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Abstract

We call a permutation σ = [σ1, . . . , σn] ∈ Sn a cylindrical king permutation if |σi −σi+1| > 1
for each 1 ≤ i ≤ n− 1 and |σ1 − σn| > 1. We present some results regarding the distribution of
the cylindrical king permutations, including some interesting recursions. We also calculate their
asymptotic proportion in the set of the ’king permutations’, i.e. the ones which satisfy only the
first of the two conditions above. With this aim we define a new parameter on permutations,
namely, the number of cyclic bonds which is a modification of the number of bonds. In addition,
we present some results regarding the distribution of this parameter.

1 Introduction

In a recent paper [4], the authors dealt with the set of king permutations. The inspiration was
Hertzsprung’s problem [13],dealing with the number of ways to arrange n non-attacking chess kings
on an n× n chess board such that each column and each row contains exactly one chess king.

There is a tight connection between the chess problem and the symmetric group Sn. If we
consider a permutation σ = [σ1, . . . , σn] ∈ Sn in a geometrical way as the set of all lattice points
of the form (i, σi) where 1 ≤ i ≤ n, the problem of finding all the ways to arrange n non-attacking
chess kings is equivalent to the problem of finding all permutations σ ∈ Sn such that for each
1 < i ≤ n, |σi − σi−1| > 1. This set is counted in OEIS A002464.

Let Kn be the set of all such permutations in Sn. In this paper we call them simply king
permutations or just kings. For example: K1 = S1,K2 = K3 = ∅, K4 = {[3142], [2413]}. An
explicit formula for the number of king permutations was given by Robbins [9]. He also showed
that when n tends to infinity, the probability of picking such a permutation from Sn approaches
e−2.

A natural question is to extend the Hertzsprung’s problem to a celebrated variant of the chess
game, namely the cylindrical chess, in which the right and left edges of the board are imagined
to be joined in such a way that a piece can move off one edge and reappear at the opposite edge,
moving in the same or a parallel line [12].

Definition 1.1. Let CKn be defined as

CKn = {σ = [σ1, . . . , σn] ∈ Sn : |σi − σi+1| > 1, |σ1 − σn| > 1, 1 ≤ i ≤ n− 1}.

An element of CKn will be called a cylindrical king.
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For example: CK1 = S1, CK2 = CK3 = CK4 = ∅, CK5 = {[31425], [14253], [42531], [25314],
[53142], [24135], [41352], [13524], [35241], [52413]}.
Note that each cylindrical king can also be seen as a directed Hamiltonian path in the complement
of the n-cycle graph. The sets CKn are counted by the sequence A002493 of OEIS. The first 8
elements are 1, 0, 0, 0, 10, 60, 462, 3920, 36954. They were counted by Abramson and Moser in [1].

This paper deals with some aspects of counting cylindrical king permutations. In order to
facilitate the counting, we define a new concept: the cyclic bond, which extends the known concept
of a bond appeared in [4].
A bond in a permutation π ∈ Sn is a length 2 consecutive sub-sequence of adjacent numbers. Note
that a king permutation is actually a permutation without bonds. This point of view can be used
also to describe the set of cylindrical king permutations, provided that we slightly modify the
definition of the bond in order to obtain what we call in this paper a cyclic bond.

Definition 1.2. Let π = [π1, . . . , πn] ∈ Sn and let i ∈ [n − 1]. We say that the pair (πi, πi+1) is a
(regular) bond in π if πi−πi+1 = ±1. If πn−π1 = ±1 then we say that the pair (πn, π1) is an edge
bond of π. In general, adopting the convention that πn+1 = π1, we say that (πi, πi+1) is a cyclic
bond if it is a regular or an edge bond.

Example 1.3. In π = [41325] there are 2 cyclic bonds. The regular bond (3,2) and the edge bond
(5,4).

According to that new definition, a permutation is a cylindrical king if and only if it has no
cyclic bonds. This type of modification from regular to cyclic parameters has been used also in the
case of the descent parameter. See for example [6],[8].

