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Abstract

In this note, we study the mean length of the longest increasing subsequence of a
uniformly sampled involution that avoids the pattern 3412 and another pattern.
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1 Introduction

In this paper we study the longest increasing subsequence of involutions avoiding 3412 and
another pattern. A permutation σ = σ1σ2 · · ·σn of length n is defined as an arrangement of
the elements of the set [n] := {1, 2, · · · , n}. A permutation σ is called an involution if σ = σ−1,
where σ−1

i = j if and only if σj = i. We use notations Sn and In to denote, respectively, the
set of all permutations and the set of all involutions of length n. A subsequence of σ ∈ Sn

is defined as a sequence σi1σi2 · · ·σik where 1 ≤ i1 < i2 < · · · < ik ≤ n. The subsequence is
called an increasing subsequence if σi1 < σi2 < · · · < σik .

For any permutation σ, there is at least one longest increasing subsequence. We denote
the length of this subsequence by Ln(σ). The celebrated Ulam’s problem is concerned with
the asymptotic behavior, as n tends to infinity, of the expectation of Ln(σ) when σ is chosen
uniformly from Sn [1, 11]. The classical Ulam’s problem has been extended and generalized
in various directions [13, 14]. In particular, asymptotic behavior of the distribution of the
longest increasing subsequence of random involutions is the topic of [2, 7].
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Variations of Ulam’s problem have been considered also for permutations in Sn avoiding
certain patterns [3, 8, 9, 10]. For permutations π = π1π2 · · ·πk ∈ Sk and σ = σ1σ2 · · ·σn ∈ Sn,
we say that σ contains pattern π if there exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that

σis < σit if and only if πs < πt for all 1 ≤ s, t ≤ k.

For instance, the permutation 15243 contains 321 as a pattern because it has the subse-
quences ∗5 ∗ 43, and 543 matches the pattern 321. If σ does not contain π as a pattern, then
we say that σ avoids π or σ is a π-avoiding permutation. We denote by Sn(π) and In(π),
respectively, the sets of π-avoiding permutations and π-avoiding involutions of [n].

The goal of this paper is to study Ulam’s problem in the context of involutions in In
avoiding 3412 and another pattern. In [4] Egge connected generating functions for various
subsets of In(3412) with continued fractions and Chebyshev polynomials of the second kind,
and gave a recursive formula for computing them. The formula exploits a bijection between
In(3412) and Motzkin paths established in [6]. Many of the results in [4] are concerned with
statistics of decreasing subsequences of involutions in In(3412). Later, Egge and Mansour
[5] extended the results in [4] to certain bivariate generating functions involving statistics of
two-cycles in involutions. In this paper we extend the method of [4, 5] to certain bivariate
generating functions involving the statistic Ln(σ), and use it as a tool for studying the Ulam’s
problem for such pattern-restricted involutions.

For a given set of patterns T, let In(T ) =
⋂

τ∈T In(τ) and denote by Pn,T the uniform
distribution on In(T ). Thus, the probability of choosing any σ ∈ In(T ) under Pn,T is 1

|In(T )| ,

where | · | is the size of the set. We use the notations En,T ( · ) and Varn,T ( · ) to denote,
respectively, the expectation and the variance operators under Pn,T . We use the shortcut
Ln to denote the random variable Ln(σ), where σ ∈ Sn is a random permutation sampled
uniformly from In(T ).

Throughout the paper, we write an ∼ bn to indicate that limn→∞
an
bn

= 1. We have:

Theorem 1.1. Consider Ln on In(T ) under the uniform probability measure. Then we have
the following:

(i) If T = {3412}, then En,T (Ln) =
4n
9
.

(ii) If T = {3412, 123}, then En,T (Ln) =
n2/2+3/4+(−1)n/4
n2/4+7/8+(−1)n/8

∼ 2.

(iii) If T = {3412, 213} or T = {3412, 132}, then En,T (Ln) ∼ n√
5
.

(iv) If T = {3412, 321}, then En,T (Ln) ∼ 3+
√
5

5+
√
5
n.

