164, 982, 5954, 36382, 223466, 1377538, . . . .

The generating function of this sequence can be expressed as

1

1− 5x−
3x2

1− 3x−
2x2

1− 3x−
2x2

1− 3x− · · ·

.

Example 13. For the case a = 1 and b = 2 we obtain the Riordan involution
(

1,

√
1− 2x− 7x2 − 3x− 1

4

)

which begins




















1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 −1 1 0 0 0 0
0 −1 2 −1 0 0 0
0 −3 3 −3 1 0 0
0 −7 8 −6 4 −1 0
0 −21 21 −16 10 −5 1





















.
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The row sums of this matrix begin

1,−1, 0, 0,−2,−2,−10,−26,−86, . . .

with generating function given by

1

1 + x+
x2

1− x−
2x2

1− x−
2x2

1− x− · · ·

.

This sequence has its Hankel transform given by

hn = (−1)n2(
n

2).

The row sums of the absolute value matrix begin

1, 1, 2, 4, 10, 26, 74, 218, 670, . . . .

This sequence has a generating function expressible as the continued fraction

1

1− x−
x2

1− x−
2x2

1− x−
2x2

1− x− · · ·

.

Its Hankel transform is given by

hn = 2(
n

2).

8 A factorization theorem

We begin this section with an example that will motivate the general factorization result
that will follow.

Example 14. We consider the Riordan array
(

1
(1+x)2

, x
(1+x)2

)

which begins





















1 0 0 0 0 0 0
−2 1 0 0 0 0 0
3 −4 1 0 0 0 0
−4 10 −6 1 0 0 0
5 −20 21 −8 1 0 0
−6 35 −56 36 −10 1 0
7 −56 126 −120 55 −12 1





















.
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The general element of this matrix is (−1)n−k
(

n+k+1
2k+1

)

. The inverse of this matrix is given by

(

1

(1 + x)2
,

x

(1 + x)2

)−1

= (c(x)2, xc(x)2),

which begins




















1 0 0 0 0 0 0
2 1 0 0 0 0 0
5 4 1 0 0 0 0
14 14 6 1 0 0 0
42 48 27 8 1 0 0
132 165 110 44 10 1 0
429 572 429 208 65 12 1





















.

We now form the Riordan array given by the following product.
(

1

(1 + x)2
,

x

(1 + x)2

)

· (c(−x)2,−xc(−x)2).

We obtain the Riordan array
(

1 + 4x+ x2 − (1 + x)
√
1 + 6x+ x2

2x2
,
1 + 4x+ x2 − (1 + x)

√
1 + 6x+ x2

2x

)

.

This matrix begins





















1 0 0 0 0 0 0
−4 −1 0 0 0 0 0
16 8 1 0 0 0 0
−68 −48 −12 −1 0 0 0
304 264 96 16 1 0 0

−1412 −1408 −652 −160 −20 −1 0
6752 7432 4080 1296 240 24 1





















.

This matrix is a Riordan involution.

In a similar vein, we have the following result.

Theorem 15. For a given Riordan array (g(x), f(x)), the product

(g(x), f(x)) ·
(

1

g(f̄(−x))
, f̄(−x)

)

is a Riordan involution.

Proof. We have that

(g(x), f(x)) ·
(

1

g(f̄(−x))
, f̄(−x)

)

=

(

g(x)

g(f̄(−f(x)))
, f̄(−f(x))

)

.
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Then
(

g(x)

g(f̄(−f(x)))
, f̄(−f(x))

)2

=

(

g(x)

g(f̄(−f(x)))
, f̄(−f(x))

)

·
(

g(x)

g(f̄(−f(x)))
, f̄(−f(x))

)

=

(

g(x)

g(f̄(−f))

g(f̄(−f))

g(f̄(−f(f̄(−f(x)))))
, f̄(−f(f̄(−f(x))))

)

=

(

g(x)

g(f̄(−f(f̄(−f(x)))))
, f̄(−(−f(x)))

)

= (1, x).