Aside from its role as identifying the cylindrical kings, the definition of cyclic bonds leads to
some interesting counting results by itself.

For each π ∈ Sn we denote by bnd(π) the number of regular bonds in π and by cbnd(π) the
number of cyclic bonds in π.

Definition 1.4. Let B0(t) = CB0(t) = 1 and for n ≥ 1:

Bn(t) =
∑

π∈Sn

tbnd(π),

and
CBn(t) =

∑

π∈Sn

tcbnd(π).

A simple calculations shows that: B1(t) = CB1(t) = 1, B2(t) = 2t, CB2(t) = 2t2, B3(t) = 2t2 + 4t
and CB3(t) = 6t2. Note that we chose to consider the permutations of S2 as having 2 cyclic bonds
each.

In Section 2 we present some results regarding the counting of cyclic bonds and their effect on
the structure of the cylindrical kings.
First we present relations between the number of regular bonds and the number of cyclic bonds
(Theorem 2.2 ) for n ≥ 2:
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CBn+1(t) = (n+ 1)Bn(t) + 2(n+ 1)

n
∑

i=1

(t− 1)iBn−i(t),

where the initial conditions are as in Definition 1.4 .
We also have (Theorem 2.3) for n ≥ 1:

Bn(t) = CBn(t) +
1

n
(1− t)CB′

n(t)

Then we introduce a recursion for the number of cyclic bonds. (Theorem 2.4 ) for n ≥ 2:

CBn+1(t) = (n+1)[CBn(t)+2
n
∑

i=1

(t− 1)iCBn−i(t)]+
n+ 1

n
(1− t)[CB′

n(t)+2
n
∑

i=1

(t− 1)iCB′
n−i(t)]

where the initial conditions are as in Definition 1.4.
These results have impact on the structure of the cylindrical kings and thus they enable us to

introduce a recursion formula for the cylindrical kings along with a recursion that connects the
number of kings and the number of cylindrical kings. (Corollary 2.5):

For n ≥ 2:

1. |CKn+1| = (n+ 1)|Kn|+ 2(n + 1)
∑n

i=1(−1)i|Kn−i| while |K0| = 1.

2. |Kn| = |CKn|+
1
n
|CB1,n|

3. |CKn+1| = (n+ 1)(|CKn|+ 2
∑n

i=1(−1)i|CKn−i|) +
n+1
n

(|CB1,n|+ 2
∑n

i=1(−1)i|CB1,n−i|)

where |CB1,k| is the number of permutations π ∈ Sk with a single cyclic bond.
Section 3 exhibits a recursion connecting between the sizes of the sets of cylindrical kings and

non-cylindrical kings using a combinatorial proof. (Theorem 3.1):

|An| = 2|Kn−1|+ |An−2|, where An = Kn − CKn.

This enables us to calculate the asymptotic ratio of the set of cylindrical kings in the entire set
of the kings. (Theorem 3.3):

The asymptotic value of |CKn|/|Kn| is equal to 1.

Finally, in Section 4 we calculate the distribution of the cylindrical king permutations using the
distribution of the cyclic bonds. (Theorem 4.3 and Theorem 4.4)

2 Cyclic bonds and their effect on cylindrical kings

2.1 The number of regular bonds vs. the number of cyclic bonds

Recall that for each π ∈ Sn we denote by bnd(π) the number of regular bonds in π and by cbnd(π)
the number of cyclic bonds in π. Let Cn be the cyclic sub-group of Sn generated by the cycle
ω = (1, 2, ..., n). Note that the parameter cbnd is invariant under the right action of Cn (left shift
of the one-line notation of π). Explicitly:

cbnd(π) = cbnd(πωi) for 1 ≤ i ≤ n− 1. (1)

3



Example 2.1. For n = 4 one can easily see that if π = [2134] then πω = [1342], πω2 = [3421] and
πω3 = [4213]. All of them have exactly 2 cyclic bonds.

