
Elementary Bit String Mutation Landscapes

W. B. Langdon

CREST centre, Department of Computer Science,
University College, London, Gower Street, London, WC1E 6BT, UK

w.langdon@cs.uc1.ac.uk

ABSTRACT

Genetic Programming parity with only XOR is not elemen-
tary. GP parity can be represented as the sum of k/2 + 1
elementary landscapes. Statistics, including fitness distance
correlation (FDC), of Parity’s fitness landscape are calcu-
lated. Using Walsh analysis the eigen values and eigenvec-
tors of the Laplacian of the two bit, three bit, n-bit and mu-
tation only Genetic Algorithm fitness landscapes are given.
Indeed all elementary bit string landscapes are related to
the discrete Fourier functions. However most are rough
(λ/d ≈ 1). Also in many cases fitness autocorrelation falls
rapidly with distance. GA runs support eigenvalue/graph
degree (λ/d) as a measure of the ruggedness of elementary
landscapes for predicting problem difficulty. The elementary
needle in a haystack (NIH) landscape is described.

Categories and Subject Descriptors

F.2.m [Analysis of Algorithms and problem Com-
plexity]: Miscellaneous; G.2.2 [Graph Theory]; G.1.6
[Optimisation]: Stochastic programming; G.3 [Probability
and Statistics]: Probabilistic algorithms; I.2.8 [Artificial
Intelligence]: Problem Solving, Search

General Terms

Theory

Keywords

genetic algorithms, genetic programming, search, optimisa-
tion, graph theory, Laplacian, Hamming cube, Walsh trans-
form, fitness distance correlation, elementary fitness auto-
correlation

1. FITNESS LANDSCAPES
An elementary landscape is a special case of a fitness land-
scape. There are some important combinatorially hard prob-
lems, e.g. k-satisfiability and maxsat [21], which have ele-
mentary landscapes and where these properties have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOGA’11, January 5–9, 2011, A-6867 Schwarzenberg, Austria.
Copyright 2011 ACM 978-1-4503-0633-1/11/01 ...$10.00.

Search space

Figure 1: A fitness landscape where internal nodes
have four neighbours. Fitness is plotted vertically.

used to devise improved search techniques. This is the first
time genetic programming has been analysed in terms of
elementary landscapes. Our motivation is to explore the
technique, with a view to further analyse and hopefully im-
prove GP. However to do this we recast GP as a bit string
genetic algorithm (GA) and report many problem indepen-
dent properties of elementary landscapes.

Firstly we recap fitness landscapes then some well known
properties of elementary landscapes will be described in the
next section. Section 3 describes our simplified version of
the genetic programming parity problem. In Section 4 we
approximate tree GP parity by a GA where mutation flips
exactly two bits. Section 5 gives many properties of the
fitness landscapes created by this double bit flip mutation,
particularly those relating to GP parity. In Section 6 some
of these results are generalised to three and n-bit flip mu-
tation as well as to normal mutation only GAs. Section 7
describes some GP experiments on parity and on two ele-
mentary landscapes.

Fitness landscapes (see Figure 1) have often been used to
try and explain how optimisation techniques, particularly
evolutionary algorithms [1] such as genetic programming [13]
work. An optimisation problem can viewed as a search prob-
lem where all possible solutions to the problem are nodes in
the search space and each has a value. In genetic algorithms
[15] this is called a fitness value (more generally an objective
value). Optimisation is viewed as sampling from this space
with the aim of to finding better points (or even the best
point) in the space.

Except for Monte Carlo methods, optimisation techniques
use information gathered from previous samples to decide
where in the search space to sample next. The goal being to
minimise the number of samples that are needed before an

25

http://www.cs.ucl.ac.uk/staff/W.Langdon/index.html
http://crest.cs.ucl.ac.uk/

acceptable solution is found. In general evolutionary algo-
rithms, and several other optimisation techniques, only use
the current search point (or the current population of search
points) to guide the choice of where to look next. They do
not use previously gained knowledge. Different algorithms
can have radically different ways of moving from one point
in the search space to the next. A search neighbourhood is
the set of points that a specific algorithm can reach in one
step from the current search point. A fitness landscape can
be thought of as a graph where neighbours are linked by a
single edge if and only if our search algorithm can move be-
tween the two nodes in the graph. While the height of the
node is given by its fitness.

Typically in evolutionary algorithms, the edges in the
graph are undirected, because if one node can be reached
from another then the reverse move is also possible. Notice
that the difficulty of a problem depends not only on how fit-
ness values are decided but also on the way the search algo-
rithm moves across the search space. I.e. problem difficulty
also depends on the fitness landscape the search algorithm
imposes on the underlying problem [11, Chp. 2].

In genetic algorithms a common fitness landscape is to
encode candidate solutions as strings of l bits. Each of the
2l bit strings is allocated a fitness value. This gives a search
space of 2l candidate solutions. If mutation is restricted to
flipping a single bit then each of the candidate solutions is
connected in the fitness landscape to l other candidate solu-
tions. This is known as the Hamming neighbourhood or hy-
percube graph [22]. The fitness landscape metaphor can be
extended to population approaches (such as Particle Swarm
Optimisation [12]) by allowing multiple sample points (one
for each member of the population) in the landscape.

Fitness landscapes are a useful metaphor with simple mu-
tation which has a well defined neighbourhood. However
with the canonical mutation only genetic algorithm the anal-
ogy starts to fail. Since GA mutation is defined as a prob-
ability of each bit flipping, multiple bits can be changed.
There is a finite, albeit exponentially small, probability of
any string being converted into any other. Thus, in princi-
ple, the whole fitness landscape becomes a single fully con-
nected clique.

Fitness landscapes can be extended to allow multi-parent
search operations (e.g. crossover). However then the neigh-
bourhood of each member of the population depends upon
the location of everyone else in the population and the idea
of fixed predetermined links in the graph fails. (Nevertheless
Stadler and Wagner extend the idea of fitness landscapes to
include crossover by using P-structures [19].)

2. ELEMENTARY LANDSCAPES

2.1 Wave Equation
The following is based on Whitley’s (e.g. [25] and [27]) def-
initions. (See also Grover [6] and Stadler [18, p3].)

In an elementary landscape the fitness function f and the
search space neighbourhood graph are related by a wave
equation. The search space neighbourhood graph can be
represented by a matrix ∆ (see Sections 2.2 and 5.3). Only in
an elementary landscape do the search space and the fitness
function obey

∆f = λ(f − f)

Where f is the mean fitness across the whole search space.

That is, zero-mean fitness f − f is an eigenvector of ∆ with
eigenvalue λ. Notice a given search space (e.g. that created
by one point mutation acting on a bit string chromosome)
will have multiple eigenvectors. Each eigenvector will be the
fitness function (up to an additive constant) for a different
elementary landscape.

2.2 Average Fitness Change
For simplicity we will deal with regular landscapes. I.e. land-
scapes where every location has the same number of search
neighbours d. In general the mean change in fitness caused
by one genetic change depends on the current position in
the search space. Treating the mean change as a vector of
the same size as the search space gives it as:

1

d
(Af − f)

If we treat the search space as a graph, then d is the degree
of each node in the graph. (I.e. the number of links from the
node). A is the adjacency matrix. For our purposes, it is a
sparse real square matrix where every element corresponding
to a link in the graph has the value 1 and all the others are
zero.

1

d
(Af − f) =

1

d
(A− dI)f = −1

d
∆f

Where ∆ is the Laplacian and is defined to be dI −A. (I is
the identity matrix.)

2.3 Average Neighbourhood Fitness in an
Elementary Landscape

The mean fitness of a neighbourhood, N(x), will also depend
on the current position in the search landscape x. It is given
by the fitness of the current position, f(x), plus the average
change in fitness (calculated in the previous section).

avgy∈N(x) {f(y)} =
1

d

X

y∈N(x)

f(y)

= f(x) +
1

d

X

y∈N(x)

f(y) − f(x)

= f(x) − 1

d
∆f(x)

= f(x) − 1

d
λ(f(x) − f)

= f(x) +
λ

d
(f − f(x))

If, for convenience we set f to zero, in an elementary land-
scape the mean fitness of the neighbours of x is:

avgy∈N(x) {f(y)} = f(x) − λ

d
f(x) = (1 − λ

d
)f(x) (1)

Thus, if λ < d, the mean of the neighbourhood is always
closer to the overall average f than the centre of the neigh-
bourhood f(x) is. Figure 2 shows a local optimum. By
Equation 1, the average of the neighbourhood must lie be-
tween f and f(x). At a local optimum, by definition, f(x)
must be above the fitness of all its neighbours and hence
must be above their average fitness. Therefore f(x) must
be above f . Another way of saying this is: in elementary
landscapes (with λ < d) there are no local optima with be-
low average fitness. In special cases, e.g. k-Satisfiability and

26

Mean of neighbours

Average Fitness

f(x)x

Average Fitness + max step * degree/eigenvalue

Figure 2: By definition at a hill top x the fitness of
its neighbours is lower than that of the peak f(x).
By Equation 1, provided λ < d, the average fitness
of the neighbours of x is closer to the average of the
whole landscape f than f(x) is. Therefore f(x) must
lie above f [6, Thm. 6]. Dimova et al. give an upper
bound f ≤ f + ǫmaxd/λ [5, Crly. 4].

MAXSAT [21], there are tighter bounds on the fitness of
local optima and even on the widths of plateaus. (See also
[20].)

2.4 Bound on Maximum Fitness
Dimova et al. [5, Crly. 4] prove a global upper bound
f ≤ f + ǫmaxd/λ for the whole search space. Where ǫmax

is the largest change in fitness for any single step in the
landscape [5, 23]. (Remember d is the number of possible
moves and λ is ∆’s eigenvalue.) For onemax: f=l/2, d=l
and the eigenvalue λ=2. Since every move either increments
or decrements fitness ǫmax=1. Thus in the case of onemax,
fmax = f + ǫmaxd/λ holds exactly at the global maximum
fmax = l and f is strictly less than f + ǫmaxd/λ elsewhere.

As a second example, take the needle in a haystack (which
will be fully described in Section 5.4). The largest step ǫmax

is 1, the mean fitness f is 2−n, node degree d is 2n and the
eigenvalue λ=2n. Thus fmax = f+ǫmaxd/λ = 1+2−n, which
is very close to the global maximum (1).

As a third example, take the concatenated four bit trap
like elementary landscape described in Section 7.3. The av-
erage fitness f=2×4=8 and fmax=4×4=16. (The full 16-bit
fitness function is given by adding together four functions
like that given in Figure 5). Since mutation flips exactly two
bits, the number of possible moves is d=C16

2 =16 × 15/2=120.
The eigenvalue λ=84. The maximum change in fitness comes
when mutation flips two bits in separate traps so each causes
the maximum change (3). Adding these together we get
ǫmax=6. Thus f + ǫmaxd/λ = 8 + 6 × 120/84 = 16+4/7.
Again, as expected, fmax < f + ǫmaxd/λ holds everywhere
including the global maximum. Notice that the bound can
be calculated directly. I.e. without sampling the search space
at all.

In the case of 4×Trap-4 we know fitness values have inte-
ger values, so if we find a point with fitness 16, Dimova et

al.’s bound tells us it is a global optimum. (But not that

it is the unique global optimum.) More generally it places
a limit on how much a result can be improved. E.g. if we
have found a 4×Trap-4 point with value 15, we know that
further search can only improve by at most 1. This could
be used as another way of deciding when to stop searching.

3. GENETIC PROGRAMMING PARITY
The classic definition of the GP parity problems was given
by Koza [8]. He defined the representation for order-k par-
ity as binary trees whose external leafs are the functions
inputs (drawn from D0 · · ·Dk−1) and whose internal nodes
are drawn from four binary Boolean functions. Initially the
first simplification is to use just one Boolean function rather
than four. We use either equals (EQ) or exclusive-or (XOR)
depending if we are dealing with even or odd parity.

Koza defines the fitness of each tree by testing it on all 2k

possible input patterns and counting the number of times it
returns the same answer as parity would. (Even-k-parity is
true if the number of inputs which are true is even.) Thus
Koza’s fitness lies in the range 0 . . . 2k and a solution to the
parity problems has fitness 2k.