Thus if we begin with the Riordan array

(g, f) =

(

1 + cx+ dx2

1 + ax+ bx2
,

x

1 + ax+ bx2

)

,

we are led to the Riordan involution given by (G,F ) where we have

G(x) =
b(1 + cx+ dx2)(S − bx2 − 2ax− 1)

(d+ (2ad − bc)x+ bdx2)S − b2dx4 + b(bc − 4ad)x3 + 2(2a2d− abc+ b2)x2 + (bc− 4ad)x − d
,

and

F (x) =
−1 − 2ax− bx2 + S

2bx
=

−x

1 + 2ax+ bx2
c

(

bx2

(1 + 2ax+ bx2)2

)

,

with
S =

√

1 + 4ax+ 2(2a2 − b)x2 + 4abx3 + b2x4.

Corollary 16. The Riordan array
(

1,
−x

1 + 2ax+ bx2
c

(

bx2

(1 + 2ax+ bx2)2

))

is a Riordan involution.

Similar results to this corollary may be found in [1].

Example 17. We take the example of

(g, f) =

(

1 + x+ x2

1 + 2x+ x2
,

x

1 + 2x+ x2

)

.

We have

(g, f)−1 =

(

1

1− x
, c(x)− 1

)

.

We form the product
(

1 + x+ x2

1 + 2x+ x2
,

x

1 + 2x+ x2

)

·
(

1

1 + x
, c(−x)− 1

)

.
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In terms of matrices, this begins

















1 0 0 0 0 0
−1 1 0 0 0 0
2 −3 1 0 0 0
−3 7 −5 1 0 0
4 −14 16 −7 1 0
−5 25 −41 29 −9 1

















·

















1 0 0 0 0 0
−1 −1 0 0 0 0
1 3 1 0 0 0
−1 −8 −5 −1 0 0
1 22 19 7 1 0
−1 −64 −67 −34 −9 −1

















,

with a product that begins

















1 0 0 0 0 0
−2 −1 0 0 0 0
6 6 1 0 0 0

−16 −30 −10 −1 0 0
42 140 70 14 1 0

−110 −642 −424 −126 −18 −1

















.

This is the Riordan involution
(

1 + x+ x2

1 + 3x+ x2
, c

( −x

(1 + x)2

)

− 1

)

.

We can write this as
(

1 + x+ x2

1 + 3x+ x2
,

−x

1 + 4x+ x2
c

(

x2

(1 + 4x+ x2)2

))

.

In particular, we see that

(

1,
−x

1 + 4x+ x2
c

(

x2

(1 + 4x+ x2)2

))

is a Riordan involution. This matrix begins





















1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 4 1 0 0 0 0
0 −16 −8 −1 0 0 0
0 68 48 12 1 0 0
0 −304 −264 −96 −16 −1 0
0 1412 1408 652 160 20 1





















.

The generating function −x
1+4x+x2 c

(

x2

(1+4x+x2)2

)

expands to give the sequence that begins

0,−1, 4,−16, 68,−304, 1412, . . . .

19



The sequence 1, 4, 16, 68, 304, 1412, . . . is A006319(n+1), which counts the number of peaks
at level 1 in all Schröder paths of semi-length n. The row sums of the Riordan involution
(

1, −x
1+4x+x2 c

(

x2

(1+4x+x2)2

))

begins

1,−1, 5,−25, 129,−681, 3653,−19825, 108545,−598417, 3317445, . . . .

The Hankel transform of this sequence is given by

hn = 2(
n+1
2 )[xn]

1

1− 2x+ 2x2
= 2(

n+1
2 )n![xn]ex(cos(x) + sin(x)).

Specialising to the case of the orthogonal polynomials defined by

(g(x), f(x)) =

(

1

1 + ax+ bx2
,

x

1 + ax+ bx2

)

,

we have the following corollary.

