The longest increasing subsequence in involutions avoiding 3412 and another pattern

Toufik Mansour* ${ }^{*}$ Reza Rastegar ${ }^{\dagger}$ Alexander Roitershtein ${ }^{\ddagger}$
Gökhan Yıldırım ${ }^{\S}$

January 29, 2020

Abstract

In this note, we study the mean length of the longest increasing subsequence of a uniformly sampled involution that avoids the pattern 3412 and another pattern.

Keywords: Pattern avoidance, restricted involutions, longest increasing subsequence, Ulam's problem, Motzkin path, generating functions.
MSC2010: Primary 05A05, 05A16; Secondary 05A15.

1 Introduction

In this paper we study the longest increasing subsequence of involutions avoiding 3412 and another pattern. A permutation $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n}$ of length n is defined as an arrangement of the elements of the set $[n]:=\{1,2, \cdots, n\}$. A permutation σ is called an involution if $\sigma=\sigma^{-1}$, where $\sigma_{i}^{-1}=j$ if and only if $\sigma_{j}=i$. We use notations S_{n} and I_{n} to denote, respectively, the set of all permutations and the set of all involutions of length n. A subsequence of $\sigma \in S_{n}$ is defined as a sequence $\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. The subsequence is called an increasing subsequence if $\sigma_{i_{1}}<\sigma_{i_{2}}<\cdots<\sigma_{i_{k}}$.

For any permutation σ, there is at least one longest increasing subsequence. We denote the length of this subsequence by $L_{n}(\sigma)$. The celebrated Ulam's problem is concerned with the asymptotic behavior, as n tends to infinity, of the expectation of $L_{n}(\sigma)$ when σ is chosen uniformly from $S_{n}[1,11]$. The classical Ulam's problem has been extended and generalized in various directions [13, 14]. In particular, asymptotic behavior of the distribution of the longest increasing subsequence of random involutions is the topic of $[2,7]$.

[^0]Variations of Ulam's problem have been considered also for permutations in S_{n} avoiding certain patterns [3, 8, 9, 10]. For permutations $\pi=\pi_{1} \pi_{2} \cdots \pi_{k} \in S_{k}$ and $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in S_{n}$, we say that σ contains pattern π if there exist $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ such that

$$
\sigma_{i_{s}}<\sigma_{i_{t}} \text { if and only if } \pi_{s}<\pi_{t} \text { for all } 1 \leq s, t \leq k
$$

For instance, the permutation 15243 contains 321 as a pattern because it has the subsequences $* 5 * 43$, and 543 matches the pattern 321. If σ does not contain π as a pattern, then we say that σ avoids π or σ is a π-avoiding permutation. We denote by $S_{n}(\pi)$ and $I_{\mathrm{n}}(\pi)$, respectively, the sets of π-avoiding permutations and π-avoiding involutions of $[n]$.

The goal of this paper is to study Ulam's problem in the context of involutions in I_{n} avoiding 3412 and another pattern. In [4] Egge connected generating functions for various subsets of $I_{\mathrm{n}}(3412)$ with continued fractions and Chebyshev polynomials of the second kind, and gave a recursive formula for computing them. The formula exploits a bijection between $I_{\mathrm{n}}(3412)$ and Motzkin paths established in [6]. Many of the results in [4] are concerned with statistics of decreasing subsequences of involutions in $I_{n}(3412)$. Later, Egge and Mansour [5] extended the results in [4] to certain bivariate generating functions involving statistics of two-cycles in involutions. In this paper we extend the method of [4, 5] to certain bivariate generating functions involving the statistic $L_{n}(\sigma)$, and use it as a tool for studying the Ulam's problem for such pattern-restricted involutions.

For a given set of patterns T, let $I_{\mathrm{n}}(T)=\bigcap_{\tau \in T} I_{\mathrm{n}}(\tau)$ and denote by $P_{n, T}$ the uniform distribution on $I_{\mathrm{n}}(T)$. Thus, the probability of choosing any $\sigma \in I_{\mathrm{n}}(T)$ under $P_{n, T}$ is $\frac{1}{\left|I_{\mathrm{n}}(T)\right|}$, where $|\cdot|$ is the size of the set. We use the notations $E_{n, T}(\cdot)$ and $\operatorname{Var}_{n, T}(\cdot)$ to denote, respectively, the expectation and the variance operators under $P_{n, T}$. We use the shortcut L_{n} to denote the random variable $L_{n}(\sigma)$, where $\sigma \in S_{n}$ is a random permutation sampled uniformly from $I_{n}(T)$.

