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Abstract

Let n and k be positive integers and σ(n) the sum of all positive divi-
sors of n. We call n an exactly k-deficient-perfect number with deficient
divisors d1, d2, . . . , dk if d1, d2, . . . , dk are distinct proper divisors of n and
σ(n) = 2n − (d1 + d2 + . . . + dk). In this article, we show that the only
odd exactly 3-deficient-perfect number with at most two distinct prime
factors is 1521 = 32 · 132.
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1 Introduction

Throughout this article, let n be a positive integer, σ(n) the sum of all positive
divisors of n, and ω(n) the number of distinct prime factors of n. We say that
n is perfect if σ(n) = 2n. It is well-known that n is even and perfect if and
only if n = 2p−1 (2p − 1) where p and 2p − 1 are primes. It has also been a
long standing conjecture that there are infinitely many even perfect numbers
and that an odd perfect number does not exist. Attempting to understand
perfect numbers, mathematicians have studied other closedly related concepts.
Recall that if σ(n) < 2n, then n is said to be deficient; if σ(n) > 2n, then n
is abundant; if σ(n) = 2n + 1, then n is quasiperfect; if σ(n) = 2n − 1, then
n is almost perfect. For more information on this topic, see for example in the
work of Cohen [5, 6], Hagis and Cohen [11], Kishore [14], Ochem and Rao [18],
Yamada [36], and in the online databases GIMPS [10] and OEIS [30].

Sierpiński [29] called n pseudoperfect if n can be written as a sum of some of
its proper divisors. Pollack and Shevelev [21] have recently initiated the study
of a subclass of pseudoperfect numbers leading to an active investigation. We
summarize it in the following definition.

Definition 1.1. Let n and k be positive integers. We say that n is near-perfect
if n is the sum of all of its proper divisors except one of them. In addition, n is
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k-near-perfect if n can be written as a sum of all of its proper divisors with at
most k exceptions. Moreover, n is exactly k-near-perfect if n is expressible as
a sum of all of its proper divisors with exactly k exceptions. The exceptional
divisors are said to be redundant. In other words,

n is near-perfect with a redundant divisor d ⇔ 1 ≤ d < n, d | n, and σ(n) = 2n+ d;

n is 1-near-perfect ⇔ n is perfect or n is near-perfect;

n is exactly k-near-perfect with redundant divisors d1, d2, . . . , dk ⇔

d1, d2, . . . , dk are distinct proper divisors of n and σ(n) = 2n+ d1 + d2 + · · ·+ dk.

Motivated by the concept of near-perfect numbers, Tang, Ren, and Li [35]
define the notion of deficient-perfect numbers which also leads to an interesting
research problem.

Definition 1.2. Let n, k ∈ N. Then n is called a deficient-perfect number with a
deficient divisor d if d is a proper divisor of n and σ(n) = 2n−d. Furthermore, n
is exactly k-deficient-perfect with deficient divisors d1, d2, . . . , dk if d1, d2, . . . , dk
are distinct proper divisors of n and σ(n) = 2n−(d1+d2+ · · ·+dk). In addition,
n is k-deficient-perfect if n is perfect or n is exactly ℓ-deficient-perfect for some
ℓ = 1, 2, . . . , k.

In 2012, Pollack and Shevelev [21] showed that the number of near-perfect
numbers not exceeding x is ≪ x5/6+o(1) as x → ∞, and that if k is fixed and
is large enough, then there are infinitely many exactly k-near-perfect numbers.
A year later, Ren and Chen [27] determined all near-perfect numbers n which
have ω(n) = 2 and we can see from this classification that all such n are even.
In the same year, Tang, Ren, and Li [35] proved that there is no odd near-
perfect number n with ω(n) = 3 and found all deficient-perfect numbers m with
ω(m) ≤ 2. After that, Tang and Feng [33] extended it by showing that there
is no odd deficient-perfect number n with ω(n) = 3. Tang, Ma, and Feng [34]
obtained in 2016 the only odd near-perfect number with ω(n) = 4, namely,
n = 34 · 72 · 112 · 192, while Sun and He [32] asserted in 2019 that the only
odd deficient-perfect number n with ω(n) = 4 is n = 32 · 72 · 112 · 132. Cohen
et.al [7] have recently improved the estimate of Pollack and Shevelev [21] on
the number of near-perfect numbers ≤ x. Hence, most results in the literature
are devoted to characterizing, only when k = 1, the exactly k-near-perfect or
exactly k-deficient-perfect numbers. Chen [4] started a slightly new direction
by determining all 2-deficient-perfect numbers n with ω(n) ≤ 2.

In this article, we continue the investigation on odd 3-deficient-perfect num-
bers n with ω(n) ≤ 2. We obtain that the only such n is n = 1521 = 32 · 132.
For other articles related to the divisor functions or divisibility problems, see for
example in [1, 2, 3, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 28, 31, 36].

2 Main Results

By the definition, n is deficient-perfect if and only if n is exactly 1-deficient-
perfect. Tang and Feng [33, Lemma 2.1] show that if n is deficient-perfect and
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n is odd, then n is a square. We can extend their result to the following form.

Lemma 2.1. Let n and k be positive integers. Suppose that n is exactly k-
deficient-perfect and n is odd. Then n is a square if and only if k is odd. In
particular, if n is odd and exactly 3-deficient-perfect, then n is a square.

Proof. Since 1 has no proper divisor, we can assume that n > 1 and write
n = pα1

1 pα2

2 · · · pαr

r where p1, . . . , pr are distinct odd primes and α1, α2, . . . , αr

are positive integers. Let d1, d2, . . . , dk be distinct proper divisors of n such that

2n− d1 − d2 − · · · − dk = σ(n) =

r
∏

i=1

σ(pαi

i ) =

r
∏

i=1

(1 + pi + · · ·+ pαi

i ). (2.1)

Since n is odd, di and pj are odd for every i = 1, 2, . . . , k and j = 1, 2, . . . , r.
Reducing (2.1) mod 2, we obtain k ≡

∏r
i=1(αi + 1) (mod 2). From this, we

have the equivalence k is odd ⇔ αi is even for all i ⇔ n is a square, which
proves our lemma.