Corollary 18. The orthogonal polynomial coefficient array

(g(x), f(x)) =

(

1

1 + ax+ bx2
,

x

1 + ax+ bx2

)

defines the Riordan involution given by
(

1

1 + 2ax+ bx2
c

(

bx2

(1 + 2ax+ bx2)2

)

,
−x

1 + 2ax+ bx2
c

(

bx2

(1 + 2ax+ bx2)2

))

.

Example 19. The RNA involution. We start with the Riordan array

(g(x), f(x)) =

(

1

1− x
2
+ x2

,
x

1− x
2
+ x2

)

.

This matrix begins
















1 0 0 0 0 0
1
2

1 0 0 0 0
−3

4
1 1 0 0 0

−7
8

−5
4

3
2

1 0 0
5
16

−5
2

−3
2

2 1 0
33
32

5
16

−19
4

−3
2

5
2

1

















.

The matrix
(

1
g(f̄(−x))

, f̄(−x)
)

then begins

















1 0 0 0 0 0
1
2

−1 0 0 0 0
5
4

−1 1 0 0 0
13
8

−11
4

3
2

−1 0 0
57
16

−9
2

9
2

−2 1 0
201
32

−165
16

35
4

−13
2

5
2

−1

















.
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Taking the product of these two matrices, we obtain the matrix that begins




















1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −2 1 0 0 0 0
2 −3 3 −1 0 0 0
4 −6 6 −4 1 0 0
8 −13 13 −10 5 −1 0
17 −28 30 −24 15 −6 1





















,

which is the RNA involution [7], defined by
(

1

1− x+ x2
c

(

x2

(1− x+ x2)2

)

,
−x

1− x+ x2
c

(

x2

(1− x+ x2)2

))

.

9 Further results

The matrix M with M−1 =
(

1
(1+x)2

, x
(1+x)2

)

is the coefficient array of a family of orthogonal

polynomials. This is evidenced by the fact that the production matrix of M is given by the
matrix that begins





















2 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 2





















.

Indeed, it is the three-diagonal form of this matrix that tells us that we are working with
orthogonal polynomials. In like manner, the matrix

M =

(

1

(1 + x)3
,

x

(1 + x)3

)−1

has a production matrix that begins




















3 1 0 0 0 0 0
3 3 1 0 0 0 0
1 3 3 1 0 0 0
0 1 3 3 1 0 0
0 0 1 3 3 1 0
0 0 0 1 3 3 1
0 0 0 0 1 3 3





















.

The four-diagonal form of this matrix tells us the M−1 is the coefficient array of a family of
2-orthogonal polynomials, where a 1-orthogonal family of polynomials is a usual orthogonal
family of polynomials.
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We begin our discussion of the general case by looking at the case of the ternary numbers
Tn = 1

2n+1

(

3n
n

)

A001764. We denote by t(x) the generating function of the ternary numbers,
which satisfies t(x) = 1 + xt(x)3. We have

t(x) =
2√
3x

sin

(

1

3
sin−1

(√
27x

2

))

and

t(x) = 1 + Rev

(

x

(1 + x)3

)

.

Example 20. We consider the elements in the first column of the inverse Riordan array

(

1 + xy(1 + x)2

(1 + x)3
,

x

(1 + x)3

)−1

.

These are polynomials in y which begin

1, 3− y, y2 − 8y + 12,−y3 + 13y2 − 52y + 55, y4 − 18y3 + 117y2 − 320y + 273, . . . .

They have a coefficient array which begins

















1 0 0 0 0 0
3 −1 0 0 0 0
12 −8 1 0 0 0
55 −52 13 −1 0 0
273 −320 117 −18 1 0
1428 −1938 910 −207 23 −1

















.

This is the Riordan array (t(x)3,−xt(x)5) which by [19] is a Riordan involution. The Hankel
transform of the (moment) polynomials is of combinatorial interest. This Hankel transform
begins

1, 3− 2y, 11y2 − 34y + 26,−170y3 + 804y2 − 1254y + 646, . . .

which for y = 0, 1 gives, respectively, the sequences beginning

1, 3, 26, 646, 45885, 9304650, 5382618660, 8878734657276, . . . ,

and
1, 1, 3, 26, 646, 45885, 9304650, 5382618660, 8878734657276, . . .