(v) If T = {3412, 123 · · ·k} for some k ≥ 1, then En,T (Ln) ∼ k − 1.

(vi) If T = {3412, 4123}, then,

En,T (Ln) ∼
1

457
(198α3 − 246α2 − 131α+ 299)n ≈ 0.454689799955 · · ·n.

Here α is the complex root of smallest absolute value of the polynomial 3x4 − 3x3 −
x2 + 3x− 1.
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τ Hτ (x, q) =
∑

n≥0

∑

σ∈In(3412,τ) x
nqLn(σ) En,T = En,T (Ln), Vn,T = Varn,T (Ln) for T = {3412, τ}

1234 1 + x
(1−x)q +

x2

(1−x)3(1+x)
q2 + x3(x2+1)

(1−x)5(x+1)2
q3 En,T ∼ 3, Vn,T ∼ 12

n2

1243, 2134, 1324 1 + qx(x4+(1+(q−2)x2)(1−xq))
(1−qx−x2)2(1−x)

En,T ∼ n√
5
, Vn,T ∼ 4

5
√
5
n

1342, 1423 (q−1)x3+x2+x−1
x3−x2−(1+q)x+1 En,T ∼ (3−2α)(α+1)

7 n, Vn,T ∼ −7α2+5α+10
49 n, where

2314, 3124 α3 − α2 − 2α+ 1 = 0, α ≈ 0.44504

1432, 3214, 2143, 4231 1−x
1−x−qx En,T ∼ n

2 , Vn,T ∼ 1
4n

2341, 4123 1

1− xq
1−x

− x4q2

(1−x)3(1+x)

En,T ∼ 198α3−246α2−131α+299
457 n,

Vn,T ∼ 28800α3−7157α2−8959α+47230
208849 n, where

3α4 − 3α3 − α2 + 3α− 1 = 0, α ≈ 0.45209

2413, 3142
1−xq−x2(q−1)−

√
(1−xq−x2(q−1))2−4x2

2x2 En,T ∼ 4n
9 , Vn,T ∼ 4n

27

2431, 3241 1−qx−x2

q2x3+(q2−q−1)x2−2qx+1
En,T ∼ (α+1)(α+2)

7 n, Vn,T ∼ −7α2−4α+13
49 n where

4132, 4213 α3 − α2 − 2α+ 1 = 0, α ≈ 0.44504

3421, 4312 1−(q+1)x
(1−(q+1)x−qx2)(1−qx)

En,T ∼ n
2 Vn,T ∼

√
2
8 n

4321 1−qx
q(q−1)x3+q(q−1)x2−2qx+1

En,T ∼ 5
8n, Vn,T ∼ 7

64n

Table 1: The list of the generating functions and asymptotic values of the mean and variance
of the length of the longest increasing subsequence for uniformly random involutions from
In(3412, τ) with τ ∈ S4.

(vii) If T = {3412, 4321}, then En,T (Ln) ∼ 5n
8
.

Since 3412 contains the patterns 231 and 312, we have

In(3412, 231) = In(231) and In(3412, 312) = In(312).

As shown in section 3.2 of [8], En,T (Ln) = n+1
2

for T = {3412, 231} and T = {3412, 312}.
Thus, Theorem 1.1 covers all possible cases for In(3412, τ) with τ ∈ S3.

Using similar arguments we also obtained the asymptotic of En,T (Ln) and Varn,T (Ln) for
all possible cases In(3412, τ) with τ ∈ S4. We summarize these results in Table 1, without
explicit calculations for the sake of space.

The rest of the paper is organized as follows. In Section 2 we consider In(3412) and prove
part (i) of Theorem 1.1. In Section 3 we consider In(3412, τ) with various patterns τ and
prove the rest of Theorem 1.1.
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2 Longest increasing subsequences in In(3412)

For ρ ∈ Sk and σ ∈ Sm, we denote by ρ⊕σ their direct sum, which is a permutation in Sk+m

given by ρ1 · · · ρk(σ1 + k) · · · (σm + k). Similarly, we denote by ρ⊖ σ the skew sum of ρ and
σ, which is an element of Sk+m given by (ρ1 +m) · · · (ρk +m)σ1 · · ·σm.