In order to count the permutations in Sn+1 with exactly k cyclic bonds, we count only those
permutations whose last element is n+ 1, and multiply by n+ 1. Formally,

|{π ∈ Sn+1 : cbnd(π) = k}| = (n+ 1)|{π ∈ Sn+1 : cbnd(π) = k and πn+1 = n+ 1}| (2)

Consider a permutation π ∈ Sn+1 such that πn+1 = n+1, and define π′ ∈ Sn such that π′
i = πi

for 1 ≤ i ≤ n. Then we have:

cbnd(π) =

{

bnd(π′) + 1 if π′
n = n or π′

1 = n

bnd(π′) otherwise.
(3)

We discuss now the connection between the distributions of bonds and cyclic bonds (using
Definition 1.4).

If we denote
CZn(t) =

∑

π∈Sn,πn=n

tcbnd(π).

then according to (2) we have:

CBn+1(t) = (n+ 1)CZn+1(t) (4)

Also, for n ≥ 2 let

B1
n(t) =

∑

π∈Sn,π1=n

tbnd(π)

and
B2

n(t) =
∑

π∈Sn,πn=n

tbnd(π).

Then we have by (3) for n ≥ 2 :

CZn+1(t) = (Bn(t)−B1
n(t)−B2

n(t)) + t(B1
n(t) +B2

n(t)) (5)

and thus according to (4) and (5):

CBn+1(t) = (n+ 1)[(Bn(t)−B1
n(t)−B2

n(t)) + t(B1
n(t) +B2

n(t))]
= (n + 1)Bn(t) + (n+ 1)(t− 1)(B1

n(t) +B2
n(t))

(6)

In addition for n ≥ 2 :

B1
n(t) = (Bn−1(t)−B1

n−1(t)) + tB1
n−1(t) = Bn−1(t) + (t− 1)B1

n−1(t)

B2
n(t) = (Bn−1(t)−B2

n−1(t)) + tB2
n−1(t) = Bn−1(t) + (t− 1)B2

n−1(t)

where B1
1(t) = B2

1(t) = 1

Let us denote Xn(t) = B1
n(t) +B2

n(t), thus for n ≥ 2 :
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Xn(t) = 2Bn−1(t) + (t− 1)Xn−1(t) = 2Bn−1(t) + (t− 1)(2Bn−2(t) + (t− 1)Xn−2(t)). (7)

A simple induction will show that for n ≥ 2 :

Xn(t) = 2

n
∑

i=1

(t− 1)i−1Bn−i(t)

Using (6) and (7) we have for n ≥ 2 :

CBn+1(t) = (n+1)Bn(t)+ (n+1)(t−1)Xn(t) = (n+1)Bn(t)+2(n+1)(t−1)

n
∑

i=1

(t−1)i−1Bn−i(t)

According to the above calculations we obtain the following theorem:

Theorem 2.2. Let n ≥ 2. Then

CBn+1(t) = (n+ 1)Bn(t) + 2(n + 1)
n
∑

i=1

(t− 1)iBn−i(t)

where the initial conditions are as in Definition 1.4.

In order to enable the calculation of CBn+1(t) using the above recursion, we just have to be
able to calculate the polynomials Bi(t) for 0 ≤ i ≤ n.

The following result provides a direct formula for Bn(t) using CBn(t).

Theorem 2.3. Let n ≥ 1. Then we have:

Bn(t) = CBn(t) +
1

n
(1− t)CB′

n(t)

Proof. Let π ∈ Sn be such that cbnd(π) = k, and denote by [π] the orbit of π under the right
action of Cn. The contribution of [π] to the polynomial CBn(t) is nt

k, and thus its contribution to
the R.H.S is ntk + (1 − t)ktk−1. In order to complete the proof, we have to find the contribution
of [π] to Bn(t). Writing π = [π1, . . . , πn], each representative of its orbit starts with some πi,
1 ≤ i ≤ n. The number of regular bonds in [πi, πi+1, . . . , π1, . . . , πi−1] is k − 1 if [πi−1, πi] is
a cyclical bond and k otherwise. We conclude that the contribution of [π] to Bn(t) is exactly
ktk−1 + (n− k)tk = ntk + (1− t)ktk−1 as required.