The second sequence is A005156, the number of alternating sign (2n+1)× (2n+1) matrices
symmetric about the vertical axis. The values of the (moment) polynomials for y = 0, 1 are
given by

1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, 1430715, 8414640, . . .

which is Tn+1 and

1, 2, 5, 15, 53, 215, 971, 4745, 24540, 132235, 734572, . . . .
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This latter sequence is the INVERT(1) transform of A098746, which gives the number of
permutations of [n] which avoid 4231 and 42513.

The coefficient array of the polynomial sequence given by the Hankel transform begins
















1 0 0 0 0 0
3 −2 0 0 0 0
26 −34 11 0 0 0
646 −1254 804 −170 0 0
45885 −117990 112860 −47538 7429 0
9304650 −29774880 37838910 −23849850 7447515 −920460

















.

We note that the right border in absolute value begins

1, 2, 11, 170, 7429, 920460, 323801820, 323674802088, . . . ,

which is A051255(n+ 1). The sequence A051255 counts the number of cyclically symmetric
transpose complement plane partitions in a (2n) × (2n) × (2n) box. This is the Hankel
transform of the ternary numbers 1

2n+1

(

3n
n

)

.
In like fashion, the moments of the matrix

(

1 + xy(1 + x)2

(1 + x)2
,

x

(1 + x)3

)

have coefficient matrix given by the Riordan involution (t(x)2,−xt(x)5), the moments of the
matrix

(

1 + xy(1 + x)2

(1 + x)
,

x

(1 + x)3

)

have coefficient matrix given by the Riordan involution (t(x),−xt(x)5), and the moments of
the matrix

(

1 + xy(1 + x)2,
x

(1 + x)3

)

have their coefficient matrix given by the Riordan involution (1,−xt(x)5).

The methods of [19] now allow us to give the general result.

Theorem 21. The coefficient matrix of the moments of the parameterized Riordan array

(

1 + xy(1 + x)k−1

(1 + x)m
,

x

(1 + x)k

)

for m = 0 . . . k is the Riordan involution

(

g(x)m,−xg(x)2k−1
)

,

where g(x) = 1 + xg(x)k.

The moments in question are then the moments of the corresponding (k− 1)-orthogonal
polynomials [14].
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10 Conclusions

We have seen that parameterized Riordan arrays of the form

(

1 + xy(1 + x)k−1

(1 + x)m
,

x

(1 + x)k

)

are closely related to certain Riordan involutions. These involutions arise as the coefficient
arrays (expansions in the parameter y) of the polynomial sequences (in y) that arise as the
first columns of the inverse matrix. In the case of k = 2, the polynomials concerned are
generalized Chebyshev polynomials. In the cases studied above, the polynomial sequences
have interesting Hankel transforms.

Moreover, we have seen that for every Riordan array (g(x), f(x)), there is a Riordan
involution given by the product

(g(x), f(x)) ·
(

1

g(f̄(−x))
, f̄(−x)

)

.

11 Appendix - a look at the case of the Chebyshev

polynomials of the first kind

For the sake of completeness, we present a small discussion of the Chebyshev polynomials of
the first kind Tn(x) and related moments. While the Chebyshev polynomials of the second
kind have a Riordan array as their coefficient array - namely, the Riordan array

(

1
1+x2 ,

2x
1+x2

)

,
the coefficient array for the Chebyshev polynomials of the first kind is not given by a Riordan
array, but by an almost-Riordan array of the first kind [4]. This means that the coefficient
array is given by a Riordan array, with a column prepended, which in this case means that
the overall matrix is not a Riordan array.

We have ∞
∑

n=0

Tn(x)t
n =

1− xt

1− 2xt + t2
.

