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Errata and Addenda to Mathematical Constants

Steven Finch

January 1, 2020

Abstract. We humbly and briefly offer corrections and supplements to
Mathematical Constants (2003) and Mathematical Constants II (2019), both
published by Cambridge University Press. Comments are always welcome.

1. First Volume

1.1. Pythagoras’ Constant. A geometric irrationality proof of
√
2 appears in

[1]; the transcendence of the numbers

√
2
√
2
√

2

, ii
i

, ie
π

would follow from a proof of Schanuel’s conjecture [2]. A curious recursion in [3, 4]
gives the nth digit in the binary expansion of

√
2. Catalan [5] proved the Wallis-like

infinite product for 1/
√
2. More references on radical denestings include [6, 7, 8, 9].

1.2. The Golden Mean. The cubic irrational ψ = 1.3247179572... is connected
to a sequence

ψ1 = 1, ψn = 3
√

1 + ψn−1 for n ≥ 2

which experimentally gives rise to [10]

lim
n→∞

(ψ − ψn)
(

3(1 + 1
ψ
)
)n

= 1.8168834242....

The cubic irrational χ = 1.8392867552... is mentioned elsewhere in the literature with
regard to iterative functions [11, 12, 13] (the four-numbers game is a special case of
what are known as Ducci sequences), geometric constructions [14, 15] and numerical
analysis [16]. Infinite radical expressions are further covered in [17, 18, 19]; more gen-
eralized continued fractions appear in [20, 21]. See [22] for an interesting optimality
property of the logarithmic spiral. A mean-value analog C of Viswanath’s constant
1.13198824... (the latter applies for almost every random Fibonacci sequence) was dis-
covered by Rittaud [23]: C = 1.2055694304... has minimal polynomial x3+x2−x−2.
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The Fibonacci factorial constant c arises in [24] with regard to the asymptotics

− d

ds

∞∑

n=1

1

f sn
∼ 1

ln(ϕ)s2
+

1

24

(

6 ln(5)− 2 ln(ϕ)− 3 ln(5)2

ln(ϕ)

)

+ ln(c)

∼ 1

ln(ϕ)s2
+ ln(0.8992126807...)

as s→ 0, which gives meaning to the “regularized product” of all Fibonacci numbers.
1.3. The Natural Logarithmic Base. More on the matching problem appears

in [25]. Let N denote the number of independent Uniform [0, 1] observations Xk

necessary until
∑

k≤N Xk first exceeds 1. The fact that E(N) = e goes back to at
least Laplace [26]; see also [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Imagine guests
arriving one-by-one at an infinitely long dinner table, finding a seat at random, and
choosing a napkin (at the left or at the right) at random. If there is only one napkin
available, then the guest chooses it. The mean fraction of guests without a napkin
is (2 − √

e)2 = 0.1233967456... and the associated variance is (3 − e)(2 − √
e)2 =

0.0347631055... [37, 38, 39, 40]. See pages 280–281 for the discrete parking problem
and [41] for related annihilation processes.

Proofs of the two infinite products for e are given in [5, 42]; Hurwitzian continued
fractions for e1/q and e2/q appear in [43, 44, 45, 46]. The probability that a random
permutation on n symbols is simple is asymptotically 1/e2, where

(2647513) is non-simple (since the interval 2..5 is mapped onto 4..7),

(2314) is non-simple (since the interval 1..2 is mapped onto 2..3),

but (51742683) and (2413) are simple, for example. Only intervals of length ℓ, where
1 < ℓ < n, are considered, since the lengths ℓ = 1 and ℓ = n are trivial [47, 48].

Define the following set of integer k-tuples

Nk =

{

(n1, n2, . . . , nk) :
k∑

j=1

1

nj
= 1 and 1 ≤ n1 < n2 < . . . < nk

}

.

Martin [49] proved that

min
(n1,n2,...,nk)∈Nk

nk ∼
e

e− 1
k

as k → ∞, but it remains open whether

max
(n1,n2,...,nk)∈Nk

n1 ∼
1

e− 1
k.
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Croot [50] made some progress on the latter: He proved that n1 ≥ (1+ o(1))k/(e−1)
for infinitely many values of k, and this bound is best possible.

Holcombe [51] evaluated the infinite products

∞∏

n=2

(

1− 1

n2

)n2

e =
π

e3/2
,

∞∏

n=1

(

1 +
1

n2

)n2

1

e
=

exp
[
1
2
+ 2π

3
− 1

2π2 ζ(3) +
1

2π2 Li3 (e
−2π) + 1

π
Li2 (e

−2π)
]

2 sinh(π)

and similar products appear in [52, 53]. Also, define f0(x) = x and, for each n > 0,

fn(x) = (1 + fn−1(x)− fn−1(0))
1
x .

This imitates the definition of e, in the sense that the exponent → ∞ and the base
→ 1 as x→ 0. We have f1(0) = e = 2.718...,

f2(0) = exp
(
− e

2

)
= 0.257..., f3(0) = exp

(
11−3e
24

exp
(
1− e

2

))
= 1.086...

and f4(0) = 0.921... (too complicated an expression to include here). Does a pattern
develop here?

1.4. Archimedes’ Constant. Viète’s product

2

π
=

√

1

2
·

√

1

2
+

1

2

√

1

2
·

√
√
√
√1

2
+

1

2

√

1

2
+

1

2

√

1

2
· · ·

has the following close cousin:

2

L
=

√

1

2
·
√
√
√
√

1

2
+

1
2
√

1
2

·
√
√
√
√
√

1

2
+

1
2

√

1
2
+

1
2√
1
2

· · ·

where L is the lemniscate constant (pages 420–423). Levin [54, 55] developed analogs
of sine and cosine for the curve x4 + y4 = 1 to prove the latter formula; he also noted
that the area enclosed by x4 + y4 = 1 is

√
2L and that

2
√
3

π
=

(

1

2
+

√

1

2

)

·




1

2
+

√

1

2
− 1

2

√

1

2



 ·





1

2
+

√
√
√
√1

2
− 1

2

√

1

2
− 1

2

√

1

2




 · · · .
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Can the half-circumference of x4 + y4 = 1 be written in terms of L as well? This
question makes sense both in the usual 2-norm and in the 4-norm; call the half-
circumference π4 for the latter. More generally, define πp to be the half-circumference
of the unit p-circle |x|p + |y|p = 1, where lengths are measured via the p-norm and
1 ≤ p < ∞. It turns out [56] that π = π2 is the minimum value of πp. Additional
infinite radical expressions for π appear in [57, 58]; more on the Matiyasevich-Guy
formula is covered in [59, 60, 61, 62, 63]; see [64] for a revised spigot algorithm for
computing decimal digits of π and [65, 66] for more on BBP-type formulas.

1.5. Euler-Mascheroni Constant. Impressive surveys appear in [67, 68, 69].
Subtracting

1 +
1

2
+

1

3
+ · · ·+ 1

n2
− ln

(
n2
)
→ γ

from

2

(

1 +
1

2
+

1

3
+ · · ·+ 1

n

)

− 2 ln (n) → 2γ

gives a nice result [70]

lim
n→∞

(
n∑

k=1

1

k
− 1

n + 1
− 1

n+ 2
− 1

n+ 3
− · · · − 1

n2

)

= γ

avoiding the usual logarithm. De la Vallée Poussin’s theorem was, in fact, anticipated
by Dirichlet [71, 72]; it is a corollary of the formula for the limiting mean value of
d(n) [73]. Vacca’s series was anticipated by Franklin [74], Nielsen [75] and Jacobsthal
[76, 77]. An extension was found by Koecher [78]:

γ = δ − 1

2

∞∑

k=2

(−1)k

(k − 1)k(k + 1)

⌊
ln(k)

ln(2)

⌋

where δ = (1+α)/4 = 0.6516737881... and α =
∑∞

n=11/(2
n− 1) = 1.6066951524... is

one of the digital search tree constants. Glaisher [79] discovered a similar formula:

γ =
∞∑

n=1

1

3n − 1
− 2

∞∑

k=1

1

(3k − 1)(3k)(3k + 1)

⌊
ln(3k)

ln(3)

⌋

nearly eighty years earlier. The following series [80, 81, 82] suggest that ln(4/π) is an
“alternating Euler constant”:

γ =
∞∑

k=1

(
1

k
− ln

(

1 +
1

k

))

= −
1∫

0

1∫

0

1− x

(1− xy) ln(xy)
dx dy,
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ln

(
4

π

)

=
∞∑

k=1

(−1)k−1

(
1

k
− ln

(

1 +
1

k

))

= −
1∫

0

1∫

0

1− x

(1 + xy) ln(xy)
dx dy

(see section 1.7 later for more). Evaluation of the definite integral involving
∑∞

k=1x
2k

was first done by Catalan [5]; related formulas

1∫

0

1 + 2x

1 + x+ x2

( ∞∑

k=1

x3
k

)

dx = 1− γ =

1∫

0

1 + 1
2

√
x

(1 +
√
x) (1 +

√
x+ x)

( ∞∑

k=1

x(3/2)
k

)

dx

are due to Ramanujan [83].
Sample criteria for the irrationality of γ appear in Sondow [84, 85, 86, 87, 88].

Long ago, Mahler attempted to prove that γ is transcendental; the closest he came
to this was to prove the transcendentality of the constant [89, 90]

πY0(2)

2J0(2)
− γ

where J0(x) and Y0(x) are the zeroth Bessel functions of the first and second kinds.
(Unfortunately the conclusion cannot be applied to the terms separately!) From
Nesterenko’s work, Γ(1/6) is transcendental; from Grinspan’s work [91], at least two
of the three numbers π, Γ(1/5), Γ(2/5) are algebraically independent. See [92, 93, 94]
for more such results.

Diamond [95, 96] proved that, if

Fk(n) =
∑ 1

ln(ν1) ln(ν2) · · · ln(νk)

where the (finite) sum is over all integer multiplicative compositions n = ν1ν2 · · ·νk
and each νj ≥ 2, then

lim
N→∞

1

N

(

1 +
N∑

n=2

∞∑

k=1

Fk(n)

k!

)

= exp(γ′ − γ − ln(ln(2)) = 1.2429194164...

where γ′ = 0.4281657248... is the analog of Euler’s constant when 1/x is replaced
by 1/(x ln(x)) (see Table 1.1). The analog when 1/x is replaced by 1/

√
x is called

Ioachimescu’s constant [97]. See [98] for a different generalization of γ. Also, related
limiting formulas include [99]

lim
n→∞

(
n∑

k=1

arctan

(
1

k

)

− ln(n)

)

= − arg (Γ(1 + i)) ,
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lim
n→∞

(
n∑

k=2

arctanh

(
1

k

)

− ln(n)

)

= −1

2
ln(2).

1.6. Apéry’s Constant. The famous alternating central binomial series for ζ(3)
dates back at least as far as 1890, appearing as a special case of a formula due to
Markov [100, 101, 102]:

∞∑

n=0

1

(x+ n)3
=

1

4

∞∑

n=0

(−1)n(n!)6

(2n+ 1)!

2(x− 1)2 + 6(n+ 1)(x− 1) + 5(n+ 1)2

[x(x+ 1) · · · (x+ n)]4
.

Ramanujan [103, 104] discovered the series for ζ(3) attributed to Grosswald. Plouffe
[105] uncovered remarkable formulas for π2k+1 and ζ(2k + 1), including

π = 72

∞∑

n=1

1

n(eπn − 1)
− 96

∞∑

n=1

1

n(e2πn − 1)
+ 24

∞∑

n=1

1

n(e4πn − 1)
,

π3 = 720

∞∑

n=1

1

n3(eπn − 1)
− 900

∞∑

n=1

1

n3(e2πn − 1)
+ 180

∞∑

n=1

1

n3(e4πn − 1)
,

π5 = 7056
∞∑

n=1

1

n5(eπn − 1)
− 6993

∞∑

n=1

1

n5(e2πn − 1)
+ 63

∞∑

n=1

1

n5(e4πn − 1)
,

ζ(3) = 28
∞∑

n=1

1

n3(eπn − 1)
− 37

∞∑

n=1

1

n3(e2πn − 1)
+ 7

∞∑

n=1

1

n3(e4πn − 1)
,

ζ(5) = 24
∞∑

n=1

1

n5(eπn − 1)
− 259

10

∞∑

n=1

1

n5(e2πn − 1)
− 1

10

∞∑

n=1

1

n5(e4πn − 1)
,

ζ(7) =
304

13

∞∑

n=1

1

n7(eπn − 1)
− 103

4

∞∑

n=1

1

n7(e2πn − 1)
+

19

52

∞∑

n=1

1

n7(e4πn − 1)
.

A claimed proof that ζ(5) is irrational awaits confirmation [106]. Volchkov’s formula
(which is equivalent to the Riemann hypothesis) was revisited in [107]; a new criterion
[108] has the advantage that it involves only integrals of ζ(z) taken exclusively along
the real axis. We mention a certain alternating double sum [109, 110]

∞∑

i=2

i−1∑

j=1

(−1)i+j

i3j
=

π4

180
+
π2

12
ln(2)2 − 1

12
ln(2)4 − 2 Li4

(
1

2

)

= −0.1178759996...

and wonder about possible generalizations.
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1.7. Catalan’s Constant. Rivoal & Zudilin [111] proved that there exist in-
finitely many integers k for which β(2k) is irrational, and that at least one of the
numbers β(2), β(4), β(6), β(8), β(10), β(12), β(14) is irrational. More double inte-
grals (see section 1.5 earlier) include [112, 113, 114, 115]

ζ(3) = −1

2

1∫

0

1∫

0

ln(xy) dx dy

1− xy
, G =

1

8

1∫

0

1∫

0

dx dy

(1− xy)
√

x(1− y)
.

Zudilin [114] found the continued fraction expansion

13

2G
= 7 +

1040|
|10699 +

42322176|
|434871 +

15215850000|
|4090123 + · · · .

where the partial numerators and partial denominators are generated according to the
polynomials (2n−1)4(2n)4(20n2−48n+29)(20n2+32n+13) and 3520n6+5632n5+
2064n4 − 384n3 − 156n2 + 16n+ 7. See [116] for more on BBP-type formulas.

1.8. Khintchine-Lévy Constants. Let m(n, x) denote the number of partial
denominators of x correctly predicted by the first n decimal digits of x. Lochs’ result
is usually stated as [117]

lim
n→∞

m(n, x)

n
=

6 ln(2) ln(10)

π2
= 0.9702701143...

= (1.0306408341...)−1 = [(2)(0.5153204170...)]−1

for almost all x. In words, an extra 3% in decimal digits delivers the required partial
denominators. The constant 0.51532... appears in [118] and our entry [2.17]. A
corresponding Central Limit Theorem is stated in [119, 120].

If x is a quadratic irrational, then its continued fraction expansion is periodic;
hence limn→∞M(n, x) is easily found and is algebraic. For example, limn→∞M(n, ϕ) =
1, where ϕ is the Golden mean. We study the set Σ of values limn→∞ ln(Qn)/n taken
over all quadratic irrationals x in [121]. Additional references include [122, 123, 124].

1.9. Feigenbaum-Coullet-Tresser Constants. Consider the unique solution
of ϕ(x) = T2[ϕ](x) as pictured in Figure 1.6:

ϕ(x) = 1− (1.5276329970...)x2 + (0.1048151947...)x4

+ (0.0267056705...)x6 − (0.0035274096...)x8 +− · · ·

The Hausdorff dimension D of the Cantor set {xk}∞k=1 ⊆ [−1, 1], defined by x1 = 1
and xk+1 = ϕ(xk), is known to satisfy 0.53763 < D < 0.53854. This set may be
regarded as the simplest of all strange attractors [125, 126, 127].
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In two dimensions, Kuznetsov & Sataev [128] computed parameters α = 2.502907875...,
β = 1.505318159..., δ = 4.669201609... for the map

(
xn+1

yn+1

)

=

(
1− c x2n

1− a y2n − b x2n

)

;

α = 1.90007167..., β = 4.00815785..., δ = 6.32631925... for the map
(
xn+1

yn+1

)

=

(
1− a x2n + d xnyn

1− b xnyn

)

;

and α = 6.565350..., β = 22.120227..., δ = 92.431263... for the map
(
xn+1

yn+1

)

=

(
a− x2n + b yn
e yn − x2n

)

.

“Certainly, this is only a little part of some great entire pattern”, they wrote.
Let us return to the familiar one-dimensional map x 7→ a x(1−x), but focus instead

on the region a > a∞ = 3.5699456718... = 4(0.8924864179...). We are interested in
bifurcation of cycles whose periods are odd multiples of two:

λ(m,n) =
the smallest value of a for which a cycle of

period (2m+ 1)2n first appears.

For any fixed m ≥ 0,

lim
n→∞

λ(m,n)− λ(m,n− 1)

λ(m,n+ 1)− λ(m,n)
= δ = 4.6692...

which is perhaps unsurprising. A new constant emerges if we reverse the roles of m
and n:

lim
n→∞

lim
m→∞

λ(m,n)− λ(m− 1, n)

λ(m+ 1, n)− λ(m,n)
︸ ︷︷ ︸

γn

= γ = 2.9480...

due to Geisel & Nierwetberg [129] and Kolyada & Sivak [130]. High-precision values
of γ0, γ1, γ2, . . . would be good to see. A proof of the existence of γ is in [131], but
apart from mention in [132], this constant has been unjustly neglected.

1.10. Madelung’s Constant. The following “near miss” exact expression [133]:

M3 = −1

8
+

1

2
√
2
− 4π

3
− ln(2)

4π
+

Γ(1/8)Γ(3/8)

π3/2
√
2

− 2

∞∑

i,j,k=−∞

′ (−1)i+j+k
√

i2 + j2 + k2
(

e8π
√
i2+j2+k2 − 1

)
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is noteworthy because the series portion is rapidly convergent. See also [134, 135, 136].
Related to our function f(z) is the limit

n∑

i,j=−n

′ 1

i2 + j2
− 2π ln(n) → [4 ln(2) + 3 ln(π) + 2γ − 4 ln (Γ(1/4))]π − 4G

as n → ∞, where γ is Euler’s constant and G is Catalan’s constant [137]. Another
series ∞∑

i,j=−∞

(−1)i+j

i2 + (3j + 1)2
=

2π

9
ln
[

2
(√

3− 1
)]

is only the first of many evaluations appearing in [138, 139]. Likewise

−
n∑

i,j=−n

′ ln
(
i2 + j2

)
+

n+ 1
2∫

x,y=−n− 1
2

ln
(
x2 + y2

)
dx dy → ln

(
2

π

)

− 2 ln

(
Γ(1/4)

Γ(3/4)

)

+
π

6
,

∞∑

k=1

(−1)k+1 ln(2k + 1)

2k + 1
=
π

4

{

γ + ln(2π)− 2 ln

(
Γ(1/4)

Γ(3/4)

)}

,

∞∑

k=0

{
ln(3k + 1)

3k + 1
− ln(3k + 2)

3k + 2

}

=
π√
3

{

ln

(
Γ(1/3)

Γ(2/3)

)

− 1

3
(γ + ln(2π))

}

,

∞∑

k=0

(−1)k
{
ln(4k + 1)

4k + 1
+

ln(4k + 3)

4k + 3

}

=
π

2
√
2

{

ln

(
Γ(1/8)Γ(3/8)

Γ(5/8)Γ(7/8)

)

− (γ + ln(2π))

}

are just starting points for research reported in [140, 141, 142, 143, 144].
1.11. Chaitin’s Constant. Ord & Kieu [145] gave a different Diophantine

representation for Ω; apparently Chaitin’s equation can be reduced to 2–3 pages in
length [146]. A rough sense of the type of equations involved can be gained from
[147]. Calude & Stay [148] suggested that the uncomputability of bits of Ω can be
recast as an uncertainty principle.

2.1. Hardy-Littlewood Constants. In a breakthrough, Zhang [149, 150, 151,
152] proved that the sequence of gaps between consecutive primes has a finite lim-
inf (an impressive step toward confirming the Twin Prime Conjecture). In another
breakthrough, Green & Tao [153] proved that there are arbitrarily long arithmetic
progressions of primes. In particular, the number of prime triples p1 < p2 < p3 ≤ x
in arithmetic progression is

∼ Ctwin

2

x2

ln(x)3
= (0.3300809079...)

x2

ln(x)3
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as x→ ∞, and the number of prime quadruples p1 < p2 < p3 < p4 ≤ x in arithmetic
progression is likewise

∼ D

6

x2

ln(x)4
= (0.4763747659...)

x2

ln(x)4
.

Here is a different extension Ctwin = C ′
2:

Pn(p, p+ 2r) ∼ 2Ctwin

∏

p|r
p>2

p− 1

p− 2

︸ ︷︷ ︸

C′
2r

n

ln(n)2
,

and C ′
2r has mean value one in the sense that

∑m
r=1C

′
2r ∼ m as m → ∞. Further

generalization is possible [154, 155].
Fix ε > 0. Let N(x, k) denote the number of positive integers n ≤ x with

Ω(n) = k, where k is allowed to grow with x. Nicolas [156] proved that

lim
x→∞

N(x, k)

(x/2k) ln(x/2k)
=

1

4Ctwin
=

1

4

∏

p>2

(

1 +
1

p(p− 2)

)

= 0.3786950320....

under the assumption that (2+ ε) ln(ln(x)) ≤ k ≤ ln(x)/ ln(2). More relevant results
appear in [157]; see also the next entry.

Let L(x) denote the number of positive odd integers n ≤ x that can be expressed in
the form 2l+p, where l is a positive integer and p is a prime. Then 0.09368 x ≤ L(x) <
0.49095 x for all sufficiently large x. The lower bound can be improved to 0.2893 x if
the Hardy-Littlewood conjectures in sieve theory are true [158, 159, 160, 161, 162].

LetQ(x) denote the number of integers≤ x with prime factorizations pα1
1 p

α2
2 · · · pαr

r

satisfying α1 ≥ α2 ≥ . . . ≥ αr. Extending results of Hardy & Ramanujan [163], Rich-
mond [164] deduced that

ln(Q(x)) ∼ 2π√
3

(
ln(x)

ln(ln(x))

)1/2 (

1− 2 ln(π)+12B/π2−2
2 ln(ln(x))

− ln(3)−ln(ln(ln(x)))
2 ln(ln(x))

)

where

B = −
∞∫

0

ln(1− e−y) ln(y) dy = ζ ′(2)− π2

6
γ.

The Bateman-Horn conjecture arises unexpectedly in [165]. The ternary Goldbach
conjecture (G′), finally, is proved [166].