Elsewhere [10, pages 421–423] we have used the symme-
tries of EQ and XOR to show that with a function set com-
posed only of either EQ or only of XOR, trees will have
fitness of either 2k−1 or 2k. These properties also carry over
from tree based GP to Cartesian GP and have also been
exploited by Yu and Miller [29]. Further a tree is only a
solution to parity if it contains an odd number of each type
of leaf. (To simplify the text, and since odd parity behaves
similarly, from now on we will discuss only even parity.)
Since solutions to k-parity have one leaf of each of the k
types plus redundant pairs of the same leaf type, they al-
ways have k + 2n leafs (for n = 0, 1, 2, . . .). So their total
size is 2k + 4n− 1. Notice neither the shape of the tree nor
the order of its leafs matters. All binary trees formed by
re-arrangements of the leafs and internal nodes of the tree
have identical fitness. The group properties of EQ also mean
any pairs of leafs of the same type can be removed. E.g.,
using = to represent EQ, (D1 = (D2 = D2)) is identical to
the input D1 on its own. So if there are an even number
any type of leaf (e.g. D2) then it is as if the input was not
connected. A tree missing one or more inputs scores exactly
half the maximum score on parity.

We extend our previous analysis of the parity problem
[10], which described its fitness distribution, to consider par-
ity’s fitness landscape.

4. THE PARITY PROBLEM

4.1 The Mutation Operator
To form a landscape, in addition to the representation and
its associated fitness function we need at least one search
operator to establish which representations are adjacent to
each other. Koza’s [8] subtree crossover is a bit complicated
to start with so we shall instead start with a mutation op-
erator.

The mutation operator changes exactly one thing in the
tree. Since the internal nodes are always EQ, the only pos-
sible change is to convert one leaf from one input (Di) to
another (Dj with j 6= i). This does not change the size of
the tree. In principle more complicated tree size changing
mutation operators or indeed crossover operators might also
be considered.

27

4.2 Mutation’s Impact on Fitness
The effect of mutation is either to make no difference to
fitness (i.e. remain at 2k−1) or to increase it from 2k−1 to
2k or reduce it from 2k to 2k−1. A solution to parity has
an odd number of all k types of leafs. Thus replacing any
leaf with another of a different type will always mean it is
no longer a solution. So it is impossible to mutate a tree of
fitness 2k into another tree of fitness 2k.

Now the chance of each of these three things happening
depends only on the number of each type of leaf. It does
not depend upon the order of the leafs or their placement
on the tree. Since these permutations make no difference to
either fitness or to any of the changes in fitness we ignore
them and initially replace trees with k integer counts di.
Obviously there is a constraint that all of the tree’s leafs
must be present. So for a tree of size 2k + 4n − 1,

Pk−1
i=0 di

must be k + 2n.
A tree’s fitness is only 2k if the number of leafs of each

type (di) is odd for all k types. We can further simplify the
representation by replacing the dis with eis which are 1 if
their corresponding di is even and 0 if it is odd. Similarly we
can simplify Koza’s fitness function so that 2k−1 is replaced
by 0 and 2k by 1. Under the new scheme fitness = 1 if and
only if all ei are 0 and fitness = 0 otherwise.

Mutation cannot change the total number of leafs, there-
fore having chosen an initial tree,

P
di is fixed. This is a

constraint on di and so we only need to specify k− 1 values
for the di. (The remaining one can be inferred from the need
to supply all the tree’s leafs.) In fact, the oddness or even-
ness of (k − 1) di is enough for the odd or evenness of the
remaining one to be inferred. Another way of looking at this
is to say: although for convenience we have k ei, mutation
can only reach half of their 2k possible values. The unreach-
able half of the 2k values correspond to trees of the wrong
size for any of them to be parity solutions and so have zero
fitness. We will assume the tree size is 2k + 4n − 1, which
allows one solution in a space of 2k−1.

Mutating a leaf from type i to type j means decrementing
di and incrementing dj . Provided di > 0, this is equivalent
to inverting ei and ej . I.e. mutation flips exactly two of the
k bits. The next section will describe how we ensure di > 0
so that all mutation are always possible and further they are
all equally likely.

4.3 Large Trees Simplify Mutation Analysis
Now it will greatly simplify things later if we assume the
type of input we are about to mutate is chosen uniformly
at random from the k possible types and that the type of
the replacement leaf is chosen uniformly at random from the
k − 1 remaining types. Obviously this requires the tree to
have at least one leaf of each of the k types.

To further simplify the analysis we shall assume that the
trees are much bigger than the minimum size (2k−1). So big
in fact, that we can assume that the tree has more than one
leaf of each type. Further we assume the tree has sufficiently
large number of leafs that undirected random drift from an
initial random starting point in the search landscape will
never cause the number of leafs of any of the k types to fall
to one. I.e. random drift will not approach the edge of the
k-dimensional simplex. If evolution lasts for G generations
then drift will change the number of leafs of a given type
by about

√
G. So assuming the tree is also bigger than a

constant multiple of (2k − 1)
√
G) will ensure the chance of

any of the k types of leaf approaching extinction is negligible.
So mutation is always free to choose any pair of leaf types.
This ensures it is always symmetric.

5. THE PARITY FITNESS LANDSCAPE
Treat the landscape as a graph where the nodes are k length
bit vectors. As in Section 4.2, if bit i is 1 this indicates the
tree has an even number of Di leafs. Nodes in the graph are
directly connected (i.e. the corresponding trees are neigh-
bours) if mutating one node gives the other in exactly one
step. We deal with the 2k−1 nodes that are indirectly con-
nected to the solution node.

Neighbours in the graph have exactly two bits different.
Thus the graph consists of 2k−1 nodes each connected by
1
2
k(k − 1) symmetric links and the probability of moving

along each link is the same (i.e. 2
k(k−1)

). Only the single

node with none of the k elements are even has fitness 1. All
other nodes have zero fitness. Average fitness is f = 21−k.

The variance of fitness is 1
2k−1

P
f2

i − f
2

= 1
2k−1

− f
2

=

21−k − 22−2k. So the standard deviation σf =
√

21−k − 22−2k

≈ 2−(k−1)/2.

5.1 Fitness Distance Correlation
Jones and Forrest state that the fitness distance correlation
based on random sampling of a needle in a haystack fitness
function will be near zero [7, page 186]. We confirm this by
giving values based on analysing the whole space and thus
avoiding noise introduced by random sampling.

Jones and Forrest [7, page 185] define the fitness dis-
tance correlation as r = Cov(f, d)/σfσd. Where the covari-
ance between fitness and distance (d) to the global optimum

is: Cov(f, d) = 1
2k−1

P2k−1−1
i=0 (fi − f)(di − d) and σf is the

standard deviation of f (calculated in the previous section)
and similarly σd is the standard deviation of the number of
two bit flips to the origin (i.e. distance to the global opti-
mum).

Cov(f, d)

=
1

2k−1

2k−1−1X

i=0

(fi − f)(di − d)

=
1

2k−1

0

@(1 − f)(d0 − d) +

2k−1−1X

i=1

−f(di − d)

1

A

=
1

2k−1

0

@(1 − f)(d0 − d) − f

2k−1−1X

i=1

di − d

1

A

=
1

2k−1

0

@(1 − f)(−d) + f(d0 − d) − f
2k−1−1X

i=0

di − d

1

A

=
1

2k−1

`
(1 − f)(−d) − f d

´

=
−d

2k−1

`
(1 − f) + f

´

=
−d

2k−1

The distance from the optimum is ≈ bc/2. Where bc is
the number of 1s (the bit count). The number of points in

28

-0.001

-0.01

-0.1

-1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

F
it
n

e
s
s
 D

is
ta

n
c
e

 C
o

rr
e

la
ti
o

n

XOR Parity Order

Exact Fitness Distance Correlation
Approximation

Figure 3: Fitness Distance Correlation for Needle
in a Haystack with double flip mutation. Note log
scale.

the search space with identical bit count is Ck−1
bc . Ck−1

bc are
coefficients of the binomial distribution. The mean of the
binomial distribution is np and the variance is np(1 − p).
Here p = 1/2 and n = k−1. So the mean distance divided by

the standard deviation of the distance d/σd ≈ n
1

2 =
√
k − 1.

r =
Cov(f, d)

σfσd
≈ −d

2k−1

1

2−(k−1)/2 σd

=
−1

2(k−1)/2

d

σd

r ≈ −
√
k − 1

2(k−1)/2

Figure 3 plots this approximation and the exact fitness
distance correlation. It shows even for quite modest order,
the actual correlation coefficient converges to this large order
approximation.

5.2 Walsh Analysis of Fitness Autocorrelation
Jones [7] defined fitness distance correlation in terms of dis-
tance from the global optimum. This has a number of prob-
lems. Usually one needs to know the location of the best
solution in the search space and it is assumed that there is
only one solution with the best fitness value. Fitness au-
tocorrelation, for example along a random walk, addresses
these problems and can be used as a measure of landscape
smoothness and indicator of how easy a problem might be
to solve. This section provides an informal argument that
fitness correlation between neighbours falls rapidly with dis-
tance. It could be argued that in the case of a needle in a
haystack landscape, such as parity, the chance of encoun-
tering the needle is sufficiently remote that fitness along a
random walk will always be zero in practise. Nevertheless
the following arguments can be applied to any landscape
where the fitness landscapes created by the Walsh functions
are elementary landscapes. This includes 1-bit, 2-bit, 3-bit
and n-bit flip mutation as well as GA bit string mutation
(see Sections 5.6 and 6).

We shall see in Section 5.10 that GP Parity can be repre-
sented as a linear sum of elementary landscapes. Dimova et

al. [4] proved that fitness autocorrelation for a random walk
on an elementary landscapes falls exponentially. Since the
autocorrelation of all the components of parity fall mono-
tonically, the correlation of parity itself must also fall mono-
tonically with distance. (With increasing distance the actual
value will be dominated by the slowest changing exponential
term.)

Using Walsh analysis, any discrete fitness landscape can
be represented as a sum of Walsh coefficients. If (as is known
in many cases) the Walsh basis functions are elementary
landscapes and fitness correlation falls rapidly in one step it
will continue to fall towards zero for all larger distances.

For simplicity let the mean fitness be zero. Then fitness
auto-correlation is essentially given by:

X

i

X

id

fifid

where
P

i is the sum over the whole search space and
P

id

is the sum over all neighbours of i which are d steps from i.
For illustration assume f = w + v where w and v are two
Walsh basis elementary landscapes.
X

i

X

id

fifid =
X

i

X

id

(wi + vi)(wid + vid)

=
X

i

X

id

wiwid + viwid + wivid + vivid

Now the first and last terms are simply the auto-correlation
of w and v which we know fall exponentially.

X

i

X

id

viwid =
X

i

X

id

vi(wi − (wi − wid))

=
X

i

Dviwi −
X

i

X

id

vi(wi − wid)

where D is the number of neighbours separated by d. Now
the first term is zero, since w and v are orthogonal Walsh
basis functions.

X

i

vi

X

id

(wi − wid) ≤ vmax

X

i

X

id

(wi − wid)

When the separation distance becomes large wrt w’s order
P

i

P

id wi − wid will become small. Hence the autocorrela-
tion between the sum of two Walsh functions falls rapidly
with distance. This argument can be generalised to sum-
ming more than two elementary landscapes and holds for
any fitness landscape where the Walsh basis functions are
elementary landscapes.

Section 6 will show with many mutation operations, the
Walsh basis functions are elementary landscapes. As well as
parity, well known examples include max-3-sat [25]. Fitness
distance correlation will fall rapidly with distance for all of
them.

5.3 Laplacian of the Parity Landscape Graph
Form the Laplacian ∆ matrix as a real square matrix whose
rows and columns correspond to the 2k−1 nodes in the par-
ity landscape. Every element is zero except the off diagonal
terms corresponding to an edge in the graph and the di-
agonal. Since the graph’s edges are bidirectional and each
have the same probability, the graph is symmetric and we
can make all the non-zero off-diagonal terms be -1. The di-
agonal elements are the number of edges connected to the

29

corresponding node in the graph. This is 1
2
k(k − 1) for all

nodes. I.e. every node in the graph has the same degree.
(d = 1

2
k(k − 1).) Thus every row (and every column) sums

to zero.
∆ = 1

2
k(k − 1)I − A where A is the graph’s adjacency

matrix.