Our proofs make use of the following recursive structure of the involutions in In(3412),
for the details see [6, Remark 4.28] and [4, Proposition 2.9]:

Proposition 2.1. Let ρ ∈ In(3412). Then either

(i) ρ = 1⊕ ρ′ and ρ′ ∈ In−1(3412), or

(ii) ρ = (1⊖ ρ′′ ⊖ 1)⊕ ρ′, where ρ′′ ∈ Im−2(3412) and ρ′ ∈ In−m(3412) for some m ≥ 2.

Proof of Theorem 1.1-(i). Let H(x, q) be the generating function for the number of invo-
lutions in In(3412) according to the length of the longest increasing subsequence. More
precisely,

H(x, q) =
∑

n≥0

∑

σ∈In(3412)
xnqLn(σ). (1)

To obtain a closed form for H(x, q), we partition In(3412) as a union of the following four
non-overlapping subsets, by virtue of Proposition 2.1:
(i) In,1 - the set of the empty involution;
(ii) In,2 - the set of the involutions in In(3412) that start with 1;
(iii) In,3 - the set of the involutions in In(3412) that start with 21;
(iv) In,4 - the set of the involutions in In(3412) that can be written as (1⊖σ′′⊖1)⊕σ′, where

σ′′ is a nonempty 3412-avoiding involution and σ′ is any 3412-avoiding involution.
Adding together contributions of all the four sets, we obtain:

H(x, q) = 1
︸︷︷︸
In,1

+ xqH(x, q)
︸ ︷︷ ︸

In,2

+ x2qH(x, q)
︸ ︷︷ ︸

In,3

+ x2(H(x, q)− 1)H(x, q)
︸ ︷︷ ︸

In,4

.

Hence,

H(x, q) =
1− xq − x2(q − 1)−

√

(1− xq − x2(q − 1))2 − 4x2

2x2
.

Note that H(x, 1) = 1−x−
√
1−2x−3x2

2x2 , which is the generating function for Motzkin numbers
[4, 6]. Furthermore,

∂

∂q
H(x, q)

∣
∣
∣
q=1

= −x+ 1

2x
+

1 + x2

2x
√
1− 2x− 3x2

.

Hence,

En,3412(Ln) =
[xn] ∂

∂q
H(x, q) |q=1

[xn]H(x, 1)
∼

2n
√
3

9
√
πnn

3n+1

√
3

2
√
πnn

3n+1
=

4n

9
,

which completes the proof of Theorem 1.1-(i).
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3 Longest increasing subsequences in In(3412, τ )

In this section, we extend our arguments from In(3412) to In(3412, τ) for various patterns τ.
Toward this end, similar to (1), we define

Hτ (x, q) =
∑

n≥0

∑

σ∈In(3412,τ)
xnqLn(σ).

More generally, for a collection of patterns T , we set

HT (x, q) =
∑

n≥0

∑

σ∈In(3412)
⋂

In(T )

xnqLn(σ).

When T = {τ, τ ′}, for simplicity, we write Hτ,τ ′(x, q). We also set H∅(x, q) := 0 and let
Hτ/τ ′(x, q) := Hτ (x, q) − Hτ,τ ′(x, q) denote the corresponding generating function for the
involutions in In(3412, τ) that contain the pattern τ ′.

We call a permutation irreducible if it cannot be represented as a direct sum of two
nonempty permutations. It is easy to show that every permutation ρ can be written as a
direct sum

ρ = ρ(1) ⊕ ρ(2) ⊕ · · · ⊕ ρ(k),

where ρ(1), . . . , ρ(k) are nonempty irreducible permutations, uniquely determined by ρ. We
next introduce a bar operator for permutations following [4].

Definition 3.1. For ρ ∈ Sm, define ρ as follows:

1. ∅ = ∅ and 1 = ∅.