Using Theorems 2.2, and 2.3, we can create a recursion for the generating function of the cyclic
bonds.

Theorem 2.4. Let n ≥ 2. Then

CBn+1(t) = (n+1)[CBn(t)+2
n
∑

i=1

(t− 1)iCBn−i(t)]+
n+ 1

n
(1− t)[CB′

n(t)+2
n
∑

i=1

(t− 1)iCB′
n−i(t)]

where the initial conditions are as in Definition 1.4.

5



2.2 The number of kings vs. the number of cylindrical kings

Recall that a king permutations is actually a permutation without bonds. As a result, we get that
|Kn| = Bn(0). Moreover, a permutation is a cylindrical king if and only if it has no cyclic bonds,
thus |CKn| = CBn(0). By Theorems 2.2, 2.3, and 2.4, we have the following corollary:

Corollary 2.5. For n ≥ 2:

1.

|CKn+1| = (n + 1)|Kn|+ 2(n + 1)

n
∑

i=1

(−1)i|Kn−i|

while |K0| = 1.

2.

|Kn| = |CKn|+
1

n
|CB1,n|

3.

|CKn+1| = (n+ 1)(|CKn|+ 2

n
∑

i=1

(−1)i|CKn−i|) +
n+ 1

n
(|CB1,n|+ 2

n
∑

i=1

(−1)i|CB1,n−i|)

where |CB1,k| is the number of permutations π ∈ Sk with a single cyclic bond.

3 Another recursion and the asymptotic value of
|CKn|
|Kn|

.

In this section we introduce another recursion connecting between the sizes of the sets of cylindrical
kings and non-cylindrical kings and present a combinatorial proof for this recursion. Eventually,
this will allow us to prove that the proportion of the set of cylindrical kings in the entire set of the
kings is asymptotically 1. We start with some notations. First, define for each n ≥ 1 the set of
kings which are not cylindrical:

An = Kn − CKn.

Theorem 3.1. We have the following recursion:

|An| = 2|Kn−1|+ |An−2|.

Proof. We present An as a disjoint union of 4 subsets as follows:

B0
n = {π ∈ Kn | π = [k, k + 2, . . . , k − 1, k + 1], 2 ≤ k ≤ n− 2}∪

{π ∈ Kn | π = [k + 1, k − 1, . . . , k + 2, k], 2 ≤ k ≤ n− 2}.

Note that by omitting the first or the last element in π ∈ A0
n we obtain a non king permutation.

However, by omitting both elements we obtain a permutation of An−2.
Now, let

B1
n = {π ∈ Kn | π = [k, l, . . . , k − 1, k + 1], 2 ≤ k ≤ n− 1, l 6= k + 2}∪

6



{π ∈ Kn | π = [k + 1, k − 1, . . . , l, k], 2 ≤ n− 1 ≤ n− 2, l 6= k + 2}.

Here, by omitting k + 1 from π ∈ B1
n we get a permutation of An−1, while by omitting k from

π we get a non-king of Sn−1.
Similarly, define:

B2
n = {π ∈ Kn | π = [k, k + 2, . . . ,m, k + 1], 1 ≤ k ≤ n− 2,m 6= k − 1}∪

{π ∈ Kn | π = [k + 1,m, . . . , k + 2, k], 1 ≤ k ≤ k − 2,m 6= k − 1},

and note that here by omitting k from π ∈ B2
n we get a permutation of An−1, while by omitting

k + 1 from π we get a non-king of Sn−1.
Finally, define

B3
n = {π ∈ Kn | π = [k,m, . . . , l, k + 1], 1 ≤ k ≤ n− 1, l 6= k − 1,m 6= k + 2}∪

{π ∈ Kn | π = [k + 1, l, . . . ,m, k] | 1 ≤ k ≤ k − 1, l 6= k − 1,m 6= k + 2}.