∆2 =
00 11

00 1 -1
11 -1 1

∆3 =

000 101 110 011

000 3 -1 -1 -1
101 -1 3 -1 -1
110 -1 -1 3 -1
011 -1 -1 -1 3

∆4 =

0000 1001 1010 0011 1100 0101 0110 1111

0000 6 -1 -1 -1 -1 -1 -1 0
1001 -1 6 -1 -1 -1 -1 0 -1
1010 -1 -1 6 -1 -1 0 -1 -1
0011 -1 -1 -1 6 0 -1 -1 -1
1100 -1 -1 -1 0 6 -1 -1 -1
0101 -1 -1 0 -1 -1 6 -1 -1
0110 -1 0 -1 -1 -1 -1 6 -1
1111 0 -1 -1 -1 -1 -1 -1 6

∆5 =
00000 10 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 0 -1 0 0 0
10001 -1 10 -1 -1 -1 -1 0 -1 -1 -1 0 -1 0 -1 0 0
10010 -1 -1 10 -1 -1 0 -1 -1 -1 0 -1 -1 0 0 -1 0
00011 -1 -1 -1 10 0 -1 -1 -1 0 -1 -1 -1 0 0 0 -1
10100 -1 -1 -1 0 10 -1 -1 -1 -1 0 0 0 -1 -1 -1 0
00101 -1 -1 0 -1 -1 10 -1 -1 0 -1 0 0 -1 -1 0 -1
00110 -1 0 -1 -1 -1 -1 10 -1 0 0 -1 0 -1 0 -1 -1
10111 0 -1 -1 -1 -1 -1 -1 10 0 0 0 -1 0 -1 -1 -1
11000 -1 -1 -1 0 -1 0 0 0 10 -1 -1 -1 -1 -1 -1 0
01001 -1 -1 0 -1 0 -1 0 0 -1 10 -1 -1 -1 -1 0 -1
01010 -1 0 -1 -1 0 0 -1 0 -1 -1 10 -1 -1 0 -1 -1
11011 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 10 0 -1 -1 -1
01100 -1 0 0 0 -1 -1 -1 0 -1 -1 -1 0 10 -1 -1 -1
11101 0 -1 0 0 -1 -1 0 -1 -1 -1 0 -1 -1 10 -1 -1
11110 0 0 -1 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 10 -1
01111 0 0 0 -1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 10

For a landscape to be elementary its fitness function must
have a special relationship with its move operator; it must
obey the “wave equation” ∆f = λ(f − f) (see Section 2.1).
I.e. treat the fitness function as a vector whose elements
are the fitnesses of the corresponding nodes in landscape
graph. Call this f . If the landscape is to be elementary f
(up to an additive constant) must be an eigenvector of ∆
with corresponding eigenvalue λ. For parity, f is a vector
with 2k−1 elements all of which are zero except the first,
which has the value 1. Thus ∆f is simply the first column
of ∆. The first element of the first column of ∆ is 1

2
k(k− 1)

and there are 1
2
k(k− 1) other elements whose values are -1.

Thus the first column of ∆ is not a simple scalar multiple
of the fitness vector f and so f is not an eigenvector of ∆.
Therefore the parity landscape is not elementary.

Section 5.5 and those following it will show not only is
parity’s landscape not elementary but also it cannot be de-
composed into a small number of elementary landscapes.

5.4 The Elementary Needle in Haystack
We use the analysis from the previous section to construct
another needle in a haystack (NIH) problem which is elemen-
tary. Without loss of generality we can keep the solution at
all zeros and give it fitness one (all other points have zero
fitness). Thus the NIH has the same fitness function as par-
ity. There are 2l points in the search space, so f = 2−l. For
an NIH landscape to be elementary it must still obey the
“wave equation” ∆f = λ(f − f) and ∆f is again the first
column of ∆. An elementary NIH Laplacian is:

∆NIH =

2l-1 -1 -1 . . . -1
-1 2l-1 -1 . . . -1
-1 -1 2l-1 . . . -1
...

...
...

. . .
...

-1 -1 -1 . . . 2l-1

which gives λ = 2l. That is we can construct an elementary
needle in a haystack landscape with a mutation operator
which can move to any point in the search landscape in one
step and all such points are equally likely. Next we show that
∆NIH is the only elementary needle in a haystack landscape
Laplacian.

Suppose the first row of an elementary needle Laplacian
is (a, b, c, d, . . . , z). Since the Laplacian is symmetric its first
column is also (a, b, c, d, . . . , z). a is the degree of the solution
node. Since the solution must be accessible a > 0. Now
f = (1, 0, 0, 0, . . . , 0). So ∆f is (a, b, c, d, . . . , z) but since ∆
represents an elementary NIH landscape ∆f = λ(f − 2−n).
Thus a = λ(1 − 2−n), so λ > 0. Also b = −λ2−n. Since
the off diagonal terms of ∆ are either 0 or -1, b = -1 and
so λ must be 2n. The other elements of the first row of ∆,
c, d, . . . , z, must also be -1. Either the wave equation or
the fact that ∆’s rows sum to zero gives us a = 2n − 1.
Notice b = -1, c = -1, d = -1, . . ., z = -1 in any elementary
needle in a haystack landscape. That is, in any elementary
NIH landscape every point in the search space can reach the
global optimum in one move and vice versa.

The last part of the argument, is to say that in a fair needle
in a haystack problem, the chance of finding the optimum
should be no more than the chance of finding any other point
in the search space. Thus the number of paths into that
point should not be less than the number into the optimum.
We have shown the optimum’s degree is 2n − 1 and so every
row must contain 2n − 1 “-1” elements. Since each row has
only 2n elements, every off diagonal element must be -1.
I.e. ∆NIH represents the only elementary needle in a haystack
landscape.

5.5 Recursive Construction of
Parity’s Landscape

We use the notation
„
A B
C D

«

to indicate a square n × n matrix that is composed of four
square n/2×n/2 matrices A, B, C and D. (Section 6 will ex-
pand the following analysis to 3-bit and multiple bit chang-
ing mutation operators.)

This section will show that the Laplacian of the connectiv-
ity graph for k order parity (∆k) can be recursively created
from two Laplacian for (k-1) parity and two Laplacians for

30

the k-2 Hamming graph (Hk−2). I.e:

∆k =

„
(k − 1)I + ∆k−1 Hk−2 − (k − 1)I
Hk−2 − (k − 1)I (k − 1)I + ∆k−1

«

(2)

Where I is the identity matrix (of the appropriate di-
mensions). (k − 1)I is included in the two on-diagonal sub-
matrices so that all the diagonal elements are
(k − 1) + 1

2
(k − 1)(k − 2) = 1

2
k(k − 1) as required. Since H

(like ∆) is a graph Laplacian, its rows sum to zero. By sub-
tracting (k − 1)I from the off diagonal matrices we ensure
all the rows in (k − 1)I + ∆k−1|Hk−2 − (k − 1)I also sum
to zero. (When we look in detail at Hk−2 we will see that
−(k−1)I is exactly the adjustment needed for the Hamming
cube adjacency matrix.)

Label the rows and columns of ∆k with 2k−1 integers.
These are given by the first 2k−1 integers starting from zero
plus a kth bit. This most significant bit is set (or cleared)
to ensure the number of bits set in the row label is even.
Order the rows/columns by the lower k-1 bits, ignoring the
top (parity) bit. Elements of ∆ are -1 if there are exactly
two bits different in the row and column labels. Diagonal
elements are 1

2
k(k − 1) and all other elements are zero.

Divide ∆ into four equal sub-matrices. Half of ∆ is made
of the rows whose k-1th bit is zero. The other half is made of
the rows whose k-1th bit is one. (Similarly for the columns).
In the two on-diagonal sub-matrices the k-1th bit in both
the rows and the columns is the same.

If an element of ∆ in the on-diagonal sub-matrices is -1,
then this means that there are exactly two bits that differ
in its row and column labels but the differing bits cannot
include the k-1th bit. If we remove the k-1th bit, this is the
condition for ∆k−1 to be -1. (We have to tidy up the labels
by not just removing the k-1th bit but also the kth bits and
recalculating the top, parity, bit for the k-2 bits.) As men-
tioned above, ∆k−1 has diagonal elements of 1

2
(k − 1)(k − 2)

so k-1 has to be added to them to convert the diagonal ele-
ments of ∆k−1 to those for ∆k.

In the off diagonal sub-matrices of ∆, either the k-1th bit
of the row’s label is zero and the k-1th bit of the column’s
label is one or vice versa. I.e. the row and column’s label
already differs in one bit. If an element of ∆ in the off-
diagonal sub-matrices is -1, then, excluding the k-1th and
kth bits, its row and column labels must differ by exactly
one bit. (Alternatively the k-1th and kth bits both differ
and the other k-2 bits are the same.) Ignoring the top two
bits for a moment, we see that ∆ being -1 in the off diagonals
is exactly the same as the Hamming distance between two
k-2 bit strings being one. That is, if Hk−2 is -1 so too are the
corresponding off diagonal elements in ∆. The only other
non-zero elements of H are on the diagonal.

Since a k-bit string has k neighbours which differ by ex-
actly one bit, the diagonal elements of H are k. I.e., the
diagonal elements of Hk−2 are k-2. These elements corre-
spond to the lower k-2 bits of the row and column labels of ∆
being the same. In ∆ these elements are -1 (rather than k-2)
since the two top bits can be simultaneously changed with-
out changing the lower k-2 bits. Subtracting k− 1 from the
diagonal elements of Hk−2 (i.e. from k-2) gives -1. Which
is the value of the corresponding element in ∆k. Hence we
have proved Equation 2.

∆k−1 can be defined in terms of ∆k−2 and Hk−3 and
so on. The base cases are: ∆2 and H1 which are both„

1 −1
−1 1

«

.

5.6 Eigen Analysis of Parity’s Landscape
Using the recursive decomposition of ∆ given in the previous
section, we shall show if ek−1 is an eigenvector of ∆k−1 then
ek−1|ek−1 and ek−1| − ek−1 are eigenvectors of ∆k. It turns
out the Walsh functions [24] are eigenvectors of both the
Laplacian of the Hamming neighbourhood H and of the that
of the Parity neighbourhood ∆. (Indeed, as Section 6 will
prove, they are also eigenvectors of the Laplacians of many
bit flip mutations.) The eigenvalues of ∆ will be given at
the end of this section.
ek∆k =

(ek−1| ± ek−1)

„
(k − 1)I + ∆k−1 Hk−2 − (k − 1)I
Hk−2 − (k − 1)I (k − 1)I + ∆k−1

«

=

„
(k − 1)ek−1 + λek−1 ±ek−1Hk−2 ∓ (k − 1)ek−1

ek−1Hk−2 − (k − 1)ek−1± (k − 1)ek−1 ± λek−1

«

(3)

Start with the base case (k=2):

„
1 −1

−1 1

«

has eigen-

vectors e2+=(1,1) (eigenvalue 0) and e2−=(1,-1) (eigenvalue 2).
Notice that these are eigenvectors of both ∆2 and H1. So
Equation 3 for k=3 becomes

(e2| ± e2)∆3 =
„

(k − 1)ek−1 + λek−1 ± λek−1 ∓ (k − 1)ek−1

λek−1 − (k − 1)ek−1 ± (k − 1)ek−1 ± λek−1

«

=
„

2e2 + λe2 ± λe2 ∓ 2e2
λe2 − 2e2 ± 2e2 ± λe2

«

=
„

2λe2
2λe2

«

and

„
4e2
−4e2

«

That is (e2|e2) are eigenvectors of ∆3 (with eigenvalue 2λ)
and so too are (e2|−e2) (with eigenvalue 4). So ∆3 has four
eigenvectors:

e3++ =(1, 1, 1, 1)
e3+− =(1, 1, −1, −1)
e3−+ =(1, −1, 1, −1)
e3−− =(1, −1, −1, 1)

with corresponding eigenvalues: λ3++ = 2λ2+ = 0,
λ3+− = 2λ2− = 4, λ3−+ = 4 and λ3−− = 4. We can see
that the four eigenvectors form an orthonormal set and so
this is a complete eigen description of ∆3. The eigenvectors
of ∆3, e3 are the Walsh basis (on 2 bits).