Throughout the paper, we write $a_{n} \sim b_{n}$ to indicate that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. We have:
Theorem 1.1. Consider L_{n} on $I_{\mathrm{n}}(T)$ under the uniform probability measure. Then we have the following:
(i) If $T=\{3412\}$, then $E_{n, T}\left(L_{n}\right)=\frac{4 n}{9}$.
(ii) If $T=\{3412,123\}$, then $E_{n, T}\left(L_{n}\right)=\frac{n^{2} / 2+3 / 4+(-1)^{n} / 4}{n^{2} / 4+7 / 8+(-1)^{n} / 8} \sim 2$.
(iii) If $T=\{3412,213\}$ or $T=\{3412,132\}$, then $E_{n, T}\left(L_{n}\right) \sim \frac{n}{\sqrt{5}}$.
(iv) If $T=\{3412,321\}$, then $E_{n, T}\left(L_{n}\right) \sim \frac{3+\sqrt{5}}{5+\sqrt{5}} n$.
(v) If $T=\{3412,123 \cdots k\}$ for some $k \geq 1$, then $E_{n, T}\left(L_{n}\right) \sim k-1$.
(vi) If $T=\{3412,4123\}$, then,

$$
E_{n, T}\left(L_{n}\right) \sim \frac{1}{457}\left(198 \alpha^{3}-246 \alpha^{2}-131 \alpha+299\right) n \approx 0.454689799955 \cdots n
$$

Here α is the complex root of smallest absolute value of the polynomial $3 x^{4}-3 x^{3}-$ $x^{2}+3 x-1$.

τ	$H_{\tau}(x, q)=\sum_{n \geq 0} \sum_{\sigma \in I_{n}(3412, \tau)} x^{n} q^{L_{n}(\sigma)}$	$E_{n, T}=E_{n, T}\left(L_{n}\right), V_{n, T}=\operatorname{Var}_{n, T}\left(L_{n}\right)$ for $T=\{3412, \tau\}$
1234	$1+\frac{x}{(1-x)} q+\frac{x^{2}}{(1-x)^{3}(1+x)} q^{2}+\frac{x^{3}\left(x^{2}+1\right)}{(1-x)^{5}(x+1)^{2}} q^{3}$	$E_{n, T} \sim 3, V_{n, T} \sim \frac{12}{n^{2}}$
1243, 2134, 1324	$1+\frac{q x\left(x^{4}+\left(1+(q-2) x^{2}\right)(1-x q)\right)}{\left(1-q x-x^{2}\right)^{2}(1-x)}$	$E_{n, T} \sim \frac{n}{\sqrt{5}}, V_{n, T} \sim \frac{4}{5 \sqrt{5}} n$
$\begin{aligned} & 1342,1423 \\ & 2314,3124 \end{aligned}$	$\frac{(q-1) x^{3}+x^{2}+x-1}{x^{3}-x^{2}-(1+q) x+1}$	$\begin{aligned} & E_{n, T} \sim \frac{(3-2 \alpha)(\alpha+1)}{7} n, V_{n, T} \sim \frac{-7 \alpha^{2}+5 \alpha+10}{49} n, \text { where } \\ & \alpha^{3}-\alpha^{2}-2 \alpha+1=0, \alpha \approx 0.44504 \end{aligned}$
1432, 3214, 2143, 4231	$\frac{1-x}{1-x-q x}$	$E_{n, T} \sim \frac{n}{2}, V_{n, T} \sim \frac{1}{4} n$
2341,4123	$\frac{1}{1-\frac{x q}{1-x}-\frac{x^{4} 9^{2}}{(1-x)^{3}(1+x)}}$	$\begin{aligned} & E_{n, T} \sim \frac{198 \alpha^{3}-246 \alpha^{2}-131 \alpha+299}{457} n, \\ & V_{n, T} \sim \frac{28800 \alpha^{3}-7157 \alpha^{2}-8959 \alpha+47230}{208849} n, \text { where } \\ & 3 \alpha^{4}-3 \alpha^{3}-\alpha^{2}+3 \alpha-1=0, \alpha \approx 0.45209 \end{aligned}$
2413, 3142	$\frac{1-x q-x^{2}(q-1)-\sqrt{\left(1-x q-x^{2}(q-1)\right)^{2}-4 x^{2}}}{2 x^{2}}$	$E_{n, T} \sim \frac{4 n}{9}, V_{n, T} \sim \frac{4 n}{27}$
$\begin{aligned} & 2431,3241 \\ & 4132,4213 \end{aligned}$	$\frac{1-q x-x^{2}}{q^{2} x^{3}+\left(q^{2}-q-1\right) x^{2}-2 q x+1}$	$\begin{aligned} & E_{n, T} \sim \frac{(\alpha+1)(\alpha+2)}{7} n, V_{n, T} \sim \frac{-7 \alpha^{2}-4 \alpha+13}{49} n \text { where } \\ & \alpha^{3}-\alpha^{2}-2 \alpha+1=0, \alpha \approx 0.44504 \end{aligned}$
3421, 4312	$\frac{1-(q+1) x}{\left(1-(q+1) x-q x^{2}\right)(1-q x)}$	$E_{n, T} \sim \frac{n}{2} V_{n, T} \sim \frac{\sqrt{2}}{8} n$
4321	$\frac{1-q x}{q(q-1) x^{3}+q(q-1) x^{2}-2 q x+1}$	$E_{n, T} \sim \frac{5}{8} n, V_{n, T} \sim \frac{7}{64} n$

Table 1: The list of the generating functions and asymptotic values of the mean and variance of the length of the longest increasing subsequence for uniformly random involutions from $I_{\mathrm{n}}(3412, \tau)$ with $\tau \in S_{4}$.
(vii) If $T=\{3412,4321\}$, then $E_{n, T}\left(L_{n}\right) \sim \frac{5 n}{8}$.