2. If m ≥ 2 and there exists a permutation σ such that ρ = 1⊖ σ ⊖ 1, then ρ = σ.

3. If m ≥ 2 and there exists a permutation σ such that ρ = 1 ⊖ σ, and σ does not end
with 1, then ρ = σ.

4. If m ≥ 2 and there exists a permutation σ such that ρ = σ ⊖ 1, and ρ does not begin
with m, then ρ = σ.

5. If m ≥ 2 and ρ does not begin with m, and it does not end with 1, then ρ = ρ.

Our main technical tool for calculating the corresponding generating functions for the
classes In(3412, τ) is the following extension of a result for In(3412) given by Corollary 5.6
in [4].

Proposition 3.2. Suppose that τ = τ (1) ⊕ τ (2) ⊕ · · · ⊕ τ (s) is a direct sum of nonempty
irreducible permutations τ (1), . . . , τ (s) such that τ (1) is not a decreasing sequence. For i ∈ [s],
define

θ(i) := τ (1) ⊕ · · · ⊕ τ (i) and θ<i> := τ (i) ⊕ · · · ⊕ τ (s).

Then we have:
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(i) If τ (1) = 1, then

Hτ (x, q) = 1 +
xq

1− x
Hθ(<2>)(x, q)

+ x2
s∑

i=2

{Hθ(i)/12(x, q)−Hθ(i−1)/12(x, q)}Hθ<i>(x, q).

(ii) If τ (1) = 21, then

Hτ (x, q) = 1 + xqHρ(x, q) +
x2q

1− x
Hθ<2>(x, q)

+ x2
s∑

i=2

{Hθ(i)/12(x, q)− δi>2Hθ(i−1)/12(x, q)}Hθ<i>(x, q),

where δA is one if A is true, and is zero otherwise.

(iii) If τ (1) = m(m− 1) · · ·1 with m ≥ 3, then

Hτ (x, q) = 1 + (x+ x2 + · · ·+ xm−1)qHρ(x, q) +
xmq

1− x
Hθ<2>(x, q)

+ x2

s∑

i=1

{Hθ(i)/12(x, q)−Hθ(i−1)/12(x, q)}Hθ<i>(x, q).

(iv) If τ (1) 6= m(m− 1) · · ·1 and ρ(1) ∈ Sm with m ≥ 3, then

Hτ (x, q) = 1 +
xq

1− x
Hρ(x, q)

+ x2
s∑

i=1

{Hθ(i)/12(x, q)−Hθ(i−1)/12(x, q)}Hθ<i>(x, q).

We will only prove parts (i) and (iv) of the proposition. The proofs of the other two cases
are very similar, and therefore are omitted.

Proof of Proposition 3.2-(i). Assume first that τ (1) = 1. We partition the set In(3412, τ)
into three non-overlapping subsets:
(i) Jn,1 - the set of the empty involution;
(ii) Jn,2 - the set of those involutions of the form r(r − 1) · · ·1⊕ σ′ for some r ≥ 2;
(iii) Jn,3 - the set of those involutions which do not begin with a decreasing sequence.
It is easy to see that the involutions in the sets Jn,1 and Jn,2 contribute 1 and xq

1−x
Hτ (x, y),

respectively, to Hτ (x, y). To obtain the contribution of the involutions in the set Jn,3, we
first observe that in view of Proposition 2.1, all involutions in Jn,3 can be written in the
form σ = (1 ⊖ σ′′ ⊖ 1) ⊕ σ′ with σ′′ that contains 12. Thus, the involutions in Jn,3 that
avoid τ (1) contribute x2Hθ(1)/12(x, q)Hτ (x, q) = 0. Furthermore, any involution in Jn,3 that
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contains τ (1), avoids θ(i) and contains θ(i−1) for some i = 2, 3, . . . , s. The total contribution
of such involutions into Hτ (x, q) is equl to

x2

s∑

i=2

(
Hθ(i)/12(x, q)−Hθ(i−1)/12(x, q)

)
Hθ<i>(x, q).

Adding together the contributions of Jn,1, Jn,2, and Jn,3, we obtain the desired result.