Tang, Ren, and Li [35] determine all deficient-perfect numbers n with ω(n) ≤
2. In particular, they show that if ω(n) = 1 and n is deficient-perfect, then n
is a power of 2. We can extend this for exactly k-deficient-perfect numbers as
follows.

Lemma 2.2. Let n ≥ 2, k ≥ 1 be integers. If n is exactly k-deficient-perfect
and ω(n) = 1, then k = 1 and n is a power of 2. Consequently, if n is exactly
k-deficient-perfect and k ≥ 2, then n has at least two distinct prime divisors. In
particular, every exactly 3-deficient-perfect number n has ω(n) ≥ 2.

Proof. Suppose n = pα and the deficient divisors of n are d1 = pβ1 , d2 = pβ2 , . . .,
dk = pβk , where α > β1 > β2 > · · · > βk ≥ 0. Since (pα+1−1)/(p−1) = σ(n) =
2n− d1 − · · · − dk, we obtain

(d1 + d2 + · · ·+ dk)(p− 1)− 1 = pα(p− 2). (2.2)

If p ≥ 3, then

pα ≤ pα(p− 2) = (d1 + d2 + · · ·+ dk)(p− 1)− 1

≤ (pα−1 + pα−2 + · · ·+ pα−k)(p− 1)− 1 = pα − pα−k − 1,

which is impossible. Therefore p = 2 and n is a power of 2. By (2.2), we also
obtain, d1 + · · ·+ dk = 1, which implies k = 1 and β1 = 0.

We now give the main result of this paper.

Theorem 2.3. The only odd exactly 3-deficient-perfect number which has ω(n) =
2 is 1521 = 32 ·132 with three deficient divisors d1 = 507, d2 = 117, and d3 = 39.
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Proof. It is easy to check that if n = 1521 and d1, d2, d3 are as above, then
ω(n) = 2, n is odd, d1, d2, d3 are proper divisors of n, σ(n) = 2n− d1− d2− d3,
and so n is exactly 3-deficient-perfect. For the other direction, assume that n
is odd, ω(n) = 2, and n is exactly 3-deficient-perfect. By Lemma 2.1, n is a

square, so we can write n = p2α1 p2β2 where 2 < p1 < p2 and α, β ≥ 1. In addition,
let d1 > d2 > d3 be the deficient divisors of n, and let D1 = n/d1, D2 = n/d2,
D3 = n/d3. Then p1 ≤ D1 < D2 < D3 ≤ n. Since σ(n) = 2n− d1 − d2 − d3, we
obtain

2 =
σ(n)

n
+

d1
n

+
d2
n

+
d3
n

=
(p1

2α+1 − 1)(p2
2β+1 − 1)

(p1 − 1)(p2 − 1)p2α1 p2β2
+

1

D1
+

1

D2
+

1

D3

<
p1p2

(p1 − 1)(p2 − 1)
+

1

D1
+

1

D2
+

1

D3
. (2.3)

If p1 ≥ 5, then p1/(p1 − 1) ≤ 5/4, p2 ≥ 7, p2/(p2 − 1) ≤ 7/6, D1 ≥ 5, D2 ≥ 7,
D3 ≥ 25, and (2.3) implies that

2 <
5

4
·
7

6
+

1

5
+

1

7
+

1

25
= 1.8411 . . . ,

which is a contradiction. So p1 = 3. For convenience, let p2 = p. Then
n = 32αp2β and (2.3) becomes

2 <
3p

2(p− 1)
+

1

D1
+

1

D2
+

1

D3
. (2.4)

If p ≥ 83, then (2.4) leads to 2 < (3/2)(83/82)+ 1/3 + 1/9 + 1/27 = 1.9997 . . .,
which is impossible. So 5 ≤ p ≤ 79. Recall that the primes in [5, 79] are
5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79.
If p ≥ 11 and D1 > 3, then D1 ≥ 9, D2 ≥ 11, D3 ≥ 27, and (2.4) gives
2 < (3/2)(11/10) + 1/9 + 1/11 + 1/27 = 1.8890 . . ., which is false. Therefore

if p ≥ 11, then D1 = 3. (2.5)

Similarly, if p ≥ 23 and D2 > 9, then 2 < (3/2)(23/22) + 1/3 + 1/23 + 1/27 =
1.9820 . . ., which is not true. Thus

if p ≥ 23, then D2 = 9. (2.6)

Next, we divide our calculations into eleven cases according to the value of p.
In addition, we write the possible values of D1, D2, D3 in an increasing order.

Case 1 47 ≤ p ≤ 79. By (2.5) and (2.6), we have D1 = 3, D2 = 9, and the
possible values of D3 in an increasing order are D3 = 27, p, 81, . . .. If D3 ≥ p,
then (2.4) implies 2 < (3/2)(47/46) + 1/3 + 1/9 + 1/47 = 1.9983 . . ., which is
false. So D3 = 27. Then 2α ≥ 3, d1 = n/D1 = 32α−1p2β, d2 = 32α−2p2β ,
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d3 = 32α−3p2β, and
(

32α+1 − 1
) (

p2β+1 − 1
)

2(p− 1)
= σ(32αp2β) = 2 · 32αp2β − d1 − d2 − d3

= 32α−3p2β(2 · 33 − 32 − 3− 1) = 41 · 32α−3p2β.