2.2. Meissel-Mertens Constants. See [167] for more occurrences of the
constants M and M ′, and [168] for a historical treatment. Higher-order asymp-
totic series for En(ω), Varn(ω), En(Ω) and Varn(Ω) are given in [169]. The values
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m1,3 = −0.3568904795... and m2,3 = 0.2850543590... are calculated in [170]; of course,
m1,3 +m2,3 + 1/3 =M . While

∑

p1/p is divergent, the following prime series is con-
vergent [171]:

∑

p

(
1

p2
+

1

p3
+

1

p4
+ · · ·

)

=
∑

p

1

p(p− 1)
= 0.7731566690....

The same is true if we replace primes by semiprimes [172]:

∑

p,q

∞∑

k=2

1

(pq)k
=
∑

p,q

1

pq(pq − 1)
= 0.1710518929....

Also, the reciprocal sum of semiprimes satisfies [173, 174]

lim
n→∞

(
∑

pq≤n

1

pq
− ln(ln(n))2 − 2M ln(ln(n))

)

=
π2

6
+M2

and the corresponding analog of Mertens’ product formula is

lim
n→∞

(ln(n))ln(ln(n))+2M
∏

pq≤n

(

1− 1

pq

)

= e−π
2/6−M2−Λ

where [172]

Λ =
∑

p,q

∞∑

k=2

1

k (pq)k
= −

∑

p,q

(

ln

(

1− 1

pq

)

+
1

pq

)

= 0.0798480403....

We can think of π2/6+M2 +Λ as another two-dimensional generalization of Euler’s
constant γ.

The second moment of Im(ln(ζ(1/2+ i t))) over an interval [0, T ] involves asymp-
totically a constant [175, 176]

∞∑

m=2

∑

p

(
1

m
− 1

m2

)
1

pm
= −

∑

p

(

ln

(

1− 1

p

)

+ Li2

(
1

p

))

= 0.1762478124...

as T → ∞. This assumes, however, that a certain random matrix model is applicable
(asymptotics for the pair correlation of zeros).

If Qk denotes the set of positive integers n for which Ω(n)−ω(n) = k, then Q1 = S̃
and the asymptotic density δk satisfies [177, 178, 179]

lim
k→∞

2kδk =
1

4Ctwin
= 0.3786950320...;
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the expression 4Ctwin also appears on pages 86 and 133–134, as well as in the preceding
entry.

Given a positive integer n, let K(n) =
∏

p|np denote the square-free kernel of n

and ρn = n/K(n). We say that n is flat if the ratio ρn = 1. Define Rk to be the
set of n such that ρn itself is flat and ω(ρn) = k. We have R1 = S̃ and asymptotic
densities for R2, R3 equal to [180]

6

π2

∑

p<q

1

p(p+ 1)q(q + 1)
= 0.0221245744...,

6

π2

∑

p<q<r

1

p(p+ 1)q(q + 1)r(r + 1)
= 0.0010728279....

Averaging ρn over all n ≥ 1 remains unsolved [181].
Define fk(n) = #{p : pk|n} and Fk(n) = #{pk+m : pk+m|n and m ≥ 0}; hence

f1(n) = ω(n) and F1(n) = Ω(n). It is known that, for k ≥ 2,

∑

n≤x
fk(n) ∼ x

∑

p

1

pk
,

∑

n≤x
Fk(n) ∼ x

∑

p

1

pk−1(p− 1)

as x → ∞. Also define gk(n) = #{p : p|n and pk ∤ n} and Gk(n) = #{pm : pm|n,
pk ∤ n and m ≥ 1}. Then, for k ≥ 2,

∑

n≤x
gk(n) ∼ x

(

ln(ln(x)) +M −
∑

p

1

pk

)

,

∑

n≤x
Gk(n) ∼ x

(

ln(ln(x)) +M +
∑

p

pk−1 − kp + k − 1

pk(p− 1)

)

as x → ∞. Other variations on k-full and k-free prime factors appear in [182]; the
growth rate of

∑

n≤x 1/ω(n) and
∑

n≤x 1/Ω(n) is covered in [183] as well.
2.3. Landau-Ramanujan Constant. It is not hard to show that C2 =

0.6093010224... [184]. The second-order constant corresponding to non-hypotenuse
numbers should be

C̃ = C +
1

2
ln

(
π2eγ

2L2

)

= 0.7047534517...

(numerically unchanged, but π is replaced by π2). Moree [185] expressed such con-
stants somewhat differently:

1− 2C = −0.1638973186..., 1− 2C̃ = −0.4095069034...
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calling these Euler-Kronecker constants. His terminology is unfortunately inconsis-
tent with ours [186, 187].

Define B3,j(x) to be the number of positive integers ≤ x, all of whose prime factors
are ≡ jmod3, where j = 1 or 2. We have [188, 189, 190]

lim
x→∞

√

ln(x)

x
B3,1(x) =

√
3

9K3

= 0.3012165544...,

lim
x→∞

√

ln(x)

x
B3,2(x) =

2
√
3K3

π
= 0.7044984335....

An analog of Mertens’ theorem for primes≡ jmod 3 unsurprisingly involvesK3 as well
[170]. Here is a more complicated example (which arises in the theory of partitions).
Let

W (x) = #
{
n ≤ x : n = 2hpe11 p

e2
2 · · · pehh , h ≥ 1, ek ≥ 1, pk ≡ 3, 5, 6mod7 for all k

}
,

then the Selberg-Delange method gives [191, 192]

lim
x→∞

ln(x)3/4

x
W (x) =

1

Γ(1/4)

(
6√
7π

)1/4 ∏

p≡3,5,6
mod 7

(

1 +
1

2(p− 1)

)(

1− 1

p

)1/4(

1 +
1

p

)−1/4

=
1

Γ(1/4)

(
6√
7π

)1/4

(1.0751753443...) = 0.2733451113...

=
7

24
(0.9371832387...).

Other examples appear in [192] as well.
Define Z3,j(x) to be the number of positive integers n ≤ x for which ϕ(n) ≡

jmod 3, where ϕ is Euler’s totient and j = 1 or 2. We have [193, 194]

lim
x→∞

√

ln(x)

x
Z3,j(x) =

√

2
√
3

3π

2ξ + (−1)j+1η

ξ1/2
=

{
0.6109136202... if j = 1,
0.3284176245... if j = 2

where

ξ =
∏

p≡2mod 3

(

1 +
1

p2 − 1

)

= 1.4140643909...,

η =
∏

p≡2mod 3

(

1− 1

(p+ 1)2

)

= 0.8505360177....

Analogous results for Z4,j(x) with j = 1 or 3 are open, as far as is known.
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Estermann [195, 196, 197] first examined the asymptotics

B̂(x) =
∑

1≤m≤x
µ
(
m2 + 1

)2 ∼ K̂ x = (0.8948412245...)x

as x→ ∞, where µ is the Möbius mu function. One possible generalization is [198]

∑

1≤m,n≤x
µ
(
m2 + n2 + 1

)2 ∼ Ĵ x2

and a numerical value for Ĵ evidently remains open. See [199] for another occurrence
of K̂.

Fix h ≥ 2. Define Nh(x) to be the number of positive integers not exceeding
x that can be expressed as a sum of two nonnegative integer hth powers. Clearly
N2(x) = B(x). Hooley [200, 201] proved that

lim
x→∞

x−2/hNh(x) =
1

4 h

Γ(1/h)2

Γ(2/h)

when h is an odd prime, and Greaves [202] proved likewise when h is the smallest
composite 4. It is possible that such asymptotics are true for larger composites, for
example, h = 6.

While N2(x) also counts n ≤ x that can be expressed as a sum of two rational
squares, it is not true that N3(x) does likewise for sums of two rational cubes. See
[203] for analysis of a related family of elliptic curves (cubic twists of the Fermat
equation u3 + v3 = 1) and [204] for an unexpected appearance of the constant K.

The issue regarding counts of x of the form a3 + 2 b3 is addressed in [205]. We
mention that products like [206]

∏

p≡3mod 4

(

1− 2p

(p2 + 1)(p− 1)

)

= 0.6436506796...,

∏

p≡2mod 3

(

1− 2p

(p2 + 1)(p− 1)

)

= 0.1739771224...

are evaluated to high precision in [207, 208] via special values of Dirichlet L-series.
2.4. Artin’s Constant. Other representations include [209]

lim
N→∞

ln(N)

N

∑

p≤N

ϕ(p− 1)

p− 1
= CArtin = lim

N→∞

∑

p≤N
ϕ(p− 1)

∑

p≤N
(p− 1)

.
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Stephens’ constant 0.5759... and Matthews’ constant 0.1473... actually first appeared
in [210]. Let ι(n) = 1 if n is square-free and ι(n) = 0 otherwise. Then [211, 212, 213,
214, 215, 216, 217]

lim
N→∞

1

N

N∑

n=1

ι(n)ι(n + 1) =
∏

p

(

1− 2

p2

)

= 0.3226340989... = −1 + 2(0.6613170494...)

=
6

π2

∏

p

(

1− 1

p2 − 1

)

=
6

π2
(0.5307118205...),

that is, the Feller-Tornier constant arises with regard to consecutive square-free num-
bers and to other problems. Also, consider the cardinality N(X) of nontrivial primi-
tive integer vectors (x0, x1, x2, x3) that fall on Cayley’s cubic surface

x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 = 0

and satisfy |xj | ≤ X for 0 ≤ j ≤ 3. It is known that N(X) ∼ cX(ln(X))6 for some
constant c > 0 [218, 219]; finding c remains an open problem.

2.5. Hafner-Sarnak-McCurley Constant. In the “Added In Press” section
(pages 601–602), the asymptotics of coprimality and of square-freeness are discussed
for the Gaussian integers and for the Eisenstein-Jacobi integers. Generalizations
appear in [220, 221]. Cai & Bach [222] and Tóth [223] independently proved that the
probability that k positive integers are pairwise coprime is [224, 225]

∏

p

(

1− 1

p

)k−1(

1 +
k − 1

p

)

= lim
N→∞

(k − 1)!

N ln(N)k−1

N∑

n=1

kω(n).

Freiberg [226, 227, 228], building on Moree’s work [229], determined the probability
that three positive integers are pairwise not coprime to be 1 − 18/π2 + 3P − Q =
0.1742197830.... The constant Q also appears in [230, 231, 232]. More about sums
involving 2ω(n) and 2−ω(n) appears in [233]. The asymptotics of

∑N
n=13

Ω(n), due to
Tenenbaum, are mentioned in [169]. Also, we have [234]

∑

n≤N
κ(n)ℓ ∼ 1

ℓ+ 1

ζ(2ℓ+ 2)

ζ(2)
N ℓ+1,

∑

n≤N
K(n)ℓ ∼ 1

ℓ+ 1

ζ(ℓ+ 1)

ζ(2)

∏

p

(

1− 1

pℓ(p+ 1)

)

·N ℓ+1

as N → ∞, for any positive integer ℓ. In the latter formula, the product for ℓ = 1
and ℓ = 2 appears in [233] with regard to the number/sum of unitary square-free
divisors; the product for ℓ = 2 further is connected with class number theory [121].
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2.6. Niven’s Constant. The quantity C appears unexpectedly in [235]. If we
instead examine the mean of the exponents:

L(m) =







1 if m = 1,

1

k

k∑

j=1

aj if m > 1,

then [236, 237]

∑

m≤n
L(m) = n + C1

n

ln(ln(n))
+ C2

n

ln(ln(n))2
+O

(
n

ln(ln(n))3

)

as n→ ∞, where [171]

C1 =
∑

p

1

p(p− 1)
=M ′ −M = 0.7731566690...,

C2 =
∑

p

1

p2(p− 1)
− C1M = C1(1−M)−N = 0.1187309349...,

using notation defined on pages 94–95. The constant C1 also appears in our ear-
lier entry [2.2]. A general formula for coefficients cij was found by Sinha [238] and
gives two additional terms (involving n1/6 and n1/7) in the asymptotic estimate of
∑n

m=1h(m).
Let Ñ2(x) denote the number of positive integer primitive triples (i, j, k) with

i+ j = k ≤ x and i, j, k square-full. It is conjectured that [239]

Ñ2(x) = c̃ x1/2 (1 + o(1))

as x → ∞, where c̃ = 2.677539267... has a complicated expression. Supporting evi-
dence includes the inequality Ñ2(x) ≥ c̃ x1/2 (1 + o(1)) and Ñ2(x) = O

(
x3/5 ln(x)12

)
.

2.7. Euler Totient Constants. Let us clarify the third sentence: ϕ(n) is the
number of generators in Zn, the additive group of integers modulo n. It is also the
number of elements in Z∗

n, the multiplicative group of invertible integers modulo n.
The mean of ϕ(n)/n is well known; a conjectured formula for the variance awaits

proof [240].
Define f(n) = nϕ(n)−1 − eγ ln(ln(n)). Nicolas [241] proved that f(n) > 0 for

infinitely many integers n by the following reasoning. Let Pk denote the product of
the first k prime numbers. If the Riemann hypothesis is true, then f(Pk) > 0 for
all k. If the Riemann hypothesis is false, then f(Pk) > 0 for infinitely many k and
f(Pl) ≤ 0 for infinitely many l.
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Let U(n) denote the set of values ≤ n taken by ϕ and v(n) denote its cardinality;
for example [242], U(15) = {1, 2, 4, 6, 8, 10, 12} and v(15) = 7. Let ln2(x) = ln(ln(x))
and lnm(x) = ln(lnm−1(x)) for convenience. Ford [243] proved that

v(n) = n
ln(n)

exp
{
C[ln3(n)− ln4(n)]

2 +D ln3(n)− [D + 1
2
− 2C] ln4(n) +O(1)

}

as n→ ∞, where
C = − 1

2 ln(ρ)
= 0.8178146464...,

D = 2C (1 + ln(F ′(ρ))− ln(2C))− 3
2
= 2.1769687435...

F (x) =

∞∑

k=1

((k + 1) ln(k + 1)− k ln(k)− 1)xk

and ρ = 0.5425985860... is the unique solution on [0, 1) of the equation F (ρ) = 1.
Also,

lim
n→∞

1

v(n) ln2(n)

∑

m∈U(n)

ω(m) =
1

1− ρ
= 2.1862634648...

which contrasts with a related result of Erdős & Pomerance [244]:

lim
n→∞

1

n ln2(n)2

n∑

m=1

ω(ϕ(n)) =
1

2
.

These two latter formulas hold as well if ω is replaced by Ω. See [245] for more on
Euler’s totient.

Define the reduced totient or Carmichael function ψ(n) to be the size of the largest
cyclic subgroup of Z∗

n. We have [246]

1

N

∑

n≤N
ψ(n) =

N

ln(N)
exp

[
P ln2(N)

ln3(N)
(1 + o(1))

]

as N → ∞, where

P = e−γ
∏

p

(

1− 1

(p− 1)2(p+ 1)

)

= 0.3453720641....

(note the similarity to a constant in [247].) There is a set S of positive integers of
asymptotic density 1 such that, for n ∈ S,

nψ(n)−1 = (ln(n))ln3(n)+Q+o(1)
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and

Q = −1 +
∑

p

ln(p)

(p− 1)2
= 0.2269688056...;

it is not known whether S = Z+ is possible.
LetXn denote the gcd of two integers chosen independently from Uniform {1, 2, . . . , n}

and Yn denote the lcm. Diaconis & Erdős [248] proved that

E(Xn) =
6

π2
ln(n) + E +O

(
ln(n)√
n

)

, E(Yn) =
3ζ(3)

2π2
n2 +O (n ln(n))

as n→ ∞, where

E =

∞∑

k=1

1
k2(k+1)2

{
k∑

j=1

ϕ(j) + 2

(

− 3
π2k

2 +
k∑

j=1

ϕ(j)

)

k − 6
π2 (2k + 1)k

}

+ 12
π2

(
γ + 1

2

)
− 1

2

but a vastly simpler expression

E =
6

π2

(

2γ − 1

2
− π2

12
− 6

π2
ζ ′(2)

)

was found earlier by Cohen [249, 250]; a reconcilation is needed.
2.8. Pell-Stevenhagen Constants. The constant P is transcendental via a

general theorem on values of modular forms due to Nesterenko [251, 252]. Here is a
constant similar to P : The number of positive integers n ≤ N , for which 2n − 1 is
not divisible by 2p − 1 for any prime p, is ∼ cN , where

c =
∏

p

(

1− 1

2p − 1

)

= 0.5483008312....

A ring-theoretic analog of this statement, plus generalizations, appear in [253].
2.9. Alladi-Grinstead Constant. In the final paragraph, it should be noted

that the first product 1.7587436279... is eC/2. See [119] for another occurrence of C.
It is a multiplicative analog of Euler’s constant γ in the sense that [254]

γ =

∞∫

1

(
1

⌊x⌋ − 1

x

)

dx, C =

∞∫

1

(
1

⌊x⌋
1

x

)

dx.

2.10. Sierpinski’s Constant. Sierpinski’s formulas for Ŝ and S̃ contained a few
errors: they should be [255, 256, 257, 258, 259, 260]

Ŝ = γ + S − 12

π2
ζ ′(2) +

ln(2)

3
− 1 = 1.7710119609... =

π

4
(2.2549224628...),
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S̃ = 2S − 12

π2
ζ ′(2) +

ln(2)

3
− 1 = 2.0166215457... =

1

4
(8.0664861829...).

In the summation formula at the top of page 125, Dn should be Dk. Also, the divisor
analog of Sierpinski’s second series is [261]

n∑

k=1

d(k2) =

(
3

π2
ln(n)2 +

(
18γ − 6

π2
− 72

π4
ζ ′(2)

)

ln(n) + c

)

n+O
(
n1/2+ε

)

as n→ ∞, where the expression for c is complicated. It is easily shown that d(n2) is
the number of ordered pairs of positive integers (i, j) satisfying lcm(i, j) = n.

The best known result for r(n) is currently [262]

n∑

k=1

r(k) = π n +O
(

n
131
416 ln(n)

18627
8320

)

.

Define R(n) to be the number of representations of n as a sum of three squares,
counting order and sign. Then

n∑

k=1

R(k) =
4π

3
n3/2 +O

(
n3/4+ε

)

for all ε > 0 and [263]

n∑

k=1

R(k)2 =
8π4

21ζ(3)
n2 +O

(
n14/9

)
.

The former is the same as the number of integer ordered triples falling within the ball
of radius

√
n centered at the origin; an extension of the latter to sums of m squares,

when m > 3, is also known [263].
A claimed proof that

∑

n≤x
d(n) = x ln(x) + (2γ − 1)x+O

(
x1/4+ε

)

as x → ∞ awaits confirmation [264]. Let δ(n) denote the number of square divisors
of n, that is, all positive integers d for which d2|n. It is known that [265]

∑

n≤x
δ(n) ∼ ζ(2)x+ ζ(1/2)x1/2

as x→ ∞. Analogous to various error-term formulas in [266], we have

x∫

1

(
∑

m≤y
δ(m)− ζ(2)y − ζ(1/2)y1/2

)2

dy ∼ Cδ x
4/3
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where

Cδ =
21/3

8 π2

∞∑

n=1




∑

d2|n

d

n5/6





2

.

This supports a conjecture that the error in approximating
∑

n≤xδ(n) is O(x1/6+ε).
See also [267].

2.11. Abundant Numbers Density Constant. An odd perfect number can-
not be less than 101500 [268]. The definition of A(x) should be replaced by

A(x) = lim
n→∞

|{k ≤ n : σ(k) ≥ x k}|
n

.

Kobayashi [269] proved that 0.24761 < A(2) < 0.24765; see also [270, 271, 272, 273].
If K(x) is the number of all positive integers m that satisfy σ(m) ≤ x, then [274]

lim
x→∞

K(x)

x
=
∏

p

(

1− 1

p

)


1 +
∞∑

j=1

(

1 +

j
∑

i=1

pi

)−1




=
∏

p

(

1− 1

p

)(

1 + (p− 1)
∞∑

j=1

1

pj+1 − 1

)

.

2.12. Linnik’s Constant. In the definition of L, “lim” should be replaced by
“limsup”. Clearly L exists; the fact that L <∞ was Linnik’s important contribution.
Xylouris [275] recently proved that L ≤ 5.18; an unpublished proof that L ≤ 5 needs
to be verified [276].

2.13. Mills’ Constant. Caldwell & Cheng [277] computed C to high precision;
Baillie [278] likewise examined c. The question, “Does there exist C̃ > 1 for which
⌊

C̃n
⌋

is always prime?”, remains open [279]. Replacing floor by ceiling, Tóth [280]

found the analog of C to be 1.2405547052.... Let q1 < q2 < . . . < qk denote the
consecutive prime factors of an integer n > 1. Define

F (n) =
k−1∑

j=1

(

1− qj
qj+1

)

= ω(n)− 1−
k−1∑

j=1

qj
qj+1

if k > 1 and F (n) = 0 if k = 1. Erdős & Nicolas [281] demonstrated that there exists
a constant C ′ = 1.70654185... such that, as n → ∞, F (n) ≤

√

ln(n) − C ′ + o(1),
with equality holding for infinitely many n. Further, C ′ = C ′′ + ln(2) + 1/2, where
[281, 282]

C ′′ =

∞∑

i=1

{

ln

(
pi+1

pi

)

−
(

1− pi
pi+1

)}

= 0.51339467...,

∞∑

i=1

(
pi+1

pi
− 1

)2

= 1.65310351...,
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and p1 = 2, p2 = 3, p3 = 5, ... is the sequence of all primes.
It now seems that liminfn→∞(pn+1− pn)/ ln(pn) = 0 is a theorem [283, 284], clari-

fying the uncertainty raised in “Added In Press” (pages 601–602). More about small
prime gaps will surely appear soon; research concerning large prime gaps continues
as well [285, 286].

2.14. Brun’s Constant. Wolf [287] computed that B̃4 = 1.1970449... and a
high-precision calculation of this value would be appreciated.

2.15. Glaisher-Kinkelin Constant. A certain infinite product [288]

∞∏

n=1

(
n!√

2πn(n/e)n

)(−1)n−1

=
A3

27/12π1/4

features the ratio of n! to its Stirling approximation. In the second display for D(x),
exp(−x/2) should be replaced by exp(x/2). Another proof of the formula for D(1) is
given in [82]; another special case is [52, 53, 289]

D(1/2) =
21/6

√
πA3

Γ(1/4)
eG/π.

The two quantities

G2

(
1
2

)
= 0.6032442812..., G2

(
3
2

)
=

√
πG2

(
1
2

)
= 1.0692226492...

play a role in a discussion of the limiting behavior of Toeplitz determinants and the
Fisher-Hartwig conjecture [290, 291]. Krasovsky [292] and Ehrhardt [293] proved
Dyson’s conjecture regarding the asymptotic expansion of E(s) as s → ∞; a third
proof is given in [294]. Also, the quantities

G2

(
1
2

)−1
= 1.6577032408... = 2−1/24e−3/16π1/4(3.1953114860...)3/8

G3

(
3
2

)−1
= G2

(
1
2

)
G3

(
1
2

)−1
= 0.9560900097... = π−1/2(3.3388512141...)7/16

appear in [295]. In the last paragraph on page 141, the polynomial q(x) should be
assumed to have degree n. See [296, 297] for more on the GUE hypothesis.