It can be shown that the Walsh basis (on k bits) are eigen-
vectors of the Hamming cube Hk, with eigenvalues 2i with
multiplicity Ck

i for 0 ≤ i ≤ k. (See, for example, Dr. Daniel
Spielman’s lecture notes (Lecture five, 16 September 2009
http://www.cs.yale.edu/homes/spielman/561/lect05-09

.pdf) or [2].) Therefore the eigenvectors of ∆3 are also eigen-
vectors of H2 (albeit with different eigenvalues). We have
e3 are the Walsh basis therefore e3|e3 and e3| − e3 are the
Walsh basis (3 bits). Let this hold for any higher order. I.e.
ek−1|ek−1 and ek−1| − ek−1 are the Walsh basis on k-1 bits.
Then Equation 3 becomes:
„

(k − 1)ek−1 + λk−1ek−1± 2iek−1 ∓ (k − 1)ek−1

2iek−1 − (k − 1)ek−1 ±(k − 1)ek−1 ± λk−1ek−1

«

=
„

(2i+ λk−1)ek−1

(2i+ λk−1)ek−1

«

and

„
(2(k − 1) − 2i+ λk−1)ek−1

−(2(k − 1) − 2i+ λk−1)ek−1

«

31

http://www.cs.yale.edu/homes/spielman/561/lect05-09.pdf
http://www.cs.yale.edu/homes/spielman/561/lect05-09.pdf

Table 1: Eigenvalues of Laplacian of Parity’s land-
scape graph. The subscripts are the multiplicity of
the ∆ eigenvalues. Last column is the number of dis-
tinct eigenvalues. The total number of eigenvalues
and eigenvectors is 2k−1. (Catalogued as A176296 in
the on-line encyclopedia of integer sequences.)

k= 2 01 21 2
k= 3 01 43 2
k= 4 01 64 83 3
k= 5 01 85 1210 3
k= 6 01 106 1615 1810 4
k= 7 01 127 2021 2435 4
k= 8 01 148 2428 3056 3235 5
k= 9 01 169 2836 3684 40126 5
k= 10 01 1810 3245 42120 48210 50126 6
k= 11 01 2011 3655 48165 56330 60462 6

...
k= 17 01 3217 60136 84680 1042380 · · · 14424310 9

Where 2i is an eigenvalue of Hk−2. So 0 ≤ i ≤ k − 2.
2i and λk−1 are related since they are the eigenvalues of
Hk−2 and ∆k−1 for the same eigenvector ek−1.

That is ek−1|ek−1 are indeed eigenvectors of ∆k (with
eigenvalues 2i + λk−1) and so too are ek−1| − ek−1 (with
eigenvalues 2(k− 1)− 2i+ λk−1). Notice since ek−1| ± ek−1

are the Walsh basis, they form a complete orthogonal set of
eigenvectors for ∆k. The eigenvalues of ∆ are not as elegant
as those of the Hamming cube H but can be rapidly calcu-
lated, O(k2). The first values are given in Table 1. Notice
there are rather fewer distinct values than for the Hamming
cube. In Section 5.9 we will prove that ∆k has k/2+1 dis-
tinct eigenvalues.

The multiplicities shown as subscripts in Table 1 are sim-
ilar to Pascal’s triangle. (I.e. the eigenvalue multiplicities of
the Hamming cube’s Laplacian.) Firstly they sum to 2k−1 in
each row. Also, except for the largest eigenvalue, each mul-
tiplicity is the sum of the multiplicities immediately above
and to the left in the previous row. The multiplicity of the
largest eigenvalue depends upon whether k is odd or even.
If k is even, the multiplicity of the largest eigenvalue is the
same as that in the previous row. If k odd, it is the sum of
the multiplicity in the previous row to the left plus twice the
multiplicity of the largest eigenvalue for k-1.

5.7 Largest Eigenvalue of Double Bit Flip
Graph Laplacian

Since ∆ is a Laplacian and hence its rows always sum to zero,
its smallest eigenvalue is always zero (with multiplicity one).
The smallest non-zero eigenvalue corresponds to the lowest
Walsh function and has the value 2k-2. Saying in closed
form which Walsh functions have the largest eigenvalue is
not straight forward. However we can 1) establish an upper
bound on the largest eigenvalue and 2) give a stochastic
estimate for large k.

5.7.1 Upper Bound on Largest Eigenvalue of
Double Bit Flip Graph Laplacian

Depending upon the Walsh function chosen, an eigenvalue of
∆k is either λHk−2

+ λk−1 or 2(k − 1) − λHk−2
+ λk−1. We

know λHk−2
cannot exceed 2k − 4 or be smaller than zero.

Therefore the largest eigenvalue cannot exceed
2k − 2 + max(λk−1). We know max(λ2) = 2. So (for k > 2)

λk ≤
i=kX

i=3

2i− 2 + 2

λk ≤
i=kX

i=3

2i

λk ≤ −2 − 4 + 2
i=kX

i=0

i

λk ≤ −2 − 4 + 2k(k + 1)/2

Rearranging gives λk ≤ k(k + 1) − 6. However it appears
the actual value is ⌈(k − 1)(k + 1)/2⌉.

5.7.2 Long Bit String Estimate of the Largest
Eigenvalue of the 2-bit Flip Graph Laplacian

For any unit vector u the length of ∆u will be no bigger than
the largest eigenvalue. Choose a random direction. I.e. let
v be a vector of 2k−1 components each of which is either
+1 or -1, chosen uniformly at random. |v|2 = 2k−1 hence

|v| = 2(k−1)/2 (Eventually we will normalise v to be of unit
length by dividing by |v|.) The first element of ∆v is typical
of them all.

∆v(1) = ±1

2
k(k − 1) ±1 ± · · · · · · · · · ± 1

| {z }

1

2
k(k−1) terms with random signs

The square of the length of ∆v is given by summing the
squares of each of its components in the usual way. Since
the elements of v were randomly chosen, each of the ele-
ments of ∆v (i.e. ∆v(i)) are independent and identically
distributed and therefore |∆v(i)|2 are also i.i.d. Thus the ex-
pected value of |∆v|2 is 2k−1× the expected value of any of
them, e.g. the first |∆v(1)|2. The expected length of ∆v(1)
is approximately 1

2
k(k − 1). (The random signs ensure on

average the following terms come to near zero and for large
k the sum is dominated by the first (largest) term.) Thus
the expected value of |∆v|2 is | 1

2
k(k − 1)|22k−1 and that

of |∆v| = 1
2
k(k − 1)2(k−1)/2. Taking the ratio |∆v|

|v|
gives

1
2
k(k − 1) as an upper bound on all the eigenvalues. For

large k this will become a tight bound on the largest eigen-
value.

Note the exact bound appears to be within a factor of two
of the apparent value, whereas the stochastic upper bound
appears to be increasingly tight as k increases. Finally note
the eigenvalues of parity’s ∆ are a factor of k bigger than
those of the Hamming cube.

5.8 Elementary Landscape Roughness and the
Eigenvalues of the Graph Laplacian

Recall d = 1
2
k(k − 1) so the stochastic bound is needed to

ensure λ
d

≤ 1 for all cases (cf. Equation 1). Higher order
Walsh functions are considered to be more rugged, since
their sign changes more often than lower order Walsh func-
tions. (Rothlauf points out [16, p27] that Walsh order is

32

http://oeis.org/A176296

not a universal indicator of problem difficulty.) Elementary
landscapes generated by higher Walsh basis functions have
higher eigenvalues than those corresponding to lower order
Walsh functions. Using Equation 1, we can see the higher
an elementary landscape’s eigenvalue the further each point
is from the average of its neighbours. Thus we can view λ

d
as another measure of landscape ruggedness. The larger it
is, the less each point tells us about the (average) fitness of
its neighbours.

In other regular elementary landscapes eigenvalues can
exceed the number of neighbours. I.e. λ

d
can exceed 1. For

example in the Hamming cube the largest eigenvalue of Hk

is 2k and each node has k neighbours. (So 0 ≤ λH/dH ≤ 2.)
Whitley et at. [26, p589] equates λ

d
> 1 with rugged ele-

mentary landscapes. Whereas they suggests if 0 ≤ λ
d
≤ 1

the elementary landscape is smooth. ([26] uses a constant
rather than referring to λ as an eigenvalue.)

We get the same conclusion if we use Whitley’s [28] com-
ponent based model of elementary landscapes. This treats
their fitness as being composed of components which are
added to and removed from the current trial solution as the
search process moves from a point to one of its neighbours.
[25, p383] gives λ

d
= p1 + p2. Where p1 is the proportion of

components of f(x) that change when we move away from x.
p2 is the proportion of components not included in f(x) that
change when we move away from x. Thus we should expect
a small value of p1 + p2 to give a smooth landscape. When
p1 + p2 approaches one, most of the components are being
changed at each move, so we expect a more rugged land-
scape, in keeping with the previous paragraph.

5.9 Number of Distinct Eigenvalues and
Parity’s Graph Diameter

A graph’s diameter is the maximum distance between any
two nodes in the graph. (Where the distance is the smallest
number of edges that have to be traversed to go between the
nodes.) Parity is symmetric so the longest distance between
any pair of nodes, is the same as the longest distance between
the origin and any node. This is the minimum number of
pairs of bit flips between k-1 zeros and the binary string of
the target node. This is simply bc(target)/2, where bc is
the number of 1s (the bit count). Obviously the worst case
is when all bits are one. Hence ∆’s graph diameter is k/2.
Whereas the diameter of the Hamming cube is k-1.

Reeves [14, page 598] says the number of distinct eigenval-
ues is the graph diameter plus one. We can see, from the last
column of Table 1, that the number of distinct eigenvalues
is indeed k/2+1.

5.10 Number of Distinct Elementary Landscapes
and Walsh Analysis

Since the eigenvectors form an orthogonal set, any vector,
including the fitness f vector, can be represented by its
components projected onto the eigenvectors. Remember-
ing Section 5.3, each eigenvector of ∆ represents an elemen-
tary landscape, so fitness can be represented as a sum of
elementary landscapes. One for each eigenvector where it
has a non-zero projection. As the Walsh basis functions are
eigenvectors of ∆ projecting the fitness f vector onto these
eigenvectors is equivalent to the Walsh analysis of f . Since
f is 1 followed by 2k−1 − 1 zeros it has 2k−1 non-zero Walsh
coefficients. That is all its Walsh coefficients are non-zero
(actually they are all equal to 2−(k−1)). However eigenvec-

tors with the same eigenvalue form sub-spaces where any
linear combination of these eigenvectors is also an eigen-
vector. Hence any vector can be represented as a sum of
eigenvectors, one for each subspace where it has non-zero
projection. We know that Parity’s fitness vector has non-
zero projection into each subspace so all k/2 + 1 subspaces
must be used. That is, Parity’s fitness function can be ex-
pressed as k/2 + 1 elementary fitness landscapes. Indeed
k/2+1 is an upper limit on the number of elementary land-
scapes needed to represent any fitness function (when we use
only a 2-bit flip mutation operator).

6. HIGHER BIT FLIP LANDSCAPES

6.1 Construction of 3-Bit Flip Laplacian
We can extend the construction used in Section 5.5 to con-
sider the landscape formed by a mutation operator which
flips exactly three bits.

∆3,l =

„
(Cl

3 − Cl−1
3)I + ∆3,l−1 ∆2,l−1 − (Cl

3 −Cl−1
3)I

∆2,l−1 − (Cl
3 − Cl−1

3)I (Cl
3 − Cl−1

3)I + ∆3,l−1

«

(4)

We use ∆n,l to refer to the Laplacian of the graph formed
by flipping exactly n bits in strings of length l. Note, unlike
for parity in Section 5, we allow the graph to be disjoint.
This simplifies the analysis a little. For example, all strings
are of length l rather than being shorter if parts of the search
space are inaccessible.