Since 3412 contains the patterns 231 and 312, we have

$$
I_{n}(3412,231)=I_{n}(231) \quad \text { and } \quad I_{n}(3412,312)=I_{n}(312)
$$

As shown in section 3.2 of [8], $E_{n, T}\left(L_{n}\right)=\frac{n+1}{2}$ for $T=\{3412,231\}$ and $T=\{3412,312\}$. Thus, Theorem 1.1 covers all possible cases for $I_{\mathrm{n}}(3412, \tau)$ with $\tau \in S_{3}$.

Using similar arguments we also obtained the asymptotic of $E_{n, T}\left(L_{n}\right)$ and $\operatorname{Var}_{n, T}\left(L_{n}\right)$ for all possible cases $I_{\mathrm{n}}(3412, \tau)$ with $\tau \in S_{4}$. We summarize these results in Table 1, without explicit calculations for the sake of space.

The rest of the paper is organized as follows. In Section 2 we consider $I_{\mathrm{n}}(3412)$ and prove part (i) of Theorem 1.1. In Section 3 we consider $I_{\mathrm{n}}(3412, \tau)$ with various patterns τ and prove the rest of Theorem 1.1.

2 Longest increasing subsequences in $\boldsymbol{I}_{\mathrm{n}}(3412)$

For $\rho \in S_{k}$ and $\sigma \in S_{m}$, we denote by $\rho \oplus \sigma$ their direct sum, which is a permutation in S_{k+m} given by $\rho_{1} \cdots \rho_{k}\left(\sigma_{1}+k\right) \cdots\left(\sigma_{m}+k\right)$. Similarly, we denote by $\rho \ominus \sigma$ the skew sum of ρ and σ, which is an element of S_{k+m} given by $\left(\rho_{1}+m\right) \cdots\left(\rho_{k}+m\right) \sigma_{1} \cdots \sigma_{m}$.

Our proofs make use of the following recursive structure of the involutions in $I_{\mathrm{n}}(3412)$, for the details see [6, Remark 4.28] and [4, Proposition 2.9]:

Proposition 2.1. Let $\rho \in I_{\mathrm{n}}(3412)$. Then either
(i) $\rho=1 \oplus \rho^{\prime}$ and $\rho^{\prime} \in I_{n-1}(3412)$, or
(ii) $\rho=\left(1 \ominus \rho^{\prime \prime} \ominus 1\right) \oplus \rho^{\prime}$, where $\rho^{\prime \prime} \in I_{m-2}$ (3412) and $\rho^{\prime} \in I_{n-m}$ (3412) for some $m \geq 2$.

Proof of Theorem 1.1-(i). Let $H(x, q)$ be the generating function for the number of involutions in $I_{\mathrm{n}}(3412)$ according to the length of the longest increasing subsequence. More precisely,

$$
\begin{equation*}
H(x, q)=\sum_{n \geq 0} \sum_{\sigma \in I_{n}(3412)} x^{n} q^{L_{n}(\sigma)} \tag{1}
\end{equation*}
$$

To obtain a closed form for $H(x, q)$, we partition $I_{\mathrm{n}}(3412)$ as a union of the following four non-overlapping subsets, by virtue of Proposition 2.1:
(i) $\mathcal{I}_{n, 1}$ - the set of the empty involution;
(ii) $\mathcal{I}_{n, 2}$ - the set of the involutions in $I_{n}(3412)$ that start with 1 ;
(iii) $\mathcal{I}_{n, 3}$ - the set of the involutions in $I_{\mathrm{n}}(3412)$ that start with 21 ;
(iv) $\mathcal{I}_{n, 4}$ - the set of the involutions in $I_{\mathrm{n}}(3412)$ that can be written as $\left(1 \ominus \sigma^{\prime \prime} \ominus 1\right) \oplus \sigma^{\prime}$, where $\sigma^{\prime \prime}$ is a nonempty 3412 -avoiding involution and σ^{\prime} is any 3412-avoiding involution.
Adding together contributions of all the four sets, we obtain:

$$
H(x, q)=\underbrace{1}_{\mathcal{I}_{n, 1}}+\underbrace{x q H(x, q)}_{\mathcal{I}_{n, 2}}+\underbrace{x^{2} q H(x, q)}_{\mathcal{I}_{n, 3}}+\underbrace{x^{2}(H(x, q)-1) H(x, q)}_{\mathcal{I}_{n, 4}} .
$$

Hence,

$$
H(x, q)=\frac{1-x q-x^{2}(q-1)-\sqrt{\left(1-x q-x^{2}(q-1)\right)^{2}-4 x^{2}}}{2 x^{2}} .
$$

Note that $H(x, 1)=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}$, which is the generating function for Motzkin numbers [4, 6]. Furthermore,

$$
\left.\frac{\partial}{\partial q} H(x, q)\right|_{q=1}=-\frac{x+1}{2 x}+\frac{1+x^{2}}{2 x \sqrt{1-2 x-3 x^{2}}}
$$

Hence,

$$
E_{n, 3412}\left(L_{n}\right)=\frac{\left.\left[x^{n}\right] \frac{\partial}{\partial q} H(x, q)\right|_{q=1}}{\left[x^{n}\right] H(x, 1)} \sim \frac{\frac{2 n \sqrt{3}}{9 \sqrt{\pi n}} 3^{n+1}}{\frac{\sqrt{3}}{2 \sqrt{\pi n}} 3^{n+1}}=\frac{4 n}{9},
$$

which completes the proof of Theorem 1.1-(i).