Here is a sample result involving not random real polynomials, but a random
complex exponential. Let a, b denote independent complex Gaussian coefficients.
The expected number of zeroes of a+ b exp(z) satisfying |z| < 1 is [298]

1

π

∫∫

x2+y2<1

exp(2x)

(1 + exp(2x))2
dx dy = 0.2029189212...

and higher-degree results are also known.
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2.16. Stolarsky-Harboth Constant. The “typical growth” of 2b(n) is ≈ n1/2

while the “average growth” of 2b(n) is ≈ nln(3/2)/ ln(2); more examples are found in
[299]. The “typical dispersion” of 2b(n) is ≈ nln(2)/4 while the “average dispersion” of
2b(n) is ≈ nln(5/2)/ ln(2); more examples are found in [300]. A generating function

∞∑

n=1

b(n)zn =
1

1− z

∞∑

ℓ=0

z2
ℓ

z2ℓ + 1

is interesting since it involves a Lambert series [301, 302]. Coquet’s 1983 result is
discussed in [303] and a misprint is corrected. Ulam’s 1-additive sequence (1, 2)
surprisingly may possess some rigid underlying structure [304]. The sequence {0} ∪
{c(n)}∞n=0 is called Stern’s diatomic sequence [305] and our final question is answered
in [306]:

limsup
n→∞

c(n)

nln(ϕ)/ ln(2)
=

ϕ√
5

(
3

2

)ln(ϕ)/ ln(2)

=
ϕln(3)/ ln(2)

√
5

= 0.9588541908....

Given a positive integer n, define s21 to be the largest square not exceeding n. Then
define s22 to be the largest square not exceeding n−s21, and so forth. Hence n =

∑r
j=1s

2
j

for some r. We say that n is a greedy sum of distinct squares if s1 > s2 > . . . > sr.
Let A(N) be the number of such integers n < N , plus one. Montgomery & Vorhauer
[307] proved that A(N)/N does not tend to a constant, but instead that there is a
continuous function f(x) of period 1 for which

lim
k→∞

A(4 exp(2k+x))

4 exp(2k+x)
= f(x), min

0≤x≤1
f(x) = 0.50307... < max

0≤x≤1
f(x) = 0.50964...

where k takes on only integer values. This is reminiscent of the behavior discussed
for digital sums.

Two simple examples, due to Hardy [308, 309] and Elkies [310], involve the series

ϕ(x) =

∞∑

k=0

x2
k

, ψ(x) =

∞∑

k=0

(−1)kx2
k

.

As x → 1−, the asymptotics of ϕ(x) and ψ(x) are complicated by oscillating errors
with amplitude

sup
x→1−

∣
∣
∣
∣
ϕ(x) +

ln(− ln(x)) + γ

ln(2)
− 3

2
+ x

∣
∣
∣
∣
= (1.57...)× 10−6,

sup
x→1−

∣
∣
∣
∣
ψ(x)− 1

6
− 1

3
x

∣
∣
∣
∣
= (2.75...)× 10−3.
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The function ϕ(x) also appears in what is known as Catalan’s integral (section 1.5.2)
for Euler’s constant γ. See [311, 312] as well.

2.17. Gauss-Kuzmin-Wirsing Constant. If X is a random variable following
the Gauss-Kuzmin distribution, then its mean value is

E(X) =
1

ln(2)

1∫

0

x

1 + x
dx =

1

ln(2)
− 1 = 0.4426950408...

=
1

ln(2)

1∫

0

{1/x}
1 + x

dx = E

{
1

X

}

.

Further,

E (log10 (X)) =
1

ln(2)

1∫

0

log10(x)

1 + x
dx = − π2

12 ln(2) ln(10)
= −0.5153204170...

=
1

ln(2)

1∫

0

log10{1/x}
1 + x

dx = E

(

log10

{
1

X

})

,

a constant that appears in [118] and our earlier entry [1.8]. The ratio conjecture
involving eigenvalues of G2 is now known to be true [313]; moreover, the first two
terms in the asymptotic series for eigenvalues (involving ϕ and ζ(3/2)) are available.
An attempt to express λ′′1(2)− λ′1(2)

2 in elementary terms appears in [119].
A generalized Gauss transformation appears in [314, 315]. The preprint math.NT/9908043

was withdrawn by the author without comment; additional references on the Haus-
dorff dimension 0.5312805062... of real numbers with partial denominators in {1, 2}
include [316, 317, 318, 319, 320, 321].

2.18. Porter-Hensley Constants. The formula for H is wrong (by a factor of
π6) and should be replaced by

H = −λ
′′
1(2)− λ′1(2)

2

λ′1(2)
3

= 0.5160624088... = (0.7183748387...)2.

Lhote [318, 319] developed rigorous techniques for computing H and other constants
to high precision. Ustinov [322, 323] expressed Hensley’s constant using some singular
series:

H =
288 ln(2)2

π4

(

γ − ζ ′(2)

ζ(2)
− ln(2)

2
− 1

)

+
24

π2

(

D +
3 ln(2)

2

)

http://arxiv.org/abs/math/9908043
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where

D = ln

(
4

3

)

− 2 ln(2)2+

∞∑

n=2





n∑

k,m=1

δn(km+ 1)

1∫

0

dξ

(mξ + n)
[(

1
n
(km+ 1) +m

)
ξ + (k + n)

] +

n∑

k,m=1

δn(km− 1)

1∫

0

dξ

(mξ + n)
[(

1
n
(km− 1) +m

)
ξ + (k + n)

] − 2 ln(2)2
ϕ(n)

n2





and δn(j) = 1 if j ≡ 0modn, δn(j) = 0 otherwise.
With regard to the binary GCD algorithm, Maze [324] and Morris [325] confirmed

Brent’s functional equation for a certain limiting distribution [326]

g(x) =
∑

k≥1

2−k
(

g

(
1

1 + 2k/x

)

− g

(
1

1 + 2kx

))

, 0 ≤ x ≤ 1

as well as important regularity properties including the formula

2 +
1

ln(2)

1∫

0

g(x)

1− x
dx =

2

κ ln(2)
= 2.8329765709... =

π2(0.3979226811...)

2 ln(2)
.

2.19. Vallée’s Constant. The kth circular continuant polynomial is the sum
of monomials obtained from x1x2 · · ·xk by crossing out in all possible ways pairs of
adjacent variables xjxj+1, where xkx1 is now regarded as adjacent. For example [327],

x1x2 + 2, x1x2x3 + x1 + x3 + x2, x1x2x3x4 + x1x2 + x4x1 + x3x4 + x2x3 + 2

are the cases for k = 2, 3, 4.
2.20. Erdős’ Reciprocal Sum Constants. Recent work [328, 329] gives

2.0654 < S(A) < 3.0752; we have not yet checked claims in [330, 331]. Improved
bounds on the reciprocal sums of Mian-Chowla and of Zhang were calculated in [332];
the best lower estimate of S(B2), however, still appears to be 2.16086 [333]. A se-
quence of positive integers b1 < b2 < . . . < bm is a Bh-sequence if all h-fold sums
bi1 + bi2 + · · ·+ bih , i1 ≤ i2 ≤ . . . ≤ ih, are distinct. Given n, choose a Bh-sequence
{bi} so that bm ≤ n and m is maximal; let Fh(n) be this value of m. It is known that
Ch = limsupn→∞ n−1/hFh(n) is finite; we further have [334, 335, 336, 337, 338, 339]

C2 = 1, 1 ≤ C3 ≤ (7/2)1/3, 1 ≤ C4 ≤ 71/4.
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More generally, a sequence of positive integers b1 < b2 < . . . < bm is a Bh,g-sequence
if, for every positive integer k, the equation x1+x2+ · · ·+xh = k, x1 ≤ x2 ≤ . . . ≤ xh,
has at most g solutions with xj = bij for all j. Defining Fh,g(n) and Ch,g analogously,
we have [339, 340, 341, 342, 343, 344, 345, 346]

4√
7
≤ C2,2 ≤

√
21

2
, 1.1509 ≤ lim

g→∞

C2,g

g1/2
=

√

2

S
≤ 1.2525

where the “self-convolution constant” S appears in [347] and satisfies 1.2748 ≤ S ≤
1.5098.

Here is a similar problem: for k ≥ 1, let ν2(k) be the largest positive integer n for
which there exists a set S containing exactly k nonnegative integers with

{0, 1, 2, . . . , n− 1} ⊆ {s+ t : s ∈ S, t ∈ S}.

It is known that [348, 349, 350, 351, 352, 353, 354]

0.28571 ≤ liminf
k→∞

ν2(k)

k2
≤ limsup

k→∞

ν2(k)

k2
≤ 0.46972

and likewise for νj(k) for j ≥ 3. See also [355].
2.21. Stieltjes Constants. The number of recent articles is staggering (see a

list of references in [356, 357]), more than we can summarize here. If dk(n) denotes
the number of sequences x1, x2, ..., xk of positive integers such that n = x1x2 · · ·xk,
then [358, 359, 360]

N∑

n=1

d2(n) ∼ N ln(N) + (2γ0 − 1)N (d2 is the divisor function),

N∑

n=1

d3(n) ∼
1

2
N ln(N)2 + (3γ0 − 1)N ln(N) + (−3γ1 + 3γ20 − 3γ0 + 1)N,

N∑

n=1

d4(n) ∼
1

6
N ln(N)3 +

4γ0 − 1

2
N ln(N)2 + (−4γ1 + 6γ20 − 4γ0 + 1)N ln(N)

+ (2γ2 − 12γ1γ0 + 4γ1 + 4γ30 − 6γ20 + 4γ0 − 1)N

as N → ∞. More generally,
∑N

n=1dk(n) can be asymptotically expressed as N times
a polynomial of degree k − 1 in ln(N), which in turn can be described as the residue
at z = 1 of z−1ζ(z)kN z. See [169] for an application of {γj}∞j=0 to asymptotic series
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for En(ω) and En(Ω), [361] for a generalization, and [362, 363, 364, 365, 366, 367, 368]
for connections to the Riemann hypothesis.

2.22. Liouville-Roth Constants. Zudilin [369] revisited the Rhin-Viola esti-
mate for the irrationality exponent for ζ(3).

2.23. Diophantine Approximation Constants. Which planar, symmetric,
bounded convex set K has the worst packing density? If K is a disk, the packing
density is π/

√
12 = 0.9068996821..., which surprisingly is better than if K is the

smoothed octagon:

8− 4
√
2− ln(2)

2
√
2− 1

=
1

4
(3.6096567319...) = 0.9024141829....

Do worse examples exist? A definitive answer is still at large [370, 371, 372, 373].
2.24. Self-Numbers Density Constant. Choose a to be any r-digit integer

expressed in base 10 with not all digits equal. Let a′ be the integer formed by
arranging the digits of a in descending order, and a′′ be likewise with the digits in
ascending order. Define T (a) = a′ − a′′. When r = 3, iterates of T converge to the
Kaprekar fixed point 495; when r = 4, iterates of T converge to the Kaprekar fixed
point 6174. For all other r ≥ 2, the situation is more complicated [374, 375, 376].
When r = 2, iterates of T converge to the cycle (09, 81, 63, 27, 45); when r = 5,
iterates of T converge to one of the following three cycles:

(74943, 62964, 71973, 83952) (63954, 61974, 82962, 75933) (53955, 59994).

We mention this phenomenon merely because it involves digit subtraction, while self-
numbers involved digit addition.

2.25. Cameron’s Sum-Free Set Constants. Erdős [377] and Alon & Kleitman
[378] showed that any finite set B of positive integers must contain a sum-free subset
A such that |A| > 1

3
|B|. See also [379, 380, 381]. The largest constant c such

that |A| > c|B| must satisfy 1/3 ≤ c < 12/29, but its exact value is unknown. Using
harmonic analysis, Bourgain [382] improved the original inequality to |A| > 1

3
(|B|+2).

Green [383, 384] demonstrated that sn = O(2n/2), but the values co = 6.8... and
ce = 6.0... await more precise computation.

Further evidence for the existence of complete aperiodic sum-free sets is given in
[385, 386].

2.26. Triple-Free Set Constants. The names for λ ≈ 0.800 and µ ≈ 0.613
should be prepended by “weakly” and “strongly”, respectively. See [387] for detailed
supporting material. In defining λ, the largest set S such that ∀x {x, 2x, 3x} 6⊆ S
plays a role. The complement of S in {1, 2, ..., n} is thus the smallest set T such
that ∀x T ∩ {x, 2x, 3x} 6= ∅. Clearly T has size n − p(n) and 1 − λ ≈ 0.199 is the
asymptotic “hitting” density.
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2.27. Erdős-Lebensold Constant. Certain variations of Erdős’ conjecture for
primitive sequences are false [388, 389] – this has no bearing on the original, which
remains open [390] – the Erdős-Zhang conjecture for quasi-primitive sequences also
requires attention. Bounds onM(n, k)/n for large n and k ≥ 3 are given in [391, 392].
A more precise estimate

∑
1/(qi ln(qi)) = 2.0066664528... is now known [393], making

use of logarithmic integrals in [171].
2.28. Erdős’ Sum-Distinct Set Constant. Aliev [394] proved that

αn ≥
√

3

2πn
;

Elkies & Gleason’s best lower bound (unpublished) is reported in [394] to be
√

2/(πn)

rather than
√

1/n. Define integer point sets S and T in Rn by

S = {(s1, . . . , sn} : sj = 0 or ± 1 for each j} ,

T = {(t1, . . . , tn} : tj = 0 or ± 1 or ± 2 for each j}
and let H be a hyperplane in Rn such that H ∩ S consists only of the origin 0.
Hence the normal vector (a1, . . . , an) to H , if each aj ∈ Z+, has the property that
{a1, . . . , an} is sum-distinct. It is conjectured that [395]

max
H

|H ∩ T | ∼ c · βn

for some c > 0 as n → ∞, where β = 2.5386157635... is the largest real zero of
x4 − 2x3 − 2x2 + 2x− 1. See also [396, 397].

Fix a positive integer n. A sequence of nonnegative integers a1 < a2 < . . . < ak
is a difference basis with respect to n if every integer 0 < ν ≤ n has a representation
aj − ai; let k(n) be the minimum such k. The set is a restricted difference basis if,
further, a1 = 0 and ak = n; let ℓ(n) be the minimum such k under these tighter
constraints. We have [398, 399, 400, 401, 402]

2.4344 ≤ lim
n→∞

k(n)2

n
≤ 2.6571, 2.4344 ≤ lim

n→∞

ℓ(n)2

n
≤ 3;

the latter may alternatively be recorded as [403, 404]

(c+ o(1))
√
n ≤ ℓ(n) ≤

(√
3 + o(1)

)√
n

where c = 1.5602779420... =
√

2(1− sin(θ)/θ and θ is the smallest positive zero of
tan(θ)− θ. Golay [402] wrote that the limiting ratio “as n → ∞ will, undoubtedly,
never be expressed in closed form”.
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2.29. Fast Matrix Multiplication Constants. Efforts continue [405, 406] to
reduce the upper bound on ω to 2.

2.30. Pisot-Vijayaraghavan-Salem Constants. Verger-Gaugry [407] has
proved that the set T is bounded from below by 1.08544. Whether τ0 is the smallest
Salem number remains open.

The definition of Mahler’s measure M(α) is unclear: It should be the product of
max{1, |αj|} over all 1 ≤ j ≤ n. Breusch [408] gave a lower bound > 1 for M(α)
of non-reciprocal algebraic integers α, anticipating Smyth’s stronger result by twenty
years.

The sequence
{
n1/2

}
is uniformly distributed in [0, 1]; a fascinating side topic

involves the gaps between adjacent points. A random such gap is not exponentially
distributed but possesses a more complicated density function. Elkies & McMullen
[409] determined this density explicitly, which is piecewise analytic with phase tran-
sistions at 1/2 and 2, and which has a heavy tail (implying that large gaps are more
likely than if the points were both uniform and independent).

Zudilin [410] improved Habsieger’s lower bound on (3/2)nmod 1, progressing from
0.577n to 0.5803n, and similarly obtained estimates for (4/3)nmod 1 when n is suitably
large. Concerning the latter, Pupyrev [411, 412] obtained (4/9)n for every n ≥ 2, an
important achievement. Concerning the former, our desired bound (3/4)n for every
n ≥ 8 seems out-of-reach.

Compare the sequence {(3/2)n}, for which little is known, with the recursion
x0 = 0, xn = {xn−1 + ln(3/2)/ ln(2)}, for which a musical interpretation exists. If
a guitar player touches a vibrating string at a point two-thirds from the end of the
string, its fundamental frequency is dampened and a higher overtone is heard instead.
This new pitch is a perfect fifth above the original note. It is well-known that the
“circle of fifths” never closes, in the sense that 2xn is never an integer for n > 0.
Further, the “circle of fifths”, in the limit as n → ∞, fills the continuum of pitches
spanning the octave [413, 414].

The Collatz function f : Z+ → Z+ is defined by

f(n) =

{
3n + 1 if n is odd
n/2 if n is even

.

Let fk denote the kth iterate of f . The 3x + 1 conjecture asserts that, given any
positive integer n, there exists k such that fk(n) = 1. Let σ(n) be the first k such
that fk(n) < n, called the stopping time of n. If we could demonstrate that every
positive integer n has a finite stopping time, then the 3x + 1 conjecture would be
proved. Heuristic reasoning [415, 416, 417] provides that the average stopping time
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over all odd integers 1 ≤ n ≤ N is asymptotically

lim
N→∞

Eodd(σ(n)) =
∞∑

j=1

⌊

1 +
(

1 + ln(3)
ln(2)

)

j
⌋

cj2
−⌊ ln(3)

ln(2)
j⌋ = 9.4779555565...

where cj is the number of admissible sequences of order j. Such a sequence {ak}mk=1

satisfies ak = 3/2 exactly j times, ak = 1/2 exactly m − j times,
∏m

k=1ak < 1 but
∏l

k=1ak > 1 for all 1 ≤ l < m [418]. In contrast, the total stopping time σ∞(n) of n,
the first k such that fk(n) = 1, appears to obey

lim
N→∞

E

(
σ∞(n)

ln(n)

)

∼ 2

2 ln(2)− ln(3)
= 6.9521189935... =

2

ln(10)
(8.0039227796...).

2.31. Freiman’s Constant. New proofs of the Markov unicity conjecture for
prime powers w appear in [419, 420, 421, 422]. See [423] for asymptotics for the
number of admissible triples of Diophantine equations such as

u2 + v2 + 2w2 = 4uvw,

u2 + 2v2 + 3w2 = 6uvw,

u2 + v2 + 5w2 = 5uvw

and [424] for mention of the constant 3.29304....
2.32. De Bruijn-Newman Constant. Ki, Kim & Lee [425] improved the

inequality Λ ≤ 1/2 to Λ < 1/2; building on [426, 427, 428], Rodgers & Tao [429]
established that Λ ≥ 0 The constant 2πΦ(0) = 2.8066794017... appears in [430], in
connection with a study of zeroes of the integral of ξ(z).

Further work regarding Li’s criterion, which is equivalent to Riemann’s hypothesis
and which involves the Stieltjes constants, appears in [362, 363]. A different criterion
is due to Matiyasevich [364, 365]; the constant − ln(4π) + γ + 2 = 0.0461914179... =
2(0.0230957089...) comes out as a special case. See also [366, 367, 368]. As another
aside, we mention the unboundedness of ζ(1/2+ i t) for t ∈ (0,∞), but that a precise
order of growth remains open [431, 432, 433, 434]. In contrast, there is a conjecture
that [435, 436, 437]

max
t∈[T,2T ]

|ζ(1 + i t)| = eγ (ln(ln(T )) + ln(ln(ln(T ))) + C + o(1)) ,

max
t∈[T,2T ]

1

|ζ(1 + i t)| =
6eγ

π2
(ln(ln(T )) + ln(ln(ln(T ))) + C + o(1))
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as T → ∞, where

C = 1− ln(2) +

2∫

0

ln(I0(t))

t2
dt+

∞∫

2

ln(I0(t))− t

t2
dt = −0.0893...

and I0(t) is the zeroth modified Bessel function. These formulas have implications
for |ζ(i t)| and 1/|ζ(i t)| as well by the analytic continuation formula.

Looking at the sign of Re(ζ(1 + i t)) for 0 ≤ t ≤ 105 might lead one to conjecture
that this quantity is always positive. In fact, t ≈ 682112.92 corresponds to a negative
value (the first?) The problem can be generalized to Re(ζ(s+ i t)) for arbitrary fixed
s ≥ 1. Van de Lune [438, 439] computed that

σ = sup {s ≥ 1 : Re(ζ(s+ i t)) < 0 for some t ≥ 0} = 1.1923473371...

is the unique solution of the equation

∑

p

arcsin (p−σ) = π/2, σ > 1

where the summation is over all prime numbers p. Also [440],

x = sup { real s : ζ(s+ i t) = 1 for some real t} = 1.9401016837...

is the unique solution x > 1 of the equation ζ(x) = (2x + 1)/(2x − 1) and

y = sup { real s : ζ ′(s+ i t) = 0 for some real t} = 2.8130140202...

is the unique solution y > 1 of the equation ζ ′(y)/ζ(y) = −2y+1 ln(2)/(4y − 1).
2.33. Hall-Montgomery Constant. Let ψ be the unique solution on (0, π) of

the equation sin(ψ) − ψ cos(ψ) = π/2 and define K = − cos(ψ) = 0.3286741629....
Consider any real multiplicative function f whose values are constrained to [−1, 1].
Hall & Tenenbaum [441] proved that, for some constant C > 0,

N∑

n=1

f(n) ≤ CN exp

{

−K
∑

p≤N

1− f(p)

p

}

for sufficiently large N,

and that, moreover, the constant K is sharp. (The latter summation is over all prime
numbers p.) This interesting result is a lemma used in [442]. A table of values of sharp
constants K is also given in [441] for the generalized scenario where f is complex,
|f | ≤ 1 and, for all primes p, f(p) is constrained to certain elliptical regions in C.
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A fascinating coincidence involving δ0 is as follows. The limiting probability that
a random n-permutation has exactly k cycles of length exceeding xn is [443]

P0(x) =

{

1− π2

12
+ ln(x) + 1

2
ln(x)2 + Li2(x) if 1

3
≤ x < 1

2
,

1 + ln(x) if 1
2
≤ x < 1,

P1(x) =

{
π2

6
− ln(x)− ln(x)2 − 2 Li2(x) if 1

3
≤ x < 1

2
,

− ln(x) if 1
2
≤ x < 1,

P2(x) =

{

−π2

12
+ 1

2
ln(x)2 + Li2(x) if 1

3
≤ x < 1

2
,

0 if 1
2
≤ x < 1

as n→ ∞, where k = 0, 1, 2. The value of x that maximizes P1(x) is ξ = 1/ (1 +
√
e) =

0.3775406687...; we have

P1(ξ) = 1− δ0 = 0.8284995068...,

P0(ξ) = 0.0987117544..., P2(ξ) = 0.0727887386... (which are non-Poissonian). In
particular, most n-permutations have exactly one cycle longer than ξ n.

