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Abstract

The software is an implementation of the algorithms in [1], [2], and [3]. The main algorithm from [3]
is implemented with additional base equations beyond what appear in [3] and is incorporated into [4].
Common to each algorithm is a transformation from a base equation to the input using transformations
that preserve order and homogeneity (referred to as gt-transformations).

1 Introduction

Before calling any of these algorithms we first check currently available algorithms for a solution in the
form of a first order right hand factor or some other general term solution. The software will then run
through any or all of the following algorithms (all is the default setting). A help file is included with the
implementation explaining the options.

2 ‘Find 2F1’

Algorithm ‘Find 2F1’ will find a gt-transformation to a recurrence relation satisfied by a hypergeometric
series u(n) = 2F1 ( a+n b

c | z), if such a transformation exists. (2F1 ( a+n b
c | z) will be represented in

our output by the equivalent notation: hypergeom([a + n, b], [c], z).) As an example, consider sequence
A005572 = [1, 4, 17, 76, 354, 1704, 8421, . . . ] from the OEIS ([5]) which represents the “Number of walks on
cubic lattice starting and finishing on the xy plane and never going below it.” A005572 has offset 0 (i.e.
the first entry in the list is A005572(0)) and satisfies:

(12n + 12)A005572(n) + (−20 − 8n)A005572(n + 1) + (n + 4)A005572(n + 2) = 0.

The output from our program is:

A005572(n) =
2n+1 (2hypergeom([1/2, n + 2], [1], 2/3) −3hypergeom([1/2, n + 1], [1], 2/3))√

3(n + 2)
, n � 0.
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3 ‘Find Liouvillian’

The algorithm ‘Find Liouvillian’ will find a gt-transformation to a recurrence relation of the form u(n +
2) + b(n)u(n) = 0 for some b(n) ∈ C(n), if such a transformation exists. ‘Find Liouvillian’ is not unique
in terms of its purpose but, for second order recurrence relations, it is faster than prior algorithms (see [2]
for details). As an example, for the recurrence relation satisfied by A099364 from the OEIS our program
produces the solution:

A099364(n) =
(

1
6
n +

5
6

)
v(n) −

(
1
12

n +
1
2

)
v(n + 1),

where v(n + 2) − 4(n + 2)
n + 7

v(n) = 0.

4 ‘Database Solver’

The algorithm ‘Database Solver’ takes advantage of a large database of sequences, the OEIS mentioned
above, by using the recurrence relations that they satisfy as base equations. We have already searched the
database and generated collections, with invariant properties that we compare, such that there exists a
gt-transformation between any two members of a collection. If the input is a recurrence relation with initial
conditions defining a sequence then the output will be a transformation from a representative sequence (if
there is a match in our database). The output could be useful since the representatives of each collection
are chosen, in large part, for how much information there is about that sequence (formulas, papers citing
the sequence, . . . ).

As an example of this algorithm, suppose we were working on “Coefficients of series whose square is
the weight enumerator of the [8,4,4] Hamming code” (sequence A108095 from the OEIS). This sequence,
[1, 7,−24, 168,−1464, 14280, . . . ] has offset 0 and satisfies:

(n − 1)u(n) + (7 + 14n)u(n + 1) + (n + 2)u(n + 2) = 0.

We enter the recurrence equation satisfied by A108095 with the corresponding initial conditions and get
the following output:

A108095(n) = 7(−1)n

(
(97n + 49)A084768(n)

7n(n − 1)
− (n + 1)A084768(n + 1)

n(n − 1)

)
.

There is a little more information on A084768’s page then there is on the page for A108095 and we see that
it is related to an interesting sequence: A084768 is defined as “the central coefficient of (1 + 7x + 12x2)n”
as well as “Pn(7), where Pn is n−th Legendre polynomial.” (The latter description can also be discovered
with our next algorithm.)

5 ‘Special Functions’

By computing local data of a recurrence equation (see [3] for details) the program can find gt-transformations
to many different known functions. Currently in our table of known functions are Bessel (first and second
kind), Whittaker (W and M), and types of Jacobi, Legendre, Laguerre, and Gegenbauer functions. As
an example, for the recurrence equation satisfied by the interesting sequence A143415 from the OEIS, the
program will return the solution:

A143415(n) =
1
2

√
e

π

(
BesselK(n − 1

2 , 1
2)

n(n + 1)
+ (2n − 1)

BesselK(n + 1
2 , 1

2)
n(n + 1)

)
, n � 1.
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6 Motivation

We provide an interesting problem as an example of the motivation for finding such transformations:
Let u(0) := 0, u(1) := 1, and

u(n + 2) :=
(n + 2)((9n + 15)u(n) + (6n + 28)u(n + 1))

(n + 7)(3n + 2)
.

Then u(2) = 4, u(3) = 12, u(4) = 34, etc.

Can we prove that u(n) is an integer for every positive integer n? With no additional information, beyond
the initial conditions and recurrence equation, it would be very difficult to prove that u(n) is an integer
sequence. It would help:

• to have some combinatorial description (e.g. u(n) is the number of objects with a certain property)

or

• to find a relation between u(n) and some other sequence for which a combinatorial description is
known.

We input the recurrence equation and initial conditions into our software and determine that

u(n) = r0(n)A001006(n) + r1(n)A001006(n + 1)

where

r0(n) =
3(n + 1)(n + 2)
(n + 4)(n + 5)

, r1(n) =
3(n2 + 3n − 2)
(n + 4)(n + 5)

.

A check of the OEIS provides a description of A001006 that is clearly integer (and correctly modeled
by the recurrence equation). We rewrite u(n) as:

(n + 6)A001006(n + 3) − (7n + 18)A001006(n + 1) − (6n + 6)A001006(n).

u(n) is now seen to be the sum of products of integers and so u(n) is an integer sequence.
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