3 Longest increasing subsequences in $\boldsymbol{I}_{\mathrm{n}}(3412, \tau)$

In this section, we extend our arguments from $I_{\mathrm{n}}(3412)$ to $I_{\mathrm{n}}(3412, \tau)$ for various patterns τ. Toward this end, similar to (1), we define

$$
H_{\tau}(x, q)=\sum_{n \geq 0} \sum_{\sigma \in I_{n}(3412, \tau)} x^{n} q^{L_{n}(\sigma)}
$$

More generally, for a collection of patterns T, we set

$$
H_{T}(x, q)=\sum_{n \geq 0} \sum_{\sigma \in I_{n}(3412) \cap I_{n}(T)} x^{n} q^{L_{n}(\sigma)} .
$$

When $T=\left\{\tau, \tau^{\prime}\right\}$, for simplicity, we write $H_{\tau, \tau^{\prime}}(x, q)$. We also set $H_{\emptyset}(x, q):=0$ and let $H_{\tau / \tau^{\prime}}(x, q):=H_{\tau}(x, q)-H_{\tau, \tau^{\prime}}(x, q)$ denote the corresponding generating function for the involutions in $I_{n}(3412, \tau)$ that contain the pattern τ^{\prime}.

We call a permutation irreducible if it cannot be represented as a direct sum of two nonempty permutations. It is easy to show that every permutation ρ can be written as a direct sum

$$
\rho=\rho^{(1)} \oplus \rho^{(2)} \oplus \cdots \oplus \rho^{(k)}
$$

where $\rho^{(1)}, \ldots, \rho^{(k)}$ are nonempty irreducible permutations, uniquely determined by ρ. We next introduce a bar operator for permutations following [4].

Definition 3.1. For $\rho \in S_{m}$, define $\bar{\rho}$ as follows:

1. $\bar{\emptyset}=\emptyset$ and $\overline{1}=\emptyset$.
2. If $m \geq 2$ and there exists a permutation σ such that $\rho=1 \ominus \sigma \ominus 1$, then $\bar{\rho}=\sigma$.
3. If $m \geq 2$ and there exists a permutation σ such that $\rho=1 \ominus \sigma$, and σ does not end with 1 , then $\bar{\rho}=\sigma$.
4. If $m \geq 2$ and there exists a permutation σ such that $\rho=\sigma \ominus 1$, and ρ does not begin with m, then $\bar{\rho}=\sigma$.
5. If $m \geq 2$ and ρ does not begin with m, and it does not end with 1 , then $\bar{\rho}=\rho$.

Our main technical tool for calculating the corresponding generating functions for the classes $I_{\mathrm{n}}(3412, \tau)$ is the following extension of a result for $I_{\mathrm{n}}(3412)$ given by Corollary 5.6 in [4].

Proposition 3.2. Suppose that $\tau=\tau^{(1)} \oplus \tau^{(2)} \oplus \cdots \oplus \tau^{(s)}$ is a direct sum of nonempty irreducible permutations $\tau^{(1)}, \ldots, \tau^{(s)}$ such that $\tau^{(1)}$ is not a decreasing sequence. For $i \in[s]$, define

$$
\theta^{(i)}:=\overline{\tau^{(1)} \oplus \cdots \oplus \tau^{(i)}} \quad \text { and } \quad \theta^{<i>}:=\tau^{(i)} \oplus \cdots \oplus \tau^{(s)}
$$

Then we have:
(i) If $\tau^{(1)}=1$, then

$$
\begin{aligned}
H_{\tau}(x, q) & =1+\frac{x q}{1-x} H_{\theta(<2>)}(x, q) \\
& +x^{2} \sum_{i=2}^{s}\left\{H_{\theta^{(i)} / 12}(x, q)-H_{\theta^{(i-1)} / 12}(x, q)\right\} H_{\theta^{<i>}}(x, q)
\end{aligned}
$$

(ii) If $\tau^{(1)}=21$, then

$$
\begin{aligned}
H_{\tau}(x, q) & =1+x q H_{\rho}(x, q)+\frac{x^{2} q}{1-x} H_{\theta^{<2>}}(x, q) \\
& +x^{2} \sum_{i=2}^{s}\left\{H_{\theta^{(i)} / 12}(x, q)-\delta_{i>2} H_{\theta^{(i-1)} / 12}(x, q)\right\} H_{\theta^{<i>}}(x, q)
\end{aligned}
$$

where δ_{A} is one if A is true, and is zero otherwise.
(iii) If $\tau^{(1)}=m(m-1) \cdots 1$ with $m \geq 3$, then

$$
\begin{aligned}
H_{\tau}(x, q) & =1+\left(x+x^{2}+\cdots+x^{m-1}\right) q H_{\rho}(x, q)+\frac{x^{m} q}{1-x} H_{\theta^{<2>}}(x, q) \\
& +x^{2} \sum_{i=1}^{s}\left\{H_{\theta^{(i)} / 12}(x, q)-H_{\theta^{(i-1)} / 12}(x, q)\right\} H_{\theta<i>}(x, q) .
\end{aligned}
$$

(iv) If $\tau^{(1)} \neq m(m-1) \cdots 1$ and $\rho^{(1)} \in S_{m}$ with $m \geq 3$, then

$$
\begin{aligned}
H_{\tau}(x, q) & =1+\frac{x q}{1-x} H_{\rho}(x, q) \\
& +x^{2} \sum_{i=1}^{s}\left\{H_{\theta^{(i)} / 12}(x, q)-H_{\theta^{(i-1)} / 12}(x, q)\right\} H_{\theta^{<i>}}(x, q)
\end{aligned}
$$

We will only prove parts (i) and (iv) of the proposition. The proofs of the other two cases are very similar, and therefore are omitted.