Unlike the double flip operator, every point in the search
space can be reached eventually by mutating exactly three
bits. Therefore, when using Equation 4, we have to use a
version of the Laplacian which includes the half of the search
space which (starting from the origin) was previously inac-
cessible. E.g. for three bits the new Laplacian for flipping
two bits (cf. ∆3 Section 5.3) is:

∆2,3 =

000 001 010 011 100 101 110 111

000 3 0 0 -1 0 -1 -1 0
001 0 3 -1 0 -1 0 0 -1
010 0 -1 3 0 -1 0 0 -1
011 -1 0 0 3 0 -1 -1 0
100 0 -1 -1 0 3 0 0 -1
101 -1 0 0 -1 0 3 -1 0
110 -1 0 0 -1 0 -1 3 0
111 0 -1 -1 0 -1 0 0 3

∆3,3 =

000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 -1
001 0 1 0 0 0 0 -1 0
010 0 0 1 0 0 -1 0 0
011 0 0 0 1 -1 0 0 0
100 0 0 0 -1 1 0 0 0
101 0 0 -1 0 0 1 0 0
110 0 -1 0 0 0 0 1 0
111 -1 0 0 0 0 0 0 1

33

∆3,4 =

0000 4 0 0 0 0 0 0 -1 0 0 0 -1 0 -1 -1 0
0001 0 4 0 0 0 0 -1 0 0 0 -1 0 -1 0 0 -1
0010 0 0 4 0 0 -1 0 0 0 -1 0 0 -1 0 0 -1
0011 0 0 0 4 -1 0 0 0 -1 0 0 0 0 -1 -1 0
0100 0 0 0 -1 4 0 0 0 0 -1 -1 0 0 0 0 -1
0101 0 0 -1 0 0 4 0 0 -1 0 0 -1 0 0 -1 0
0110 0 -1 0 0 0 0 4 0 -1 0 0 -1 0 -1 0 0
0111 -1 0 0 0 0 0 0 4 0 -1 -1 0 -1 0 0 0
1000 0 0 0 -1 0 -1 -1 0 4 0 0 0 0 0 0 -1
1001 0 0 -1 0 -1 0 0 -1 0 4 0 0 0 0 -1 0
1010 0 -1 0 0 -1 0 0 -1 0 0 4 0 0 -1 0 0
1011 -1 0 0 0 0 -1 -1 0 0 0 0 4 -1 0 0 0
1100 0 -1 -1 0 0 0 0 -1 0 0 0 -1 4 0 0 0
1101 -1 0 0 -1 0 0 -1 0 0 0 -1 0 0 4 0 0
1110 -1 0 0 -1 0 -1 0 0 0 -1 0 0 0 0 4 0
1111 0 -1 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 4

Using ∆2,3 and ∆3,3 we can easily see that Equation 4 holds
for ∆3,4:

∆3,4 =

„
3I + ∆3,3 ∆2,3 − 3I
∆2,3 − 3I 3I + ∆3,3

«

To show Equation 4 holds in general we reuse the argu-
ment given in Section 5.5. Essentially in the on diagonal
quadrants of ∆3,l the most significant bits of the node la-
bels are the same. I.e. either both 0 or both 1. Thus in these
two quadrants, where the node labels differ by exactly three
bits (a “-1” element) the different bits must be in the lower
l − 1 bits. Which is exactly the condition for ∆3,l−1 to also
have a -1 element. In the off diagonal quadrants, the most
significant bits are different. Thus any -1 element must cor-
respond to exactly two bits being different in the lower l− 1
bits of the search space labels. This is exactly the condition
of ∆2,l−1 to also have a -1 element. It only remains to fix
up the diagonal elements of the four quadrants.

The diagonal elements in the three bit mutation’s Lapla-
cians are Cl

3 (where the bit string length is l). Correspond-
ingly the diagonal elements of ∆3,l−1 are Cl−1

3 . So, in equa-
tion 4, we need to add Cl

3 − Cl−1
3 to the main diagonal.

Cl
3 −Cl−1

3 =
l(l − 1)!

3!(l − 3)!
− (l − 1)!

3!(l − 4)!

=
(l − 1)!

3!(l − 3)!
× (l − (l − 3))

=
(l − 1)!

3!(l − 3)!
× 3

=
(l − 1)!

2!(l − 1 − 2)!

= Cl−1
2

Having added to Cl−1
2 to the two on-diagonal quadrants,

to ensure every row of ∆3,l continues to sum to zero, we
must subtract Cl−1

2 from the diagonal of the two off-diagonal
quadrants. Notice, since the diagonal elements of ∆2,l−1 are
Cl−1

2 , the diagonals of the off diagonal quadrants are zero.

6.2 Construction of n-Bit Flip Laplacian
We can extend the construction used in the previous section
to consider the landscape formed by a mutation operator
which flips exactly n bits.

We start by simplifying the diagonal terms. Again we need
to add a multiple of I to the main diagonal and subtract it
in the remaining two quadrants. (See previous section.) For

the n bit Laplacian we must add Cl
n − Cl−1

n to ensure the
diagonal of ∆l−1

n is brought up to that of ∆l
n

Cl
n − Cl−1

n =
l(l − 1)!

n!(l − n)!
− (l − 1)!

n!(l − 1 − n)!

=
(l − 1)!

n!(l − n)!
× (l − (l − n))

=
(l − 1)!

n!(l − n)!
× n

=
(l − 1)!

(n− 1)!(l − 1 − (n− 1))!

= Cl−1
n−1

Notice again that this is equal to the diagonal elements of
∆n,l−1, and so in general the diagonal elements of the off
diagonal quadrants corresponding to the lower order muta-
tion operator acting on the shorter bit string are zero. This
is correct, since n-bit flip mutation cannot simply flip the
most significant bit (which correspond to changing only one
bit).

∆n,l =

„
Cl−1

n−1I + ∆n,l−1 ∆n−1,l−1 − Cl−1
n−1I

∆n−1,l−1 − Cl−1
n−1I Cl−1

n−1I + ∆n,l−1

«

(5)

To give a concrete example, consider the Laplacian for
flipping exactly five bits. The example shows it can be de-
composed into two lower order five bit and two four bit
Laplacians (plus Cl−1

4 multiples of the identity matrix I).
To make the symmetries clearer, we have only printed the
non-zero elements.

∆4,5 =
00000 5 -1 -1 -1 -1 -1

00001 5 -1 -1 -1 -1 -1

00010 5 -1 -1 -1 -1 -1

00011 5 -1 -1 -1 -1 -1

00100 5 -1 -1 -1-1 -1

00101 5 -1 -1 -1 -1 -1

00110 5 -1 -1 -1 -1 -1

00111 5-1 -1 -1-1 -1

01000 -1 5 -1 -1-1 -1

01001 -1 5 -1 -1 -1 -1

01010 -1 5 -1 -1 -1 -1

01011 -1 5 -1 -1-1 -1

01100 -1 5 -1-1 -1 -1

01101 -1 5 -1 -1 -1 -1

01110 -1 5 -1 -1 -1 -1

01111 -1 5 -1-1 -1 -1

10000 -1 -1 -1-1 5 -1

10001 -1 -1 -1 -1 5 -1

10010 -1 -1 -1 -1 5 -1

10011 -1 -1 -1-1 5 -1

10100 -1 -1-1 -1 5 -1

10101 -1 -1 -1 -1 5 -1

10110 -1 -1 -1 -1 5 -1

10111 -1 -1-1 -1 5-1

11000 -1 -1 -1 -1 -1 5

11001 -1 -1 -1 -1 -1 5

11010 -1 -1 -1 -1 -1 5

11011 -1 -1 -1 -1 -1 5

11100 -1-1 -1 -1 -1 5

11101 -1 -1 -1 -1 -1 5

11110 -1 -1 -1 -1 -1 5

11111 -1-1 -1 -1 -1 5

34

∆5,5 =
00000 1 -1

00001 1 -1

00010 1 -1

00011 1 -1

00100 1 -1

00101 1 -1

00110 1 -1

00111 1 -1

01000 1 -1

01001 1 -1

01010 1 -1

01011 1 -1

01100 1 -1

01101 1 -1

01110 1 -1

01111 1 -1

10000 -1 1

10001 -1 1

10010 -1 1

10011 -1 1

10100 -1 1

10101 -1 1

10110 -1 1

10111 -1 1

11000 -1 1

11001 -1 1

11010 -1 1

11011 -1 1

11100 -1 1

11101 -1 1

11110 -1 1

11111 -1 1

Using ∆4,5 and ∆5,5 we see that Equation 5 holds for ∆5,6:

∆5,6 =

„
5I + ∆5,5 ∆4,5 − 5I
∆4,5 − 5I 5I + ∆5,5

«

The proof of Equation 5 follows that for two and three
bit flip mutation (Sections 5.5 and 6.1). In the on diagonal
quadrants of ∆n,l the most significant bits of the node la-
bels are the same, thus in these two quadrants, where there
is a -1 element, the node labels must differ in exactly n po-
sitions. Since the most significant positions are the same,
the n differences must be in the lower part of the node la-
bels. Which is the condition for ∆n,l−1 to have a -1 element.
Whereas in the two off diagonal quadrants, the top positions
do differ, so each -1 element means there are n-1 differences
in the lower parts of the node labels. Which is the condition
for ∆n−1,l−1 to have a -1 element. The only other non-zero
elements are the diagonals, which (at the beginning of this
section) we showed need to be adjusted by ±Cl−1

n−1.
The base case for flipping exactly n bits is the set of strings

of n bits. Here mutation is highly constrained and all it can
do is move between each string and its complement. So al-
though there are 2n strings in the fitness landscape, with
n-bit mutation, the landscape falls into 2n−1 parts. Each
part contains exactly two string. Each part is inaccessible
from all the others. Thus ∆n,n is the 2n × 2n sparse sym-
metric array with exactly one -1 per row (along the trailing
diagonal) and 1 on the main diagonal (see ∆3,3 and ∆5,5).
Starting from the set of ∆n,n, Equation 5 can be used re-
cursively to construct the Laplacian for mutation of binary
strings by flipping exactly n bits.

6.3 Eigen Analysis of n-bit Mutation
Re-using the eigen analysis for the case of flipping exactly
two bits (given in Section 5.6) and the recursive decomposi-
tion of ∆n,l given in the previous section, we shall show the
Walsh basis are also eigenvectors of the Laplacian describing
n-bit mutation’s landscape.

The Walsh basis are vectors of length 2l. The jth Walsh
basis vector’s components are: ψj(x) = (−1)bc(j∧x), where
x is the index of the vector element (starting from 0) and

bc is again the number of bits set to one. So ψj(x) is -1 if
bc (j ∧ x) is odd and 1 if it is even.

The base cases for flipping n bits, ∆n,n, can be split into
the sum of the identity matrix (of size 2n × 2n) and a ma-
trix of the same size which is also zero’s except for -1 along
the reverse diagonal (e.g. ∆3,3 and ∆5,5). Call this ma-
trix N . Thus ∆n,n = I + N . Multiplying a vector by N ,
reverses the order of its elements and then multiplies them
by -1. Notice reversing the elements means replacing ele-
ment x by element x, where x is the bitwise complement of
x. Hence ψj(x)∆n,n = ψj(x)(I + N) = ψj(x) − ψj(x) =

ψj(x) − (−1)bc(j∧x).
Suppose j has t bits set. (I.e. bc (j) = t.) Only the bits of

x which match these influence the calculation of bc (j ∧ x).
Suppose, in these positions, x has k bits set and m zeros.
(Note k = bc (j ∧ x) and m = t− k.) Then x has k zeros
and m ones matching set bits in j. Hence bc (j ∧ x) = m.

(−1)bc(j∧x) = (−1)m = (−1)t−k = (−1)t(−1)−k = (−1)t(−1)k

= (−1)t(−1)bc(j∧x) = (−1)bc(j)ψj(x). Hence ψj(x)∆n,n =

ψj(x) − (−1)bc(j)ψj(x) = 0 or 2ψj(x). I.e. the Walsh basis
vectors, ψj(x), are eigenvectors of ∆n,n. The corresponding
eigenvalue is either zero (if the number of bits set in j is
even) or λ = 2 (if bc(j) is odd). Remember ψj are orthog-
onal and there are 2n of them. In other words, the Walsh
basis form a complete set of eigenvectors for ∆n,n.