Proof of Proposition 3.2-(iv). Suppose now that τ (1) 6= m(m − 1) · · ·1 and τ (1) ∈ Sm with
m ≥ 3. We will consider again the partition In(3412, τ) =

⋃3
k=1 Jn,k defined in the course of

the proof of part (i) of the proposition. It is easy to verify that in this case, Jn,1 contributes
1 to Hτ (x, q), while permutations in the set Jn,2 contribute xq

1−x
Hτ (x, y). To obtain the

contribution of Jn,3, recall that by Proposition 2.1, all involutions in this set have the form
σ = (1 ⊖ σ′′ ⊖ 1) ⊕ σ′ where σ′′ contains 12. Thus, the involutions in Jn,3 that avoid τ (1)

contribute x2Hθ(1)/12(x, q)Hτ (x, q), while the involutions in Jn,3 that contain τ (1) contribute

x2
s∑

i=1

(
Hθ(i)/12(x, q)−Hθ(i−1)/12(x, q)

)
Hθ<i>(x, q).

Adding up all the contributing terms listed above, yields the desired result.

The rest of this section is divided into fives subsections, each one is concerned with
In(3412, τ) for a particular type of pattern τ and presents the proof of the corresponding
part in Theorem 1.1.

3.1 En,T (Ln) on In(3412, τ) with τ ∈ S2

Note that the only involution in In(3412, 12) is n(n− 1) · · ·1. Thus,

H12(x, q) = 1 +
xq

1− x
. (2)

Similarly, the only involution in In(3412, 21) is 12 · · ·n. . Thus,

H21(x, q) =
1

1− xq
.

3.2 En,T (Ln) on In(3412, τ) with τ ∈ S3

Proof of Theorem 1.1-(ii). An application of Proposition 3.2-(i) with τ = 1 ⊕ 1 ⊕ 1 = 123
gives

H123(x, q) = 1 +
xq

1− x
H12(x, q) + x2(H12/12(x, q)−H1/12(x, q))H12(x, q)

+ x2(H123/12(x, q)−H12/12(x, q))H1(x, q).

It follows from (2) and the decomposition

H123/12(x, q) = H123(x, q)−H12(x, q) (3)
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that

H123(x, q) = 1 +
xq

1− x

(

1 +
xq

1− x

)

+ x2H123(x, q)− x2

(

1 +
xq

1− x

)

.

Therefore,

H123(x, q) = 1 +
xq(1− x(1− q)− x2 + x3)

(1− x)3(1 + x)
.

Hence, for T = {3412, 123} we have:

En,T (Ln) =
[xn] ∂

∂q
H123(x, q) |q=1

[xn]H123(x, 1)
=

n2/2 + 3/4 + (−1)n/4

n2/4 + 7/8 + (−1)n/8
∼ 2.

Proof of Theorem 1.1-(iii). Proposition 3.2-(i) implies that for τ = 1⊕ 21 = 132,

H132(x, q) = 1 +
xq

1− x
H21(x, q) + x2(H132/12(x, q)−H1/12(x, q))H21(x, q).

Using (3) and the fact that H1/12(x, q) = 0, we get

H132(x, q) =
1− x2(1− q)

1− xq − x2
.

Therefore, for T = {3412, 132} we have:

En,T (Ln) ∼
n√
5
.

We next apply Proposition 3.2-(ii) to τ = 21⊕ 1 = 213, to get

H213(x, q) = 1 + xqH213(x, q) +
x2q

1− x
+ x2(H213(x, q)−H12(x, q))H1(x, q).

It follows then from (2) that

H213(x, q) =
1− x2(1− q)

1− xq − x2
.

Hence, for T = {3412, 213} we have: En,T (Ln) ∼ n√
5
.

Proof of Theorem 1.1-(iv). An application of Proposition 3.2-(iii) to τ = 321 yields:

H321(x, q) = 1 + (x+ x2)qH321(x, q) + x2(H1(x, q)−H1,12(x, q))H321(x, q).