Proof of Proposition 3.2-(i). Assume first that $\tau^{(1)}=1$. We partition the set $I_{n}(3412, \tau)$ into three non-overlapping subsets:
(i) $\mathcal{J}_{n, 1}$ - the set of the empty involution;
(ii) $\mathcal{J}_{n, 2}$ - the set of those involutions of the form $r(r-1) \cdots 1 \oplus \sigma^{\prime}$ for some $r \geq 2$;
(iii) $\mathcal{J}_{n, 3}$ - the set of those involutions which do not begin with a decreasing sequence.

It is easy to see that the involutions in the sets $\mathcal{J}_{n, 1}$ and $\mathcal{J}_{n, 2}$ contribute 1 and $\frac{x q}{1-x} H_{\tau}(x, y)$, respectively, to $H_{\tau}(x, y)$. To obtain the contribution of the involutions in the set $\mathcal{J}_{n, 3}$, we first observe that in view of Proposition 2.1, all involutions in $\mathcal{J}_{n, 3}$ can be written in the form $\sigma=\left(1 \ominus \sigma^{\prime \prime} \ominus 1\right) \oplus \sigma^{\prime}$ with $\sigma^{\prime \prime}$ that contains 12 . Thus, the involutions in $\mathcal{J}_{n, 3}$ that avoid $\tau^{(1)}$ contribute $x^{2} H_{\theta^{(1)} / 12}(x, q) H_{\tau}(x, q)=0$. Furthermore, any involution in $\mathcal{J}_{n, 3}$ that
contains $\tau^{(1)}$, avoids $\theta^{(i)}$ and contains $\theta^{(i-1)}$ for some $i=2,3, \ldots, s$. The total contribution of such involutions into $H_{\tau}(x, q)$ is equl to

$$
x^{2} \sum_{i=2}^{s}\left(H_{\theta^{(i)} / 12}(x, q)-H_{\theta^{(i-1)} / 12}(x, q)\right) H_{\theta^{<i>}}(x, q) .
$$

Adding together the contributions of $\mathcal{J}_{n, 1}, \mathcal{J}_{n, 2}$, and $\mathcal{J}_{n, 3}$, we obtain the desired result.
Proof of Proposition 3.2-(iv). Suppose now that $\tau^{(1)} \neq m(m-1) \cdots 1$ and $\tau^{(1)} \in S_{m}$ with $m \geq 3$. We will consider again the partition $I_{n}(3412, \tau)=\bigcup_{k=1}^{3} \mathcal{J}_{n, k}$ defined in the course of the proof of part (i) of the proposition. It is easy to verify that in this case, $\mathcal{J}_{n, 1}$ contributes 1 to $H_{\tau}(x, q)$, while permutations in the set $\mathcal{J}_{n, 2}$ contribute $\frac{x q}{1-x} H_{\tau}(x, y)$. To obtain the contribution of $\mathcal{J}_{n, 3}$, recall that by Proposition 2.1, all involutions in this set have the form $\sigma=\left(1 \ominus \sigma^{\prime \prime} \ominus 1\right) \oplus \sigma^{\prime}$ where $\sigma^{\prime \prime}$ contains 12 . Thus, the involutions in $\mathcal{J}_{n, 3}$ that avoid $\tau^{(1)}$ contribute $x^{2} H_{\theta^{(1)} / 12}(x, q) H_{\tau}(x, q)$, while the involutions in $\mathcal{J}_{n, 3}$ that contain $\tau^{(1)}$ contribute

$$
x^{2} \sum_{i=1}^{s}\left(H_{\theta^{(i)} / 12}(x, q)-H_{\theta^{(i-1)} / 12}(x, q)\right) H_{\theta^{<i>}}(x, q)
$$

Adding up all the contributing terms listed above, yields the desired result.
The rest of this section is divided into fives subsections, each one is concerned with $I_{\mathrm{n}}(3412, \tau)$ for a particular type of pattern τ and presents the proof of the corresponding part in Theorem 1.1.