To show the Walsh basis are also eigenvectors of ∆n,l we
reuse the fact that the higher order Walsh basis can be con-
structed by concatenated each vector with itself or with -1
times itself. I.e., (el−1|el−1) and (el−1|−el−1). Using Equa-
tion 5:
el∆n,l =

(el−1| ± el−1)

„
Cl−1

n−1I + ∆n,l−1 ∆n−1,l−1 − Cl−1
n−1I

∆n−1,l−1 − Cl−1
n−1I Cl−1

n−1I + ∆n,l−1

«

=

„
Cl−1

n−1el−1+λn,l−1el−1±λn−1,l−1el−1∓Cl−1
n−1el−1

λn−1,l−1el−1−Cl−1
n−1el−1 ±Cl−1

n−1el−1 ±λn,l−1el−1

«

=

„
(λn,l−1 + λn−1,l−1) el−1

(λn,l−1 + λn−1,l−1) el−1

«

or

=

„ `
2Cl−1

n−1 + λn,l−1 − λn−1,l−1

´
el−1

−
`
2Cl−1

n−1 + λn,l−1 − λn−1,l−1

´
el−1

«

Note el−1 is an eigenvector of both ∆n,l−1 (with eigenvalue
denoted λn,l−1) and of ∆n−1,l−1 (with eigenvalue denoted
λn−1,l−1). Therefore (el−1|el−1) is an eigenvector of ∆n,l

with eigenvalue

λn,l = λn,l−1 + λn−1,l−1 (6)

and (el−1| − el−1) is another eigenvector of ∆n,l (the higher
Walsh vector) with eigenvalue

λn,l = 2Cl−1
n−1 + λn,l−1 − λn−1,l−1. (7)

Since λn,n is either 0 or 2, λn,l will always be real, integer
and even. Table 2 shows an example where Equations 6
and 7 are used recursively.

Table 3 gives some example eigenvectors of the graph
Laplacians formed by various bit flip mutation operators.
Notice that, apart from the zeroth order Walsh basis vec-
tor, no eigenvector has the same eigenvalue for all mutation
operators.

35

∆5,6 =

000000 6 -1 -1 -1 -1 -1-1

000001 6 -1 -1 -1 -1 -1 -1

000010 6 -1 -1 -1 -1 -1 -1

000011 6 -1 -1 -1 -1 -1-1

000100 6 -1 -1 -1 -1-1 -1

000101 6 -1 -1 -1 -1 -1 -1

000110 6 -1 -1 -1 -1 -1 -1

000111 6 -1 -1 -1 -1-1 -1

001000 6 -1 -1 -1 -1-1 -1

001001 6 -1 -1 -1 -1 -1 -1

001010 6 -1 -1 -1 -1 -1 -1

001011 6 -1 -1 -1 -1-1 -1

001100 6 -1 -1 -1-1 -1 -1

001101 6 -1 -1 -1 -1 -1 -1

001110 6 -1 -1 -1 -1 -1 -1

001111 6-1 -1 -1-1 -1 -1

010000 -1 6 -1 -1 -1-1 -1

010001 -1 6 -1 -1 -1 -1 -1

010010 -1 6 -1 -1 -1 -1 -1

010011 -1 6 -1 -1 -1-1 -1

010100 -1 6 -1 -1-1 -1 -1

010101 -1 6 -1 -1 -1 -1 -1

010110 -1 6 -1 -1 -1 -1 -1

010111 -1 6 -1 -1-1 -1 -1

011000 -1 6 -1 -1-1 -1 -1

011001 -1 6 -1 -1 -1 -1 -1

011010 -1 6 -1 -1 -1 -1 -1

011011 -1 6 -1 -1-1 -1 -1

011100 -1 6 -1-1 -1 -1 -1

011101 -1 6 -1 -1 -1 -1 -1

011110 -1 6 -1 -1 -1 -1 -1

011111 -1 6 -1-1 -1 -1 -1

100000 -1 -1 -1 -1-1 6 -1

100001 -1 -1 -1 -1 -1 6 -1

100010 -1 -1 -1 -1 -1 6 -1

100011 -1 -1 -1 -1-1 6 -1

100100 -1 -1 -1-1 -1 6 -1

100101 -1 -1 -1 -1 -1 6 -1

100110 -1 -1 -1 -1 -1 6 -1

100111 -1 -1 -1-1 -1 6 -1

101000 -1 -1 -1-1 -1 6 -1

101001 -1 -1 -1 -1 -1 6 -1

101010 -1 -1 -1 -1 -1 6 -1

101011 -1 -1 -1-1 -1 6 -1

101100 -1 -1-1 -1 -1 6 -1

101101 -1 -1 -1 -1 -1 6 -1

101110 -1 -1 -1 -1 -1 6 -1

101111 -1 -1-1 -1 -1 6-1

110000 -1 -1 -1-1 -1 -1 6

110001 -1 -1 -1 -1 -1 -1 6

110010 -1 -1 -1 -1 -1 -1 6

110011 -1 -1 -1-1 -1 -1 6

110100 -1 -1-1 -1 -1 -1 6

110101 -1 -1 -1 -1 -1 -1 6

110110 -1 -1 -1 -1 -1 -1 6

110111 -1 -1-1 -1 -1 -1 6

111000 -1 -1-1 -1 -1 -1 6

111001 -1 -1 -1 -1 -1 -1 6

111010 -1 -1 -1 -1 -1 -1 6

111011 -1 -1-1 -1 -1 -1 6

111100 -1-1 -1 -1 -1 -1 6

111101 -1 -1 -1 -1 -1 -1 6

111110 -1 -1 -1 -1 -1 -1 6

111111 -1-1 -1 -1 -1 -1 6

6.4 Eigen Analysis Flipping bits Independently
A common mutation scheme in genetic algorithms (GAs)
is not to flip a given number of bits but instead to flip
each bit independently, albeit at low probability. Often the
probability is set to 1/length of the bit string. Thus the
mean number of bits flips is one. The actual number of
flips follows a Binomial distribution but for long bit strings
(i.e. large l) this can be approximated by a Poisson distri-
bution with mean m = 1.0, P (n) = mne−m/n! = 0.37/n!.
The first few probabilities are P (0) = 0.37, P (1) = 0.37,
P (2) = 0.18, P (3) = 0.06. The probabilities fall rapidly with
larger changes. A complete graph Laplacian can be con-
structed by adding (weighted by P (n)) together the graph
Laplacians for each value of n.

Since each each Walsh basis vector ψj(x) is an eigenvector
of all of the matrices being added together, ψj(x) is also an
eigenvector of the matrix for normal GA mutation. The
eigenvalue corresponding to the jth Walsh basis vector for a

mutation only GA’s Laplacian is

λj =
lX

i=1

mie−m

i!
λj,i,l =

1

e

lX

i=1

λj,i,l

i!

(The right hand side applies where m = 1.0). λj,i,l is the
eigenvalue of the jth Walsh basis vector when applied to the
Laplacian for flipping exactly i bits in strings of length l. We
set λj,0,l to zero, since it corresponds to flipping zero bits,
i.e. making no change. m is the mean number of bits flipped
and λj is the eigenvalue of the jth Walsh basis vector when
applied to the Laplacian for flipping bits independently. The
right most column of Table 3 gives λj for a mutation only
GA which flips on average one bit per child.

Notice that if a fitness function is a Walsh basis functions
(or a simple multiple of any) then a mutation only GA us-
ing it will have an elementary landscape. Stadler [17] also
considers crossover.

36

Table 2: Example recursion. Each n bit Laplacian is
followed by the two n-1 bit Laplacians from which
it is composed and from which its eigenvectors and
eigenvalues can be calculated using Equation 6 or 7.
Directly below each Laplacian are its eigenvalues
(which are subscripted by their multiplicities). The
recursion is halted when the eigen analyse is known.
I.e. for the Hamming cube (n = 1) or when every bit
in the string is flipped (n = l).

∆6,7

024428701214

∆6,6 ∆5,6

032232 0126415620815106121

∆5,5 ∆4,5

016216 02420810

∆4,4 ∆3,4

0828 0124466481

∆3,3 ∆2,3

0424 0246

∆2,2 ∆1,2

0222 012241

6.5 Largest Eigenvalue of n-bit Flip
Graph Laplacian

We generalise Section 5.7, for flipping two bits, to flipping
n bits. Again the smallest eigenvalue is always zero (with
multiplicity one). The smallest non-zero eigenvalue corre-
sponds to the lowest Walsh function for the Hamming cube,
which is 2. As before, we can 1) establish an upper bound
on the largest eigenvalue and 2) give a stochastic estimate
for large l.

6.5.1 Upper Bound on Largest Eigenvalue of
n-bit Flip Graph Laplacian

Following, Section 5.7.1 starting from Equation 7 and using
λn,l ≥ 0

λn,l = 2Cl−1
n−1 + λn,l−1 − λn−1,l−1

λn,l ≤ 2Cl−1
n−1 + λn,l−1

≤ 2Cl−1
n−1 + 2Cl−2

n−1 + λn,l−2

≤ λn,n +
l−1X

i=n

2Ci
n−1

= 2 + 2

l−1X

i=n

Ci
n−1

= 2 + 2Cl−1
n−1

l−1X

i=n

Ci
n−1

Cl−1
n−1

< 2 + 2Cl−1
n−1

∞X

i=0

Cl−2
n−1

Cl−1
n−1

!i

= 2 + 2Cl−1
n−1

1

1 − Cl−2

n−1

Cl−1

n−1

Table 3: Eigenvalues of the graph Laplacian of mu-
tation operators which flip exactly 1, 2, 3, 4 or 5
bits, when acting on strings of 5 bits. λj are the
eigenvalues for elementary landscapes of a mutation
only GA with pm = 1/5.

∆1,5 ∆2,5 ∆3,5 ∆4,5 ∆5,5 λj

ψ00000 0 0 0 0 0 0.000
ψ00001 2 8 12 8 2 3.124
ψ00010 2 8 12 8 2 3.124
ψ00011 4 12 12 4 0 4.736
ψ00100 2 8 12 8 2 3.124
ψ00101 4 12 12 4 0 4.736
ψ00110 4 12 12 4 0 4.736
ψ00111 6 12 8 4 2 5.351
ψ01000 2 8 12 8 2 3.124
ψ01001 4 12 12 4 0 4.736
ψ01010 4 12 12 4 0 4.736
ψ01011 6 12 8 4 2 5.351
ψ01100 4 12 12 4 0 4.736
ψ01101 6 12 8 4 2 5.351
ψ01110 6 12 8 4 2 5.351
ψ01111 8 8 8 8 0 5.376

ψ10000 2 8 12 8 2 3.124
ψ10001 4 12 12 4 0 4.736
ψ10010 4 12 12 4 0 4.736
ψ10011 6 12 8 4 2 5.351
ψ10100 4 12 12 4 0 4.736
ψ10101 6 12 8 4 2 5.351
ψ10110 6 12 8 4 2 5.351
ψ10111 8 8 8 8 0 5.376
ψ11000 4 12 12 4 0 4.736
ψ11001 6 12 8 4 2 5.351
ψ11010 6 12 8 4 2 5.351
ψ11011 8 8 8 8 0 5.376
ψ11100 6 12 8 4 2 5.351
ψ11101 8 8 8 8 0 5.376
ψ11110 8 8 8 8 0 5.376
ψ11111 10 0 20 0 2 5.121

Largest 10 12 20 8 2 5.376
Upper bound 34 26 12.667
Aprx. bound 5 10 10 5 1
No. distinct 6 3 4 3 2 6

The above bound on the largest eigenvalue of the n-bit
flip’s Laplacian is calculated for various n and strings of
length 5 at the end of Table 3.

6.5.2 Long Bit String Estimate of the Largest
Eigenvalue of the n-bit Flip Graph Laplacian

Here we generalise the argument given in Section 5.7.2 for
two bits. Again, for any unit vector u the length of ∆u
will be no bigger than the largest eigenvalue. Choose a ran-
dom direction. I.e. let v be a vector of 2l components each
of which is either +1 or -1, chosen uniformly at random.
|v|2 = 2l hence |v| = 2l/2. Multiply by the Laplacian.

The first element of ∆v is typical of them all.

∆v(1) = ±Cl
n ±1 ± · · · · · · · · · ± 1

| {z }

Cl
n

terms with random signs

37

Since the elements of v were randomly chosen, each of the
elements of ∆v are independent and identically distributed,
and therefore |∆v(i)|2 are also i.i.d. Thus the expected value
of |∆v|2 is the number of components in ∆v (2l) multiplied
by the expected value of any of them. E.g. the first, |∆v(1)|2.
The expected length of ∆v(1) is approximately Cl

n. (The
random signs ensure on average the following terms come
to near zero and for large l the sum is dominated by the
largest term.) Thus the expected value of |∆v|2 is 2l|Cl

n|2
and so the expected length |∆v| is 2l/2Cl

n. Taking the ratio
|∆v|
|v|

gives Cl
n as an upper bound on all the eigenvalues. For

long strings this will become a tight bound on the largest
eigenvalue.
Cl

n is of course the number of strings which n-bit mutation
can reach in one step, i.e. the degree. So our roughness
measure λ/d . 1. The bound is calculated for rather short
strings (length 5) at the end of Table 3.