Since H1(x, q) = H1,12(x, q) = 1, this implies that

H321(x, q) =
1

1− qx− qx2
.

Thus, for T = {3412, 321} we have En,T (Ln) ∼ 3+
√
5

5+
√
5
n.

8



3.3 En,T (Ln) on In(3412, τ) with τ = 12 · · · k
Proof of Theorem 1.1-(v). Let Fk(x, q) := H12···k(x, q). Applying Proposition 3.2 to the per-
mutation τ = 12 · · ·k with k ≥ 1, we obtain:

Fk(x, q) = 1 +
xq

1− x
Fk−1(x, q) + x2

k∑

i=3

(Fi(x, q)− Fi−1(x, q))Fk−i+1(x, q).

Let F (x, q; y) :=
∑

k≥1 Fk(x, q)y
k. Multiplying both sides of the above recurrence equation

by yk, summing over k ≥ 1, and using the fact that F0(x, q) = 0 and F1(x, q) = 1, we obtain:

F (x, q; y) =
y

1− y
+

xqy

1− x
F (x, q; y) +

x2

y
F (x, q; y)F (x, q; y)− x2yH12(x, q)F (x, q; y)

− x2F (x, q; y)− x2F (x, q; y)F (x, q; y) + x2yF (x, q; y).

Taking (2) into account and solving for F (x, y; q), we obtain:

F (x, q; y) =
y

1− y
+

(1− qyx− (1 + qy)x2 −
√

(1− qyx− (qy + 1)x2)2 − 4q(1 + x)x3y)y

2x2(1− y)

=
y

1− y
+

qxy2

(1− y)(1− x− qyx)
C

(
qx3y

(1 + x)(1− x− qyx)2

)

,

where C(x) = 1−√
1−4x
2x

is the generating function for the Catalan numbers cn = 1
n+1

(
2n
n

)
.

Substituting a series representation of the generating function from A001263 in [12], we
obtain that

F (x, q; y) =
y

1− y
+

1

1− y

∑

j≥0

j+1
∑

i=1

1
i

(
j−1
i−1

)(
j

i−1

)
x2i+j−1

(1− x)2j+1(1 + x)j
qj+1yj+2.

Therefore, for k ≥ 2 we have:

[yk]F (x, q; y) = 1 +

k−2∑

j=0

j+1
∑

i=1

1
i

(
j−1
i−1

)(
j

i−1

)
x2i+j−1

(1− x)2j+1(1 + x)j
qj+1. (4)

Hence, for all k ≥ 2, using the usual bracket notation for coefficient extraction,

[xnyk]F (x, 1; y) ∼ 1

(k − 1)2k−2(2k − 4)!

(
2k − 4

k − 2

)

n2k−4

and

[xnyk]
∂

∂q
F (x, q; y)

∣
∣
∣
q=1

∼ 1

2k−2(2k − 4)!

(
2k − 4

k − 2

)

n2k−4,

which yields the result in Theorem 1.1-(v).
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3.4 En,T (Ln) on In(3412, τ) with τ = k12 · · · (k − 1)

Proof of Theorem 1.1-(vi). Let Gk(x, q) := Hk12···(k−1)(x, q). Applying Proposition 3.2-(iv)
to τ = k12 · · · (k − 1) with k ≥ 3, we obtain that

Gk(x, q) = 1 +
xq

1− x
Gk(x, q) + x2(Fk−1(x, q)− F2(x, q))Gk(x, q),

which in view of (2) leads to

Gk(x, q) =
1

1− xq
1−x

− x2(Fk−1(x, q)− 1− xq
1−x

)
.

Taking (4) into account, we arrive to the following result:

Lemma 3.3. For k ≥ 3,

Hk12···(k−1)(x, q) =
1

1− xq
1−x

− x2
∑k−3

j=1

∑j+1
i=1

1
i (

j−1
i−1)(

j
i−1)x2i+j−1

(1−x)2j+1(1+x)j
qj+1

.