Here, by omitting any one of k, k + 1 we get a permutation of CKn−1. We prove the recursion
by constructing the following functions:

1. A bijection f0 : B
0
n → An−2 which implies that |B0

n| = |An−2|

2. Two bijections f1 : B
1
n → An−1 and f2 : B

2
n → An−1 which imply that |B1

n| = |An−1| = |B2
n|.

3. A 2 to 1 mapping f3 : B
3
n → CKn−1, which implies that 2|CKn−1| = |B3

n|.

An = B0
n B1

n B2
n B3

n

2Kn−1 +An−2 = An−2 An−1 An−1 2CKn−1

f0 f1 f2 f3

We start by defining a bijection f0 : B0
n → An−2 in the following way: we first remove the last

element of π (note that after this step we obtain a non-king of order n − 1) and then we remove
the first element of the resulting permutation.

For example, let π = [426153] ∈ B0
6 . Then f0(π) = [2413] ∈ A4.

In order to show that f0 is bijective, we present the inverse function. Explicitly, for σ =
[a − 1, . . . , a] ∈ An−2 (or σ = [a, . . . , a − 1] ∈ An−2), f0

−1(σ) is obtained from σ by adding the
element a sequentially at the two sides of σ, i.e. to the left of a − 1 and to the right of a. For
example, let σ = [2413]. Then we first add 3 to the left of σ to get σ′ = [32514] and then add again
3 to the right of σ′ to get [426153] ∈ B0

n.
Next, we construct a function f1 : B1

n → An−1 by removing from π = [π1, . . . , πn] the element
max{π1, πn}. For example: Let π = [5137246], then f1(π) = [513624].
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In a similar way, define f2 : B2
n → An−1 by removing the element min{π1, πn}. For instance,

f2([5724136]) = [624135].
We show now the inverse of the function f1. First, if σ = [a, . . . , a − 1] ∈ An−1, then f−1

1 (σ)
is obtained by adding a + 1 at the end of σ, i.e. f−1

1 (σ) = [a, l . . . , a − 1, a + 1] ∈ B1
n (note that

l 6= a+ 2 since otherwise σ /∈ An−1). If σ = [a− 1, . . . , a] then f−1
1 (σ) is obtained by adding a+ 1

at the beginning of σ, i.e. f−1
1 (σ) = [a+ 1, a− 1, . . . , l, a] ∈ B1

n, (l 6= a+ 2).
Similarly, we show now the inverse of f2. First, if σ = [a, . . . , a − 1] ∈ An−1, then f−1

2 (σ) is
obtained by adding a − 1 at the beginning of σ, i.e. f−1

2 (σ) = [a − 1, a + 1 . . . l, a] ∈ B2
n (note

that l 6= a − 2). If σ = [a − 1, . . . , a] then f−1
2 is obtained by adding a − 1 at the end of σ, i.e.

f−1
2 (σ) = [a, l . . . , a+ 1, a− 1] ∈ B2

n (since l 6= a− 2).
Next, we construct a mapping f3 : B3

n → CKn−1 which is 2 to 1, i.e. each element of CKn−1 will
have exactly two preimages. For π ∈ B3

n, the function f3 removes from π the maximum of its two
extreme elements.

For example, let π = [364152] ∈ B3
6 . Then f3(π) = [53142] ∈ CK5. Note that we also have:

f3([531426]) = [53142]. In order to see that the function f3 is indeed 2 to 1, we show how to go
back from an arbitrary element of CKn−1 to its two preimages. Let σ = [a, . . . , b] ∈ CKn−1, then
we have that a 6= b ± 1, so we define π1 to be the permutation obtained by adding a + 1 after
b and let π2 be the permutation obtained by adding b + 1 before a. It is easy to see then that
f3(π1) = f3(π2) = σ.