3.1. Shapiro-Drinfeld Constant. A construction involving the smallest con-
cave down function ≥ prescribed data appears in [444].

3.2. Carlson-Levin Constants. Various generalizations appear in [445, 446,
447, 448]; analogous sharp constants for finite series remain open, as for integrals over
bounded regions.

3.3. Landau-Kolmogorov Constants. For L2(0,∞), Bradley & Everitt [449]
were the first to determine that C(4, 2) = 2.9796339059... =

√
8.8782182137...; see

also [450, 451, 452]. Ditzian [453] proved that the constants for L1(−∞,∞) are
the same as those for L∞(−∞,∞). Phóng [451] obtained the following best possible
inequality in L2(0, 1):

1∫

0

|f ′(x)|2 dx ≤ (6.4595240299...)





1∫

0

|f(x)|2 dx+
1∫

0

|f ′′(x)|2 dx





where the constant is given by sec(2θ)/2 and θ is the unique zero satisfying 0 < θ <
π/4 of

sin(θ)4
(
e2 sin(θ) − 1

)2
(e−2 sin(θ) − 1)2 + cos(θ)4[2− 2 cos(2 cos(θ))]2

− cos(2θ)4[1 + e4 sin(θ) − 2e2 sin(θ) cos(2 cos(θ))][1 + e−4 sin(θ) − 2e−2 sin(θ) cos(2 cos(θ))]

− 2 cos(θ)2 sin(θ)2[2− 2 cos(2 cos(θ))](1− e−2 sin(θ))
(
e2 sin(θ) − 1

)
.

We wonder about other such additive analogs of Landau-Kolmogorov inequalities.
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3.4. Hilbert’s Constants. Borwein [454] mentioned the case p = q = 4/3 and
λ = 1/2, which evidently remains open. Peachey & Enticott [455] performed relevant
numerical experiments. See also [456].

3.5. Copson-de Bruijn Constant. An English translation of Stečkin’s paper
is available [457]. Ackermans [458] studied the recurrence {un} in greater detail. Let
Ω be a domain in Rn and let p > 1. A multidimensional version of Hardy’s inequality
is [459]

∫

Ω

|∇f(x)|p dx ≥
∣
∣
∣
∣

n− p

p

∣
∣
∣
∣

p ∫

Ω

|f(x)|p
|x|p dx

and the constant is sharp. Let δ(x) denote the (shortest) distance between x and the
boundary ∂Ω of Ω. A variation of Hardy’s inequality is

∫

Ω

|∇f(x)|p dx ≥
(
p− 1

p

)p ∫

Ω

|f(x)|p
δ(x)p

dx

assuming Ω is a convex domain with smooth boundary. Again, the constant is sharp.
With regard to the latter inequality, let n = 2, p = 2 and Ω = Ωα be the nonconvex
plane sector of angle α:

Ωα =
{
r ei θ : 0 < r < 1 and 0 < θ < α

}
.

Davies [460] demonstrated that the reciprocal of the best constant is







4 if 0 < α < 4.856...,
> 4 if 4.856... < α < 2π,
4.869... if α = 2π

and Tidblom [461] found that the threshold angle is exactly

α = π + 4 arctan

(

4
Γ(3/4)2

Γ(1/4)2

)

= π + 4 arctan

(
1

2

32 − 1

32
52

52 − 1

72 − 1

72
· · · ·

)

= 4.8560553209...

A similar expression for 4.869... remains open.
3.6. Sobolev Isoperimetric Constants. In section 3.6.1,

√
λ = 1 represents

the principal frequency of the sound we hear when a string is plucked; in section
3.6.3,

√
λ = θ represents likewise when a kettledrum is struck. (The square root was

missing in both.) The units of frequency, however, are not compatible between these
two examples.
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The “rod ”constant 500.5639017404... = (4.7300407448...)4 appears in [462, 463,
464]. It is the second term in a sequence c1, c2, c3, ... for which c1 = π2 = 9.869... (in
connection with the “string” inequality) and c3 = (2π)6 = 61528.908...; the constant
c4 is the smallest eigenvalue of ODE

f (viii)(x) = λ f(x), 0 ≤ x ≤ 1,

f(0) = f ′(0) = f ′′(0) = f ′′′(0) = 0, f(1) = f ′(1) = f ′′(1) = f ′′′(1) = 0

and was computed by Abbott [465] to be (7.8187073432...)8 = (1.3966245157...)×107.
Allied subjects include positive definite Toeplitz matrices and conditioning of certain
least squares problems.

If we eliminate the vanishing requirements on f at x = 1, then the “string”
constant becomes 4/π2 and the “rod” constant becomes [466, 467, 468]

µ =
1

12.3623633683...
= (0.2844128718...)2 =

1

θ4

where θ = 1.8751040687... is the smallest positive root of

cos(θ) cosh(θ) = −1.

Under f(0) = f ′(0) = f ′′(0) = 0, we have

1∫

0

f(x)2dx ≤ µ

1∫

0

(
d3f

dx3

)2

dx

where

µ =
1

121.2590618589...
= (0.0908119283...)2 =

1

θ6

is best possible and θ = 2.2247729764... is the smallest positive root of

8 cos(θ) + cos(2θ) + 16 cos(θ/2) cosh
(√

3θ/2
)

+ 2 cos(θ) cosh
(√

3θ
)

= −9.

What is the corresponding equation when additionally f(1) = f ′(1) = f ′′(1) = 0?
Here is another example [469, 470]: the best constant K for the inequality

π∫

0

g(x)2g′(x)2dx ≤
(π

2

)2

K

π∫

0

g′(x)4dx, g(0) = g(π) = 0

is K = 2/(L+ 1)2 = 0.3461189656..., where

L =

1∫

0

1

1− 2
3
t2
dt =

√

3

2
arctanh

(√

2

3

)

= 1.4038219651....
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More relevant material is found in [471, 472, 473]. See [474] for a variation involving
the norm of a product f g, bounded by the product of the norms of f and g.

3.7. Korn Constants. A closed-form expression for even the smallest Laplacian
eigenvalue 7.1553391339... [475] over a regular hexagon is unavailable.

3.8. Whitney-Mikhlin Extension Constants. For completeness’ sake, we
mention that

χ2 =
√

1
I1(1)K0(1)

, χ4 =
√

1
(I0(1)−2I1(1))K1(1)

, χ6 =
√

1
(9I1(1)−4I0(1))(2K1(1)+K0(1))

via recursions for modified Bessel functions.
3.9. Zolotarev-Schur Constant. Rack [476] has given explicit expressions for

s4 and Z4(x); likewise for s5 and Z5(x) in [477].
Here is a different problem involving approximation over an ellipse E. We assume

that E possesses foci ±1 and sum of semi-axes equal to 1/q, where 0 < q < 1. Let
f(z) be analytic in the interior of E, real-valued along the major axis of E, and
bounded in the sense that |Re(f(z))| ≤ 1 in the interior of E. Then the best
approximation of f(z) on [−1, 1] by a polynomial of degree n− 1 has error at most

8

π

∞∑

k=0

(−1)k

2k + 1

q(2k+1)n

1 + q2(2k+1)n
.

Further, there exists an f(z) for which equality is attained, that is, the Favard-like
constant (in q) is sharp [478, 479, 480].

3.10. Kneser-Mahler Constants. The constants ln(β) and ln(δ) appear in

[481]. Conjectured L-series expressions for M
(

1 +
∑n

j=1xj

)

, due to Rodriguez-

Villegas, are exhibited for n = 4, 5 in [266].
3.11. Grothendieck’s Constants. It is now known [482, 483] that κR <

π/
(
2 ln(1 +

√
2)
)
− ε for some explicit ε > 0; a similar result for κC remains open.

See [484, 485] for connections with theoretical computer science and quantum physics.
3.12. Du Bois Reymond’s Constants. The smallest positive solution 4.4934094579...

of the equation tan(x) = x appears in [399]; it is also the smallest positive local min-
imum of sin(x)/x. The constant (π/ξ)2 is equal to the largest eigenvalue of the
infinite symmetric matrix (am,n)m≥1,n≥1 with elements am,n = m−1n−1 + m−2δm,n,
where δm,n = 1 if m = n and δm,n = 0. Boersma [486] employed this fact to give an
alternative proof of Szegö’s theorem. Let η0 be the positive solution of tanh(1/x) = x
and η1, η2, η3, ... be all positive solutions of tan(1/x) = −x. We have [487]

η40 +
∞∑

k=1

η4k =
1

2
, η60 −

∞∑

k=1

η6k =
1

3
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and much more.
3.13. Steinitz constants. We hope to report on [488, 489] later.
3.14. Young-Fejér-Jackson Constants. The quantity 0.3084437795..., called

Zygmund’s constant, would be better named after Littlewood-Salem-Izumi [490, 491,
492, 493, 494].

3.15. Van der Corput’s Constant. We examined only the case in which f is
a real twice-continuously differentiable function on the interval [a, b]; a generalization
to the case where f is n times differentiable, n ≥ 2, is discussed in [495, 496] with
some experimental numerical results for n = 3.

3.16. Turán’s Power Sum Constants. Recent work appears in [497, 498, 499,
500, 501, 502, 503, 504], to be reported on later.

4.1. Gibbs-Wilbraham Constant. On the one hand, Gibbs’ constant for a
jump discontinuity for Fourier-Bessel partial sums seems to be numerically equal to
that for ordinary Fourier partial sums (a proof is not given in [505]). On the other
hand, the analog of (2/π)G corresponding to de la Vallée Poussin sums is

2π/3∫

0

cos(θ)− cos(2θ)

θ2
dθ = 1.1427281269...

which is slightly less than 1.1789797444...[506]. It is possible to generalize the classical
case to piecewise smooth functions f for which the jump discontinuity occurs not for f ,
but rather for its derivative. The lowest undershooting corresponding to such ‘kinks’
is cos(ξ) = −0.3482010120... where ξ = 1.9264476603... is the smallest positive root
of

x

∞∫

x

cos(u)

u2
du = cos(x).

This phenomenon, although more subtle than the usual scenario, deserves to be better
known [506].

4.2. Lebesgue Constants. Asymptotic expansions (in terms of negative integer
powers of n + 1) for Gn and Ln/2 appear in [507, 508, 509]. If, for n = 4, we
restrict x1 = −1, x4 = 1 and x2 = −x3, then the smallest Λ4 corresponds to x∗3 =
0.4177913013... with minimal polynomial 25z6 + 17z4 + 2z2 − 1; it also has value
Λ∗

4 = 1.4229195732... with minimal polynomial 43w3−93w2+53w−11. In contrast,
Λ∗

2 = 1 and Λ∗
3 = 5/4 trivially, but Λ∗

5 = 1.5594902098... nontrivially with minimal
polynomial of degree 73 [510, 511, 512, 513].

4.3. Achieser-Krein-Favard Constants. An English translation of Nikolsky’s
work is available [514]. While on the subject of trigonometric polynomials, we mention
Littlewood’s conjecture [515]. Let n1 < n2 < . . . < nk be integers and let cj , 1 ≤ j ≤
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k, be complex numbers with |cj| ≥ 1. Konyagin [516] and McGehee, Pigno & Smith
[517] proved that there exists C > 0 so that the inequality

1∫

0

∣
∣
∣
∣
∣

k∑

j=1

cje
2πinjξ

∣
∣
∣
∣
∣
dξ ≥ C ln(k)

always holds. It is known that the smallest such constant C satisfies C ≤ 4/π2; Stege-
man [518] demonstrated that C ≥ 0.1293 and Yabuta [519] improved this slightly to
C ≥ 0.129590. What is the true value of C?

4.4. Bernstein’s Constant. Consider more generally the case f(x) = |x|s
and B(s) = limn→∞ nsEn(f) for s > 0, where the error is quantified in L∞[−1, 1].
Although we know B(1) to high precision, no explicit expression for it (or for B(s)
when s 6= 1) is known. In contrast, the L1 and L2 analogs of B(s) are [520, 521, 522,
523]

(8/π)| sin(sπ/2)|Γ(s+ 1)β(s+ 2), (2/
√
π) | sin(sπ/2)|Γ(s+ 1)

√

1/(2s+ 1)

respectively, where β(z) is Dirichlet’s beta function. Also [524]

lim
n→∞

eπ
√
snEn,n(f) = 41+s/2| sin(sπ/2)|

which reduces to 8 in special circumstance s = 1.
4.5. The “One-Ninth” Constant. Zudilin [525] deduced that Λ is transcen-

dental by use of Theorem 4 in [526]. See also [527, 528, 529].
4.6. Fransén-Robinson Constant. For thoroughness’ sake, we give moments

1

I

∞∫

0

x

Γ(x)
dx = 1.9345670421...,

1

I

∞∫

0

x2

Γ(x)
dx = 4.8364859746...

of the reciprocal gamma distribution (not to be confused with the inverse gamma
distribution).

4.7. Berry-Esseen Constant. The upper bound for C can be improved to
0.4785 when X1, X2, . . ., Xn are identically distributed [530, 531] and to 0.5600 when
non-identically distributed [532]. A different form of the inequality is found in [533].

4.8. Laplace Limit Constant. The quantity λ = 0.6627434193... appears in
[534] with regard to Plateau’s problem for two circular rings dipped in soap solution;
µ =

√
λ2 + 1 appears in [535] with regard to solving an exponential equation. Definite

integral expressions include [536, 537]

µ = 1 +

∫ 2π

0
e2i θdθ

coth(ei θ+1)−ei θ−1
∫ 2π

0
ei θdθ

coth(ei θ+1)−ei θ−1

=

√
√
√
√

1− 1
2

∫ 1

−1
t2dt

(t−arctanh(t))2+π2/4

1− 1
2

∫ 1

−1
dt

(t−arctanh(t))2+π2/4

.
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Also, sinh(µ) = 1.5088795615... occurs in asymptotic combinatorics and as an extreme
result in complex analysis [538, 539, 540, 541]; sinh(µ)/µ = 1.2577364561... occurs
when minimizing the maximum tension of a heavy cable spanning two points of equal
height [542].

Let c > 0. The boundary value problem

y′′(x) + c ey(x) = 0, y(0) = y(1) = 0

has zero, one or two solutions when c > γ, c = γ and c < γ, respectively; the critical
threshold

γ = 8λ2 = 3.5138307191... = 4(0.8784576797...)

was found by Bratu [543, 544] and Frank-Kamenetskii [545, 546]. Another way of
expressing this is that the largest β > 0 for which

y′′(x) + ey(x) = 0, y(0) = y(β) = 0

possesses a solution is β =
√
8λ = 1.8745214640.... Under the latter circumstance, it

follows that
y′(0) =

√
2 sinh(µ) = 2.1338779399... =

√

2(δ − 1)

where δ = cosh(µ)2 = 3.2767175312.... These differential equations are useful in
modeling thermal ignition and combustion [547, 548, 549, 550]; see [551] for similar
equations arising in astrophysics.

4.9. Integer Chebyshev Constant. The bounds 0.4213 < χ(0, 1) < 0.422685
are currently best known [552, 553, 554, 555]. Other values of χ(a, b) and various
techniques are studied in [556]. If the integer polynomials are constrained to be
monic, then a different line of research emerges [557, 558, 559]. Consider instead the
class Sn of all integer polynomials of the exact degree n and all n zeroes both in
[−1, 1] and simple. Let

n∑

k=0

ak,nx
n ∈ Sn, an,n 6= 0, n = 1, 2, 3, . . .

be an arbitrary sequence R of polynomials. Building on work of Schur [560], Pritsker
[561] demonstrated that

1.5381 <
1

√

χ(0, 1)
≤ inf

R
liminf
n→∞

|an,n|1/n < 1.5417

(his actual lower bound 1.5377 used χ(0, 1) < 0.42291334 from [554]; we use the
refined estimate from [555]). A follow-up essay on real transfinite diameter is [562].
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5.1. Abelian Group Enumeration Constants. Asymptotic expansions for
∑

n≤Na(n)
m are possible for any integer m ≥ 2 [563, 564]. For a finite abelian group

G, let r(G) denote the minimum number of generators of G and let E(G) denote the
expected number of random elements from G, drawn independently and uniformly,
to generate G. Define e(G) = E(G)− r(G), the excess of G. Then [235]

er = sup {e(G) : r(G) = r} = 1 +

∞∑

j=1

(

1−
r∏

k=1

ζ(j + k)−1

)

;

in particular, e1 = 1.7052111401... (Niven’s constant) for the cyclic case and

σ = lim
r→∞

er = 1 +

∞∑

j=2

(

1−
∞∏

k=j

ζ(k)−1

)

= 2.118456563...

in general. It is remarkable that this limit is finite! Let also

τ =

∞∑

j=1

(

1−
(
1− 2−j

)
∞∏

k=j+1

ζ(k)−1

)

= 1.742652311...,

then for the multiplicative group Z∗
n of integers relatively prime to n,

sup {e(G) : G = Z∗
n and 2 < n ≡ lmod 8} =







σ if l = 1, 3, 5 or 7,
σ − 1 if l = 2 or 6,
τ if l = 4,
τ + 1 if l = 0.

We emphasize that l, not n, is fixed in the supremum (as according to the right-hand
side). The constant A−1

1 = 0.4357570767... makes a small appearence (as a certain
“best probability” corresponding to finite nilpotent groups).

Let Zn denote the additive group of integer n-vectors (free abelian group of rank
n) and Mn(Z) denote the ring of integer n × n matrices. From a different point of
view, we have [565]

P {m random n-vectors generate Zn} =

{
0 if m = n,

1
ζ(m−n+1)

1
ζ(m−n+2)

· · · 1
ζ(m)

if m > n,

P {m random 2× 2 matrices generate M2(Z)} =

{
0 if m = 2,
1

ζ(m−1)ζ(m)
if m > 2,

P {2 random 3× 3 matrices generate M3(Z)} = 1
ζ(2)2ζ(3)

,
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P {3 random 3× 3 matrices generate M3(Z)} = 1
ζ(2)ζ(3)ζ(4)

∏

p

(

1 + 1
p2

+ 1
p3

− 1
p5

)

.

It is surprising that two 2 × 2 matrices differ from two 3 × 3 matrices in this regard
(the former probability is zero but the latter is positive!) See [566, 567] for more on
nonabelian group enumeration.

5.2. Pythagorean Triple Constants. Improvements in estimates for Pa(n) and
Pp(n) are found in [568, 569]. Let Pℓ(n) denote the number of primitive Pythagorean
triangles under the constraint that the two legs are both ≤ n; then [570]

Pℓ(n) =
4

π2
ln
(

1 +
√
2
)

n+O
(√

n
)

as n→ ∞. The quantityHh(n) should be defined as the number of primitive Heronian
triangles under the constraint that all three sides are ≤ n. A better starting point
for studying H ′

a(n) might be [571, 572, 573, 574].
5.3. Rényi’s Parking Constant. Expressions similar to those forM(x), m and

v appear in the analysis of a certain stochastic fragmentation process [575]. More
constants appear in the jamming limit of arbitrary graphs; for example, 0.3641323...
and 0.3791394... correspond respectively to the square and hexagonal lattices [576].

Consider monomers on 1 × ∞ that exclude s neighbors on both right and left
sides. The expected density of cars parked on the lattice is [577, 578, 579, 580]

1−µ(2)
2

= 1−e−2

2
= m1,

1−µ(3)
3

= 0.2745509877..., 1−µ(4)
4

= 0.2009733699...

for s = 1, 2, 3. On the one hand, the expected density m2 = (2− e−1)/4 for 2 ×∞
and s = 1 is verified in [579]. On the other hand, the expected density for 3 × ∞
is reported as ≈ 0.3915 (via Monte Carlo simulation), inconsistent with m3 = 1/3.
This issue awaits resolution. An interesting asymptotics problem appears in [581],
as well as a constant

∑∞
ℓ=02

−ℓ(ℓ+1)/2 = 1.6416325606....
Call an n-bit binary word legal if every 1 has an adjacent 0. For example, if

n = 6, the only legal words with maximal set of 1s are

010101, 010110, 011001, 011010, 100110, 101010, 101101.

Imagine cars (1s) parking one-by-one at random on 000000, satisfying legality at all
times and stopping precisely when maximality is fulfilled. This process endows the
seven words with probabilities

5
48
, 7

60
, 5

48
, 7

60
, 5

48
, 5

48
, 7

20

respectively (by tree analysis) and the mean density of cars is

1
6

[
3
(
4 · 5

48
+ 2 · 7

60

)
+ 4

(
7
20

)]
= 67

120
.
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In the limit as n→ ∞, the mean density → 0.598... via simulation [582]. Conceivably
this constant is exactly 3/5, but a proof may be difficult. Several variations on a
discrete parking theme appear in [582, 583].

5.4. Golomb-Dickman Constant. Let P+(n) denote the largest prime factor
of n and P−(n) denote the smallest prime factor of n. We mentioned that

N∑

n=2

ln(P+(n)) ∼ λN ln(N)− λ(1− γ)N,

N∑

n=2

ln(P−(n)) ∼ e−γN ln(ln(N)) + cN

as N → ∞, but did not give an expression for the constant c. Tenenbaum [584] found
that

c = e−γ(1 + γ) +

∞∫

1

ω(t)− e−γ

t
dt+

∑

p

{

e−γ ln

(

1− 1

p

)

+
ln(p)

p− 1

∏

q≤p

(

1− 1

q

)}

,

where the sum over p and product over q are restricted to primes. A numerical
evaluation is still open. Another integral [585]

∞∫

1

ρ(x)

x
dx = (1.916045...)−1

deserves closer attention (when the denominator is replaced by x2, 1−λ emerges). A
variation of permutation, called cyclation, appears in [586]. Similar constants arise
in the distribution of cycle lengths, given a random n-cyclation:

expected
longest cycle

∼





∞∫

0

e−x+Ei(−x)/2 dx



n = (0.7578230112...)n,

expected
shortest cycle

∼





√
π

2

∞∫

0

e−x−Ei(−x)/2 dx



n = (1.4572708792...)
√
n

as n → ∞. The former coefficient is the Flajolet-Odlyzko constant; the analogous
growth rate of the latter for permutations is only ln(n).

The longest tail L(ϕ), given a random mapping ϕ : {1, 2, . . . , n} → {1, 2, . . . , n},
is called the height of ϕ in [587, 588, 589] and satisfies

lim
n→∞

P

(
L(ϕ)√
n

≤ x

)

=
∞∑

k=−∞
(−1)k exp

(

−k
2x2

2

)



Errata and Addenda to Mathematical Constants 41

for fixed x > 0. For example,

lim
n→∞

Var

(
L(ϕ)√
n

)

=
π2

3
− 2π ln(2)2.