$3.1 E_{n, T}\left(\boldsymbol{L}_{n}\right)$ on $\boldsymbol{I}_{\mathrm{n}}(3412, \tau)$ with $\tau \in S_{2}$

Note that the only involution in $I_{\mathrm{n}}(3412,12)$ is $n(n-1) \cdots 1$. Thus,

$$
\begin{equation*}
H_{12}(x, q)=1+\frac{x q}{1-x} . \tag{2}
\end{equation*}
$$

Similarly, the only involution in $I_{\mathrm{n}}(3412,21)$ is $12 \cdots n$. Thus,

$$
H_{21}(x, q)=\frac{1}{1-x q}
$$

$3.2 E_{n, T}\left(\boldsymbol{L}_{n}\right)$ on $\boldsymbol{I}_{\mathrm{n}}(3412, \tau)$ with $\tau \in S_{3}$

Proof of Theorem 1.1-(ii). An application of Proposition 3.2-(i) with $\tau=1 \oplus 1 \oplus 1=123$ gives

$$
\begin{aligned}
H_{123}(x, q) & =1+\frac{x q}{1-x} H_{12}(x, q)+x^{2}\left(H_{12 / 12}(x, q)-H_{1 / 12}(x, q)\right) H_{12}(x, q) \\
& +x^{2}\left(H_{123 / 12}(x, q)-H_{12 / 12}(x, q)\right) H_{1}(x, q)
\end{aligned}
$$

It follows from (2) and the decomposition

$$
\begin{equation*}
H_{123 / 12}(x, q)=H_{123}(x, q)-H_{12}(x, q) \tag{3}
\end{equation*}
$$

that

$$
H_{123}(x, q)=1+\frac{x q}{1-x}\left(1+\frac{x q}{1-x}\right)+x^{2} H_{123}(x, q)-x^{2}\left(1+\frac{x q}{1-x}\right) .
$$

Therefore,

$$
H_{123}(x, q)=1+\frac{x q\left(1-x(1-q)-x^{2}+x^{3}\right)}{(1-x)^{3}(1+x)}
$$

Hence, for $T=\{3412,123\}$ we have:

$$
E_{n, T}\left(L_{n}\right)=\frac{\left.\left[x^{n}\right] \frac{\partial}{\partial q} H_{123}(x, q)\right|_{q=1}}{\left[x^{n}\right] H_{123}(x, 1)}=\frac{n^{2} / 2+3 / 4+(-1)^{n} / 4}{n^{2} / 4+7 / 8+(-1)^{n} / 8} \sim 2 .
$$

Proof of Theorem 1.1-(iii). Proposition 3.2-(i) implies that for $\tau=1 \oplus 21=132$,

$$
H_{132}(x, q)=1+\frac{x q}{1-x} H_{21}(x, q)+x^{2}\left(H_{132 / 12}(x, q)-H_{1 / 12}(x, q)\right) H_{21}(x, q)
$$

Using (3) and the fact that $H_{1 / 12}(x, q)=0$, we get

$$
H_{132}(x, q)=\frac{1-x^{2}(1-q)}{1-x q-x^{2}}
$$

Therefore, for $T=\{3412,132\}$ we have:

$$
E_{n, T}\left(L_{n}\right) \sim \frac{n}{\sqrt{5}} .
$$

We next apply Proposition 3.2-(ii) to $\tau=21 \oplus 1=213$, to get

$$
H_{213}(x, q)=1+x q H_{213}(x, q)+\frac{x^{2} q}{1-x}+x^{2}\left(H_{213}(x, q)-H_{12}(x, q)\right) H_{1}(x, q) .
$$

It follows then from (2) that

$$
H_{213}(x, q)=\frac{1-x^{2}(1-q)}{1-x q-x^{2}}
$$

Hence, for $T=\{3412,213\}$ we have: $E_{n, T}\left(L_{n}\right) \sim \frac{n}{\sqrt{5}}$.
Proof of Theorem 1.1-(iv). An application of Proposition 3.2-(iii) to $\tau=321$ yields:

$$
H_{321}(x, q)=1+\left(x+x^{2}\right) q H_{321}(x, q)+x^{2}\left(H_{1}(x, q)-H_{1,12}(x, q)\right) H_{321}(x, q) .
$$

Since $H_{1}(x, q)=H_{1,12}(x, q)=1$, this implies that

$$
H_{321}(x, q)=\frac{1}{1-q x-q x^{2}}
$$

Thus, for $T=\{3412,321\}$ we have $E_{n, T}\left(L_{n}\right) \sim \frac{3+\sqrt{5}}{5+\sqrt{5}} n$.

$3.3 E_{n, T}\left(\boldsymbol{L}_{n}\right)$ on $\boldsymbol{I}_{\mathrm{n}}(3412, \tau)$ with $\tau=12 \cdots k$

Proof of Theorem 1.1- (v). Let $F_{k}(x, q):=H_{12 \cdots k}(x, q)$. Applying Proposition 3.2 to the permutation $\tau=12 \cdots k$ with $k \geq 1$, we obtain:

$$
F_{k}(x, q)=1+\frac{x q}{1-x} F_{k-1}(x, q)+x^{2} \sum_{i=3}^{k}\left(F_{i}(x, q)-F_{i-1}(x, q)\right) F_{k-i+1}(x, q)
$$

Let $F(x, q ; y):=\sum_{k \geq 1} F_{k}(x, q) y^{k}$. Multiplying both sides of the above recurrence equation by y^{k}, summing over $k \geq 1$, and using the fact that $F_{0}(x, q)=0$ and $F_{1}(x, q)=1$, we obtain:

$$
\begin{aligned}
F(x, q ; y) & =\frac{y}{1-y}+\frac{x q y}{1-x} F(x, q ; y)+\frac{x^{2}}{y} F(x, q ; y) F(x, q ; y)-x^{2} y H_{12}(x, q) F(x, q ; y) \\
& -x^{2} F(x, q ; y)-x^{2} F(x, q ; y) F(x, q ; y)+x^{2} y F(x, q ; y) .
\end{aligned}
$$