6.6 Number of Distinct Eigenvalues
Referring back to Section 5.9. In the simple case, the string
length l is an exact multiple of the number of bits to be
flipped n and so the minimum number of steps to reach any
point in the search space (the graph diameter) is simply l/n
and hence the Laplacian has l/n+1 distinct eigenvalues [14,
page 598]. The last line of Table 3 gives some examples.

When l/n is not an integer, calculating the graph’s diam-
eter is more complicated. For example, not every point may
be accessible. I.e. the graph may fall into separate homo-
geneous graphs. In which case, we need only calculate the
diameter of one of them. This may be slightly smaller than
l/n. Secondly, the bit flips and string lengths may not align
well, so even the minimum path involves repeated flips of
one or more bits. In which case the diameter will be slightly
more than l/n. Nevertheless, even with these complications,
the number of distinct eigenvalues when flipping n multiple
bits will be near l/n+ 1.

7. COMPARISONWITH REAL GP

7.1 NIH Non-Elementary Landscape
To verify GP does behave similarly to our model, we first
ran GP to show it treats EQ-parity as a needle in a haystack
problem and to investigate the distribution of jump sizes in
a real GP. In the first group of genetic programming runs,
GP was run with Koza’s 16-even parity fitness function and
only EQ in the function set (details given in Table 4).

TinyGP uses the “grow” method [13] to create the initial
random programs. Since there are four times as many termi-
nals as functions, despite a large depth limit (8), the grow
method produces populations that consist mostly of pro-
grams that are too small (mean 17) to solve the 16-EQ par-
ity problem (minimum solution size 31). Note since a needle
in a haystack landscape does not provide fitness guidance,
the population evolves as though there was no fitness, hence
there is no bloat and, excluding drift, on average programs
do not change size [9]. Therefore there remains a substantial
part of the population which is simply too small to solve the
problem. This increases the search time. Also TinyGP does
not ensure children are different from their parents. This
also increases the search time. And so a large number of
programs need to be run before finding a solution. The first
hitting time is 2 400 000 (mean of 10 runs, standard devia-

Table 4: TinyGP Parameters for 16 even parity

Function: EQ
Terminals: D0, . . .D15

Fitness: Number of correct answers on all 216 test
cases. However (see Section 3) only fitness
32768 and 65536 are possible.

Selection: Steady state. 2 members tournaments.
Population: 65 536
Initial pop: grow (max depth 8),
Parameters: 80% subtree crossover, 20% point mutation

(pm 0.05). Crossover and mutation points
are chosen uniformly (i.e. without a function
bias [8]) No size limit.

Termination: 100 generations

Table 5: Summary of Experiments
Problem degree eigenvalue λ/d hitting time

Parity 120 136∗ 1.1333∗ 2 400 000
4 Trap-like 120 84 0.7 18 000
1 Max 120 2 0.0167 1 020
∗Parity is not elementary. We give the weighted average of all λ.

tion 2 200 000). Also the distribution shows signs of being
geometric as expected of a needle problem. This and two
other experiments are summarised in Table 5.

Although the programs are rather smaller than assumed
in Section 4.3, if we exclude mutations which make no differ-
ence (distance 0) the distribution of jump sizes for TinyGP
mutation (Figure 4 dashed line) is somewhat similar to that
predicted in Section 4.3. That is, most mutations moves

cause the child to be exactly two bits different in our search
space. The number of 4, 6, 8 etc. moves falls rapidly. (As
an anti-bloat mechanism TinyGP uses point mutation with
a fixed probability of mutation per program element [13].
Thus not only can zero elements be changed but also a mu-
tant child may differ in multiple places from its mother.)
Notice, as expected, mutation only causes jumps by multi-
ples of 2.

Figure 4 also shows the distribution of jump sizes caused
by crossover. Note since subtree crossover can change pro-
gram sizes, it can make arbitrary jump sizes (including odd
sized jumps). However the most popular (mode) jump size
is two, as assumed for the mutation only model presented in
Section 4.3,

Most crossovers take place between trees which were them-
selves created by crossovers. (Point mutation does not change
tree size or shape and so a tree’s size and shape are deter-
mined by crossover, even if it also undergoes point muta-
tion.) It may be these repeated crossovers that gives the
distribution (excluding 0 and 1) its pleasing Zipf like tail.
(Falling by about 60% per unit increase in step size.) Note,
although the distribution of tree sizes would be expected to
rapidly converge to a Lagrange distribution [3], the distribu-
tion in Figure 4 refers to jumps in our bit orientated seman-
tic search space. The mapping between it and that of the
GP binary trees is not straightforward and we have not at-
tempted to prove a mathematical relationship between ran-
dom crossover of Lagrange distributed trees and the jumps
in our space to accompany the experimental data given in
Figure 4. Figure 4 shows there is some truth in our simplifi-
cation that all moves are of size two. However it shows the
full situation is more complex.

38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14 16

F
ra

c
ti
o

n

Distance in search space

Ten tiny_gp EQ-16 runs Crossover
Mutation

Figure 4: Distribution of jumps in the search
space sizes caused by crossover and mutation in ten
TinyGP 16-EQ parity runs.

7.2 1 Max Elementary GP Landscape
A further ten runs were made where the fitness function is
given by the Hamming distance from the optimum in our
bit-orientated semantic landscape. (Note in GP terms this
is cheating, since we allow the fitness function to look inside
the program, rather than simply being based on what the
program does when it is run.) The problem is now like ones
max and so considerably easier than the parity problem used
in the previous section. nth order one-max can be shown to
be an elementary landscape by either noting 1) its fitness is
composed of n components in Whitley’s sense [22] or 2) by
noting it can be decomposed into the n first order Walsh
coefficients all of which are eigenvectors of ∆ with the same
eigenvalue and hence any linear combination of them (such
as onemax) is also an eigenvector of ∆ and therefor onemax
is elementary. (The zeroth Walsh coefficient essentially gives
the average fitness f .)

TinyGP was run with a much reduced population size
(128). Except for this and the fitness function, the same
parameters (cf. Table 4) were used. 85% of runs succeeded
in solving EQ-16 on this more friendly landscape. The mean
first hitting time was 1020 (standard deviation 430). I.e. the
second fitness landscape is about 2000 times easier for GP
even though their search spaces are identical.

7.3 4 Trap-like Third Order GP Landscape
A further ten runs were made where the fitness function is
given by summing four trap-like functions. Each trap-like
function is defined on a group of four non-overlapping bits
from the total of 16 in our bit-orientated semantic landscape.
Where each four bit function is created by adding together
all the third order Walsh coefficients. (See Figure 5. Again
in GP terms this is cheating.)

If we retain Section 4’s assumption that search proceeds
by flipping exactly two bits, then the new fitness landscape
is elementary. To show this we start with the four bit
(i.e. 16 × 16) Laplacian ∆5 and note the fitness function is
composed of third order Walsh functions and repeat the ar-
gument given in Section 5.6 but for this special case. We
have already shown the third order Walsh functions are
eigenvectors of the 16 × 16 Laplacian and have the same

0

4

3

2

1

0 2 3 41

Figure 5: Schematic of the integer valued 4 bit uni-
tation fitness function formed by adding four third
order 4-bit Walsh functions. Fitness plotted ver-
tically. Unitation horizontally. Spots indicate the
fitness of 16 possible bit values. The full fitness func-
tion is formed by concatenating four of these. It has
a single global optimum with fitness 16.

eigenvalue (12). The 32 × 32 Laplacian is formed of four
16× 16 matrices as described in Equation 2. Concatenating
a 16-bit Walsh function with itself and multiplying by the
32 × 32 Laplacian gives a vector of 32 elements, whose two
16 elements halves are both equal to a multiple of the orig-
inal 16-bit Walsh function. I.e. the 32 element vector is an
eigenvector of the 32× 32 Laplacian. The eigenvalue is λH3

plus that of the original 16-bit Walsh function. Where λH3

is the eigenvalue of the third order Walsh function applied to
the Laplacian of the Hamming cube (rather than double flip
parity). λH3

= 2× 3 = 6. I.e. the concatenated 32 bit third
order Walsh functions have eigenvalues 6+12=18. Note this
is true of all four original third order Walsh functions and
therefore they all have the same eigenvalue. Therefore the
32 element vector formed by adding them together is also
and eigenvector with eigenvalue 18.

We keep doubling using this procedure until we form a
vector with 216 elements. It will be an eigenvector of the
216 × 216 Laplacian for the 16-EQ search space; with eigen-
value 6 × (16 − 4) + 12 = 84. Notice this vector repeats
the 16 values of the third order Walsh function 4096 times,
corresponding exactly to the repeat of the lower 4 bits of
our trap-like fitness function. Since our landscape is sym-
metric we can rotate the labels by 4, 8 and 12 bits to show
that the three other components of the fitness function are
also eigenvectors with the same eigenvalue. Since the com-
bined fitness function is the sum of four eigenvectors with the
same eigenvalue, it too is an eigenvector of of the 216 × 216

Laplacian (with eigenvalue 84.) Therefor our trap-like fit-
ness landscape is elementary.

The problem is now intermediate between parity and one-
max. Therefore TinyGP was run with a intermediate popu-
lation size (1024). Except for this and the fitness function,
the same parameters (cf. Table 4) were used. Nine out of
ten runs succeeded. The mean first hitting time was 18 000
(standard deviation 9 000). I.e. this third fitness landscape
is about 130 times easier for GP than the first (and about 17
times harder than the second) even though all three search
spaces are identical.

39

8. CONCLUSIONS
We have analysed our [10] genetic programming parity fit-
ness landscape. As well as proving it is not elementary we
have calculated its mean fitness and fitness variance and its
fitness distance correlation. Also we have argued that ex-
isting results on fitness autocorrelation along random walks
in elementary landscapes can be greatly extended to show
fitness autocorrelation falls rapidly with distance in many
bit string mutation GAs.

Section 5.4 gave the elementary needle in a haystack fit-
ness landscape.

We have given a complete eigen analysis of the search
space formed by using two bit flip mutation. Showing the
eigenvectors of its graph Laplacian are the same as those of
the single bit flip Hamming cube (i.e. the Walsh basis func-
tions). The eigenvalues can be rapidly calculated. They are
somewhat similar but a factor of about k larger than those of
the Hamming cube. Since the graph is connected the small-
est eigenvalue is of course zero. The next is 2(k-1), the next
4(k-2), then 6(k-3) and so on. Table 1 gives the eigenvalues
and their multiplicities for initial values of k. We provide
two proofs (one a bound and the other a tight asymptotic
limit) for the largest eigenvalue. The actual values appears
to be ⌈(k − 1)(k + 1)/2⌉ but we have not proved this. The
number of distinct eigenvalues is k/2+1 and so the separa-
tion between eigenvalues is about 2k. For large k, multi-
plying the Laplacian by a unit vector pointed in almost all
directions will increase its length by about the number of
neighbours of each node 1

2
k(k − 1).

In Section 6 we generalised most of these results to land-
scapes where neighbours differ by n>2 bits. Indeed we gave
the eigen analysis, not only for mutation which flips three or
more bits, but also for normal bit string genetic algorithms
(without crossover) which flip a variable number of bits in-
dependently. This showed the eigenvectors of the Hamming
cube are also eigenvectors of two, three and more bit flip
mutations and the mutation only GA. Hence any fitness
function which is a Walsh function will form an elementary
landscape with this set of widely used mutation operators.
However most of these have large eigenvalues, correspond-
ing to rough fitness landscapes. Typically an eigenvalue has
a large multiplicity (i.e many eigenvectors share the same
eigenvalue). Any fitness function which is a linear combina-
tion of Walsh vectors which have the same eigenvalue will
also form an elementary landscape.