This leads to

32α−3 =
p2β+1 − 1

(82− p)p2β − 81
. (2.7)

The left-hand side of (2.7) is an integer, and we get a contradiction by showing
that the right-hand side of (2.7) is not an integer. From this point on, let A be
the number on the right-hand side of (2.7). If p = 47, then A is equal to

47 · 472β − 1

35 · 472β − 81
= 1 +

12 · 472β + 80

35 · 472β − 81
= 1 +

12 + (80/472β)

35− (81/472β)
∈ (1, 2),

and so A /∈ Z. Similarly,

if p = 53, then A = 1 +
24p2β + 80

29p2β − 8
∈ (1, 2);

if p = 59, then A = 2 +
13p2β + 161

23p2β − 81
∈ (2, 3);

if p = 61, then A = 2 +
19p2β + 161

21p2β − 81
∈ (2, 3);

if p = 67, then A = 4 +
7p2β + 323

15p2β − 81
∈ (4, 5).

The remaining cases p = 71, 73, 79 lead to A ∈ (6, 7), A ∈ (8, 9), and A ∈
(26, 27), respectively. In any case, A /∈ Z and we have a contradiction. Hence
this case does not lead to a solution.

Case 2 p ∈ {37, 41, 43}. By (2.5) and (2.6), we have D1 = 3, D2 = 9, and
D3 = 27, p, 81, . . .. If D3 ≥ 81, then (2.4) implies 2 < (3/2)(37/36) + 1/3 +
1/9 + 1/81 = 1.9984 . . ., which is not possible. So D3 = {27, p}.

Case 2.1 D1 = 3, D2 = 9, and D3 = 27. Then 2α ≥ 3, (2.7) holds, and
the calculations in Case 1 work in this case too. Since (2.7) holds, we still let
A be the right-hand side of (2.7). Therefore if p = 37, then A ∈ (0, 1) and if
p ∈ {41, 43}, then A ∈ (1, 2), which is a contradiction.

Case 2.2 D1 = 3, D2 = 9, and D3 = p. Then
(

32α+1 − 1
) (

p2β+1 − 1
)

2(p− 1)
= σ(32αp2β) = σ(n) = 2n− d1 − d2 − d3

= 2 · 32αp2β − 32α−1p2β − 32α−2p2β − 32αp2β−1

= 32α−2p2β−1(14p− 9),

which implies

32α−2 =
p2β+1 − 1

(46p− p2 − 18)p2β−1 − 27
. (2.8)
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The equality (2.8) can be used in the same way as (2.7). So let B be the number
on the right-hand side of (2.8). Similar to the previous computation, we see that
if p = 37, then B ∈ (4, 5) and if p = 43, then B ∈ (16, 17) which contradicts
the fact that B = 32α−2 ∈ Z. Suppose p = 41. Then B ∈ (8, 10), which implies
B = 9. Equating the right-hand side of (2.8) with B = 9, substituting p = 41,
and performing a straightforward manipulation leads to 412β−1 = 121, which is
not possible. Hence there is no solution in this case.

Remark 2.4. Before going further, we note that the calculations similar to
(2.7) and (2.8) and their applications occur throughout the proof, and we give
less details than those in (2.7) and (2.8).

Case 3 p ∈ {29, 31}. Then by (2.5) and (2.6), D1 = 3, D2 = 9, and
D3 = 27, p, 81, 3p, 243, 9p, 729, . . .. If p = 31 and D3 ≥ 243, then (2.4) implies
2 < (3/2)(31/30) + 1/3 + 1/9 + 1/243 = 1.9985 . . ., which is false. Similarly,
assuming p = 29 and D3 ≥ 729 leads to a false inequality. Therefore

if p = 31, then D3 ∈ {27, 31, 81, 93}, (2.9)

if p = 29, then D3 ∈ {27, 29, 81, 87, 243, 261}. (2.10)

Next, we divide our calculations according to the value of D3.
Case 3.1 D3 = 27. Then (2.7) holds and the same method still works. We

obtain

if p = 29, then A =
(

29p2β − 1
)

/
(

53p2β − 81
)

∈ (0, 1);

if p = 31, then A =
(

31p2β − 1
)

/
(

51p2β − 81
)

∈ (0, 1).

So A /∈ Z and we get a contradiction.
Case 3.2 D3 = p ∈ {29, 31}. Then (2.8) holds and

if p = 29, then B =
(

841p2β−1 − 1
)

/
(

475p2β−1 − 27
)

∈ (1, 2);

if p = 31, then B =
(

961p2β−1 − 1
)

/
(

447p2β−1 − 27
)

∈ (1, 2),

which is a contradiction.
Case 3.3 D3 = 81. Similar to the calculations for (2.7) and (2.8), we

write σ(n) = 2n − d1 − d2 − d3 where d1, d2 are the same as before, but
d3 = n/D3 = 32α−4p2β and 2α ≥ 4. After a similar algebraic manipulation, we
get

32α−4 =
p2β+1 − 1

(250− 7p)p2β − 243
. (2.11)

When p = 29 or 31, the right-hand side of (2.11) is in the interval (0, 1), which
is impossible.