The longest rho-path R(ϕ) is called the diameter of ϕ in [590] and has moments

lim
n→∞

E

[(
R(ϕ)√
n

)j
]

=

√
πj

2j/2Γ((j + 1)/2)

∞∫

0

xj−1(1− eEi(−x)−I(x)) dx

for fixed j > 0. Complicated formulas for the distribution of the largest tree P (ϕ)
also exist [588, 589, 591].

A permutation p ∈ Sn is an involution if p2 = 1 in Sn. Equivalently, p does not
contain any cycles of length > 2: it consists entirely of fixed points and transpositions.
Let tn denote the number of involutions on Sn. Then tn = tn−1 + (n − 1)tn−2 and
[592, 593]

tn ∼ 1

21/2e1/4

(n

e

)n/2

e
√
n

as n→ ∞. The equation pd = 1 for d ≥ 3 has also been studied [594].
A permutation p ∈ Sn is a square if p = q2 for some q ∈ Sn; it is a cube if p = r3

for some r ∈ Sn. For convenience, let ω = (−1 + i
√
3)/2 and

Ψ(x) =
1

3

(

exp(x) + 2 exp(−x/2) cos(
√
3x/2)

)

.

The probability that a random n-permutation is a square is [595, 596, 597, 598, 599]

∼ 21/2

Γ(1/2)

1

n1/2

∏

1≤m≡0mod 2

e1/m + e−1/m

2
=

√

2

π n

∞∏

k=1

cosh

(
1

2k

)

=

√

2

π n
(1.2217795151...) = (0.9748390118...)n−1/2

as n→ ∞; the probability that it is a cube is [598, 599]

∼ 31/3

Γ(2/3)

1

n1/3

∏

1≤m≡0mod 3

e1/m + eω/m + eω
2/m

3

=
35/6Γ(1/3)

2π n1/3

∞∏

k=1

Ψ

(
1

3k

)

= (1.0729979443...)n−1/3.
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Two permutations p, q ∈ Sn are of the same cycle type if their cycle decompositions
are identical (in the sense that they possess the same number of cycles of length l,
for each l ≥ 1). The probability that two independent, random n-permutations have
the same cycle type is [599]

∼ 1

n2

∞∏

k=1

I0

(
2

k

)

= (4.2634035141...)n−2

as n→ ∞, where I0 is the zeroth modified Bessel function.
A mapping ϕ on {1, 2, . . . , n} has period θ if θ is the least positive integer for

which iterates ϕm+θ = ϕm for all sufficiently large m. It is known that [600]

ln(E(θ(ϕ))) = K 3

√
n

ln(n)2
(1 + o(1))

as n→ ∞, where K = (3/2)(3 b)2/3 = 3.3607131721.... A typical mapping ϕ satisfies
ln(θ(ϕ)) ∼ 1

8
ln(n)2. When restricting the average to permutations π only, we have

ln(E(θ(π))) = B

√
n

ln(n)
(1 + o(1)) ,

where B = 2
√
2b = 2.9904703993... (this corrects the error term on p. 287). See

[601, 602] for additional appearances of B. More on the Erdős-Turán constant is
found in [603, 604].

Let W (π) denote the number of factorizations of an n-permutation π into two
n-involutions. For example, if χ is an n-cycle, then W (χ) = n:

(1 2 3 4) = (1 2)(3 4) ◦ (1)(2 4)(3)
= (1 3)(2)(4) ◦ (1 2)(3 4)
= (1 4)(2 3) ◦ (1 3)(2)(4)
= (1)(2 4)(3) ◦ (1 4)(2 3).

If π is chosen uniformly at random, then it is known that [605]

E (W (π)) ∼ 1√
8πe

e2
√
n

√
n

as n→ ∞, and conjectured that

lim
n→∞

P

(
ln(W (π))− 1

2
ln(n)2

c ln(n)3
≤ x

)

=
1√
2π

x∫

−∞

exp

(

−t
2

2

)

dt
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where c ≈ 0.16 is a constant.
5.5. Kalmár’s Composition Constant. See [606] for precise inequalities in-

volvingm(n) and ρ = 1.7286472389....The number of factors in a random ordered fac-
torization of n ≤ N into 2, 3, 4, 5, 6, . . . is asymptotically normal with mean [607, 608]

∼ −1

ζ ′(ρ)
ln(N) = (0.5500100054...) ln(N)

and variance

∼ −1

ζ ′(ρ)

(
ζ ′′(ρ)

ζ ′(ρ)2
− 1

)

ln(N) = (0.3084034446...) ln(N)

as N → ∞. In contrast, the number of distinct factors in the same has mean

∼ −1

ρ
Γ

(−1

ρ

)( −1

ζ ′(ρ)

)1/ρ

ln(N)1/ρ = (1.4879159716...) ln(N)1/ρ,

hence on average there are many small factors occurring with high frequencies. Also,
the number of factors in a random ordered factorization of n ≤ N into 2, 3, 5, 7, 11, . . .
is asymptotically normal with mean 0.5776486251... and variance 0.4843965045...
(with η = 1.3994333287... and

∑

pp
−s playing the roles of ρ and ζ(s)− 1).

A Carlitz composition of size n is an additive composition n = x1 + x2 + · · ·+ xk
such that xj 6= xj+1 for any 1 ≤ j < k. We call k the number of parts and

d = 1 +

k∑

i=2

{
1 if xi 6= xj for all 1 ≤ j < i,
0 otherwise

the number of distinct part sizes. The number ac(n) of Carlitz compositions is [609,
610, 611, 612]

ac(n) ∼
1

σ F ′(σ)

(
1

σ

)n

= (0.4563634740...)(1.7502412917...)n

where σ = 0.5713497931... is the unique solution of the equation

F (x) =

∞∑

j=1

(−1)j−1 xj

1− xj
= 1, 0 ≤ x ≤ 1.

The expected number of parts is asymptotically

G(σ)

σ F ′(σ)
n ∼ (0.350571...)n where G(x) =

∞∑

j=1

(−1)j−1 j xj

1− xj
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(by contrast, an unrestricted composition has (n + 1)/2 parts on average). The
expected size of the largest part is

− ln(n)

ln(σ)
+

(
ln(F ′(σ)) + ln(1− σ)− γ

ln(σ)
+

1

2

)

+ε(n) = (1.786500...) ln(n)+0.643117...+ε(n)

where γ is Euler’s constant and ε(n) is a small-amplitude zero-mean periodic function.
The expected number of distinct part sizes is [613]

− ln(n)

ln(σ)
+

(
ln(F ′(σ)) + γ

ln(σ)
+

1

2

)

+ δ(n) = (1.786500...) ln(n)− 2.932545...+ δ(n)

where δ(n) is likewise negligible. (By contrast, an unrestricted composition has
a largest part of size roughly ln(n)/ ln(2) + 0.332746... and roughly ln(n)/ ln(2) −
0.667253... distinct part sizes on average: see [614, 615, 616], as well as the bottom
of page 340.) We wonder about the multiplicative analog of these results. See also
[617].

Another equation involving the Riemann zeta function: [618]

ζ(x− 2)− 2ζ(x− 1) = 0

arises in random graph theory and its solution x = 3.4787507857... serves to separate
one kind of qualitative behavior (the existence of a giant component) from another.
The same expression (with x replaced by y + 1) appears in

∞∑

k=0

1

r(k)y
=

ζ(y − 1)

2ζ(y)− ζ(y − 1)
,

where r(k) is the number of representations of an integer k as a sum of distinct
Fibonacci numbers [619]. A conjectured limit involving the number c(n) of primitive
subsets of {1, 2, . . . , n} indeed exists [620] but its precise value remains open.

5.6. Otter’s Tree Enumeration Constants. Higher-order asymptotic series
for Tn, tn and Bn are given in [169]. Analysis of series-parallel posets [621] is similar
to that of trees. By Stirling’s formula, another way of writing the asymptotics for
labeled mobiles is [612]

M̂n

n!
∼ η̂√

2π

(

e ξ̂
)n

n−3/2 ∼ (0.1857629435...) (3.1461932206...)n n−3/2

as n → ∞. See [622, 623] for more about k-gonal 2-trees, as well as a new formula
for α in terms of rational expressions involving e.
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The generating function L(x) of leftist trees satisfies a simpler functional equation
than previously thought:

L(x) = x+ L (xL(x))

which involves an unusual nested construction. The radius of convergence ρ =
0.3637040915... = (2.7494879027...)−1 of L(x) satisfies

ρL′ (ρL(ρ)) = 1

and the coefficient of ρ−nn−3/2 in the asymptotic expression for Ln is

√

1

2πρ2
ρ+ L(ρ)

L′′ (ρL(ρ))
= 0.2503634293... = (0.6883712204...)ρ.

The average height of n-leaf leftist trees is asymptotically (1.81349371...)
√
πn and the

average depth of vertices belonging to such trees is asymptotically (0.90674685...)
√
πn.

Nogueira [624] conjectured that the ratio of the two coefficients is exactly 2, but his
only evidence is numerical (to over 1000 decimal digits). Let the d-number of an
ordered binary tree τ be

d(τ) =

{
1 if τL = ∅ or τR = ∅,
1 + min(d(τL), d(τR)) otherwise.

Such a tree is leftist if and only if for every subtree σ of τ with σL 6= ∅ and σR 6= ∅,
the inequality d(σL) > d(σR) holds. Another relevant constant, 0.6216070079..., is
involved in a distribution law for leftist trees in terms of their d-number [624].

For the following, we consider only unordered forests whose connected components
are (strongly) ordered binary trees. Let Fn denote the number of such forests with
2n− 1 vertices; then the generating function

Φ(x) = 1 +

∞∑

n=1

Fnx
n = 1 + x+ 2x2 + 4x3 + 10x4 + 26x5 + 77x6 + · · ·

satisfies

Φ(x) = exp

( ∞∑

k=1

1−
√
1− 4xk

2k

)

=

∞∏

m=1

(1− xm)
− 1

m

(
2m−2
m−1

)

.

It can be shown that [599]

Fn ∼ Φ(1/4)√
π

4n−1

n3/2
=

1.7160305349...

4
√
π

4n

n3/2
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as n → ∞. The constant 1.716... also plays a role in the asymptotic analysis of the
probability that a random forest has no two components of the same size.

A phylogenetic tree of size n is a strongly binary tree whose n leaves are labeled.
The number of such trees is 1 · 3 · · · (2n − 3) and two such trees are isomorphic if
removing their labels will associate them to the same unlabeled tree. The probability
that two uniformly-selected phylogenetic trees are isomorphic is asymptotically [625]

(3.17508...)(2.35967...)−nn3/2

as n → ∞, where the growth rate is 4ρ and ρ = 0.5899182714... is the radius of
convergence of a certain radical expansion

1−

√
√
√
√3

2
− 2z − 1

2

√

15

8
− 2z2 − 7

8

√

255

128
− 2z4 − 127

128

√
. . ..

An arithmetic formula is an expression involving only the number 1 and operations
+ and ·, with multiplication by 1 disallowed. For example, 4 has exactly six arithmetic
formulas:

1 + (1 + (1 + 1)), 1 + ((1 + 1) + 1), (1 + (1 + 1)) + 1,
((1 + 1) + 1) + 1, (1 + 1) + (1 + 1), (1 + 1) · (1 + 1).

Let f(n) denote the number of arithmetic formulas for n and F (x) =
∑∞

n=1f(n)x
n,

then define ξ to be the smallest positive solution of the equation

1

4
= x+

∞∑

k=2

f(k)
(
F
(
xk
)
− xk

)

and η = 1/ξ to be the growth rate. A binary tree-like argument yields that f(n) is
asymptotically [626, 627]

(0.1456918546...)(4.0765617852...)nn−3/2

as n → ∞. Suppose moreover that exponentiation is included but that 1 again is
disallowed; thus (1 + 1)(1+1) also counts. An analog holds for counting arithmetic
exponential formulas but with a larger η = 4.1307352951....

5.7. Lengyel’s Constant. Constants of the form
∑∞

k=−∞2−k
2
and

∑∞
k=−∞2−(k−1/2)2

appear in [628, 629]. We discussed the refinement of Bn given by Sn,k, which counts
partitions of {1, 2, . . . , n} possessing exactly k blocks. Another refinement of Bn is
based jointly on the maximal i such that a partition has an i-crossing and the maximal
j such that the partition has a j-nesting [630]. The cardinality of partitions avoiding
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2-crossings is the nth Catalan number; see [631] for partitions avoiding 3-crossings
and [632] for what are called 3-noncrossing braids.

5.8. Takeuchi-Prellberg Constant. Knuth’s recursive formula should be re-
placed by

Tn+1 =

n−1∑

k=0

[
2
(
n+k
k

)
−
(
n+k+1

k

)]
Tn−k +

n+1∑

k=1

(
2k
k

) 1

k + 1
.

5.9. Pólya’s Random Walk Constants. Properties of the gamma function
lead to a further simplification [633]:

m3 =
1

32π3

(√
3− 1

)[

Γ

(
1

24

)

Γ

(
11

24

)]2

Consider a variation in which the drunkard performs a random walk starting from
the origin with 2d equally probable steps, each of the form (±1,±1, . . . ,±1). The
number of walks that end at the origin after 2n steps is

Ũd,0,2n =

(
2n

n

)d

and the number of such walks for which 2n is the time of first return to the origin is
Ṽd,0,2n, where [634]

2−nṼ1,0,2n =
1

n22n−1

(
2n− 2

n− 1

)

∼ 1

2
√
πn3/2

,

2−2nṼ2,0,2n =
π

n(ln(n))2
− 2π

γ + πB

n(ln(n))3
+O

(
1

n(ln(n))4

)

,

2−3nṼ3,0,2n =
1

π3/2C2n3/2
+O

(
1

n2

)

as n→ ∞, where

B = 1 +

∞∑

k=1

[

2−4k

(
2k

k

)2

− 1

πk

]

=
4 ln(2)

π
= 0.8825424006...,

C =

∞∑

k=0

2−6k

(
2k

k

)3

=
1

4π3
Γ

(
1

4

)4

= 1.3932039296....

The quantity Wd,n is often called the average range of the random walk (equal to
E(maxωj −minωj) when d = 1). The corresponding variance is

∼ 4

(

ln(2)− 2

π

)

n = (0.2261096327...)n
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if d = 1 [635] and is

∼ 8π2

(
3

2
L−3(2) +

1

2
− π2

12

)
n2

ln(n)4
= 8π2 (0.8494865859...)

n2

ln(n)4

if d = 2 [636]. Various representations include

3

2
L−3(2) = 1.1719536193... = −

1∫

0

ln(x)

1− x+ x2
dx =

2√
3
(1.0149416064...),

the latter being Lobachevsky’s constant (p. 233). Exact formulas for the correspond-
ing distribution, for any n, are available when d = 1 [637].

More on the constant ρ appears in [638, 639]. It turns out that the constant σ,
given by an infinite series, has a more compact integral expression [640, 641]:

σ =
1

π

∞∫

0

1

x2
ln

[
6

x2

(

1− sin(x)

x

)]

dx = −0.2979521902... =
−0.5160683318...√

3

and surprisingly appears in both 3D statistical mechanics [642] and 1D probabilistic
algorithmics [643].

Here is a problem about stopping times for certain one-dimensional walks. Fix a
large integer n. At time 0, start with a total of n + 1 particles, one at each integer
site in [0, n]. At each positive integer time, randomly choose one of the particles
remaining in [1, n] and move it 1 step to the left, coalescing with any particle that
might already occupy the site. Let Tn denote the time at which only one particle is
left (at 0). An exact expression for the mean of Tn is known [644]:

E(Tn) =
2n(2n+ 1)

3

(
2n

n

)
1

22n
∼ 4

3
√
π
n3/2 = (0.7522527780...)n3/2

and the variance is conjectured to satisfy

Var(Tn) ∼ C n5/2, 0 < C ≤ 8

15
√
π
< 0.301.

Simulation suggests that C ∼ 0.026 and that a Central Limit Theorem holds [645].
5.10. Self-Avoiding Walk Constants. A conjecture due to Jensen & Guttmann

[646]

µ =

√

7 +
√
30261

26
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for the square lattice seems completely unmotivated yet numerically reasonable; in
contrast, a proposal

µ =

√

2 +
√
2

for the hexgonal lattice is now a theorem [647, 648]. If we examine SAPs rather
than SAWs, it seems that γ = −3/2 and A = 0.56230129...[649, 650]. Fascinating
complications arise if such are restricted to be prudent, that is, never take a step
towards an already occupied vertex [651].

Hueter [652, 653] claimed a proof that ν2 = 3/4 and that 7/12 ≤ ν3 ≤ 2/3,
1/2 ≤ v4 ≤ 5/8 (if the mean square end-to-end distance exponents ν3, v4 exist;
otherwise the bounds apply for

νd = liminf
n→∞

ln(rn)

2 ln(n)
, νd = limsup

n→∞

ln(rn)

2 ln(n)

when d = 3, 4). She confirmed that the same exponents apply for the mean square
radius of gyration sn for d = 2, 3, 4; the results carry over to self-avoiding trails as

well. Burkhardt & Guim [654] adjusted the estimate for limk→∞ p
1/k2

k,k to 1.743...; this
has now further been improved to 1.74455... [655].

5.11. Feller’s Coin Tossing Constants. The cubic irrational 1.7548776662...
turns out to be the square of the Plastic constant ψ and has infinite radical expression

ψ2 = 1 +
1

√

1 + 1
√

1+ 1√
1+···

= 1 +
1|√
1
+

1|√
1
+

1|√
1
+ · · · ,

an observation due to Knuth [656]. The constant C appears in [657] as the variance
for searching random tries under a symmetric Bernoulli model, omitting the fluctua-
tion term. Additional references on oscillatory phenomena in probability theory in-
clude [658, 659, 660, 661, 662]; see also our earlier entry [5.5]. Consider n independent
non-homogeneous Bernoulli random variables Xj with P(Xj = 1) = pj = P(heads)
and P(Xj = 0) = 1− pj = P(tails). If all probabilities pj are equal, then

√
n∑

j=1

pj(1− pj) P(X1 +X2 + · · ·+Xn = k) ≤ 1√
2e

= 0.4288819424...

for all integers k and the bound is sharp. If there exist at least two distinct values
pi, pj , then [663]

√
n∑

j=1

pj(1− pj) P(X1 +X2 + · · ·+Xn = k) ≤M = 0.4688223554...
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for all integers k and the bound is sharp, where

M = max
u≥0

√
2ue−2u

∞∑

ℓ=0

(
uℓ

ℓ!

)2

and the maximizing argument is u = 0.3949889297....
5.12. Hard Square Entropy Constant. McKay [664] observed the following

asymptotic behavior:

F (n) ∼ (1.06608266...)(1.0693545387...)2n(1.5030480824...)n
2

based on an analysis of the terms F (n) up to n = 19. He emphasized that the form of
right hand side is conjectural, even though the data showed quite strong convergence
to this form. Counting maximal independent vertex subsets of the n× n grid graph
is more difficult [665]: we have 1, 2, 10, 42, 358 for 1 ≤ n ≤ 5 but nothing yet for
n ≥ 6. By “maximal”, we mean with respect to set-inclusion. There is a natural
connection with discrete parking (see section 5.3.1). Asymptotics remain open here.

To calculate entropy constants of more complicated planar examples, such as the 4-
8-8 and triangular Kagomé lattices, requires more intricate analysis. The former has
numerical value 1.54956010... = (5.76545652...)1/4; the latter evidently still remains
open [666]. A nonplanar example is the square lattice with crossed diagonal bonds,
which has entropy constant between 1.34254 and 1.34265.

Let L(m,n) denote the number of legal positions on anm×n Go board (a popular
game). Then [667]

lim
n→∞

L(1, n)1/n = 1 +
1

3

((

27 + 3
√
57
)1/3

+
(

27− 3
√
57
)1/3

)

= 2.7692923542...,

lim
n→∞

L(n, n)1/n
2

= 2.9757341920...

and, subject to a plausible conjecture,

L(m,n) ∼ (0.8506399258...)(0.96553505933...)m+n(2.9757341920...)mn

as min{m,n} → ∞.
5.13. Binary Search Tree Constants. The variance for the number of com-

parisons in a successful search (odd x) should be

Var(f(x, V )) =

(

2 +
10

n

)

Hn − 4

(

1 +
1

n

)(

H(2)
n +

H2
n

n

)

+ 4,
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that is, the denominator for H2
n is not 4 but rather n. In the subsequent two asymp-

totic expressions, π3 should be replaced by π2. Also, the total (internal) path length
satisfies

E

[
2n−1∑

odd x=1

(f(x, V )− 1)

]

= 2(n+ 1)Hn − 4n

= 2n ln(n) + 2(γ − 2)n+ 2 ln(n) + (2γ + 1) + o(1),

Var

[
2n−1∑

odd x=1

(f(x, V )− 1)

]

= 7n2 − 4(n+ 1)2H(2)
n − 2(n+ 1)Hn + 13n

=

(

7− 2π2

3

)

n2 − 2n ln(n) +

(

17− 2γ − 4π2

3

)

n

− 2 ln(n) +

(

5− 2γ − 2π2

3

)

+ o(1)

as n→ ∞.
The random permutation model for generating weakly binary trees (given an n-

vector of distinct integers, construct T via insertions) does not provide equal weight-
ing on the

(
2n
n

)
/(n + 1) possible trees. For example, when n = 3, the permutations

(2, 1, 3) and (2, 3, 1) both give rise to the same tree S, which hence has probability
q(S) = 1/3 whereas q(T ) = 1/6 for the other four trees. Fill [634, 668, 669] asked how
the numbers q(T ) themselves are distributed, for fixed n. If the trees are endowed
with the uniform distribution, then

−E [ln(q(T ))]

n
→

∞∑

k=1

ln(k)

(k + 1)4k

(
2k

k

)

= −γ −
1∫

0

ln(ln(1/t))
√
1− t

(
1 +

√
1− t

)2dt = 2.0254384677...

as n→ ∞. If, instead, the trees follow the distribution q, then

−E [ln(q(T ))]

n
→ 2

∞∑

k=1

ln(k)

(k + 1)(k + 2)

= −γ − 2

1∫

0

((t− 2) ln(1− t)− 2t) ln(ln(1/t))

t3
dt = 1.2035649167....
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The maximum value of − ln(q(T )) is ∼ n ln(n) and the minimum value is ∼ c n,
where

c = ln(4) +

∞∑

k=1

2−k ln(1− 2−k) = 0.9457553021....