From this data we have that

|An| = |B0
n|+ |B1

n|+ |B2
n|+ |B3

n| = |An−2|+ 2|An−1|+ 2|CKn−1| = |An−2|+ 2|Kn−1|.

Remark 3.2. Note that by extending the concept of separator which was developed by the authors
in [3] to edge separator, we can consider the above functions f0, f1, f2 as omitting the vertical edge
separators from π. If |π1 − πn−1| = 1 then πn is a (vertical) edge separator. If |πn − π2| = 1 then
π1 is a (vertical) edge separator.

Using the above theorem we can prove the following conclusion.

Theorem 3.3. The asymptotic value of |CKn|/|Kn| is equal to 1

Proof. By Theorem 3.1 we have: |An| = 2|Kn−1|+ |An−2|.
Thus, |Kn| − |CKn| = 2|Kn−1|+ |Kn−2| − |CKn−2| and we obtain:

|CKn|/|Kn| = 1− 2|Kn−1|/|Kn| − |Kn−2|/|Kn|+ |CKn−2|/|Kn| (8)

According to Robbins [9], when n tends to infinity, the probability of picking a king permutation
from Sn approaches e−2. Thus, the asymptotic value of |Kn| is n!e

−2 and thus the asymptotic value
of |Kn−1|/|Kn| is

1
n
→ 0 and the asymptotic value of |Kn−2|/|Kn| is

1
n2 → 0. As a result,

0 < |CKn−2|/|Kn| < |Kn−2|/|Kn| → 0 (9)

Using 8 and 9 we obtain |CKn|/|Kn| → 1
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4 A direct calculation of the distribution of cylindrical kings

4.1 The distribution of cyclic bonds

In [7] the distribution of the number of bonds was calculated, where the author used it, inter alia, to
evaluate the number of king permutations, while considering them as permutations without bonds.
In this section we introduce the distribution of our new concept, the cyclic bonds, and use it to
calculate the distribution of the cylindrical king permutations. In a recent paper of the authors [3]
the concept of marked permutations is used. Here, we use again this concept in order to calculate
the distribution of the cyclic bonds over Sn. We start with the following definition:

Definition 4.1. A marked permutation is a permutation π ∈ Sn such that each cyclic bond is
either chosen or neglected. If several consecutive cyclic bonds are chosen, then they form a run.
An entry that is not chosen is considered to be a run of length 1 (a trivial run). Note that a run of
a permutation might be ascending or descending.

Note that each marked permutation π ∈ Sn can be presented as a concatenation of runs. For
example, the permutation [83124567] contributes the marked permutation [8/3/12/4567] (which
consists of the 3 runs 3, 12, 45678), the marked permutation [8/3/12/4567/] (which consists of the
4 runs 8, 3, 12, 4567), as well as the marked permutation [8/3/1/2/4567/] (which consists of the 5
runs 8, 3, 1, 2, 4567) and many more. Moreover, a marked permutation π ∈ Sn with m runs can be
uniquely characterized by the following data: a vector containing the lengths of the runs (which is
a composition λ of n) and their directions (increasing or decreasing), a permutation σ ∈ Sm which
determines their locations and r- the number of places the last run occupies at the beginning of
the permutation π. This idea will be best explained by an example.

Example 4.2. Let π = [2/45/6/1/987/3]. We write π as a triple consisting of a ’directed’ com-
position of m = 5 parts λ, a permutation σ ∈ S5 and r = 1. First, write π as a sequence of runs:
b1 = 1, b2 = 32, b3 = 45, b4 = 6, b5 = 987. Each run contributes its length to the composition. Then
for each part, we add the sign ↑ if the corresponding run is increasing, the sign ↓ if the run is
decreasing and no arrow if the run is of length 1. In our case we get λ = (1, 2 ↓, 2 ↑, 1, 3 ↓). Now,
σ ∈ S5 is the permutation induced by the order of the blocks. In our case, since the block b1 = 1
is located as the third block of π, (note that the digit 2 does not constitute a separate block but a
part of the block 32), b2 = 32 is located as the fifth block, b3 = 45 is placed as the first block, b4 = 6
is the second block, and b5 = 987 is located as the forth block, we have: σ = [34152]. The marked
permutation π is now uniquely defined by the pair (λ, σ, r). Note that if the marked permutation is
π = [45/6/1/987/32] then we have the same data except for the fact the now r = 0.