The sequence Tn(x) begins

1, x, 2x2 − 1, 4x3 − 3x, 8x4 − 8x2 + 1, 16x5 − 20x3 + 5x, . . . ,

with a coefficient array that begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 0 2 0 0 0 0
0 −3 0 4 0 0 0
1 0 −8 0 8 0 0
0 5 0 −20 0 16 0
−1 0 18 0 −48 0 32





















.
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The first column has generating function 1
1+x2 , while the embedded Riordan array that begins

















1 0 0 0 0 0
0 2 0 0 0 0
−3 0 4 0 0 0
0 −8 0 8 0 0
5 0 −20 0 16 0
0 18 0 −48 0 32

















is the Riordan array
(

1− x2

(1 + x2)2
,

2x

1 + x2

)

.

As an almost Riordan array of the first order, we write the coefficient array as

(

1

1 + x2
| 1− x2

(1 + x2)2
,

2x

1 + x2

)

.

As before, we shall use the term “moments” for the first column elements of the inverses of
the matrices that we shall present.

We consider the parameterized almost Riordan array, based on the generalized Chebyshev
polynomials of the first kind, given by

(

1 + yx+ yx2

1 + x2
|1 + yx+ yx2

(1 + x2)2
,

x

1 + x2

)

.

This almost Riordan array begins





















1 0 0 0 0 0 0
y 1 0 0 0 0 0

y − 1 y 1 0 0 0 0
−y y − 2 y 1 0 0 0
1− y −2y y − 3 y 1 0 0
y 3− 2y −3y y − 4 y 1 0

y − 1 3y 3 · (2− y) −4y y − 5 y 1





















,

with an inverse that begins













1 0 0 0 0
−y 1 0 0 0

y2 − y + 1 −y 1 0 0
−y (y2 − 2y + 2) y2 − y + 2 −y 1 0

y4 − 3y3 + 4y2 − 3y + 2 −y (y2 − 2y + 3) y2 − y + 3 −y 1













.

The moment sequence we seek then begins

1,−y, y2 − y + 1,−y(y2 − 2y + 2), y4 − 3y3 + 4y2 − 3y + 2,−y(y4 − 4y3 + 7y2 − 8y + 5), . . . .
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This moment sequence thus has a coefficient array that begins
























1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 −1 1 0 0 0 0 0
0 −2 2 −1 0 0 0 0
2 −3 4 −3 1 0 0 0
0 −5 8 −7 4 −1 0 0
5 −9 14 −16 11 −5 1 0
0 −14 28 −32 28 −16 6 −1

























.

This is the Riordan array
(

c(x2),
(1 + x)

√
1− 4x2 + 2x2 − x− 1

2x2

)

=
(

c(x2), (1 + x)c(x2)− 1
)

.

In this case, we do not get an involution. Indeed, the inverse of this matrix is given by
(
√
1− 4x− 2x+ 3

2(x2 − 2x+ 2)
,−

√
1− 4x(x− 1) + x+ 1

2(x2 − 2x+ 2)

)

.

The generating function of the moment sequence may be expressed as the continued fraction

1

1 + yx−
(1− y)x2

1−
x2

1−
x2

1− · · ·

,

which is equal to
1

1 + yx− (1− y)x2c(x2)
.

We deduce from the continued fraction that the Hankel transform of the moment sequence
is given by

hn = (1− y)n.

We note that the sequence with generating function
√
1−4x−2x+3
2(x2−2x+2)

has an interesting property.
This sequence begins

1, 0,−1,−2,−4,−10,−29,−90,−290,−960,−3246, . . . .

This sequence, and the sequence A182486, which begins

1, 1, 0,−1,−2,−4,−10,−29,−90,−290,−960,−3246, . . .

both have the Hankel transform (−1)n, and this pair is the only pair of sequence and once-
shifted sequence that has this property (Michael Somos).

The generating function
√
1−4x(x−1)+x+1
2(x2−2x+2)

= x
1−(1−x)xc(x)

expands to give the sequence
A035929.

26
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