See also [670, 671] for more on random sequential bisections.
5.14. Digital Search Tree Constants. Letting Qℓ denote the ℓth partial

product of Q and

g(x) =







x− ln(x)− 1

(x− 1)2
if x 6= 1,

1

2
if x = 1,

the total (internal) path length satisfies [672, 673]

E

[
∑

x=mi

(f(x,M, 1)− 1)

]

=
n ln(n)

ln(2)
+ n

(
γ − 1

ln(2)
+

1

2
− α + δ1 (n)

)

+
ln(n)

ln(2)

+

(
2γ − 1

2 ln(2)
+

5

2
− α

)

+ δ2 (n) +O

(
ln(n)

n

)

,

Var

[
∑

x=mi

(f(x,M, 1)− 1)

]

= n (C + δ3 (n)) +O

(
ln(n)2

n

)

where the sum is taken over all rows of M and

C =
Q

ln(2)

∑

j,k,ℓ≥0

(−1)j

QjQkQℓ
2−j(j+1)/2−k−ℓg

(
2−j−k + 2−j−ℓ

)
= 0.2660036454....

Erdős’ 1948 irrationality proof is discussed in [674]. The constant Q is transcen-
dental via a general theorem on values of modular forms due to Nesterenko [251, 252].
A correct formula for θ is

θ =
∞∑

k=1

k2k(k−1)/2

1 · 3 · 7 · · · (2k − 1)

k∑

j=1

1

2j − 1
= 7.7431319855...

(the exponent k(k − 1)/2 was mistakenly given as k + 1 in [675], but the numerical
value is correct). The constants α, β and Q−1 appear in [676]. Also, α appears in
[677], Q−1 in [629] and

∞∏

n=1

(

1− 1

2n/2

)

= 0.0375130167...
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in [678, 679, 680]. What is the variance for the count of internal nodes of a random
trie under a Poisson(n) model? This turns out to be asymptotically linear in n with
slope [681]

1

ln(2)

(

−1

2
+ 2

∞∑

ℓ=0

1

2ℓ + 1

)

= 2.9272276041... =
1

2 ln(2)
[−1 + 4(1.2644997803...)] ,

omitting the fluctuation term. The value 2λ should be 3 +
√
5; the subseries of

Fibonacci terms with odd subscripts

∞∑

k=0

1

f2k+1
=

√
5

4

( ∞∑

n=−∞

1

λ(n+1/2)2

)2

= 1.8245151574...

involves a Jacobi theta function ϑ2(q) squared, where q = 1/λ. It turns out that ν
and χ are linked via ν − 1 = χ; we have [682, 683, 684]

∞∑

j=1

(−1)j−1

j (2j − 1)
=

∞∑

k=1

ln
(
1 + 2−k

)
= 0.8688766526... =

7.2271128245...

12 ln(2)
.

Finally, a random variable X with density e−x(e−x − 1 + x)/(1 − e−x)2, x ≥ 0, has
mean E(X) = π2/6 and mean fractional part [684]

E (X − ⌊X⌋) = 11

24
+

∞∑

m=1

π2

sinh(2π2m)2
=

11

24
+ (2.825535...)× 10−16.

The distribution of X is connected with the random assignment problem [685, 686].
5.15. Optimal Stopping Constants. When discussing the expected rank Rn,

we assumed that no applicant would ever refuse a job offer! If each applicant only
accepts an offer with known probability p, then [687]

lim
n→∞

Rn =
∞∏

i=1

(

1 +
2

i

1 + pi

2− p+ pi

) 1
1+pi

which is 6.2101994550... in the event that p = 1/2. The same expression in an integer
parameter p ≥ 2 arises if instead we interview p independent streams of applicants;
limn→∞Rn = 2.6003019563... is found for the bivariate case [688, 689].

When discussing the full-information problem for Uniform [0, 1] variables, we as-
sumed that the number of applicants is known. If instead this itself is a uniformly
distributed variable on {1, 2, . . . , n}, then for the “nothing but the best objective”,
the asymptotic probability of success is [690, 691]

(1− ea) Ei(−a)− (e−a + aEi(−a))(γ + ln(a)− Ei(a)) = 0.4351708055...
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where a = 2.1198244098... is the unique positive solution of the equation

ea(1− γ − ln(a) + Ei(−a))− (γ + ln(a)− Ei(a)) = 1.

It is remarkable that these constants occur in other, seemingly unrelated versions of
the secretary problem [692, 693, 694, 695]. Another relevant probabililty is [695]

e−b −
(
eb − b− 1

)
Ei(−b) = 0.4492472188...

where b = 1.3450166170... is the unique positive solution of the equation

Ei(−b)− γ − ln(b) = −1.

The corresponding full-information expected rank problem is called Robbins’ problem
[696, 697].

Suppose that you view successively terms of a sequence X1, X2, X3, ... of inde-
pendent random variables with a common distribution function F . You know the
function F , and as Xk is being viewed, you must either stop the process or con-
tinue. If you stop at time k, you receive a payoff (1/k)

∑k
j=1Xj . Your objective is

to maximize the expected payoff. An optimal strategy is to stop at the first k for
which

∑k
j=1Xj ≥ αk, where α1, α2, α3, ... are certain values depending on F . Shepp

[698, 699] proved that limk→∞ αk/
√
k exists and is independent of F as long as F has

zero mean and unit variance; further,

lim
k→∞

αk√
k
= x = 0.8399236756... = 2(0.4199618378...)

is the unique zero of 2x −
√
2π (1− x2) exp (x2/2)

(
1 + erf(x/

√
2)
)
. We wonder if

Shepp’s constant can be employed to give a high-precision estimate of the Chow-
Robbins constant 2(0.7929535064...)−1 = 0.5859070128... [700, 701], the value of the
expected payoff for F (−1) = F (1) = 1/2.

Consider a random binary string Y1Y2Y3 . . . Yn with P(Yk = 1) = 1 − P(Yk = 0)
independent of k and Yk independent of the other Y s. Let H denote the pattern
consisting of the digits

1000...0
︸ ︷︷ ︸

l

or 0111...1
︸ ︷︷ ︸

l

and assume that its probability of occurrence for each k is

P (Yk+1Yk+2Yk+3 . . . Yk+l = H) =
1

l

(

1− 1

l

)l−1

∼ 1

el
=

0.3678794411...

l
.

You observe sequentially the digits Y1, Y2, Y3, ... one at a time. You know the values
n and l, and as Yk is being observed, you must either stop the process or continue.
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Your objective is to stop at the final appearance of H up to Yn. Bruss & Louchard
[702] determined a strategy that maximizes the probability of meeting this goal. For
n ≥ βl, this success probability is

2

135
e−β

(
4− 45β2 + 45β3

)
= 0.6192522709...

as l → ∞, where β = 3.4049534663... is the largest zero of the cubic 45β3 − 180β2 +
90β + 4. Further, the interval [0.367..., 0.619...] constitutes “typical” asymptotic
bounds on success probabilities associated with a wide variety of optimal stopping
problems in strings.

Suppose finally that you view a sequence Z1, Z2, ..., Zn of independent Uniform
[0, 1] variables and that you wish to stop at a value of Z as large as possible. If
you are a prophet (meaning that you have complete foresight), then you know Z∗

n =
max{Z1, . . . , Zn} beforehand and clearly E(Z∗

n) ∼ 1 − 1/n as n → ∞. If you are a
1-mortal (meaning that you have 1 opportunity to choose a Z via stopping rules) and
if you proceed optimally, then the value Z∗

1 obtained satisfies E(Z∗
1 ) ∼ 1 − 2/n. If

you are a 2-mortal (meaning that you have 2 opportunities to choose Zs and then
take the maximum of these) and if you proceed optimally, then the value Z∗

2 obtained
satisfies E(Z∗

2) ∼ 1− c/n, where [703]

c =
2ξ

ξ + 2
= 1.1656232877...

and ξ = 2.7939976526... is the unique positive solution of the equation

(
2

ξ
+ 1

)

ln

(
ξ

2
+ 1

)

=
3

2
.

The performance improvement in having two choices over just one is impressive: c is
much closer to 1 than 2! See also [704, 705, 706, 707].

5.16. Extreme Value Constants. The median of the Gumbel distribution is
− ln(ln(2)) = 0.3665129205....

5.17. Pattern-FreeWord Constants. We now have improved bounds 1.30173 <
S < 1.30178858 and 1.457567 < C < 1.45757921 [708, 709, 710, 711, 712, 713] and
precise estimates

TL =
1

11

ln (ρ(AB10))

ln(2)
= 1.273553265..., TU =

1

2

ln (ρ(AB))

ln(2)
= 1.332240491...

where A, B are known 20 × 20 integer matrices and ρ denotes spectral radius [714,
715, 716]. The set of quaternary words avoiding abelian squares grows exponentially
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(although h(n)1/n is not well understood as length n → ∞); the set of binary words
avoiding abelian fourth powers likewise is known to grow exponentially [717].

5.18. Percolation Cluster Density Constants. Approximating pc for site
percolation on the square lattice continues to draw attention [718, 719, 720, 721, 722,
723]; for the hexagonal lattice, pc = 0.697043... improves upon the estimate given on
p. 373. More about mean cluster densities can be found in [724, 725]. An integral
similar to that for κB(pc) on the triangular lattice appears in [726].

Hall’s bounds for λc on p. 375 can be written as 1.642 < 4π λc < 10.588 and
the best available estimate is 4π λc = 4.51223... [727, 728]. Older references on
2D and 3D continuum percolation include [729, 730, 731, 732, 733, 734]. See also
[735, 736, 737, 738, 739].

Two infinite 0-1 sequences X , Y are called compatible if 0s can be deleted from X
and/or from Y in such a way that the resulting 0-1 sequences X ′, Y ′ never have a 1
in the same position. For example, the sequences X = 000110 . . . and Y = 110101 . . .
are not compatible. Assume that X and Y are randomly generated with each Xi, Yj
independent and P(Xi = 1) = P(Yj = 1) = p. Intuition suggests that X and Y are
compatible with positive probability if and only if p is suitably small. What is the
supremum p∗ of such p? It is known [740, 741, 742, 743] that 100−400 < p∗ < 1/2;
simulation indicates [744] that 0.3 < p∗ < 0.305.

Consider what is called bootstrap percolation on the d-dimensional cubic lattice
with nd vertices: starting from a random set of initially “infected” sites, new sites
become infected at each time step if they have at least d infected neighbors and
infected sites remain infected forever. Assume that vertices of the initial set were
chosen independently, each with probability p. What is the critical probability pc(n, d)
for which the likelihood that the entire lattice is subsequently infected exceeds 1/2?
Holroyd [745] and Balogh, Bollobás & Morris [746] proved that

pc(n, 2) =
π2/18 + o(1)

ln(n)
, pc(n, 3) =

µ+ o(1)

ln(ln(n))

as n→ ∞, where

µ = −
∞∫

0

ln

(
1

2
− e−2x

2
+

1

2

√
1 + e−4 x − 4e−3x + 2e−2x

)

dx = 0.4039127202....

A closed-form expression for µ remains open.
5.19. Klarner’s Polyomino Constant. A new estimate 4.0625696... for α is

reported in [747] and a new rigorous lower bound of 3.980137... in [748]. The number
Ā(n) of row-convex n-ominoes satisfies [749]

Ā(n) = 5Ā(n− 1)− 7Ā(n− 2) + 4Ā(n− 3), n ≥ 5,
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with Ā(1) = 1, Ā(2) = 2, Ā(3) = 6 and Ā(4) = 19; hence Ā(n) ∼ u vn as n →
∞, where v = 3.2055694304... is the unique real zero of x3 − 5x2 + 7x − 4 and
u = (41v2−129v+163)/944 = 0.1809155018.... While the multiplicative constant for
parallelogram n-ominoes is now known to be 0.2974535058..., corresponding improved
accuracy for convex n-ominoes evidently remains open. A Central Limit Theorem
applies to the perimeter of a random parallelogram n-omino S, which turns out to
be normal with mean (0.8417620156...)n and standard deviation (0.4242065326...)

√
n

in the limit as n → ∞. Hence S is expected to resemble a slanted stack of fairly
short rods [612]. Again, corresponding quantities for a random convex n-omino are
not known. More on coin fountains and the constant 0.5761487691... can be found in
[750, 751, 752, 753].

5.20. Longest Subsequence Constants. Regarding common subsequences,
Lueker [754, 755] showed that 0.7880 ≤ γ2 ≤ 0.8263. The Sankoff-Mainville con-
jecture that limk→∞ γkk

1/2 = 2 was proved by Kiwi, Loebl & Matousek [756]; the
constant 2 arises from a connection with increasing subsequences. A deeper connec-
tion with the Tracy-Widom distribution from random matrix theory has now been
confirmed [757]:

E(λn,k) ∼ 2k−1/2n+ c1k
−1/6n1/3, Var(λn,k) ∼ c0k

−1/3n2/3

where k → ∞, n→ ∞ in such a way that n/k1/2 → 0.
Define λn,k,r to be the length of the longest common subsequence c of a and b

subject to the constraint that, if ai = bj are paired when forming c, then |i− j| ≤ r.
Define as well γk,r = limn→∞ E(λn,k,r)/n. It is not surprising [758] that limr→∞ γk,r =
γk. Also, γ2,1 = 7/10, but exact values for γ3,1, γ4,1, γ2,2 and γ2,3 remain open.

Here is a geometric formulation [759]. Given N independent uniform random
points {zj}Nj=1 in the unit square S, an increasing chain is a polygonal path that
links the southwest and northeast corners of S and whose other vertices are {zji}ki=1,
0 ≤ k ≤ N , assuming both Re(zji) and Im(zji) are strictly increasing with i. The
length of the chain is simply k. A variation of this requires that Re(zji) > Im(zji)
always (equivalently, the path never leaves the lower isosceles right triangle). If,
further, the region bounded by the path and the diagonal (hypotenuse) is convex,
then the path is a convex chain. Under such circumstances, it seems likely that the
length L′

N of longest convex chains satisfies

lim
N→∞

N−1/3 E(L′
N) = 3

(we know that the limit exists and lies between 1.5772 and 3.4249). This result
seems to be true as well for chains that link two corners of arbitrary (non-isosceles)
triangles.
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The Tracy-Widom distribution (specifically, FGOE(x) as described in [760]) seems
to play a role in other combinatorial problems [761, 762, 763], although the data is
not conclusive. See also [764, 765, 766].

5.21. k-Satisfiability Constants. On the one hand, the lower bound for rc(3)
was improved to 3.42 in [767] and further improved to 3.52 in [768]. On the other
hand, the upper bound 4.506 for rc(3) in [769] has not been confirmed; the preceding
two best upper bounds were 4.596 [770] and 4.571 [771]. See [772] for recent work on
XOR-SAT.

5.22. Lenz-Ising Constants. Improved estimates forKc = 0.11392..., 0.09229...,
0.077709... when d = 5, 6, 7 appear in [773]. Define Ising susceptibility integrals

Dn =
4

n!

∞∫

0

∞∫

0

· · ·
∞∫

0

∏

i<j

(
xi−xj
xi+xj

)2

(
∑n

k=1(xk + 1/xk))
2

dx1
x1

dx2
x2

. . .
dxn
xn

(also known as McCoy-Tracy-Wu integrals). Clearly D1 = 2 and D2 = 1/3; we also
have

D3

8π2
=

8 + 4π2/3− 27L−3(2)

8π2
= 0.000814462565...,

D4

16π3
=

4π2/9− 1/6− 7ζ(3)/2

16π3
= 0.000025448511...,

and the former is sometimes called the ferromagnetic constant [774, 775]. These
integrals are important because [776, 777]

π
∑

n≡1mod 2

Dn

(2π)n
= 1.0008152604... = 23/8 ln(1 +

√
2)7/4(0.9625817323...),

π
∑

n≡0mod 2

Dn

(2π)n
=

1.0009603287...

12π
= 23/8 ln(1 +

√
2)7/4(0.0255369745...)

and such constants c+0 , c
−
0 were earlier given in terms of a solution of the Painlevé III

differential equation.
The number of spanning trees in the d-dimensional cubic lattice with N = nd

vertices grows asymptotically as exp(hdN), where

hd =
1

(2π)d

π∫

−π

π∫

−π

· · ·
π∫

−π

ln

(

2d− 2

d∑

k=1

cos(θk)

)

dθ1 dθ2 · · · dθd

= ln(2d) +

∞∫

0

e−t

t

(

1− I0

(
t

d

)d
)

dt.
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Note the similarity with the formula for md on p. 323. We have [778]

h2 = 4G/π = 1.1662436161..., h3 = 1.6733893029...,

h4 = 1.9997076445..., h5 = 2.2424880598..., h6 = 2.4366269620....

Other forms of h3 have appeared in the literature [779, 780, 781]:

h3 − ln(2) = 0.9802421224..., h3 − ln(2)− ln(3) = −0.1183701662....

The corresponding constant for the two-dimensional triangular lattice is [782]

ĥ =
1

2
ln(3) +

6

π
Ti2

(
1√
3

)

= 1.6153297360...

where Ti2(x) is the inverse tangent integral (discussed on p. 57). Results for other
lattices are known [783, 784]; we merely mention a new closed-form evaluation:

ln(2)

2
+

1

16π2

π∫

−π

π∫

−π

ln [7− 3 cos(θ)− 3 cos(ϕ)− cos(θ) cos(ϕ)] dθ dϕ

=
G

π
+

1

2
ln(

√
2− 1) +

1

π
Ti2(3 + 2

√
2) = 0.7866842753...

associated with a certain tiling of the plane by squares and octagons.
5.23. Monomer-Dimer Constants. Friedland & Peled [785] and other authors

[786, 787, 788, 789, 790, 791] revisited Baxter’s computation of A and confirmed
that ln(A) = 0.66279897.... They also examined the three-dimensional analog, A′,
of A, yielding ln(A′) = 0.785966.... Butera, Federbush & Pernici [792] estimated
λ = 0.449... which is inconsistent with some earlier values.

For odd n, Tzeng & Wu [793, 794] found the number of dimer arrangements on
the n×n square lattice with exactly one monomer on the boundary. If the restriction
that the monomer lie on the boundary is removed, then enumeration is vastly more
difficult; Kong [795] expressed the possibility that this problem might be solvable
someday. Wu [796] examined dimers on various other two-dimensional lattices.

A trimer consists of three adjacent collinear vertices of the square lattice. The
trimer-covering analog of the entropy exp(2G/π) = 1.7916... is 1.60..., which is vari-
ously written as exp(0.475...) or as exp(3 · 0.15852...) [797, 798, 799, 800, 801, 802].

Ciucu &Wilson [803] discovered a constant 0.9587407138... that arises with regard
to the asymptotic decay of monomer-monomer correlation “in a sea of dimers” on
what is called the critical Fisher lattice.

5.24. Lieb’s Square Ice Constant. More on counting Eulerian orientations is
found in [804, 805].
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5.25. Tutte-Beraha Constants. For any positive integer r, there is a best
constant C(r) such that, for each graph of maximum degree ≤ r, the complex zeros
of its chromatic polynomial lie in the disk |z| ≤ C(r). Further, K = limr→∞C(r)/r
exists and K = 7.963906... is the smallest number for which

inf
α>0

1

α

∞∑

n=2

eαnK−(n−1)n
n−1

n!
≤ 1.

Sokal [806] proved all of the above, answering questions raised in [807, 808]. See also
[809].

6.1. Gauss’ Lemniscate Constant. Consider the following game [810]. Players
A and B simultaneously choose numbers x and y in the unit interval; B then pays A
the amount |x− y|1/2. The value of the game (that is, the expected payoff, assuming
both players adopt optimal strategies) isM/2 = 0.59907.... Also, let ξ1, ξ2, . . ., ξn, η1,
η2, . . ., ηn be distinct points in the plane and construct, with these points as centers,
squares of side s and of arbitrary orientation that do not overlap. Then

s ≤ L√
2









n∏

i=1

n∏

j=1

|ξi − ηj |
∏

i<j

|ξi − ξj| ·
∏

i<j

|ηi − ηj |









1/n

and the constant L/
√
2 = 1.85407... is best possible [811].

6.2. Euler-Gompertz Constant. We do not yet know whether C2 is transcen-
dental, but it cannot be true that both γ and C2 are algebraic [67, 812, 813, 814].
This result evidently follows from Mahler [89], who in turn was reporting on work by
Shidlovski [815]. Generalizations of C2 include [816, 817]

1

(m− 1)!

∞∫

0

tm−1e1−e
t

dt =







0.2659653850... if m = 2,
0.0967803251... if m = 3,
0.0300938139... if m = 4

which pertain to statistics governing restricted permutations and set partitions. For
actuarial background and history, consult [818].

The two quantities

I0(2) =

∞∑

k=0

1

(k!)2
= 2.2795853023..., J0(2) =

∞∑

k=0

(−1)k

(k!)2
= 0.2238907791...

are similar, but only the first is associated with continued fractions. Here is an
interesting occurrence of the second: letting [819]

a0 = a1 = 1, an = n an−1 − an−2 for n ≥ 2,
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we have limn→∞ an/n! = J0(2). The constant

C2 =

∞∫

0

e−x

1 + x
dx =

1∫

0

1

1− ln(y)
dy = 0.5963473623...

unexpectedly appears in [820], and the constant 2(1 − C1) = 0.6886409151... unex-
pectedly appears in [821]. Also, the divergent alternating series 0!−2!+4!−6!+− · · ·
has value [822]

∞∫

0

e−x

1 + x2
dx =

1∫

0

1

1 + ln(y)2
dy = 0.6214496242...

and, similarly, the series 1!− 3! + 5!− 7! +− · · · has value

∞∫

0

x e−x

1 + x2
dx = −

1∫

0

ln(y)

1 + ln(y)2
dy = 0.3433779615....

Let G(z) denote the standard normal distribution function and g(z) = G′(z). If
Z is distributed according to G, then [823]

E (Z | Z > 1) =
g(1)

G(−1)
=

1

C1
= 1.5251352761...,

E

({
Z if Z > 1,
0 otherwise

)

= g(1) =
1√
2πe

= 0.2419707245...,

E (max {Z − 1, 0}) = g(1)−G(−1) = 0.0833154705...

which contrast interestingly with earlier examples.
6.3. Kepler-Bouwkamp Constant. Additional references include [824, 825,

826, 827] and another representation is [828]

ρ =
310

√
3

27527 11 π
exp

[

−
∞∑

k=1

(
ζ(2k)− 1− 2−2k − 3−2k

)
22k
(
λ(2k)− 1− 3−2k

)

k

]

;

the series converges at the same rate as a geometric series with ratio 1/100. A relevant
inequality is [829]

∞∫

0

cos(2x)
∞∏

j=1

cos

(
x

j

)

dx <
π

8
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and the difference is less than 10−42! Powers of two are featured in the following:
[830, 831]

π∫

0

∣
∣
∣
∣
∣

n∏

m=0

sin (2mx)

∣
∣
∣
∣
∣
dx = κλn (1 + o(1))

as n → ∞, where κ > 0 and 0.654336 < λ < 0.663197. A prime analog of ρ is
[832, 833, 834]

∏

p≥3

cos

(
π

p

)

= 0.3128329295... = (3.1965944300...)−1

and variations abound. Also, the conjecture
∏

k≥1 tan(k) = 0 is probably false [835].
6.4. Grossman’s Constant. Somos [836] examined the pair of recurrences

an = an−1 + bn−1, bn = −an−1bn−1, a0 = −1, b0 = x

and conjectured that there exists a unique real number x = ξ for which both sequences
converge (quadratically) to 0, namely ξ = 0.0349587046.... The resemblance to the
AGM recursion is striking.