For example, H4123(x, q) = 1
1−xq/(1−x)−x4q2/((1−x)3(1+x))

. Let α be the root of smallest

absolute value of the polynomial 3x4 − 3x3 − x2 + 3x− 1. Thus α ≈ 0.45208778430, and for
T = {3412, 4123} we have:

En,T (Ln) =
[xn] ∂

∂q
H4123(x, q) |q=1

[xn]H4123(x, 1)

∼ 1

457
(198α3 − 246α2 − 131α+ 299)n ≈ 0.454689799955 · · ·n.

This completes the proof of Theorem 1.1-(vi).

3.5 En,T (Ln) on In(3412, τ) with τ = k(k − 1) · · · 1
Proof of Theorem 1.1-(vii). Let Fk(x, q) := Hk(k−1)···1(x, q). Applying Proposition 3.2 to the
permutation τ = k(k − 1) · · ·1 with k ≥ 3, we see that

Fk(x, q) = 1 + (x+ x2 + · · ·+ xk−1)qFk(x, q)

+ x2(Fk−2(x, q)− 1− (x+ x2 + · · ·+ xk−3)q)Fk(x, q).

Thus,

Fk(x, q) = 1
1−qx−(q−1)x2−x2Fk−2(x,q)

(5)

with F1(x, q) = 1 and F2(x, q) =
1

1−qx
. Iterating this equation, one can obtain an expression

for Fk(x, q) in the form of finite continued fractions. Alternatively, Fk(x, q) can be expressed
in terms of Chebyshev polynomials.

Recall that Chebyshev polynomials of the second kind can be defined as the solution to
the recursion

Un(t) = 2tUn−1(t)− Un−2(t)

with initial conditions U0(t) = 1 and U1(t) = 2t. Using this recursion and induction, one can
derive the following result from (5).

10



Lemma 3.4. For all k ≥ 1,

H(2k+1)(2k)···1(x, q) =
Uk−1

(
1−qx−(q−1)x2

2x

)

− xUk−2

(
1−qx−(q−1)x2

2x

)

x
(

Uk

(
1−qx−(q−1)x2

2x

)

− xUk−1

(
1−qx−(q−1)x2

2x

))

and

H(2k+2)(2k+1)···1(x, q) =

1−xq
x

Uk−1

(
1−qx−(q−1)x2

2x

)

− Uk−2

(
1−qx−(q−1)x2

2x

)

x
(

1−xq
x

Uk

(
1−qx−(q−1)x2

2x

)

− Uk−1

(
1−qx−(q−1)x2

2x

)) .

We remark that the results in Lemma 3.4 with q = 1 recover formulas (7) and (8) in [4] for
ordinary generating functions for the number of involutions avoiding 3412 and k(k−1) · · · 1.

An application of the lemma with k = 1 yields for T = {3412, 4321} :

En,T (Ln) =
[xn] ∂

∂q
H4321(x,q)|q=1

[xn]H4321(x,1)
∼ 5

8
n,

which completes the proof of Theorem 1.1-(vii).
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[7] M. Kiwi, A concentration bound for the longest increasing subsequence of a randomly
chosen involution, Discrete Appl. Math. 154 (2006), 1816–1823.

11



[8] T. Mansour and G. Yıldırım, Longest increasing subsequences in involutions avoiding
patterns of length three, Turkish J. Math. 43 (2019), 2183–2192.

[9] T. Mansour and G. Yıldırım, Permutations avoiding 312 and another pattern, Cheby-
shev polynomials and longest increasing subsequences, Advances in Applied Mathemat-
ics. 116 (2020), 1-17.

[10] A. Reifegerste, On the diagram of 132-avoiding permutations, European J. Combin.
24 (2003), 759–776.

[11] D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge
University Press, 2015.

[12] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org, 2010.

[13] R. P. Stanley, Increasing and decreasing subsequences and their variants, International
Congress of Mathematicians, Vol. I, 545–579, Eur. Math. Soc., 2007.

[14] R. P. Stanley, A survey of alternating permutations, In Combinatorics and Graphs,
165–196, Contemp. Math., 531, Amer. Math. Soc., 2010.

12