In order to calculate the distribution of the number of cyclic bonds, we count marked permu-
tations and use the inclusion-exclusion principle to extract the desired distribution.

The next theorem presents a generating function for the number of cyclic bonds.
For each k, n ≥ 0, we denote

an,k = |{π ∈ Sn | cbnd(π) = k}|.

Furthermore, let

H(z, u) =
∑

n≥1

∑

k≥0

an,kz
nuk

be the generating function of the number of cylic bonds. We have now:

9



Theorem 4.3.

H(z, u) = −2z2(u− 1) +
∑

m≥1

m!zm−1

(

1 + z(u− 1)

1− z(u− 1)

)m−1 (

z +
2z(2z(u − 1)− (z(u − 1))2)

(1− z(u− 1))2

)

.

Proof. We first calculate the generating function of marked cyclic bonds. Let

F (z, u) =
∑

n≥0

∑

k≥0

fn,kz
nuk

where fn,k is the number of permutations of order n with k marked cyclic bonds. We count
the marked permutations by considering each run separately. Let m be the number of runs in a
permutation. There are m! ways to arrange the runs in each marked permutation. For each such
an arrangement, we distinguish between the last run of a permutation and the other runs. (If there
is only one run then it will be considered the last one). We start with the first m− 1 runs. Each
run of length one contributes z, while each run of length k ≥ 2 has k− 1 regular bonds and can be
increasing or decreasing, so it contributes 2zkuk−1. This gives us (z+2z2u+2z3u2+2z4u3+. . .)m−1.

Now we discuss the last run that starts at the end of the permutation and may emerge at the
beginning of the permutation (like the run 1234 in the permutation [4/67/5/123]). If it is of length
1 then it contributes z. If it has length k ≥ 2 then it has k− 1 cyclic bonds and may be decreasing
or increasing. Moreover, its k−r first digits are placed at the end of the permutation, and the other
r digits at the beginning of the permutation for 0 ≤ r ≤ k − 1. Thus its contribution is 2kzkuk−1.
This gives us (z+2 · 2z2u+2 · 3z3u2 +2 · 4z4u3 + . . .). Using this technique, we actually count the
permutations [12] and [21] twice (while taking r = 0 and r = 1 for the last block in the case that
m = 1) so we have to subtract 2z2u. This leads to,

F (z, u) = −2z2u+
∑

m≥1

m!(z + 2z2u+ 2z3u2 + 2z4u3 + . . .)m−1(z + 4z2u+ 6z3u2 + 8z4u3 + . . .)

= −2z2u+
∑

m≥1

m!zm−1
(1 + zu

1− zu

)m−1
(z +

2z(2zu − (zu)2)

(1− zu)2
).

Now, we can use F (z, u) to obtain H(z, u). Since F (z, u) counts the marked cyclic bonds and
H(z, u) counts every cyclic bond, using the inclusionexclusion principle it follows that H(z, u) =
F (z, u− 1), and thus:

H(z, u) = −2z2(u− 1) +
∑

m≥1

m!zm−1

(

1 + z(u− 1)

1− z(u− 1)

)m−1 (

z +
2z(2z(u − 1)− (z(u − 1))2)

(1− z(u− 1))2

)

.

4.2 The distribution of cylindrical king permutations

Substituting u = 0 in Theorem 4.3 we can easily find a generating function for cylindrical king
permutations, i.e., a function of the form CK(z) =

∑

n≥1
|CKn|z

n.
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Theorem 4.4.

CK(z) = 2z2 +
∑

m≥1

m!zm−1

(

1− z

1 + z

)m−1 (z(1− 2z − z2)2

(1 + z)2

)

.
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