Taking (2) into account and solving for $F(x, y ; q)$, we obtain:

$$
\begin{aligned}
F(x, q ; y) & =\frac{y}{1-y}+\frac{\left(1-q y x-(1+q y) x^{2}-\sqrt{\left.\left(1-q y x-(q y+1) x^{2}\right)^{2}-4 q(1+x) x^{3} y\right) y}\right.}{2 x^{2}(1-y)} \\
& =\frac{y}{1-y}+\frac{q x y^{2}}{(1-y)(1-x-q y x)} C\left(\frac{q x^{3} y}{(1+x)(1-x-q y x)^{2}}\right),
\end{aligned}
$$

where $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$ is the generating function for the Catalan numbers $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
Substituting a series representation of the generating function from A001263 in [12], we obtain that

$$
F(x, q ; y)=\frac{y}{1-y}+\frac{1}{1-y} \sum_{j \geq 0} \sum_{i=1}^{j+1} \frac{\frac{1}{i}\binom{j-1}{i-1}\binom{j}{i-1} x^{2 i+j-1}}{(1-x)^{2 j+1}(1+x)^{j}} q^{j+1} y^{j+2}
$$

Therefore, for $k \geq 2$ we have:

$$
\begin{equation*}
\left[y^{k}\right] F(x, q ; y)=1+\sum_{j=0}^{k-2} \sum_{i=1}^{j+1} \frac{\frac{1}{i}\binom{j-1}{i-1}\binom{j}{i-1} x^{2 i+j-1}}{(1-x)^{2 j+1}(1+x)^{j}} q^{j+1} \tag{4}
\end{equation*}
$$

Hence, for all $k \geq 2$, using the usual bracket notation for coefficient extraction,

$$
\left[x^{n} y^{k}\right] F(x, 1 ; y) \sim \frac{1}{(k-1) 2^{k-2}(2 k-4)!}\binom{2 k-4}{k-2} n^{2 k-4}
$$

and

$$
\left.\left[x^{n} y^{k}\right] \frac{\partial}{\partial q} F(x, q ; y)\right|_{q=1} \sim \frac{1}{2^{k-2}(2 k-4)!}\binom{2 k-4}{k-2} n^{2 k-4},
$$

which yields the result in Theorem 1.1-(v).

$3.4 E_{n, T}\left(\boldsymbol{L}_{n}\right)$ on $\boldsymbol{I}_{\mathrm{n}}(3412, \tau)$ with $\tau=k 12 \cdots(k-1)$

Proof of Theorem 1.1-(vi). Let $G_{k}(x, q):=H_{k 12 \cdots(k-1)}(x, q)$. Applying Proposition 3.2-(iv) to $\tau=k 12 \cdots(k-1)$ with $k \geq 3$, we obtain that

$$
G_{k}(x, q)=1+\frac{x q}{1-x} G_{k}(x, q)+x^{2}\left(F_{k-1}(x, q)-F_{2}(x, q)\right) G_{k}(x, q)
$$

which in view of (2) leads to

$$
G_{k}(x, q)=\frac{1}{1-\frac{x q}{1-x}-x^{2}\left(F_{k-1}(x, q)-1-\frac{x q}{1-x}\right)}
$$

Taking (4) into account, we arrive to the following result:
Lemma 3.3. For $k \geq 3$,

$$
H_{k 12 \cdots(k-1)}(x, q)=\frac{1}{\left.1-\frac{x q}{1-x}-x^{2} \sum_{j=1}^{k-3} \sum_{i=1}^{j+1} \frac{\frac{1}{i}(i-1)}{(j-1}\right)\left(i_{i-1}^{j}\right) x^{2 i+j-1}}(1-x)^{2 j+1}(1+x)^{j} q^{j+1} . .
$$

For example, $H_{4123}(x, q)=\frac{1}{1-x q /(1-x)-x^{4} q^{2} /\left((1-x)^{3}(1+x)\right)}$. Let α be the root of smallest absolute value of the polynomial $3 x^{4}-3 x^{3}-x^{2}+3 x-1$. Thus $\alpha \approx 0.45208778430$, and for $T=\{3412,4123\}$ we have:

$$
\begin{aligned}
E_{n, T}\left(L_{n}\right) & =\frac{\left.\left[x^{n}\right] \frac{\partial}{\partial q} H_{4123}(x, q)\right|_{q=1}}{\left[x^{n}\right] H_{4123}(x, 1)} \\
& \sim \frac{1}{457}\left(198 \alpha^{3}-246 \alpha^{2}-131 \alpha+299\right) n \approx 0.454689799955 \cdots n
\end{aligned}
$$

This completes the proof of Theorem 1.1-(vi).