Case 3.4 D3 = 93. By (2.9) and (2.10), we know that p = 31. Similar to
Case 3.3 but with d3 = n/D3 = 32α−1p2β−1, we start with σ(n) = 2n − d1 −
d2 − d3 and perform an algebraic manipulation to obtain

32α−2 =
p2β+1 − 1

(34p− p2 − 6)p2β−1 − 27
=

961p2β−1 − 1

87p2β−1 − 27
∈ (11, 12),
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which is false.
Case 3.5 D3 ∈ {87, 243, 261}. By (2.9) and (2.10), we have p = 29. Similar

to Case 3.3 but with different values of d3 = n/D3 = 32α−1p2β−1, 32α−5p2β , or
32α−2p2β−1 when D3 = 87, 243, or 261, respectively. These lead to

2α ≥ 2 and 32α−2 =
p2β+1 − 1

(34p− p2 − 6)p2β−1 − 27
=

841p2β−1 − 1

139p2β−1 − 27
∈ (6, 7), if D3 = 87;

2α ≥ 5 and 32α−5 =
p2β+1 − 1

(754− 25p)p2β − 729
=

292β+1 − 1

292β+1 − 729
∈ (1, 2), if D3 = 243;

2α ≥ 2 and 32α−2 =
p2β+1 − 1

(30p− p2 − 2)p2β−1 − 27
=

841p2β−1 − 1

27p2β−1 − 27
∈ (31, 33), if D3 = 261.

In any case, we get a contradiction.
Case 4 p = 23. By (2.5) and (2.6), we have D1 = 3 and D2 = 9. We start

from

(32α+1 − 1)(p2β+1 − 1) = 2(p− 1)σ(n) = 2(p− 1)(2n− d1 − d2 − d3)

= 28(p− 1)32α−2p2β − 2(p− 1)d3.

Writing (32α+1 − 1)(p2β+1 − 1) = 27p32α−2p2β − 32α+1 − p2β+1 + 1, the above
leads to

(28− p)32α−2p2β − 32α+1 − p2β+1 + 1 + 2(p− 1)d3 = 0. (2.12)

Multiplying both sides of (2.12) by 28− p and factoring a part of it gives us

(

(28− p)32α−2 − p
) (

(28− p)p2β − 27
)

= 28(p−1)−2(28−p)(p−1)d3. (2.13)

Substituting p = 23, the equation (2.13) becomes

(5 · 32α−2 − 23)(5 · 232β − 27) = 616− 220d3. (2.14)

Let A1 and A2 be the expressions on the left and the right of (2.14), respectively.
If α ≥ 2, then A1 > 616 while A2 < 616, which is not the case. So α = 1 and
A1 = −18(5 · 232β − 27). Since 3 | A1 and 3 ∤ 616, we see that 3 ∤ d3. Since
d3 | n and n = 32α232β, we obtain d3 = 23b3 for some b3 ≥ 0. If b3 = 0,
then A2 = 616 − 220 ≡ 5 (mod 23); if b3 ≥ 1, then A2 ≡ 18 (mod 23). But
A1 ≡ 3 (mod 23), and so A1 = A2 and A1 6≡ A2 (mod 3), which is not possible.

Case 5 p = 19. By (2.5), D1 = 3. So {D2, D3} ⊆ {9, 19, 27, 57, . . .}. If
D2 ≥ 19 and D3 ≥ 57, then (2.4) implies that 2 < (3/2)(19/18)+ 1/3+ 1/19+
1/57 = 1.9868 . . ., which is not true. Therefore (D2 = 9) or (D2 = 19 and
D3 = 27).

Case 5.1 D2 = 9. Then the computation in Case 4 still works and (2.13)
holds. Substituting p = 19 in (2.13) and dividing both sides by 9, we obtain

(32α − 19)(192β − 3) = 56− 36d3. (2.15)
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Let A3, A4 be the expressions on the left and the right of (2.15), respectively.
If α ≥ 2, then A3 > 56 while A4 < 56, which is not true. Therefore α = 1.
Then 11 ≡ A3 ≡ A4 ≡ −1 + 2d3 (mod 19), and so 19 ∤ d3. Since d3 | n and
n = 32αp2β = 32 · 192β, we see that d3 = 1, 3, 9. Substituting d3 = 1, 3, 9 in
(2.15) leads to 5 · 192β = 5, 41, 149, respectively, which has no solution.

Case 5.2 D2 = 19 and D3 = 27. Similar to the calculations for (2.7)
and (2.14) but with different values of d2 and d3, we obtain after an algebraic
manipulation that

32α−3 =
361 · 192β−1 − 1

117 · 192β−1 − 81
∈ (3, 4),

which is not possible.
Case 6 p ∈ {11, 13, 17}. Then by (2.5), we have D1 = 3. The possible

values of D2 and D3 listed in an increasing order are 9, p, 27, 3p, 81, 9p,
min{p2, 243}, max{p2, 243}, . . .. We can eliminate some cases by using (2.4)
as before. If p = 17 and D2 ≥ 27, then (2.4) implies 2 < (3/2)(17/16) +
1/3 + 1/27 + 1/51 < 2; if p = 17, D2 ≥ 17, and D3 ≥ 81, then (2.4) leads to
2 < (3/2)(17/16) + 1/3 + 1/17 + 1/81 < 2. Similarly, if p = 13, then we must
have D2 < 39; if p = 13 and D2 ≥ 27, then it forces D3 < 243; if p = 11, then
D2 < 81 or D3 < 243. Therefore, we obtain

if p = 17, then (D2 = 9) or (D2 = 17 and D3 ∈ {27, 51}); (2.16)

if p = 13, then (D2 ∈ {9, 13}) or (D2 = 27 and D3 ∈ {39, 81, 117, 169});
(2.17)

if p = 11, then (D2 ∈ {9, 11, 27, 33}) or (D2 = 81 and D3 ∈ {99, 121}) or

(D2 = 99 and D3 = 121). (2.18)

We divide our calculations according to the values of D2 and D3 listed in (2.16),
(2.17), and (2.18).