The number of distinct eigenvalues when flipping exactly
n bits is approximately l/n + 1 and total number of eigen-
vectors is 2l. Therefore there is at least one subspace with
in the region of 2ln/l eigenvectors. Any linear combination
of these is also an eigenvector and each of these corresponds
to an elementary landscape. Restricting ourselves to coeffi-
cients 0 and 1 means this subspace alone contains at least

22l/n elementary landscapes. (This is a lower bound, the
total number of n-bit flip elementary landscapes is much
bigger.)

We compared our simplified [10] genetic programming par-
ity with experiment and showed it does indeed behave as a
needle in a haystack. We have run GP on two elementary
fitness landscapes of the same size but different fitness func-
tions, and shown, as expected, they behave differently. I.e.
elementary landscapes, with identical sizes and connectivity,
can represent problems of very different difficulty. Results so
far have been in keeping with the ruggedness measure (Sec-

tion 5.8). However given non-universal results on other pro-
posed indicators of problem hardness (e.g. order of non-zero
Walsh coefficients) we cannot be confident of its usefulness.

Acknowledgments

I would like to thank Daniel Spielman, Gylson Thomas for
fhtseq.m, Riccardo Poli for TinyGP and Gabriel Peyr for
fwt.m. Also many participants at Dagstuhl Seminar 10361
and FOGA 2011 for helpful discussions, including Andrew
Sutton, Francisco Chicano, Jon Rowe, Darrell Whitley, Ken
De Jong, Una-May O’Reilly, Alden Wright and Nataliya
Sokolovska and the FOGA 2011 anonymous reviewers.

Funded by EPSRC grants EP/D050863/2 and EP/G060525/2.

9. REFERENCES

[1] T. Bäck. Evolutionary Algorithms in Theory and

Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms. Oxford University
Press, New York, 1996.

[2] T. Biyikoglu, J. Leydold, and P. F. Stadler. Laplacian

Eigenvectors of Graphs: Perron-Frobenius and

Faber-Krahn Type Theorems, volume 1915 of Lecture

Notes in Mathematics. Springer, 2007.

[3] S. Dignum and R. Poli. Generalisation of the limiting
distribution of program sizes in tree-based genetic
programming and analysis of its effects on bloat. In
D. Thierens, H.-G. Beyer, J. Bongard, J. Branke, J. A.
Clark, D. Cliff, C. B. Congdon, K. Deb, B. Doerr,
T. Kovacs, S. Kumar, J. F. Miller, J. Moore,
F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O.
Stanley, T. Stutzle, R. A. Watson, and I. Wegener,
editors, GECCO ’07: Proceedings of the 9th annual

conference on Genetic and evolutionary computation,
volume 2, pages 1588–1595, London, 7-11 July 2007.
ACM Press.

[4] B. Dimova, J. W. Barnes, and E. Popova. Arbitrary
elementary landscapes & AR(1) processes. Applied

Mathematics Letters, 18(3):287–292, 2005.

[5] B. Dimova, J. W. Barnes, E. Popova, and B. W.
Colletti. Some additional properties of elementary
landscapes. Applied Mathematics Letters,
22(2):232–235, Feb 2009.

[6] L. K. Grover. Local search and the local structure of
NP-complete problems. Operations Research Letters,
12(4):235–243, 1992.

[7] Terry Jones and S. Forrest. Fitness distance
correlation as a measure of problem difficulty for
genetic algorithms. In Proceedings of the 6th

International Conference on Genetic Algorithms,

ICGA 1995, pages 184–192. Morgan Kaufmann, 1995.

[8] J. R. Koza. Genetic Programming: On the

Programming of Computers by Natural Selection.
MIT press, 1992.

[9] W. B. Langdon. The evolution of size in variable
length representations. In 1998 IEEE International

Conference on Evolutionary Computation, pages
633–638, Anchorage, Alaska, USA, 5-9 May 1998.
IEEE Press.

[10] W. B. Langdon. Scaling of program tree fitness spaces.
Evolutionary Computation, 7(4):399–428, Winter 1999.

40

http://www.mathworks.com/matlabcentral/fileexchange/6879-fast-walsh-hadamard-transform
http://www.dagstuhl.de/Materials/index.en.phtml?10361
http://www.sigevo.org/foga-2011/
http://www.sigevo.org/foga-2011/
http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/D050863/2
http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/G060525/2
http://www.springer.com/mathematics/numbers/book/978-3-540-73509-0
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/1277277.html
http://dx.doi.org/10.1016/j.aml.2004.09.006
http://dx.doi.org/10.1016/j.aml.2008.03.016
http://dx.doi.org/10.1016/0167-6377(92)90049-9
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1997_pgSAHCP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_1999_sptfs.html

[11] W. B. Langdon and R. Poli. Foundations of Genetic

Programming. Springer-Verlag, 2002.

[12] R. Poli, W. B. Langdon, and O. Holland. Extending
particle swarm optimisation via genetic programming.
In M. Keijzer, A. Tettamanzi, P. Collet, J. I.
van Hemert, and M. Tomassini, editors, Proceedings of

the 8th European Conference on Genetic

Programming, volume 3447 of Lecture Notes in

Computer Science, pages 291–300, Lausanne,
Switzerland, 30 Mar. - 1 Apr. 2005. Springer.

[13] R. Poli, W. B. Langdon, and N. F. McPhee. A field

guide to genetic programming. Published via
http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[14] C. R. Reeves. Fitness landscapes. In E. K. Burke and
G. Kendall, editors, Search Methodologies:

Introductory Tutorials in Optimization and Decision

Support Techniques, chapter 19, pages 587–610.
Springer, 2005.

[15] C. R. Reeves and J. E. Rowe. Genetic

Algorithms–Principles and Perspectives: A Guide to

GA Theory. Kluwer Academic Publishers, 2003.

[16] F. Rothlauf. Representations for Genetic and

Evolutionary Algorithms. Physica-Verlag, 2002.

[17] P. F. Stadler, R. Seitz, and G. P. Wagner. Population
dependent Fourier decomposition of fitness landscapes
over recombination spaces: Evolvability of complex
characters. Bulletin of Mathematical Biology,
62:399–428, 2000.

[18] P. F. Stadler. Landscapes and their correlation
functions. Technical Report 95-07-067, Santa Fe
Institute, USA, 1995.

[19] P. F. Stadler and G. P. Wagner. Algebraic theory of
recombination spaces. Evolutionary Computation,
5(3):241–275, 1997.

[20] A. M. Sutton, A. E. Howe, and L. D. Whitley.
Estimating Bounds on Expected Plateau Size in
MAXSAT Problems. In T. Stützle, M. Birattari, and
H. H. Hoos, editors, Second International Workshop,

Engineering Stochastic Local Search Algorithms. SLS

2009, volume 5752 of Lecture Notes in Computer

Science, pages 31–45, Brussels, 3-4 September 2009.
Springer.

[21] A. M. Sutton, A. E. Howe, and L. D. Whitley. A
theoretical analysis of the k-satisfiability search space.
In T. Stützle, M. Birattari, and H. H. Hoos, editors,
Second International Workshop, Engineering

Stochastic Local Search Algorithms. SLS 2009, volume
5752 of Lecture Notes in Computer Science, pages
46–60, Brussels, 3-4 September 2009. Springer.

[22] A. M. Sutton, L. D. Whitley, and A. E. Howe. A
polynomial time computation of the exact correlation
structure of k-satisfiability landscapes. In GECCO

’09: Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, pages 365–372,
Montreal, 2009. ACM.

[23] V. K. Vassilev, T. C. Fogarty, and J. F. Miller.
Information characteristics and the structure of
landscapes. Evolutionary Computation, 8(1):31–60,
Spring 2000.

[24] V. K. Vassilev, T. C. Fogarty, and J. F. Miller.

Smoothness, ruggedness and neutrality of fitness
landscapes: from theory to application. In A. Ghosh
and S. Tsutsui, editors, Advances in evolutionary

computing: theory and applications, pages 3–44.
Springer-Verlag New York, Inc., 2003.

[25] D. Whitley, D. Hains, and A. Howe. Tunneling
between optima: partition crossover for the traveling
salesman problem. In GECCO ’09: Proceedings of the

11th Annual conference on Genetic and evolutionary

computation, pages 915–922, Montreal, 2009. ACM.

[26] D. Whitley, A. M. Sutton, and A. E. Howe.
Understanding elementary landscapes. In M. Keijzer,
G. Antoniol, C. B. Congdon, K. Deb, B. Doerr,
N. Hansen, J. H. Holmes, G. S. Hornby, D. Howard,
J. Kennedy, S. Kumar, F. G. Lobo, J. F. Miller,
J. Moore, F. Neumann, M. Pelikan, J. Pollack,
K. Sastry, K. Stanley, A. Stoica, E.-G. Talbi, and
I. Wegener, editors, GECCO ’08: Proceedings of the

10th annual conference on Genetic and evolutionary

computation, pages 585–592, Atlanta, GA, USA, 12-16
July 2008. ACM.

[27] L. D. Whitley and A. M. Sutton. Elementary
landscape analysis. In GECCO ’09: Proceedings of the

11th annual conference companion on Genetic and

evolutionary computation conference, pages
3227–3236, Montreal, 8-12 July 2009. ACM. Tutorial.

[28] L. D. Whitley and A. M. Sutton. Partial
neighborhoods of elementary landscapes. In G. Raidl,
F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle,
M. Birattari, C. B. Congdon, M. Middendorf,
C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles,
D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller,
J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit,
M. O’Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli,
and E. Alba, editors, GECCO ’09: Proceedings of the

11th Annual conference on Genetic and evolutionary

computation, pages 381–388, Montreal, 8-12 July 2009.
ACM.

[29] Tina Yu and J. F. Miller. Through the interaction of
neutral and adaptive mutations, evolutionary search
finds a way. Artificial Life, 12(4):525–551, Fall 2006.

41

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_fogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli_2005_eurogp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.inf.ufpr.br/aurora/disciplinas/topicosia2/livros/search/fitness.pdf
http://dx.doi.org/10.1006/bulm.1999.0167
http://www.tbi.univie.ac.at/papers/Abstracts/95-07-07.ps.gz
http://dx.doi.org/10.1162/evco.1997.5.3.241
http://dx.doi.org/10.1007/978-3-642-03751-1_3
http://dx.doi.org/10.1007/978-3-642-03751-1_4
http://dx.doi.org/10.1145/1569901.1569952
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/EC.html
http://dx.doi.org/doi:10.1145/1569901.1570026
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2008/docs/p585.pdf
http://dx.doi.org/10.1145/1570256.1570418
http://dx.doi.org/10.1145/1569901.1569954
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yu_2006_AL.html

	Fitness Landscapes
	Elementary Landscapes
	Wave Equation
	Average Fitness Change
	Average Neighbourhood Fitness in an Elementary Landscape
	Bound on Maximum Fitness

	Genetic Programming Parity
	The Parity Problem
	The Mutation Operator
	Mutation's Impact on Fitness
	Large Trees Simplify Mutation Analysis

	The Parity Fitness Landscape
	Fitness Distance Correlation
	Walsh Analysis of Fitness Autocorrelation
	Laplacian of the Parity Landscape Graph
	The Elementary Needle in Haystack
	Recursive Construction of Parity's Landscape
	Eigen Analysis of Parity's Landscape
	Largest Eigenvalue of Double Bit Flip Graph Laplacian
	Upper Bound on Largest Eigenvalue of Double Bit Flip Graph Laplacian
	Long Bit String Estimate of the Largest Eigenvalue of the 2-bit Flip Graph Laplacian

	Elementary Landscape Roughness and the Eigenvalues of the Graph Laplacian
	Number of Distinct Eigenvalues and Parity's Graph Diameter
	Number of Distinct Elementary Landscapes and Walsh Analysis

	Higher Bit Flip Landscapes
	Construction of 3-Bit Flip Laplacian
	Construction of n-Bit Flip Laplacian
	Eigen Analysis of n-bit Mutation
	Eigen Analysis Flipping bits Independently
	Largest Eigenvalue of n-bit Flip Graph Laplacian
	Upper Bound on Largest Eigenvalue of n-bit Flip Graph Laplacian
	Long Bit String Estimate of the Largest Eigenvalue of the n-bit Flip Graph Laplacian

	Number of Distinct Eigenvalues

	Comparison with Real GP
	NIH Non-Elementary Landscape
	1 Max Elementary GP Landscape
	4 Trap-like Third Order GP Landscape

	Conclusions
	References