$3.5 \quad E_{n, T}\left(\boldsymbol{L}_{n}\right)$ on $\boldsymbol{I}_{\mathrm{n}}(3412, \tau)$ with $\tau=k(k-1) \cdots 1$

Proof of Theorem 1.1-(vii). Let $F_{k}(x, q):=H_{k(k-1) \cdots 1}(x, q)$. Applying Proposition 3.2 to the permutation $\tau=k(k-1) \cdots 1$ with $k \geq 3$, we see that

$$
\begin{aligned}
F_{k}(x, q) & =1+\left(x+x^{2}+\cdots+x^{k-1}\right) q F_{k}(x, q) \\
& +x^{2}\left(F_{k-2}(x, q)-1-\left(x+x^{2}+\cdots+x^{k-3}\right) q\right) F_{k}(x, q)
\end{aligned}
$$

Thus,

$$
\begin{equation*}
F_{k}(x, q)=\frac{1}{1-q x-(q-1) x^{2}-x^{2} F_{k-2}(x, q)} \tag{5}
\end{equation*}
$$

with $F_{1}(x, q)=1$ and $F_{2}(x, q)=\frac{1}{1-q x}$. Iterating this equation, one can obtain an expression for $F_{k}(x, q)$ in the form of finite continued fractions. Alternatively, $F_{k}(x, q)$ can be expressed in terms of Chebyshev polynomials.

Recall that Chebyshev polynomials of the second kind can be defined as the solution to the recursion

$$
U_{n}(t)=2 t U_{n-1}(t)-U_{n-2}(t)
$$

with initial conditions $U_{0}(t)=1$ and $U_{1}(t)=2 t$. Using this recursion and induction, one can derive the following result from (5).

Lemma 3.4. For all $k \geq 1$,

$$
H_{(2 k+1)(2 k) \cdots 1}(x, q)=\frac{U_{k-1}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)-x U_{k-2}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)}{x\left(U_{k}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)-x U_{k-1}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)\right)}
$$

and

$$
H_{(2 k+2)(2 k+1) \cdots 1}(x, q)=\frac{\frac{1-x q}{x} U_{k-1}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)-U_{k-2}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)}{x\left(\frac{1-x q}{x} U_{k}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)-U_{k-1}\left(\frac{1-q x-(q-1) x^{2}}{2 x}\right)\right)} .
$$

We remark that the results in Lemma 3.4 with $q=1$ recover formulas (7) and (8) in [4] for ordinary generating functions for the number of involutions avoiding 3412 and $k(k-1) \cdots 1$.

An application of the lemma with $k=1$ yields for $T=\{3412,4321\}$:

$$
E_{n, T}\left(L_{n}\right)=\frac{\left.\left[x^{n}\right] \frac{\partial}{q} H_{4321}(x, q)\right|_{q=1}}{\left[x^{n}\right] H_{4321}(x, 1)} \sim \frac{5}{8} n,
$$

which completes the proof of Theorem 1.1-(vii).

Acknowledgement

G. Yıldırım was partially supported by Tubitak-Bideb 2232 Grant no: 118C029.

References

[1] J. Baik, P. Deift, and T. Suidan, Combinatorics and Random Matrix Theory, AMS, 2016.
[2] J. Baik and E. M. Rains, The asymptotics of monotone subsequences of involutions, Duke Math. J. 109 (2001), 205-281.
[3] E. Deutsch, A. J. Hildebrand, and H. S. Wilf, Longest increasing subsequences in pattern-restricted permutations, Electron. J. Combin. 9 (2002-2003), paper R12.
[4] E. S. Egge, Restricted 3412-avoiding involutions, continued fractions, and Chebyshev polynomials, Adv. in Appl. Math. 33 (2004), 451-475.
[5] E. S. Egge and T. Mansour, Bivariate generating functions for involutions restricted by 3412, Adv. in Appl. Math. 36 (2006), 118-137.
[6] O. Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young, PhD thesis, Université Bordeaux I, 1995.
[7] M. Kiwi, A concentration bound for the longest increasing subsequence of a randomly chosen involution, Discrete Appl. Math. 154 (2006), 1816-1823.
[8] T. Mansour and G. Yıldırım, Longest increasing subsequences in involutions avoiding patterns of length three, Turkish J. Math. 43 (2019), 2183-2192.
[9] T. Mansour and G. Yıldırım, Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, Advances in Applied Mathematics. 116 (2020), 1-17.
[10] A. Reifegerste, On the diagram of 132-avoiding permutations, European J. Combin. 24 (2003), 759-776.
[11] D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge University Press, 2015.
[12] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org, 2010.
[13] R. P. Stanley, Increasing and decreasing subsequences and their variants, International Congress of Mathematicians, Vol. I, 545-579, Eur. Math. Soc., 2007.
[14] R. P. Stanley, A survey of alternating permutations, In Combinatorics and Graphs, 165-196, Contemp. Math., 531, Amer. Math. Soc., 2010.

[^0]: *Department of Mathematics, University of Haifa, 199 Abba Khoushy Ave, 3498838 Haifa, Israel; e-mail: tmansour@univ.haifa.ac.il
 ${ }^{\dagger}$ Occidental Petroleum Corporation, Houston, TX 77046 and Departments of Mathematics and Engineering, University of Tulsa, OK 74104, USA - Adjunct Professor; e-mail: reza_rastegar2@oxy.com
 \ddagger Department of Statistics, Texas A\&M University, College Station, TX 77843, USA; e-mail: alexander@stat.tamu.edu
 ${ }^{\S}$ Department of Mathematics, Bilkent University, 06800 Ankara, Turkey; e-mail: gokhan.yildirim@bilkent.edu.tr. Corresponding author.