Case 6.1 D2 = 9 (so p can be any of 11, 13, or 17). Since D1 = 3 and
D2 = 9, the equation (2.13) holds. Substituting p = 11, 13, 17 in (2.13), we
obtain, respectively

(17 · 32α−2 − 11)(17 · 112β − 27) = 280− 340d3 (if p = 11), (2.19)

(15 · 32α−2 − 13)(15 · 132β − 27) = 336− 360d3 (if p = 13), (2.20)

(11 · 32α−2 − 17)(11 · 172β − 27) = 448− 352d3 (if p = 17), (2.21)

where d3 in (2.19) is a proper divisor of 32α112β, d3 in (2.20) is a proper divisor
of 32α132β, and d3 in (2.21) is a proper divisor of 32α172β. Since α, β ≥ 1,
the left-hand side of (2.19) and (2.20) are positive, while the right-hand side of
(2.19) and (2.20) are negative. So (2.19) and (2.20) do not lead to a solution.
For (2.21), we have 448−352d3 ≤ 96, which implies α = 1. Then (2.21) reduces
to 3 · 172β + 13 − 16d3 = 0. Reducing this mod 3 and mod 17, we see that
d3 ≡ 1 (mod 3) and d3 ≡ 4 (mod 17). Since d3 | 32α172β, 3 ∤ d3, and 17 ∤ d3, we

8



obtain d3 = 1, which contradicts the fact that d3 ≡ 4 (mod 17). Thus there is
no solution in this case.

Case 6.2 D2 = p where p ∈ {11, 13}. Similar to the calculation for (2.13),
we have

(32α+1 − 1)(p2β+1 − 1) = 2(p− 1)σ(n) = 2(p− 1)(2n− d1 − d2 − d3)

= 2(p− 1)(2 · 32αp2β − 32α−1p2β − 32αp2β−1 − d3).

Let Bp = 16p− p2 − 6. Following a straightforward algebraic manipulation and
multiplying both sides by Bp, the above leads to

(Bp3
2α−1 − p2)(Bpp

2β−1 − 9) = 9p2 −Bp − 2Bp(p− 1)d3. (2.22)

Substituting p = 11 in (2.22), we obtain

(49 · 32α−1 − 121)(49 · 112β−1 − 9) = 1040− 980d3. (2.23)

Since α, β ≥ 1, the left-hand side of (2.23) is larger then 60, while the right-hand
side of (2.23) is at most 60, so (2.23) does not give a solution. Next, substituting
p = 13 in (2.22) and dividing both sides by 3, we obtain

(33 · 32α−1 − 169)(11 · 132β−1 − 3) = 496− 264d3. (2.24)

Since the right-hand side of (2.24) is at most 232, we obtain α = 1 and (2.24)
reduces to

35 · 132β−1 − 12d3 + 13 = 0. (2.25)

Recall that d3 | n and n = 32αp2β = 32 · 132β. So d3 = 3a313b3 for some a3 ∈
{0, 1, 2} and b3 ≥ 0. Reducing (2.25) modulo 7, we see that 2d3 ≡ 1 (mod 7).
If a3 = 0, then 2d3 = 2 · 13b3 ≡ 2(−1)b3 ≡ 2,−2 6≡ 1 (mod 7). If a3 = 2, then
2d3 = 18 · 13b3 ≡ 4(−1)b3 ≡ 4,−4 6≡ 1 (mod 7). Therefore a3 = 1 and (2.25)
becomes

35 · 132β−1 − 36 · 13b3 + 13 = 0. (2.26)

Suppose for a contradiction that β ≥ 2. Reducing (2.26) modulo 132, we obtain
36 · 13b3 ≡ 13 (mod 132). If b3 ≥ 2, then 36 · 13b3 ≡ 0 6≡ 13 (mod 132).
If b3 = 1, then 36 · 13b3 − 13 = 35 · 13 6≡ 0 (mod 132). If b3 = 0, then
36 · 13b3 = 36 6≡ 13 (mod 132). In any case, we reach a contradiction. Therefore
β = 1. Substituting β = 1 in (2.26), we obtain b3 = 1, and so d3 = 3a313b3 = 39.
This leads to n = 32αp2β = 32 · 132 with the deficient divisors d1 = n/D1 =
3 · 132 = 507, d2 = n/D2 = 32 · 13 = 117 and d3 = 39, which we already verified
at the beginning of the proof that this is indeed a solution to our problem.
The elimination for the other cases can be done in a similar way to the previous
cases, so we give less details. Recall that D1 = 3. The other cases are as follows:

(i) p = 17, D2 = 17, and D3 ∈ {27, 51} (this is the remaining case from
(2.16)).

(ii) p = 13, D2 = 27, and D3 ∈ {39, 81, 117, 169} (this is the remaining case
from (2.17)).
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(iii) p = 11, D2 ∈ {27, 33}.

(iv) p = 11, D2 = 81, and D3 ∈ {99, 121}.

(v) p = 11, D2 = 99, and D3 = 121.

In (i),(ii),(iv), and (v), we know the values of D1, D2, D3, and so we have the
values of d1, d2, d3. We start from the equality σ(n) = 2n−d1−d2−d3, perform
the usual algebraic manipulation, and try to write the minimum nonnegative
power of 3 appearing among d1, d2, d3 in terms of the other variables. We
obtain the following results. For (i), we have p = 17, D1 = 3, D2 = 17, and

if D3 = 27, then 2α ≥ 3 and 32α−3 =
289 · 172β−1 − 1

337 · 172β−1 − 81
∈ (0, 1);

if D3 = 51, then 32α−1 =
289 · 172β−1 − 1

9 · 172β−1 − 9
∈ (32, 35),

which is a contradiction. For (ii), we have p = 13, D1 = 3, D2 = 27, 2α ≥ 3,
and

if D3 = 39, then 32α−3 =
169 · 132β−1 − 1

177 · 132β−1 − 81
∈ (0, 1);

if D3 = 81, then 2α ≥ 4 and 32α−4 =
13 · 132β − 1

15 · 132β − 243
∈ (0, 1);

if D3 = 117, then 32α−3 =
169 · 132β−1 − 1

33 · 132β−1 − 81
∈ (5, 7);

if D3 = 169, then 32α−3 =
2197 · 132β−2 − 1

141 · 133β−2 − 81
∈ (15, 37).