6.5. Plouffe’s Constant. This constant is included in a fascinating mix
of ideas by Smith [837], who claims that “angle-doubling” one bit at a time was
known centuries ago to Archimedes and was implemented decades ago in binary
cordic algorithms (also mentioned in section 5.14). Another constant of interest is
arctan(

√
2) = 0.9553166181..., which is the base angle of a certain isosceles spherical

triangle (in fact, the unique non-Euclidean triangle with rational sides and a single
right angle).

Chowdhury [838] generalized his earlier work on bitwise XOR sums and the logistic
map: A sample new result is

∞∑

n=0

ρ(bnbn−1)

2n+1
=

1

4π
⊕ 1

π

where bn = cos(2n). The right-hand side is computed merely by shifting the binary
expansion of 1/π two places (to obtain 1/(4π)) and adding modulo two without carries
(to find the sum).

6.6. Lehmer’s Constant. Rivoal [839] has studied the link between the rational
approximations of a positive real number x coming from the continued cotangent
representation of x, and the usual convergents that proceed from the regular continued
fraction expansion of x.

6.7. Cahen’s Constant. The usual meaning of “Let w be an infinite sequence”
(as fixed from the start) became distorted at the bottom of page 435. Let n ≥ 0.
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The value wn isn’t actually needed until qn+1 is calculated; once this is done, the
values wn+1 & wn+2 become known; these, in turn, give rise to qn+2 & qn+3 and so
forth. We look forward to reading [840].

6.8. Prouhet-Thue-Morse Constant. A follow-on to Allouche & Shallit’s
survey appears in [841]. Simple analogs of the Woods-Robbins and Flajolet-Martin
formulas are [82]

∞∏

m=1

(
2m

2m− 1

)(−1)m

=

√
2π3/2

Γ(1/4)2
,

∞∏

m=1

(
2m

2m+ 1

)(−1)m

=
Γ(1/4)2

25/2
√
π
;

we wonder about the outcome of exponent sequences other than (−1)m or (−1)tm .
See also [827, 842, 843, 844, 845, 846]. Beware of a shifted version, used in [847], of
our paper folding sequence (−1)sm .

Just as the Komornik-Loreti constant 1.7872316501... is the unique positive solu-
tion of ∞∑

n=1

tnq
−n = 1,

the (transcendental) constants 2.5359480481... and 2.9100160556... are unique posi-
tive solutions of [848]

∞∑

n=1

(1 + tn − tn−1)q
−n = 1,

∞∑

n=1

(1 + tn)q
−n = 1.

These correspond to q-developments with 0 ≤ εn ≤ 2 and 0 ≤ εn ≤ 3 (although
our numerical estimates differ from those in [849]). Incidently, the smallest q > ϕ
possessing a countably infinite number of q-developments with 0 ≤ εn ≤ 1 is algebraic
of degree 5 [850].

6.9. Minkowski-Bower Constant. The question mark satisfies the functional
equation [851]

?(x) =







1

2
?

(
x

1− x

)

if 0 ≤ x ≤ 1

2
,

1− 1

2
?

(
1− x

x

)

if
1

2
< x ≤ 1.

See [852, 853, 854] for generalizations. Kinney [855] examined the constant

α =
1

2





1∫

0

log2(1 + x)d?(x)





−1
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which acts as a threshold for Hausdorff dimension (of sets ⊂ [0, 1]). Lagarias [856]
computed that 0.8746 < α < 0.8749; the estimate 0.875 appears in [857, 858, 859,
860]; Alkauskas [861] improved this approximation to 0.8747163051.... See also [862].

6.10. Quadratic Recurrence Constants. In our asymptotic expansion for gn,
the final coefficient should be 138, not 137 [863, 864]. The sequence kn+1 = (1/n)k2n,
where n ≥ 0, is convergent if and only if

|k0| <
∞∏

j=1

(

1 +
1

j

)2−j

= 1.6616879496....

Moreover, the sequence either converges to zero or diverges to infinity [865, 866].
A systematic study of threshold constants like this, over a broad class of quadratic
recurrences, has never been attempted. The constant 1.2640847353... and Sylvester’s
sequence appear in an algebraic-geometric setting [867]. Also, results on Somos’
sequences are found in [868, 869] and on the products

11/221/431/8 · · · = 1.6616879496..., 11/321/931/27 · · · = 1.1563626843...

in [82, 115, 870, 871]. Calculating the area of M continues to attract attention
[872, 873, 874].

6.11. Iterated Exponential Constants. Consider the recursion

a1 = 1, an = an−1 exp

(
1

e an−1

)

for n ≥ 2. It is known that [875]

an =
n

e
+

ln(n)

2e
+
C

e
+ o(1), (n!)1/n =

n

e
+

ln(n)

2e
+

ln(
√
2π)

e
+ o(1)

as n→ ∞, where

C = e− 1 +
γ

2
+

1

2

∞∑

k=1

k − e ak
e k ak

+
∞∑

k=1

(

e ak+1 − e ak − 1− 1

2 e ak

)

= 1.2905502....

Further, an − (n!)1/n is strictly increasing and

an − (n!)1/n ≤
(

C − ln(
√
2π)
)

/e = 0.136708...

for all n. The constant is best possible. Putting bn = 1/(e an) yields the recursion
bn = bn−1 exp(−bn−1), for which an analogous asymptotic expansion can be written.
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The unique real zero zn of
∑n

k=0z
k/k!, where n is odd, satisfies limn→∞ zn/n =

W (e−1) = 0.2784645427... = (3.5911214766...)−1 [876, 877]. The latter value appears
in number theory [878, 879, 880], random graphs [881, 882, 883], ordered sets [884],
planetary dynamics [885], search theory [886, 887], predator-prey models [888] and
best-constant asymptotics [889].

From the study of minimum edge covers, given a complete bipartite graph, comes
W (1)2 +2W (1) = 1.4559380926... = 2(0.7279690463...) [890]. No analogous formula
is yet known for a related constant 0.55872...[891].

Also, 3−1e−1/3 = 0.2388437701... arises in [892] as a consequence of the formula
−W (−3−1e−1/3) = 1/3. Note that −W (−x) is the exponential generating function
for rooted labeled trees and hence is often called the tree function [893].

The equation x ex = 1 and numerous variations appear in [820, 894, 895, 896, 897,
898, 899, 900]. For example, let Sn be the set of permutations on {1, 2, . . . , n} and
σt be a continuous-time random walk on Sn starting from the identity I with steps
chosen as follows: at times of a rate one Poisson process, we perform a transposition
of two elements chosen uniformly at random, with replacement, from {1, 2, . . . , n}.
Define d(σt) to be the distance from I at time t, that is, the minimum number of
transpositions required to return to I. For any fixed c > 0, [901]

d(σc n/2) ∼
(

1−
∞∑

k=1

1

c

kk−2

k!
(c e−c)k

)

n

in probability as n → ∞. The coefficient simplifies to c/2 for c < 1 but is < c/2
otherwise. It is similar to the expansion

1 +
1

c
W (−c e−c) = 1−

∞∑

k=1

1

c

kk−1

k!
(c e−c)k,

differing only in the numerator exponent.
Consider the spread of a rumor though a population of n individuals. Assume that

the number of ignorants is initially αn and that the number of spreaders is (1−α)n,
where 0 < α < 1. A spreader-ignorant interaction converts the ignorant into a
spreader. When two spreaders interact, they stop spreading the rumor and become
stiflers. A spreader-stifler interaction results in the spreader becoming a stifler. All
other types of interactions lead to no change. Let θ denote the expected proportion
of initial ignorants who never hear the rumor, then as α decreases, θ increases (which
is perhaps surprising!) and [902, 903, 904, 905, 906, 907, 908]

0.2031878699... = θ(1−) < θ(α) < θ(0+) = 1/e = 0.3678794411...

as n→ ∞. The infimum of θ is the unique solution of the equation ln(θ)+2(1−θ) = 0
satisfying 0 < θ < 1, that is, θ = −W (−2e−2)/2.
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On the one hand, exp(x) = x has no real solution and sin(x) = x has no real
nonzero solution. On the other hand, x = 0.7390851332... appears in connection with
cos(x) = x [909, 910, 911].

As with the divergent alternating factorial series on p. 425, we can assign meaning
to [912]

∞∑

n=0

(−1)n nn =

∞∑

n=0




(−1)nnn

n!

∞∫

0

xne−xdx



 =

∞∫

0

e−x

1 +W (x)
dx = 0.7041699604...

which also appears on p. 263. A variation is [913]

∞∑

n=1

(−1)n+1 (2n)2n−1 =
∞∑

n=1




(−1)n+1(2n)2n−1

(2n)!

∞∫

0

x2ne−xdx





=

∞∫

0

ln

(

x
√

W (−i x)W (i x)

)

e−xdx = 0.3233674316....

which evidently is the same as [914, 915, 916]

∞∫

0

W (x) cos(x)

x(1 +W (x))
dx = 0.3233674316...

although a rigorous proof is not yet known. Another variation is [913]

∞∑

n=1

(−1)n+1 (2n− 1)2n =
i

2

∞∫

0

(
W (−i x)

[1 +W (−i x)]3
− W (i x)

[1 +W (i x)]3

)

e−xdx

= 0.0111203007....

The only two real solutions of the equation xx−1 = x + 1 are 0.4758608123...
and 2.3983843827..., which appear in [917]. Another example of striking coincidences
between integrals and sums is [918, 919]

∞∫

−∞

sin(x)

x
dx =

∞∫

−∞

sin(x)2

x2
dx = π =

∞∑

n=−∞

sin(n)

n
=

∞∑

n=−∞

sin(n)2

n2
;

more surprises include [920]

1∫

0

t−x tdt =
1

x

∞∑

k=1

(x

k

)k

= −
1∫

0

t−x t ln(t)dt
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for all real x. The integral [921]

lim
N→∞

2N∫

1

eiπxx1/xdx = 0.0707760393...− (0.6840003894...)i

= −2

π
i+ lim

N→∞

2N+1∫

1

eiπxx1/xdx

is analogous to the alternating series on p. 450 (since (−1)x = eiπx).
6.12. Conway’s Constant. A “biochemistry” based on Conway’s “chemistry”

appears in [922].
7.1. Bloch-Landau Constants. In the definitions of the sets F and G, the

functions f need only be analytic on the open unit disk D (in addition to satisfying
f(0) = 0, f ′(0) = 1). On the one hand, the weakened hypothesis doesn’t affect the
values of B, L, K or A; on the other hand, the weakening is essential for the existence
of f ∈ G such that m(f) = M . We now know that 0.57088586 < K ≤ 0.6563937
[923, 924, 925].

The bounds 0.62π < A < 0.7728π were improved by several authors, although
they studied the quantity Ã = π − A instead (the omitted area constant). Barnard
& Lewis [926] demonstrated that Ã ≤ 0.31π. Barnard & Pearce [927] established
that Ã ≥ 0.240005π, but Banjai & Trefethen [928] subsequently computed that Ã =
(0.2385813248...)π. It is believed that the earlier estimate was slightly in error. See
[929, 930, 931, 932] for related problems.

The spherical analog of Bloch’s constant B, corresponding to meromorphic func-
tions f mapping D to the Riemann sphere, was recently determined by Bonk &
Eremenko [933]. This constant turns out to be arccos(1/3) = 1.2309594173.... A
proof as such gives us hope that someday the planar Bloch-Landau constants will
also be exactly known [934, 935].

More relevant material is found in [473, 936].
7.2. Masser-Gramain Constant. It is now known that 1.819776 < δ <

1.819833, overturning Gramain’s conjecture [937]. Suppose f(z) is an entire function
such that f (k)(n) is an integer for each nonnegative integer n, for each integer 0 ≤
k ≤ s − 1. (We have discussed only the case s = 1.) The best constant θs > 0 for
which

limsup
r→∞

ln(Mr)

r
< θs implies f is a polynomial

was proved by Bundschuh & Zudilin [938], building on Gel’fond [939] and Selberg
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[940], to satisfy

s · π
3
≥ θs >







0.994077... if s = 2,
1.339905... if s = 3,
1.674474... if s = 4.

(Actually they proved much more.) Can a Gaussian integer-valued analog of these
integer-valued results be found?

7.3. Whittaker-Goncharov Constants. The lower bound 0.73775075 < W ,
due to Waldvogel (using Goncharov polynomials), appears only in Varga’s survey; it
is not mentioned in [941]. Minimum modulus zero-finding techniques provide the
upper bound W ≤ 0.7377507574...(correcting <). Both bounds are non-rigorous.
The “third constant” involves zero-free disks for the Rogers-Szegö polynomials:

Gn+1(z, q) = (1 + z)Gn(z, q)− (1− qn)Gn−1(z, q), n ≥ 0,

G−1(z, q) ≡ 0, G0(z, q) ≡ 1

where q ∈ C. Let

rn = inf {|z| : Gn(z, q) = 0 and |q| = 1} ,

then numerical data suggests [941]

rn =
(

3− 2
√
2
)

+ (0.3833...)n−2/3 +O
(
n−4/3

)

as n → ∞. A proof remains open. Such asymptotics are relevant to study of the
partial theta function

∑∞
j=0 q

j(j−1)/2zj and associated Padé approximant convergence
properties.

7.4. John Constant. Consider analytic functions f defined on the unit disk D
that satisfy f(0) = 0, f ′(0) = 1 and

ℓ ≤
∣
∣
∣
∣

z f ′(z)

f(z)

∣
∣
∣
∣
≤ L

at all points z ∈ D. The ratio plays the same role as |f ′(z)| did originally. What is
the largest number δ such that L/ℓ ≤ δ implies that f is univalent (on D)? Kim &
Sugawa [942, 943] proved that exp(7π/25) < δ < exp(5π/7) and stated that tighter
bounds are possible. No Gevirtz-like conjecture governing an exact expression for δ
has yet been proposed.

7.5. Hayman Constants. New bounds [944, 945, 946, 947, 948, 949, 950] for
the Hayman-Korenblum constant c(2) are 0.28185 and 0.67789. An update on the
Hayman-Wu constant appears in [951].



Errata and Addenda to Mathematical Constants 69

7.6. Littlewood-Clunie-Pommerenke Constants. The lower limit of sum-
mation in the definition of S2 should be n = 0 rather than n = 1, that is, the coefficient
b0 need not be zero. We have sharp bounds |b1| ≤ 1, |b2| ≤ 2/3, |b3| ≤ 1/2 + e−6

[952]. The bounds on γk due to Clunie & Pommerenke should be 0.509 and 0.83 [953];
Carleson & Jones’ improvement was nonrigorous. While 0.83 = 1− 0.17 remains the
best established upper bound, the lower bound has been increased to 0.54 = 1− 0.46
[954, 955, 956]. Numerical evidence for both the Carleson-Jones conjecture and Bren-
nan’s conjecture was found by Kraetzer [957]. Theoretical evidence supporting the
latter appears in [958], but a complete proof remains undiscovered. It seems that
α = 1−γ is now a theorem [959, 960] whose confirmation is based on the recent work
of several researchers [961, 962, 963].

7.7. Riesz-Kolmogorov Constants. The constant C1 appears recently, for
example, in [964].

7.8. Grötzsch Ring Constants. The phrase “planar ring” appearing in the
first sentence should be “planar region”.

8.1. Geometric Probability Constants. Just as the ratio of a semicircle to
its radius is always π, the ratio of the latus rectum arc of any parabola to its semi
latus rectum is [965]

√
2 + ln

(

1 +
√
2
)

= 2.2955871493... = 2(1.1477935746...)

Is it mere coincidence that this constant is so closely related to the quantity δ(2)?
Just as the ratio of the area of a circle to its radius squared is always π, the ratio
of the area of the latus rectum segment of any equilateral hyperbola to its semi-axis
squared is [966] √

2− ln
(

1 +
√
2
)

= 0.5328399753....

The similarity in formulas is striking: length of one conic section (universal parabolic
constant) versus area of another (universal equilateral hyperbolic constant).

Consider the logarithm Λ of the distance between two independent uniformly
distributed points in the unit square. The constant

exp (E(Λ)) = exp

(−25 + 4π + 4 ln(2)

12

)

= 0.4470491559... = 2(0.2235245779...)

appears in calculations of electrical inductance of a long solitary wire with small
rectangular cross section [967, 968, 969, 970]. If the wire is fairly short, then more
complicated formulas apply [971, 972, 973]. The constants

e−1/4 = 0.7788007830..., e−3/2 = 0.2231301601...

appear instead for cross sections in the form of a disk and an interval, respectively.
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The expected distance between two random points on different sides of the unit
square is [829]

2 +
√
2 + 5 ln

(
1 +

√
2
)

9
= 0.8690090552...

and the expected distance between two random points on different faces of the unit
cube is

4 + 17
√
2− 6

√
3− 7π + 21 ln

(
1 +

√
2
)
+ 21 ln

(
7 + 4

√
3
)

75
= 0.9263900551...

See [974, 975] for expressions involving δ(4), ∆(4) and ∆(5). Asymptotics of δp(n)
and ∆p(n) in the ℓp norm as n → ∞, for fixed p > 0, are found in [976]. See
[977, 978, 979, 980, 981, 982, 983, 984] for results not in a square, but in an equilateral
triangle or regular hexagon. The constant 2

√
πM appears in [985]. Also, the convex

hull of random point sets in the unit disk (rather than the unit square) is mentioned
in [986], and properties of random triangles are extensively covered in [987].

8.2. Circular Coverage Constants. The coefficient of x16 in the minimal
polynomial for r(6) should be −33449976. Fejes Tóth [988] proved the conjectured
formula for r(N) when 8 ≤ N ≤ 10. Here is a variation of the elementary problems
at the end. Imagine two overlapping disks, each of radius 1. If the area A of the
intersection is equal to one-third the area of the union, then clearly A = π/2. The
distance w between the centers of the two circles is w = 0.8079455065..., that is, the
unique root of the equation

2 arccos
(w

2

)

− 1

2
w
√
4− w2 =

π

2

in the interval [0, 2]. If “one-third” is replaced by “one-half”, then π/2 is replaced by
2π/3 and Mrs. Miniver’s constant 0.5298641692... emerges instead.

8.3. Universal Coverage Constants. Elekes [989] improved the lower bound
for µ to 0.8271 and Brass & Sharifi [990] improved this further to 0.832. Computer
methods were used in the latter to estimate the smallest possible convex hull of
a circle, equilateral triangle and regular pentagon, each of diameter 1. Hansen
evidently made use of reflections in his convex cover, as did Duff in his nonconvex
cover; Gibbs [991, 992] claimed a reduced upper bound of 0.844112 for the convex
case, using reflections. It would seem that Sprague’s upper bound remains the best
known for displacements, strictly speaking. Two additional references for translation
covers include [993, 994].

8.4. Moser’s Worm Constant. Coulton & Movshovich [995] proved Besi-
covitch’s conjecture that every worm of unit length can be covered by an equilat-
eral triangular region of area 7

√
3/27. The upper bound for µ was decreased [996]
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to 0.270912; the lower bound for µ was increased [997, 998] to 0.232239. New
bounds 0.096694 < µ′ < 0.112126 appear in [999]. Relevant progress is described in
[1000, 1001, 1002, 1003]. We mention, in Figure 8.3, that the quantity x = sec(ϕ) =
1.0435901095... is algebraic of degree six [1004, 1005]:

3x6 + 36x4 + 16x2 − 64 = 0

and wonder if this is linked to Figure 8.7 and the Reuleaux triangle of width 1.5449417003...
(also algebraic of degree six [1006]). The latter is the planar set of maximal constant
width that avoids all vertices of the integer square lattice. See [1007, 1008] for
discussion of Zalgaller’s work in 3-space.

8.5. Traveling Salesman Constants. Let δ =
(√

2 + ln(1 +
√
2)
)
/6, the

average distance from a random point in the unit square to its center (page 479).
If we identify edges of the unit square (wrapping around to form a torus), then
E(L2(n))/δ = n for n = 2, 3 but E(L2(4))/δ ≈ 3.609.... A closed-form expression for
the latter would be good to see [1009]. The best upper bound on β ′

2 is now 0.6321
[1010]; more numerical estimates of β2 = 0.7124... appear in [1011].

The random links TSP β = 2.0415... possesses an alternative formulation [891,
1012]: let y > 0 be defined as an implicit function of x via the equation

(

1 +
x

2

)

e−x +
(

1 +
y

2

)

e−y = 1,

then

β =
1

2

∞∫

0

y(x) dx = 2.0415481864... = 2(1.0207740932...).

This constant is the same if the lengths are distributed according to Exponential(1)
rather than Uniform[0,1]. If instead lengths are equal to the square roots of expo-
nential variables, the resulting constant is 1.2851537533... = (1.8174818677...)/

√
2 =

(0.7250703609...)
√
π.

Other proofs that the minimum matching β = π2/12 are known; see [1013]. If (as
in the preceding) lengths are equal to the square roots of exponential variables, the
resulting constant is 0.5717590495... = (1.1435180991...)/2 = (0.3225805000...)