The first three cases above give a contradiction. The last case implies that

2197 · 132β−2 − 1 = 27(141 · 132β−2 − 81),

which leads to 1610 · 132β−2 = 2186, which is impossible. For (iv), we have
p = 11, D1 = 3, D2 = 81, 2α ≥ 4, and

if D3 = 99, then 32α−4 =
121 · 112β−1 − 1

103 · 112β−1 − 243
∈ (1, 2);

if D3 = 121, then 32α−4 =
1331 · 112β−2 − 1

773 · 112β−2 − 243
∈ (1, 3),

which is false. For (v), we have p = 11, D1 = 3, D2 = 99, D3 = 121, which
leads to

32α−2 =
1331 · 112β−2 − 1

37 · 112β−2 − 27
∈ (35, 37) ∪ {133},

which is not possible. We now consider (iii). We have p = 11, D1 = 3, D2 ∈
{27, 33}. We know the values of d1, d2 but not d3. We start with σ(n) =
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2n− d1 − d2 − d3 and write d3 in terms of the product of the other variables.
Similar to the calculation for (2.13), we obtain

if D2 = 27, then 2α ≥ 3 and (32α−3 − 1)(112β+1 − 81) = 80− 20d3; (2.27)

if D2 = 33, then (32α+1 − 121)(112β−1 − 1) = 120− 20d3. (2.28)

In (2.27), 2α is an even integer ≥ 3, so 2α ≥ 4, and thus the left-hand side of
(2.27) is larger than 80, while the right-hand side of (2.27) is less than 80, which
is a contradiction. Since the right-hand side of (2.28) is less than 120, we see
that α = 1 and (2.28) reduces to 47 · 112β+1 − 10d3 + 13 = 0. Reducing this
modulo 11, we see that 10d3 ≡ 2 (mod 11), and therefore d3 ≡ 9 (mod 11). So
11 ∤ d3. Since d3 | n and n = 32αp2β = 32 · 112β, we have d3 = 1, 3, 9. Since
d3 ≡ 9 (mod 11), d3 = 9 only. Then 47 · 112β+1 − 90 + 13 = 0. This leads to
47 · 112β+1 = 77, which has no solution.

Case 7 p = 7. Then {D1, D2, D3} ⊆ {3, 7, 9, 21, . . .}. If D1 ≥ 7 and
D2 ≥ 21, then (2.4) implies 2 < (3/2)(7/6) + 1/7 + 1/21 + 1/21 < 2 which is
impossible. So (D1 = 3) or (D1 = 7 andD2 = 9). IfD1 = 3, then d1 = 32α−172β

and we have

0 = 12 (σ(n) − 2n+ d1 + d2 + d3)

= (32α+1 − 1)(72β+1 − 1)− 24n+ 12(d1 + d2 + d3)

= 32α72β
(

21− 3/72β − 7/32α − 24
)

+ 1 + 12(d1 + d2 + d3)

= 1 + 12d1 (1 + d2/d1 + d3/d1)− 32α72β(3 + 3/72β + 7/32α)

> 1 + 12d1 − 32α72β(3 + 3/72 + 7/32)

> 12d1 − 32α72β(4) = 0,

which is a contradiction. So D1 = 7 and D2 = 9. We start with σ(n) =
2n− d1 − d2 − d3, substitute d1 = 32α72β−1, d2 = 32α−272β, and do the usual
algebraic manipulation to obtain

(32α−1 − 49)(72β−1 − 9) = 440− 12d3. (2.29)

If α ≥ 3 and β ≥ 2, then the left-hand side of (2.29) is larger than 440, while the
right-hand side of (2.29) is smaller than 440. Therefore (α ∈ {1, 2}) or (α ≥ 3
and β = 1). Since d3 | n and n = 32α72β, d3 = 3a37b3 for some a3, b3 ≥ 0.

Case 7.1 α ≥ 3 and β = 1. Then (2.29) reduces to

32α−1 + 171 = 6 · 3a37b3 . (2.30)

Since 32α−1 + 171 = 32(32α−3 + 19), we obtain 32 || 6d3, which implies a3 = 1.
Dividing both sides of (2.30) by 9, we obtain 32α−3 + 19 = 2 · 7b3 . Reducing
this modulo 3, we have a contradiction.

Case 7.2 α ∈ {1, 2}. If α = 2, then (2.29) leads to d3 ≡ 0 (mod 11) which
contradicts the fact that d3 = 3a37b3 . So α = 1. Then a3 ∈ {0, 1, 2} and
(2.29) reduces to 23 · 72β−1 − 6d3 + 13 = 0. From this, we see that 7 ∤ d3. So
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b3 = 0, d3 = 3a3 , and the above equation becomes 23 · 72β−1 − 6 · 3a3 + 13 = 0.
Substituting a3 = 0, 1, 2, we obtain 23 · 72β−1 = −7, 5, 41, which is not possible.
Hence there is no solution in this case.