√
π,

recovering Mézard & Parisi’s calculation [1014]. An integral equation-based formula
for the latter is [891, 1015]

β = 2

∞∫

0

∞∫

−y

(x+ y)f(x)f(y) dx dy where f(x) = exp



−2

∞∫

0

t f(t− x) dt



 .
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The cavity method is applied in [1016] to matchings on sparse random graphs.
Also, for the cylinder graph Pn × Ck on (n+ 1)k vertices with independent Uniform
[0, 1] random edge-lengths, we have

lim
n→∞

1

n
LMST(Pn × Ck) = γ(k)

almost surely, where k is fixed and [1017]

γ(2) = −
1∫

0

(x− 1)2(2x3 − 3x2 + 2)

x4 − 2x3 + x2 − 1
dx

= 2− 1√
5
ln

(√
5− 1√
5 + 1

)

− π√
3
= 0.6166095767...,

γ(3) = −
1∫

0

(x− 1)3(3x8 − 11x7 + 13x6 + x5 − 18x4 + 14x3 + 3x2 − 3x− 3)

x10 − 5x9 + 10x8 − 10x7 + x6 + 11x5 − 11x4 + 2x3 + x2 − 1
dx

= 0.8408530104...

and γ(4) = 1.09178....
8.6. Steiner Tree Constants. Doubt has been raised [1018, 1019] about the

validity of the proof by Du & Hwang of the Gilbert & Pollak conjecture.
8.7. Hermite’s Constants. A lattice Λ in Rn consists of all integer linear

combinations of a set of basis vectors {ej}nj=1 for R
n. If the fundamental parallelepiped

determined by {ej}nj=1 has Lebesgue measure 1, then Λ is said to be of unit volume.
The constants γn can be defined via an optimization problem

γn = max
unit volume
lattices Λ

min
x∈Λ,
x 6=0

‖x‖2

and are listed in Table 8.10. The precise value of the next constant 2 ≤ γ9 < 2.1327
remains open [1020, 1021, 1022], although Cohn & Kumar [1023, 1024] have recently
proved that γ24 = 4. A classical theorem [1025, 1026, 1027] provides that γnn is
rational for all n. It is not known if the sequence γ1, γ2, γ3, . . . is strictly increasing,
or if the ratio γn/n tends to a limit as n→ ∞. See also [1028, 1029].

Table 8.10. Hermite’s constants γn

n Exact Decimal n Exact Decimal

1 1 1 5 81/5 1.5157165665...

2 (4/3)1/2 1.1547005383... 6 (64/3)1/6 1.6653663553...

3 21/3 1.2599210498... 7 641/7 1.8114473285...

4 41/4 1.4142135623... 8 2 2
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An arbitrary packing of the plane with disks is called compact if every disk D is
tangent to a sequence of disks D1, D2, . . ., Dn such that Di is tangent to Di+1 for
i = 1, 2, . . ., n with Dn+1 = D1. If we pack the plane using disks of radius 1, then the
only possible compact packing is the hexagonal lattice packing with density π/

√
12.

If we pack the plane using disks of radius 1 and r < 1 (disks of both sizes must be
used), then there are precisely nine values of r for which a compact packing exists.
See Table 8.11. For seven of these nine values, it is known that the densest packing
is a compact packing; the same is expected to be true for the remaining two values
[1030, 1031, 1032].

Table 8.11. All nine values of r < 1 which allow compact packings

Exact (expression or minimal polynomial) Decimal

5− 2
√
6 0.1010205144...

(2
√
3− 3)/3 0.1547005383...

(
√
17− 3)/4 0.2807764064...

x4 − 28x3 − 10x2 + 4x+ 1 0.3491981862...
9x4 − 12x3 − 26x2 − 12x+ 9 0.3861061048...√
2− 1 0.4142135623...

8x3 + 3x2 − 2x− 1 0.5332964166...
x8 − 8x7 − 44x6 − 232x5 − 482x4 − 24x3 + 388x2 − 120x+ 9 0.5451510421...
x4 − 10x2 − 8x+ 9 0.6375559772...

There is space to only mention the circle-packing rigidity constants sn [1033], their
limiting behavior:

lim
n→∞

n sn =
24/3

3

Γ(1/3)2

Γ(2/3)
= 4.4516506980...

and their connection with conformal mappings. Also, the tetrahedral analog of
Kepler’s sphere packing density is possibly 4000/4671 = 0.856347... [1034, 1035, 1036],
but a proof would likely be exceedingly hard. A “second-order constant” in Hales’
theorem is now better understood [1037].

In a recent breakthrough, Viazovska [1038, 1039] determined that ∆8 = π4/384
(as expected); follow-on work [1040] gave ∆24 = π12/479001600.

8.8. Tammes’ Constants. Recent conjectures give [1041]

λ = 3

(
8π√
3

)1/2

ζ

(

−1

2

)

β

(

−1

2

)

= −0.3992556250...

(data fitting earlier predicted λ ≈ −0.401) and

µ = ln(2) +
1

4
ln

(
2

3

)

+
3

2
ln

( √
π

Γ(1/3)

)

= −0.0278026524... =
−0.0556053049...

2
.
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(improving on µ ≈ −0.026). Let nonzero α satisfy −4 < α < 2. The asymptotics
for α = ±1 are subsumed by

E(α,N) =

{
2α

2+α
N2 + 3

(
8π√
3

)α/2

ζ
(
−α

2

)
β
(
−α

2

)
N1−α/2 + o

(
N1−α/2) if α 6= 2,

1
8
N2 ln(N) + c

2
N2 +O(1) if α = 2

as N → ∞, where

c =
1

4
[2γ + ln (8/3) + 3 ln(π)− 6 ln (Γ (1/3))] = −0.0857684103...

and the expression for c, originally given in terms of generalized Stieltjes constants,
follows from [144, 1042].

Consider the problem of covering a sphere by N congruent circles (spherical caps)
so that the angular radius of the circles will be minimal. For N = 8, 9, 11 the
conjectured best covering configurations remain unproven [1043, 1044, 1045, 1046,
1047].

8.9. Hyperbolic Volume Constants. Exponentially improved lower bounds
for f(n) are now known [1048]. Let H(n) = ξn/ηn (due to Smith) and K(n) =
(n + 1)(n−1)/2 (due to Glazyrin). We have f(n) ≥ K(n) always and

lim
n→∞

(
K(n)

E(n)

)1/n

=
e

2
= 1.3591409142... > 1.2615225101... =

√
e

2
c = lim

n→∞

(
H(n)

E(n)

)1/n

where E(n) = 2n(n+1)−(n+1)/2n! (simple bound used for comparison). Alternatively,

lim
n→∞

K(n)1/n√
n

= 1 > 0.9281763921... =

√

2

e
c = lim

n→∞

H(n)1/n√
n

.

For n > 2, a dissection of the n-cube need not be a triangulation; the term “simplex-
ity” can be ambiguous in the literature. See also [1049].

8.10. Reuleaux Triangle Constants. In our earlier entry [8.4], we ask about
the connection between two relevant algebraic quantities [1004, 1006], both zeroes of
sextic polynomials.

8.11. Beam Detection Constants. The shortest opaque set or barrier for the
circle remains unknown; likewise for the square and equilateral triangle [1050, 1051,
1052, 1053]. See [1007, 1008] for discussion of Zalgaller’s work in 3-space.

8.12. Moving Sofa Constant. The passage of an ℓ × w rectangular piano
around a right-angled corner in a hallway of before-width u and after-width v can be
determined by checking the sign of a certain homogenous sextic polynomial in ℓ, r, u, v,
where ℓ > u ≥ v > w [1054]. Progress toward confirming Gerver’s conjecture appears
in [1055].
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8.13. Calabi’s Triangle Constant. See [1056] for details underlying the main
result.

8.14. DeVicci’s Tesseract Constant. DeVicci’s manuscript [1057] is available
online, as are Ligocki & Huber’s extensive numerical experiments [1058].

8.15. Graham’s Hexagon Constant. Bieri [1059] partially anticipated Gra-
ham’s result. A nice presentation of Reinhardt’s isodiametric theorem is found in
[1060].

8.16. Heilbronn Triangle Constants. Another vaguely-related problem in-
volves the maximum M and minimum m of the

(
n
2

)
pairwise distances between n

distinct points in R2. What configuration of n points gives the smallest possible ratio
rn =M/m? It is known that [1061, 1062]

r3 = 1, r4 =
√
2, r5 = ϕ, r6 = (ϕ

√
5)1/2, r7 = 2, r8 = ψ

where ϕ is the Golden mean and ψ = csc(π/14)/2 has minimal polynomial ψ3−2ψ2−
ψ+1. We also have r12 =

√

5 + 2
√
3 and an asymptotic result of Thue’s [1063, 1064]:

lim
n→∞

n−1/2rn =

√

2
√
3

π
.

Erdős wrote that the corresponding value of limn→∞ n−1/3rn for point sets in R3 is

not known. Cantrell [1065, 1066] wrote that it should be 3

√

3
√
2/π, that is, the cube

root of the reciprocal of the Kepler packing density (proved by Hales).
8.17. Kakeya-Besicovitch Constants. Reversal of line segments in higher

dimensional regions is the subject of [1067].
8.18. Rectilinear Crossing Constant. We now know ν̄(Kn) for all n ≤ 30

except n ∈ {28, 29} – see Table 8.12 – and consequently 0.379972 < ρ < 0.380488
[1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079].

Table 8.12. Values of ν̄(Kn), n > 12

n 13 14 15 16 17 18 19 20
ν̄(Kn) 229 324 447 603 798 1029 1318 1657

n 21 22 23 24 25 26 27 30
ν̄(Kn) 2055 2528 3077 3699 4430 5250 6180 9726

The validity of Guy’s conjectured expression Z(n) (more appropriately named after
Hill [1080, 1081]) remains open, although the ratio ν(Kn)/Z(n) is asymptotically
≥ 0.8594 as n→ ∞ [1082, 1083, 1084, 1085]. It is well-known that q(R) = 25/36 ≈
0.694 when R is a rectangle. If instead the four points are bivariate normally dis-
tributed, then

q = 3 (1− 2 arcsec(3)/π) ≈ 0.649 < 2/3.
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The proof uses expectation formulas for the number of vertices [1086, 1087] and for
order statistics [1088, 1089].

8.19. Circumradius-Inradius Constants. The phrase “Z-admissible” in the
caption of Figure 8.22 should be replaced by “Z-allowable”.

8.20. Apollonian Packing Constant. The packing exponent is calculated to
high precision 1.3056867280... in [1090]; it appears in a setting [1091] which vastly
generalizes the circular configurations portrayed in Figure 8.23.

8.21. Rendezvous Constants. It is now known [1092] that r(T ) ≤ R2 ≤ S2 ≤
0.678442; proof that S2 = R2 = r(T ) = 0.6675277360... remains open.

Table of Constants. The formula corresponding to 0.8427659133... is (12 ln(2))/π2

and the formula corresponding to 0.8472130848... is M/
√
2.

2. Second Volume

1.30. Signum Equations and Extremal Coefficients. The open issue raised
in the final sentence was addressed by Sudler [1093] (with numerical work by A.
Hurwitz) and Wright [1094]:

λmax(n) ∼ B
eKn

n
, n ≡ 0mod 4, as n→ ∞

where
K = ln(2) +G(x0) = 0.1986176152... = ln(1.2197154761...),

B =
2
√
2eK

(4− e2K)1/4
= 2.7402229903....

See also [1095, 1096].
4.23. Electing a Leader. In the expression for E(Ṽn), the fraction π2/16 is

incorrect and should be π2/8 instead [662]. Thus, in the next sentence, the size differ-
ence is π2/(8 ln(2)) = 1.7798536656..., considerably larger than the height difference.
Here is another shooting problem (not to be confused with riflery described in our
entry [5.9]). We start with n assassins in a room. At each integer time ≥ 1, each
surviving assassin fatally shoots a randomly chosen surviving assassin (other than
oneself; two people may conceivably choose each other). Eventually we reach a state
with either 0 or 1 survivors. Let pn denote the probability of 0 survivors. Simulation
suggests that pn does not converge as n increases, but is asymptotically periodic on
the ln(n) scale with period 1 and [1097]

lim inf pn ≤ 0.477449, 0.515428 ≤ lim sup pn

as n→ ∞. Quantitative performance of distributed algorithms for transmitting data
(specifically, in resolving conflicts, maximum finding and list sorting) is surveyed in
[662].
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for π, Ramanujan J. 10 (2005) 305–324; MR2193382 (2006h:11142).

[55] A. Levin, A geometric interpretation of an infinite product for the lem-
niscate constant, Amer. Math. Monthly 113 (2006) 510–520; MR2231136
(2009b:33031).

[56] C. L. Adler and J. Tanton, π is the minimum value for pi, College Math. J. 31
(2000) 102–106; MR1766159 (2001c:11141).

http://arxiv.org/abs/0801.0963
http://arxiv.org/abs/1204.2451
http://arxiv.org/abs/1305.6247


Errata and Addenda to Mathematical Constants 81

[57] L. D. Servi, Nested square roots of 2, Amer. Math. Monthly 110 (2003) 326–
330; MR1984573.

[58] M. A. Nyblom, More nested square roots of 2, Amer. Math. Monthly 112
(2005) 822–825; MR2179862 (2006f:11154).
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[77] S. Selberg, Über die Reihe für die Eulersche Konstante, die von E. Jacob-
sthal und V. Brun angegeben ist, Norske Vid. Selsk. Forh. 12 (1939) 89–92;
MR0001315 (1,216e).

[78] M. Koecher, Einige Bemerkungen zur Eulerschen Konstanten, Bayer.
Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 1989 (1990) 9–16; MR1086006
(91k:11118).

[79] J. W. L. Glaisher, On Dr. Vacca’s series for γ, Quart. J. Pure Appl. Math. 41
(1910) 365–368.

[80] J. Sondow, Double integrals for Euler’s constant and ln(4/π) and an ana-
log of Hadjicostas’s formula, Amer. Math. Monthly 112 (2005) 61–65;
math.CA/0211148; MR2110113 (2005i:11181).

[81] J. Sondow, New Vacca-type rational series for Euler’s constant and its “al-
ternating” analog ln(4/π), Additive Number Theory, ed. D. Chudnovsky
and G. Chudnovsky, Springer-Verlag, 2010, pp. 331–340; math.NT/0508042;
MR2744766 (2012b:11202).

http://arxiv.org/abs/math/0211148
http://arxiv.org/abs/math/0508042


Errata and Addenda to Mathematical Constants 83

[82] J. Sondow and P. Hadjicostas, The generalized-Euler-constant function γ(z)
and a generalization of Somos’s quadratic recurrence constant, J. Math. Anal.
Appl. 332 (2007) 292–314; math.CA/0610499; MR2319662 (2008f:40013).

[83] B. C. Berndt and D. C. Bowman, Ramanujan’s short unpublished manuscript
on integrals and series related to Euler’s constant, Constructive, Experimental,
and Nonlinear Analysis, Proc. 1999 Limoges conf., ed. M. Théra, Amer. Math.
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Impériale des Sciences de St.-Pétersbourg, VIIe série, t. 37, n. 9;
http://www.math.mun.ca/˜sergey/Research/History/Markov/markov1890.html.

[101] M. Kondratieva and S. Sadov, Markov’s transformation of series and the WZ
method, Adv. Appl. Math. 34 (2005) 393–407; math.CA/0405592; MR2110559
(2005k:65006).

[102] M. Mohammed and D. Zeilberger, The Markov-WZ method (2004),
http://www.math.rutgers.edu/˜zeilberg/mamarim/mamarimhtml/marwz.html.

[103] B. C. Berndt, Ramanujan’s Notebooks. Part II, Springer-Verlag, 1989, p. 293;
MR0970033 (90b:01039).

[104] L. Vepstas, On Plouffe’s Ramanujan identities, math.NT/0609775.

[105] S. Plouffe, Identities inspired by Ramanujan notebooks (part 2),
http://www.plouffe.fr/simon/inspired22.html.

[106] Y.-C. Kim, ζ(5) is irrational, arXiv:1105.0730.

http://www.math.mun.ca/~sergey/Research/History/Markov/markov1890.html
http://arxiv.org/abs/math/0405592
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/marwz.html
http://arxiv.org/abs/math/0609775
http://www.plouffe.fr/simon/inspired22.html
http://arxiv.org/abs/1105.0730


Errata and Addenda to Mathematical Constants 85

[107] S. K. Sekatskii, S. Beltraminelli and D. Merlini, On equalities involving inte-
grals of the logarithm of the Riemann ζ-function and equivalent to the Rie-
mann hypothesis, Ukrainian Math. J. 64 (2012) 247–261; arXiv:0904.1277;
MR3104761.

[108] S. K. Sekatskii, S. Beltraminelli and D. Merlini, On equalities involving in-
tegrals of the logarithm of the Riemann ζ-function with exponential weight
which are equivalent to the Riemann hypothesis, Internat. J. Anal. (2015)
A980728; arXiv:1006.0323; MR3417553.

[109] R. Boughezal, J. B. Tausk and J. J. van der Bij, Three-loop electroweak correc-
tions to the W -boson mass and sin2 θlepteff in the large Higgs mass limit, Nuclear
Phys. B 725 (2005) 3–14; arXiv:hep-ph/0504092.

[110] D. Broadhurst, Feynman’s sunshine numbers, arXiv:1004.4238.

[111] T. Rivoal and W. Zudilin, Diophantine properties of numbers related to Cata-
lan’s constant, Math. Annalen 326 (2003) 705–721; MR2003449 (2004k:11119).

[112] F. Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math.
Soc. 11 (1979) 268–272; MR0554391 (81j:10045).

[113] V. S. Adamchik, Integral and series representations for Catalan’s constant,
entry 18, http://www-2.cs.cmu.edu/˜adamchik/articles/catalan.htm.
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Iwaniec, and J. Urbanowicz, de Gruyter, 1999, pp. 1099–1129; MR1689563
(2000g:11077).

[585] K. Ford, S. V. Konyagin and F. Luca, Prime chains and Pratt trees, Geom.
Funct. Anal. 20 (2010) 1231–1258; arXiv:0904.0473 (only v. 1 & 2 exhibit
1.916045...); MR2746953 (2012b:11151).

[586] N. Pippenger, Random cyclations, Elec. J. Combin. 20 (2013) R9;
arXiv:math/0408031; MR3139394.

[587] G. V. Proskurin, The distribution of the number of vertices in the strata of a
random mapping (in Russian), Teor. Verojatnost. i Primenen. 18 (1973) 846–
852, Engl. transl. in Theory Probab. Appl. 18 (1973) 803–808; MR0323608 (48
#1964).

[588] V. F. Kolchin, Random Mappings, Optimization Software Inc., 1986, pp. 164–
171, 177–197; MR0865130 (88a:60022).

[589] D. J. Aldous and J. Pitman, Brownian bridge asymptotics for random
mappings, Random Structures Algorithms 5 (1994) 487–512; MR1293075
(95k:60055).

[590] D. J. Aldous and J. Pitman, The asymptotic distribution of the diameter
of a random mapping, C. R. Math. Acad. Sci. Paris 334 (2002) 1021–1024;
MR1913728 (2003e:60014).

[591] V. E. Stepanov, Limit distributions of certain characteristics of random map-
pings (in Russian) Teor. Verojatnost. i Primenen. 14 (1969) 639–653; Engl.
transl. in Theory Probab. Appl. 14 (1969) 612–626; MR0278350 (43 #4080).

[592] S. Chowla, I. N. Herstein and W. K. Moore, On recursions connected with sym-
metric groups. I, Canadian J. Math. 3 (1951) 328–334; MR0041849 (13,10c).

http://www.csis.pace.edu/~ctappert/srd2005/b3.pdf
http://arxiv.org/abs/1406.1781
http://arxiv.org/abs/0904.0473
http://arxiv.org/abs/math/0408031


Errata and Addenda to Mathematical Constants 122

[593] J. Wimp and D. Zeilberger, Resurrecting the asymptotics of linear recurrences,
J. Math. Anal. Appl. 111 (1985) 162–176; MR0808671 (87b:05015).

[594] L. Moser and M. Wyman, On solutions of xd = 1 in symmetric groups, Canad.
J. Math. 7 (1955) 159–168; MR0068564 (16,904c).

[595] J. Blum, Enumeration of the square permutations in Sn, J. Combin. Theory
Ser. A 17 (1974) 156–161; MR0345833 (49 #10563).

[596] E. A. Bender, Asymptotic methods in enumeration, SIAM Rev. 16 (1974)
485-515; errata 18 (1976) 292; MR0376369 (51 #12545) and MR0437344 (55
#10276).

[597] H. S. Wilf, generatingfunctionology, 2nd ed., Academic Press, 1994, pp. 146–
150; MR1277813 (95a:05002).

[598] N. Pouyanne, On the number of permutations admitting an m-th root, Elec.
J. Combin. 9 (2002) R3; MR1887084 (2003a:05016).

[599] P. Flajolet, E. Fusy, X. Gourdon, D. Panario and N. Pouyanne, A hybrid
of Darboux’s method and singularity analysis in combinatorial asymptotics,
Elec. J. Combin. 13 (2006) R103; MR2274318 (2008d:33003).

[600] E. Schmutz, Period lengths for iterated functions, Combin. Probab. Comput.
20 (2011) 289–298; http://www.math.drexel.edu/˜eschmutz/; MR2769193
(2012d:05412).

[601] J. D. Dixon and D. Panario, The degree of the splitting field of a random
polynomial over a finite field, Elec. J. Combin. 11 (2004) R70; MR2097336
(2006a:11165).

[602] E. Schmutz, Splitting fields for characteristic polynomials of matrices
with entries in a finite field, Finite Fields Appl. 14 (2008) 250–257;
http://www.math.drexel.edu/˜eschmutz/; MR2381491 (2008m:12006).

[603] P. Bundschuh, Zur Note von Lehmer über eine Konstante von Erdős-Turán,
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Lambert series, Integers 13 (2013) A58; arXiv:1206.0340; MR3106104.

[675] P. Flajolet and R. Sedgewick, Digital search trees revisited, SIAM Rev. 15
(1986) 748-767; MR0850421 (87m:68014).

[676] N. Litvak and W. R. van Zwet, On the minimal travel time needed to collect n
items on a circle, Annals Appl. Probab. 14 (2004) 881–902; math.PR/0405294;
MR2052907 (2004m:90006).

[677] N. Kurokawa and M. Wakayama, On q-analogues of the Euler constant and
Lerch’s limit formula, Proc. Amer. Math. Soc. 132 (2004) 935–943; MR2045407
(2005d:33022).

[678] C.-L. Fu, C.-Y. Qiu and Y.-B. Zhu, A note on ”Sideways heat equation
and wavelets” and constant e∗, Comput. Math. Appl. 43 (2002) 1125–1134;
MR1892489 (2003a:35193).

http://arxiv.org/abs/math/0306226
http://arxiv.org/abs/1210.5642
http://arxiv.org/abs/1206.0340
http://arxiv.org/abs/math/0405294


Errata and Addenda to Mathematical Constants 129

[679] C.-Y. Qiu, C.-L. Fu and Y.-B. Zhu, Wavelets and regularization of the side-
ways heat equation, Comput. Math. Appl. 46 (2003) 821–829; MR2020441
(2004m:65141).

[680] C.-Y. Qiu and C.-L. Fu, Wavelets and regularization of the Cauchy problem for
the Laplace equation, J. Math. Anal. Appl. 338 (2008) 1440–1447; MR2386510
(2009d:35036).
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Sanz-Solé, J. Soria, J. L. Varona and J. Verdera, Europ. Math. Soc., 2007, pp.
545–579; math.CO/0512035; MR2334203 (2008d:05002).

[767] A. C. Kaporis, L. M. Kirousis and E. G. Lalas, The probabilistic analysis of
a greedy satisfiability algorithm, Proc. 2002 European Symp. on Algorithms
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