Case 8 p = 5. Then the possible values of D1, D2, D3 listed in an increasing
order are 3, 5, 9, 15, 25, . . .. IfD1 ≥ 25, then (2.4) implies 2 < (3/2)(5/4)+1/25+
1/25 + 1/25 < 2, which is false. Therefore D1 ∈ {3, 5, 9, 15}. It is possible to
obtain bounds for D2 and D3 as in the other cases but the same method will
lead to a longer calculation. In this case, it is better to get a bound only for D1

and go back to d1, d2, d3. Let d1 = 3a15b1 , d2 = 3a25b2 , and d3 = 3a35b3 where
ai, bi ≥ 0, and recall that n > d1 > d2 > d3 ≥ 1 and d1, d2, d3 are the deficient
divisors of n = 32α52β. In addition, from σ(n) = 2n− (d1 + d2 + d3), we get

(32α+1 − 1)(52β+1 − 1) = 16 · 32α52β − 8(d1 + d2 + d3)

= 16 · 32α52β − 8(3a15b1 + 3a25b2 + 3a35b3). (2.31)

From (2.31), we see that 8(d1 + d2 + d3) = 32α52β + 32α+1 + 52β+1 − 1, which
implies

1 <
8

32α52β
(d1 + d2 + d3) < 1 +

3

52
+

5

32
< 2. (2.32)

Since D1 ∈ {3, 5, 9, 15} and d1 = n/D1, we see that

(a1, b1) = (2α− 1, 2β), (2α, 2β − 1), (2α− 2, 2β), or (2α− 1, 2β − 1). (2.33)

Observe that 34 ≡ 1 (mod 5), 52 ≡ 1 (mod 3), and the exponents 4 and 2 are
the smallest positive integers satisfying each congruence. From this, it is not
difficult to verify that the left-hand side of (2.31) satisfies

(32α+1 − 1)(52β+1 − 1) ≡

{

3 (mod 5), if α is even;

4 (mod 5), if α is odd,
(2.34)

(32α+1 − 1)(52β+1 − 1) ≡ 2 (mod 3). (2.35)

Since 5 does not divide the left-hande side of (2.31), at least one of d1, d2, d3
is not divisible by 5, that is, at least one of b1, b2, b3 is zero. By (2.33), we see
that b1 6= 0. Thus

b1 6= 0 and min{b2, b3} = 0. (2.36)

Suppose for a contradiction that a1 = a2 = a3 = 0. That is, d1 = 5b1 , d2 = 5b2 ,
d3 = 5b3 . Since d1 > d2 > d3, we have b1 > b2 > b3. So by (2.36), b3 = 0 and
b1 > b2 > 0. Then the right-hand side of ((2.31) is ≡ 2 (mod 5) contradicting
(2.34). So one of a1, a2, a3 is not zero. By (2.35) and (2.31), one of d1, d2, d3
is not divisible by 3, and so one of a1, a2, a3 is zero. We conclude that

max{a1, a2, a3} ≥ 1 and min{a1, a2, a3} = 0. (2.37)
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The right-hand side of (2.31) is congruent to







































(0 + 0 + 5b3) (mod 3), if a1 6= 0, a2 6= 0, and a3 = 0;

(0 + 5b2 + 0) (mod 3), if a1 6= 0, a2 = 0, and a3 6= 0;

(5b1 + 0+ 0) (mod 3), if a1 = 0, a2 6= 0, and a3 6= 0;

(5b1 + 5b2 + 0) (mod 3), if a1 = a2 = 0, and a3 6= 0;

(5b1 + 0+ 5b3) (mod 3), if a1 = a3 = 0, and a2 6= 0;

(0 + 5b2 + 5b3) (mod 3), if a2 = a3 = 0, and a1 6= 0.

(2.38)

By comparing (2.31), (2.35) and (2.38), we obtain the parities of b1, b2, b3 as
follows. If 5b ≡ 2 (mod 3), then b is odd. If 5x + 5y ≡ 2 (mod 3), then x and
y are even. For convenience, for each i ∈ {1, 2, 3}, if bi is odd, we write b′i for
bi; if bi is even, then we replace bi by b′′i . Therefore, for each i ∈ {1, 2, 3}, b′i,
b′′i ≥ 0, b′i = bi is odd, and b′′i = bi is even, and there are six cases to consider
as follows:

Case 8.1 d1 = 3a15b1 , d2 = 3a25b2 , d3 = 5b
′

3 , a1 6= 0, a2 6= 0, and a3 = 0,
Case 8.2 d1 = 3a15b1 , d2 = 5b

′

2 , d3 = 3a35b3 , a1 6= 0, a2 = 0, and a3 6= 0,
Case 8.3 d1 = 5b

′

1 , d2 = 3a25b2 , d3 = 3a35b3 , a1 = 0, a2 6= 0, and a3 6= 0,
Case 8.4 d1 = 5b

′′

1 , d2 = 5b
′′

2 , d3 = 3a35b3 , a1 = a2 = 0, and a3 6= 0,
Case 8.5 d1 = 5b

′′

1 , d2 = 3a25b2 , d3 = 5b
′′

3 , a1 = a3 = 0, and a2 6= 0,
Case 8.6 d1 = 3a15b1 , d2 = 5b

′′

2 , d3 = 5b
′′

3 , a2 = a3 = 0, and a1 6= 0.
Some cases are shorter but we will begin with Case 8.1.
Case 8.1 Since b′3 6= 0, we obtain by (2.36) that b1 6= 0 and b2 = 0. By

(2.33), there are 4 cases to consider. If a1 = 2α− 1 and b1 = 2β, then

8(d1 + d2 + d3)/(3
2α52β) = 8

(

32α−152β + 3a2 + 5b
′

3

)

/
(

32α52β
)

> 8/3 > 2,

which contradicts (2.32). Next, suppose that a1 = 2α and b1 = 2β − 1. Since
3a2 = d2 > d3 = 5b

′

3 ≥ 5, we obtain a2 ≥ 2. Thus

0 = 8 (σ(n)− 2n+ d1 + d2 + d3) = 8(d1 + d2 + d3)− 32α52β − 32α+1 − 52β+1 + 1

> 8(32α52β−1 + 32 + 5)− 32α52β − 32α+1 − 52β+1

= (32α+1 − 25)(52β−1 − 1) + 87 > 0,

which is false. Next, consider the case (a1, b1) = (2α − 2, 2β). Since a1 6= 0,
α ≥ 2. If β ≥ 2, then (2.32) implies that

1 <
8

32α52β
(32α−252β + 3a2 + 5b

′

3) ≤
8

32α52β
(

32α−252β + 32α + 52β−1
)

= 8

(

1

32
+

1

52β
+

1

32α · 5

)

≤ 8

(

1

32
+

1

54
+

1

34 · 5

)

< 1,

which is a contradiction. So β = 1. Then d3 = 5.
Starting with 0 = 8 (σ(n)− 2n+ d1 + d2 + d3), and then simplifying leads

to 2 · 3a2 = 13 · 32α−2+21. Since 13 · 32α−2+21 > 2 · 32α−1, we obtain a2 = 2α.
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But then 21 = 2 · 3a2 − 13 · 32α−2 = 5 · 32α−2 ≡ 0 (mod 5), a contradiction.
Next, we consider the last case: (a1, b1) = (2α− 1, 2β − 1). If α ≥ 2 or β ≥ 2,
then (2.32) implies

1 <
8

32α52β

(

32α−152β−1 + 3a2 + 5b
′

3

)

≤ 8

(

1

15
+ max

{

1

25
+

1

34 · 5
,
1

54
+

1

32 · 5

})

< 1,

which is impossible. So α = 1 = β. Then a1 = 1 = b1. Since 15 = d1 >
3a2 = d2 > d3 = 5b

′

3 = 5, we have d2 = 9. Now it is easy to verify that
σ(n)− 2n+ d1 + d2 + d3 = −18 6= 0. So there is no solution in this case.

Case 8.2 Since b2 = b′2 6= 0, we obtain by (2.36) that b3 = 0. Similar to Case
8.1, we divide our calculation into four cases according to the values of a1 and
b1 as given in (2.33). If (a1, b1) = (2α− 1, 2β), then 8(d1 + d2 + d3)/(3

2α52β) >
8d1/(3

2α52β) > 8/3 > 2, contradicting (2.32). If (a1, b1) = (2α, 2β − 1), then
d2 ≥ 5, d3 ≥ 3, and

0 = 8 (σ(n)− 2n+ d1 + d2 + d3) = 8(d1 + d2 + d3)− 32α52β − 32α+1 − 52β+1 + 1

≥ 32α+152β−1 − 32α+1 − 52β+1 + 65

= (32α+1 − 25)(52β−1 − 1) + 40 > 0,

which is not possible. Suppose (a1, b1) = (2α − 2, 2β). Since a1 6= 0, we have
α ≥ 2. If β ≥ 2, then (2.32) implies

1 <
8

32α52β
(32α−252β + 5b

′

2 + 3a3)

≤
8

32α52β
(

32α−252β + 52β−1 + 32α
)

≤ 8

(

1

9
+

1

34 · 5
+

1

54

)

< 1,

which is false. So β = 1. Then d2 = 5 and d3 = 3.
Starting from 8 (σ(n) − 2n+ d1 + d2 + d3) = 0 and then simplifying leads

to 13 · 32α−2 + 15 = 0, which is impossible. The last case of (2.33) is (a1, b1) =
(2α− 1, 2β − 1). If α ≥ 2 or β ≥ 2, then (2.32) implies

1 <
8

32α52β

(

32α−152β−1 + 5b
′

2 + 3a3

)

≤ 8

(

1

15
+

1

32α · 5
+

1

52β

)

≤ 8

(

1

15
+ max

{

1

34 · 5
+

1

52
,

1

32 · 5
+

1

54

})

< 1,

which is not ture. Thus α = β = 1. So a1 = b1 = 1, d2 = 5, and d3 = 3. Now
it is easy to verify that σ(n) − 2n + d1 + d2 + d3 = −24 6= 0. So there is no
solution in this case.

Case 8.3 By (2.32), we obtain 1 < 8(3d1)/(3
2α52β) ≤ 24 ·52β−1/(32β52β) ≤

24/45 < 1, a contradiction.
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Case 8.4 By (2.32), we obtain

1 <
8

32α52β
(d1 + 2d2) =

8

32α52β
(5b

′′

1 + 2 · 5b
′′

2 )

≤
8

32α52β
(52β + 2 · 52β−2) ≤ 8

(

1

9
+

2

9 · 25

)

< 1,

which is not possible.
Case 8.5 If α ≥ 2, then (2.32) implies that

1 <
8

32α52β
(2d1 + d3) ≤

8

32α52β
(2 · 52β + 52β−2) ≤ 8

(

2

34
+

1

34 · 52

)

< 1,

which is false. Therefore α = 1. Then the left-hand side of (2.31) is ≡ 4 (mod 5),
while the right-hand side is ≡ 2(d1 + d2 + d3) ≡ 2(3a25b2 + 5b

′′

3 ) (mod 5). By
(2.36), b2 = 0 or b3 = 0. If b2 = 0 and b3 6= 0, then 52 ≤ d3 < d2 = 3a2 , and so
a2 ≥ 3 contradicting the fact that d2 | n and n = 32α52β = 32 · 52β . If b2 6= 0
and b3 = 0, then 2(3a25b2 + 5b

′′

3 ) ≡ 2 (mod 5), which is not the case. Since
α = 1, a2 ∈ {1, 2}. So if b2 = b3 = 0, then 2(3a25b2 +5b

′′

3 ) ≡ 3, 0 (mod 5), which
is not true. So there is no solution in this case.

Case 8.6 Since 5b
′′

2 = d2 > d3 ≥ 1, we have b′′2 6= 0. By (2.36), we see that
b3 = 0. Then the right-hand side of (2.31) is ≡ 2(3a15b1+5b

′′

2 +5b
′′

3 ) ≡ 2 (mod 5)
contradicting (2.34).

This completes the proof of this theorem.
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